First Name: \qquad Last Name: \qquad
Student-No: \qquad Section:

> Grade:

The remainder of this page has been left blank for your workings.

Indefinite Integrals

1. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate the indefinite integral $\int x^{2} e^{-x} d x$ for $x>0$.

$$
\text { Answer: }-e^{-x}\left(x^{2}+2 x+2\right)+C
$$

Solution: We do integration by parts with:

$$
\begin{aligned}
u(x) & =x^{2} \Rightarrow u^{\prime}(x)=2 x \\
v^{\prime}(x) & =e^{-x} \Rightarrow v(x)=-e^{-x} \\
\int x^{2} e^{-x} d x & =-x^{2} e^{-x}-\int 2 x\left(-e^{-x}\right) d x
\end{aligned}
$$

and then again integration by parts on $\int x e^{-x} d x$ with $u(x)=x$ and $v^{\prime}(x)=e^{-x}$, and finally get:

$$
\int x^{2} e^{-x} d x=-e^{-x}\left(x^{2}+2 x+2\right)+C
$$

(b) Calculate the indefinite integral $\int x \sqrt{3-x} d x$ for $x<3$.

$$
\text { Answer: }-\frac{2}{5}(3-x)^{3 / 2}(2+x)+C
$$

Solution: We take $u(x)=3-x$, then we have $u^{\prime}(x)=-1$ and we replace x by $3-u(x)$, such that we write

$$
\int x \sqrt{3-x} d x=-\int(-1) x \sqrt{3-x} d x=-\int(3-u) u^{1 / 2} u^{\prime} d x
$$

and apply substitution rule as:

$$
-\int(3-u) u^{1 / 2} u^{\prime} d x=-\left(\int 3 u^{1 / 2}-u^{3 / 2} d u\right)_{u=3-x}
$$

Anti-differentiating the simple polynomial function $3 u^{1 / 2}-u^{3 / 2}$ and eventually substituting $u(x)=3-x$, we finally get:

$$
\int x \sqrt{3-x} d x=-2\left((3-x)^{3 / 2}-\frac{1}{5}(3-x)^{5 / 2}\right)+C=-\frac{2}{5}(3-x)^{3 / 2}(2+x)+C
$$

Note that this problem can also be solved by IBP (but more challenging) with:

$$
\begin{aligned}
u(x) & =x \Rightarrow u^{\prime}(x)=1 \\
v^{\prime}(x) & =(3-x)^{1 / 2} \Rightarrow v(x)=\frac{2}{3}(-1)(3-x)^{3 / 2}=-\frac{2}{3}(3-x)^{3 / 2}
\end{aligned}
$$

such that

$$
\begin{aligned}
I & =x\left(-\frac{2}{3}\right)(3-x)^{3 / 2}-\int 1\left(\frac{-2}{3}\right)(3-x)^{3 / 2} d x \\
& =\left(-\frac{2}{3} x\right)(3-x)^{3 / 2}+\frac{2}{3} \int(3-x)^{3 / 2} d x
\end{aligned}
$$

Given that the anti-derivative of $\int(3-x)^{3 / 2} d x$ is $\frac{2}{5}(-1)(3-x)^{5 / 2}+C=-\frac{2}{5}(3-$ $x)^{5 / 2}+C$, we get:

$$
\begin{aligned}
I=(3-x)^{3 / 2}\left(-\frac{2}{3} x-\frac{4}{15}(3-x)\right)+C & =(3-x)^{3 / 2}\left(-\frac{12}{15}-\frac{2}{5} x\right)+C \\
& =-\frac{2}{5}(3-x)^{3 / 2}(2+x)+C
\end{aligned}
$$

(c) (A Little Harder): Calculate the indefinite integral $\int \tan ^{2}(8 x) \sec ^{4}(8 x) d x$.

$$
\text { Answer: } \frac{1}{24} \tan ^{3}(8 x)+\frac{1}{40} \tan ^{5}(8 x)+C
$$

Solution: We use the substitution $u(x)=8 x, u^{\prime}(x)=8$ to rewrite the indefinite integral as:

$$
\begin{aligned}
I=\int \tan ^{2}(8 x) \sec ^{4}(8 x) d x & =\frac{1}{8} \int 8 \tan ^{2}(8 x) \sec ^{4}(8 x) d x \\
& =\frac{1}{8}\left(\int \tan ^{2} u \sec ^{4} u d u\right)_{u=8 x}
\end{aligned}
$$

Then it is classical trigonometric integral, we hold $\sec ^{2} u$, replace $\sec ^{2} u$ by $\tan ^{2} u+1$, and do another substitution $v(u)=\tan u, v^{\prime}(u)=\sec ^{2} u$ to get:
$I=\frac{1}{8} \int\left(v^{2}+1\right) v^{2} v^{\prime} d u=\frac{1}{8}\left(\int\left(v^{2}+1\right) v^{2} d v\right)_{v=\tan u}=\frac{1}{8}\left[\frac{1}{5} v^{5}+\frac{1}{3} v^{3}\right]_{v=\tan u}+C$
Finally we substitute $v=\tan u$ and $u=8 x$, which boils down to substituting $v=\tan (8 x)$ to establish that:

$$
I=\frac{1}{24} \tan ^{3}(8 x)+\frac{1}{40} \tan ^{5}(8 x)+C
$$

Definite Integrals

2. 8 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate $\int_{0}^{2 \pi}\left(x e^{-x^{2}}+x \cos x\right) d x$.

