Casting
Section:
Grade:

The remainder of this page has been left blank for your workings.

VERSIONB

Indefinite Integrals

- 1. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
 - (a) Calculate the indefinite integral $\int x^2 e^{-x} dx$ for x > 0.

Answer: $-e^{-x}(x^2 + 2x + 2) + C$

Solution: We do integration by parts with:

$$u(x) = x^2 \Rightarrow u'(x) = 2x,$$

$$v'(x) = e^{-x} \Rightarrow v(x) = -e^{-x}.$$

$$\int x^2 e^{-x} dx = -x^2 e^{-x} - \int 2x(-e^{-x}) dx$$

and then again integration by parts on $\int xe^{-x} dx$ with u(x) = x and $v'(x) = e^{-x}$, and finally get:

$$\int x^2 e^{-x} \, dx = -e^{-x} (x^2 + 2x + 2) + C$$

(b) Calculate the indefinite integral $\int x \sqrt{3-x} \, dx$ for x < 3.

Answer:
$$-\frac{2}{5}(3-x)^{3/2}(2+x) + C$$

Solution: We take u(x) = 3 - x, then we have u'(x) = -1 and we replace x by 3 - u(x), such that we write

$$\int x\sqrt{3-x}\,dx = -\int (-1)x\sqrt{3-x}\,dx = -\int (3-u)u^{1/2}u'\,dx$$

and apply substitution rule as:

$$-\int (3-u)u^{1/2}u'\,dx = -\left(\int 3u^{1/2} - u^{3/2}\,du\right)_{u=3-1}$$

Anti-differentiating the simple polynomial function $3u^{1/2} - u^{3/2}$ and eventually substituting u(x) = 3 - x, we finally get:

$$\int x\sqrt{3-x}\,dx = -2\left((3-x)^{3/2} - \frac{1}{5}(3-x)^{5/2}\right) + C = -\frac{2}{5}(3-x)^{3/2}(2+x) + C$$

Note that this problem can also be solved by IBP (but more challenging) with:

$$u(x) = x \Rightarrow u'(x) = 1,$$

$$v'(x) = (3-x)^{1/2} \Rightarrow v(x) = \frac{2}{3}(-1)(3-x)^{3/2} = -\frac{2}{3}(3-x)^{3/2}$$

such that

$$I = x \left(-\frac{2}{3}\right) (3-x)^{3/2} - \int 1 \left(\frac{-2}{3}\right) (3-x)^{3/2} dx$$
$$= \left(-\frac{2}{3}x\right) (3-x)^{3/2} + \frac{2}{3} \int (3-x)^{3/2} dx$$

Given that the anti-derivative of $\int (3-x)^{3/2} dx$ is $\frac{2}{5}(-1)(3-x)^{5/2} + C = -\frac{2}{5}(3-x)^{5/2} + C$, we get:

$$I = (3-x)^{3/2} \left(-\frac{2}{3}x - \frac{4}{15}(3-x) \right) + C = (3-x)^{3/2} \left(-\frac{12}{15} - \frac{2}{5}x \right) + C$$
$$= -\frac{2}{5}(3-x)^{3/2}(2+x) + C$$

(c) (A Little Harder): Calculate the indefinite integral $\int \tan^2(8x) \sec^4(8x) dx$.

Answer: $\frac{1}{24} \tan^3(8x) + \frac{1}{40} \tan^5(8x) + C$

Solution: We use the substitution u(x) = 8x, u'(x) = 8 to rewrite the indefinite integral as:

$$I = \int \tan^2(8x) \sec^4(8x) \, dx = \frac{1}{8} \int 8 \tan^2(8x) \sec^4(8x) \, dx$$
$$= \frac{1}{8} \left(\int \tan^2 u \sec^4 u \, du \right)_{u=8x}$$

Then it is classical trigonometric integral, we hold $\sec^2 u$, replace $\sec^2 u$ by $\tan^2 u + 1$, and do another substitution $v(u) = \tan u$, $v'(u) = \sec^2 u$ to get:

$$I = \frac{1}{8} \int (v^2 + 1)v^2 v' \, du = \frac{1}{8} \left(\int (v^2 + 1)v^2 \, dv \right)_{v = \tan u} = \frac{1}{8} \left[\frac{1}{5}v^5 + \frac{1}{3}v^3 \right]_{v = \tan u} + C$$

Finally we substitute $v = \tan u$ and u = 8x, which boils down to substituting $v = \tan(8x)$ to establish that:

$$I = \frac{1}{24}\tan^3(8x) + \frac{1}{40}\tan^5(8x) + C$$

Definite Integrals

- 2. 8 marks Each part is worth 4 marks. Please write your answers in the boxes.
 - (a) Calculate $\int_0^{2\pi} (xe^{-x^2} + x\cos x) dx$.

Answer: $\frac{1-e^{-4\pi^2}}{2}$ Solution: The first part gives: $\int_{0}^{2\pi} xe^{-x^2} dx = \left[-\frac{1}{2}e^{-x^2}\right]_{0}^{2\pi} = \frac{1-e^{-4\pi^2}}{2}$ and the second part is calculated by IBP as: $\int_{0}^{2\pi} x\cos x \, dx = [x\sin x]_{0}^{2\pi} - \int_{0}^{2\pi} \sin x \, dx = [x\sin x + \cos x]_{0}^{2\pi} = 0$ so $\int_{0}^{2\pi} (xe^{-x^2} + x\cos x) \, dx = \frac{1-e^{-4\pi^2}}{2}$. (b) Calculate $\int_{3}^{4} \frac{x-3}{\sqrt{6x-7-x^2}} \, dx$. Answer: $\sqrt{2} - 1$

Solution: We can rewrite $6x - 7 - x^2$ as $2 - (x - 3)^2$ and use a trigonometric substitution as

$$x - 3 = \sqrt{2}\sin\theta \quad , \quad x'(\theta) = \frac{dx}{d\theta} = \sqrt{2}\cos\theta,$$
$$x = 3 \Rightarrow \theta = 0 \quad , \quad x = 4 \Rightarrow \theta = \pi/4$$

to get:

$$I = \int_{3}^{4} \frac{x-3}{\sqrt{6x-7-x^{2}}} \, dx = \int_{0}^{\pi/4} \frac{\sqrt{2}\sin\theta}{\sqrt{2-2\sin^{2}\theta}} \sqrt{2}\cos\theta \, d\theta$$

Now we replace $\sqrt{1-\sin^2\theta}$ by $\sqrt{\cos^2\theta} = |\cos\theta| = \cos\theta$ as $\cos\theta$ is positive on $[0, \pi/4]$ and finally calculate:

$$I = \sqrt{2} \int_0^{\pi/4} \sin \theta \, d\theta = \sqrt{2} [-\cos \theta]_0^{\pi/4} = \sqrt{2} - 1$$

Note that this problem can also be solved by standard substitution: $u(x) = 6x - 7 - x^2$, u'(x) = 6 - 2x = -2(x - 3), u(3) = 2, u(4) = 1 as

$$\int_{3}^{4} \frac{x-3}{\sqrt{6x-7-x^{2}}} \, dx = -\frac{1}{2} \int_{3}^{4} \frac{-2(x-3)}{\sqrt{6x-7-x^{2}}} \, dx = -\frac{1}{2} \int_{3}^{4} u' u^{-1/2} \, dx$$

Midterm B: Page 5 of 10

and then

$$-\frac{1}{2}\int_{3}^{4} u' u^{-1/2} \, dx = -\frac{1}{2}\int_{2}^{1} u^{-1/2} \, du = [-u^{1/2}]_{2}^{1} = -1 + 2^{1/2}$$

Riemann Sum and FTC

- 3. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
 - (a) Which definite integral corresponds to $\lim_{n\to\infty} \sum_{i=1}^{n} \frac{4i\ln(\frac{2i}{n}+3)}{n^2}$?
 - (A) $\int_0^4 x \ln(\frac{x}{2} + 3) dx$
 - (B) $\int_0^2 (x-3) \ln(x) dx$
 - (C) $\int_{3}^{5} (x-3) \ln(x) dx$
 - (D) $2\int_0^2 x \ln(x+3)dx$
 - (E) $\int_{3}^{5} x \ln(x+3) dx$

Answer: C

Solution: Pick $x_i = \frac{2i}{n} + 3$, so $x_0 = 3$, $x_n = 5$ and $\Delta x = \frac{2}{n}$. Then we can rewrite the summation as:

$$\sum_{i=1}^{n} (x_i - 3) \ln(x_i) \Delta x$$

which corresponds to the Right Riemann Sum for option (C).