Answer: $\frac{1-e^{-4 \pi^{2}}}{2}$
Solution: The first part gives:

$$
\int_{0}^{2 \pi} x e^{-x^{2}} d x=\left[-\frac{1}{2} e^{-x^{2}}\right]_{0}^{2 \pi}=\frac{1-e^{-4 \pi^{2}}}{2}
$$

and the second part is calculated by IBP as:

$$
\int_{0}^{2 \pi} x \cos x d x=[x \sin x]_{0}^{2 \pi}-\int_{0}^{2 \pi} \sin x d x=[x \sin x+\cos x]_{0}^{2 \pi}=0
$$

so $\int_{0}^{2 \pi}\left(x e^{-x^{2}}+x \cos x\right) d x=\frac{1-e^{-4 \pi^{2}}}{2}$.
(b) Calculate $\int_{3}^{4} \frac{x-3}{\sqrt{6 x-7-x^{2}}} d x$.

Answer: $\sqrt{2}-1$
Solution: We can rewrite $6 x-7-x^{2}$ as $2-(x-3)^{2}$ and use a trigonometric substitution as

$$
\begin{aligned}
x-3=\sqrt{2} \sin \theta & , \quad x^{\prime}(\theta)=\frac{d x}{d \theta}=\sqrt{2} \cos \theta \\
x=3 \Rightarrow \theta=0 & , \quad x=4 \Rightarrow \theta=\pi / 4
\end{aligned}
$$

to get:

$$
I=\int_{3}^{4} \frac{x-3}{\sqrt{6 x-7-x^{2}}} d x=\int_{0}^{\pi / 4} \frac{\sqrt{2} \sin \theta}{\sqrt{2-2 \sin ^{2} \theta}} \sqrt{2} \cos \theta d \theta
$$

Now we replace $\sqrt{1-\sin ^{2} \theta}$ by $\sqrt{\cos ^{2} \theta}=|\cos \theta|=\cos \theta$ as $\cos \theta$ is positive on $[0, \pi / 4]$ and finally calculate:

$$
I=\sqrt{2} \int_{0}^{\pi / 4} \sin \theta d \theta=\sqrt{2}[-\cos \theta]_{0}^{\pi / 4}=\sqrt{2}-1
$$

Note that this problem can also be solved by standard substitution: $u(x)=$ $6 x-7-x^{2}, u^{\prime}(x)=6-2 x=-2(x-3), u(3)=2, u(4)=1$ as

$$
\int_{3}^{4} \frac{x-3}{\sqrt{6 x-7-x^{2}}} d x=-\frac{1}{2} \int_{3}^{4} \frac{-2(x-3)}{\sqrt{6 x-7-x^{2}}} d x=-\frac{1}{2} \int_{3}^{4} u^{\prime} u^{-1 / 2} d x
$$

$$
\begin{aligned}
& \text { and then } \\
& \qquad-\frac{1}{2} \int_{3}^{4} u^{\prime} u^{-1 / 2} d x=-\frac{1}{2} \int_{2}^{1} u^{-1 / 2} d u=\left[-u^{1 / 2}\right]_{2}^{1}=-1+2^{1 / 2}
\end{aligned}
$$

Riemann Sum and FTC

3. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Which definite integral corresponds to $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{4 i \ln \left(\frac{2 i}{n}+3\right)}{n^{2}}$?
(A) $\int_{0}^{4} x \ln \left(\frac{x}{2}+3\right) d x$
(B) $\int_{0}^{2}(x-3) \ln (x) d x$
(C) $\int_{3}^{5}(x-3) \ln (x) d x$
(D) $2 \int_{0}^{2} x \ln (x+3) d x$
(E) $\int_{3}^{5} x \ln (x+3) d x$

Answer: C

Solution: Pick $x_{i}=\frac{2 i}{n}+3$, so $x_{0}=3, x_{n}=5$ and $\Delta x=\frac{2}{n}$. Then we can rewrite the summation as:

$$
\sum_{i=1}^{n}\left(x_{i}-3\right) \ln \left(x_{i}\right) \Delta x
$$

which corresponds to the Right Riemann Sum for option (C).
(b) Define $F(x)$ and $g(x)$ by $F(x)=\int_{0}^{x} t e^{t} d t$ and $g(x)=2 x F(2 x+1)$. Calculate $g^{\prime}(0)$.