(b) Define
$$F(x)$$
 and $g(x)$ by $F(x) = \int_0^x te^t dt$ and $g(x) = 2x F(2x+1)$. Calculate $g'(0)$.

Solution: We use the product rule to get: g'(x) = 2F(2x+1)+2x F'(2x+1), and the chain rule and FTC I to calculate $F'(2x+1) = F'(y)y'(x) = 2(2x+1)e^{2x+1}$ with y(x) = 2x + 1. So we have:

$$g'(x) = 2F(2x+1) + 4x(2x+1)e^{2x+1}$$

Note that you do not even need to calculate F'(2x + 1) as when you set x = 0in the term 2x F'(2x + 1), you already get 0 due to the factor 2x. Taking x = 0 we get $g'(0) = 2F(1) + 0 \cdot 1 \cdot e^1 = 2F(1)$. Now we calculate F(1)by IBP as

$$F(1) = \int_0^1 te^t dt = [te^t]_0^1 - \int_0^1 1 \cdot e^t dt = [(t-1)e^t]_0^1 = (1-1)e^1 - (0-1)e^0 = 1$$

and get $g'(0) = 2$.

(c) Let $F(x) = \int_{x^2}^{x^3} 4e^{t^2} dt$. Find the equation of the tangent line to the graph of y = F(x) at x = 1. Tip: recall that the tangent line to the graph of y = F(x) at $x = x_0$ is given by the equation $y = F(x_0) + F'(x_0)(x - x_0)$.

Answer: y = 4e(x-1)

Solution: We first write F(x) for any real number c as:

$$F(x) = -\int_{c}^{x^{2}} 4e^{t^{2}} dt + \int_{c}^{x^{3}} 4e^{t^{2}} dt$$

Then use FTC I and the chain rule to get:

$$F'(x) = -4e^{x^4}2x + 4e^{x^6}3x^2$$

Then we calculate F(1) and F'(1), we get $F(1) = \int_1^1 4e^{t^2} dt = 0$ and F'(1) = 4e, and finally the equation of the tangent y - F(1) = F'(1)(x-1) becomes

$$y = 4e(x-1)$$

Areas and volumes

Please write your answers in the boxes. Do not use absolute values in your expressions, always work out: (i) the outer function and the inner function for volumes or (ii) which function lies above the other function for areas.

4. 4 marks Write a definite integral, with specified limits of integration, for the volume obtained by revolving the bounded region between x = y - 5 and $x = y^2/36$ about the horizontal line y = -2. Do not evaluate the integral.

Answer:
$$\pi \int_{1}^{25} (6\sqrt{x}+2)^2 - (x+7)^2 dx$$

Solution: Intersection points are given by $36x = (x+5)^2$.

Solving for x, we determine the 2 intersection points

$$I_1 = (1, 6)$$
 , $I_2 = (25, 30)$.

We integrate in x, hence we write y as a function of x for the 2 curves and apply a shift of +2, we finally establish:

$$\pi \int_{1}^{25} (6\sqrt{x}+2)^2 - (x+7)^2 \, dx$$

5. (a) 2 marks Sketch by hand the finite area enclosed by $y^2 + 5 = x$ and 2y = 8 - x

(b) 4 marks Write a definite integral with specific limits of integration that determines this finite area.

Solution: We first find the intersection between the two curves, given by the solution of:

Answer: $\int_{-3}^{1} (-y^2 - 2y + 3) dy$

$$y^{2} + 5 = 8 - 2y \Leftrightarrow (y+3)(y-1) = 0.$$

We then label the curve $x_R = y^2 + 5$ and $x_B = 8 - 2y$ and notice that $x_B \ge x_R$ for $-3 \le y \le 1$. The area is therefore given by the following definite integral:

$$A = \int_{-3}^{1} \left(8 - 2y - y^2 - 5 \right) \, dy = \int_{-3}^{1} \left(-y^2 - 2y + 3 \right) \, dy$$

(c) 2 marks Evaluate the integral to compute the area enclosed.

	Answer: $\frac{32}{3}$
Solution:	$A = \left[-\frac{y^3}{3} - \frac{2y^2}{2} + 3y \right]_{-3}^{1} = \frac{32}{3}$

VERSION B