Answer: 2

Solution: We use the product rule to get: $g^{\prime}(x)=2 F(2 x+1)+2 x F^{\prime}(2 x+1)$, and the chain rule and FTC I to calculate $F^{\prime}(2 x+1)=F^{\prime}(y) y^{\prime}(x)=2(2 x+1) e^{2 x+1}$ with $y(x)=2 x+1$. So we have:

$$
g^{\prime}(x)=2 F(2 x+1)+4 x(2 x+1) e^{2 x+1}
$$

Note that you do not even need to calculate $F^{\prime}(2 x+1)$ as when you set $x=0$ in the term $2 x F^{\prime}(2 x+1)$, you already get 0 due to the factor $2 x$.
Taking $x=0$ we get $g^{\prime}(0)=2 F(1)+0 \cdot 1 \cdot e^{1}=2 F(1)$. Now we calculate $F(1)$ by IBP as

$$
F(1)=\int_{0}^{1} t e^{t} d t=\left[t e^{t}\right]_{0}^{1}-\int_{0}^{1} 1 \cdot e^{t} d t=\left[(t-1) e^{t}\right]_{0}^{1}=(1-1) e^{1}-(0-1) e^{0}=1
$$

and get $g^{\prime}(0)=2$.
(c) Let $F(x)=\int_{x^{2}}^{x^{3}} 4 e^{t^{2}} d t$. Find the equation of the tangent line to the graph of $y=F(x)$ at $x=1$. Tip: recall that the tangent line to the graph of $y=F(x)$ at $x=x_{0}$ is given by the equation $y=F\left(x_{0}\right)+F^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$.

$$
\text { Answer: } y=4 e(x-1)
$$

Solution: We first write $F(x)$ for any real number c as:

$$
F(x)=-\int_{c}^{x^{2}} 4 e^{t^{2}} d t+\int_{c}^{x^{3}} 4 e^{t^{2}} d t
$$

Then use FTC I and the chain rule to get:

$$
F^{\prime}(x)=-4 e^{x^{4}} 2 x+4 e^{x^{6}} 3 x^{2}
$$

Then we calculate $F(1)$ and $F^{\prime}(1)$, we get $F(1)=\int_{1}^{1} 4 e^{t^{2}} d t=0$ and $F^{\prime}(1)=4 e$, and finally the equation of the tangent $y-F(1)=F^{\prime}(1)(x-1)$ becomes

$$
y=4 e(x-1)
$$

Areas and volumes

Please write your answers in the boxes. Do not use absolute values in your expressions, always work out: (i) the outer function and the inner function for volumes or (ii) which function lies above the other function for areas.
4. 4 marks Write a definite integral, with specified limits of integration, for the volume obtained by revolving the bounded region between $x=y-5$ and $x=y^{2} / 36$ about the horizontal line $y=-2$. Do not evaluate the integral.

$$
\text { Answer: } \pi \int_{1}^{25}(6 \sqrt{x}+2)^{2}-(x+7)^{2} d x
$$

Solution: Intersection points are given by $36 x=(x+5)^{2}$.
Solving for x, we determine the 2 intersection points

$$
I_{1}=(1,6) \quad, \quad I_{2} \fallingdotseq(25,30)
$$

We integrate in x, hence we write y as a function of x for the 2 curves and apply a shift of +2 , we finally establish:

$$
\pi \int_{1}^{25}(6 \sqrt{x}+2)^{2}-(x+7)^{2} d x .
$$

5. (a) 2 marks Sketch by hand the finite area enclosed by $y^{2}+5=x$ and $2 y=8-x$

Answer:

Solution: The area is the region enclosed between the red and blue curves:

(b) 4 marks Write a definite integral with specific limits of integration that determines this finite area.

Answer: $\int_{-3}^{1}\left(-y^{2}-2 y+3\right) d y$
Solution: We first find the intersection between the two curves, given by the solution of:

$$
y^{2}+5=8-2 y \Leftrightarrow(y+3)(y-1)=0
$$

We then label the curve $x_{R}=y^{2}+5$ and $x_{B}=8-2 y$ and notice that $x_{B} \geq x_{R}$ for $-3 \leq y \leq 1$. The area is therefore given by the following definite integral:

$$
A=\int_{-3}^{1}\left(8-2 y-y^{2}-5\right) d y=\int_{-3}^{1}\left(-y^{2}-2 y+3\right) d y
$$

(c) 2 marks Evaluate the integral to compute the area enclosed.

Answer: $\frac{32}{3}$

Solution:

$$
A=\left[-\frac{y^{3}}{3}-\frac{2 y^{2}}{2}+3 y\right]_{-3}^{1}=\frac{32}{3}
$$

