First Name: \qquad Last Name: \qquad
Student-No: \qquad Section:

> Grade:

The remainder of this page has been left blank for your workings.

Indefinite Integrals

1. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate the indefinite integral $\int x^{2} \sin x d x$ for $x>0$.

$$
\text { Answer: }-x^{2} \cos x+2(x \sin x+\cos x)+C
$$

Solution: We do integration by parts with:

$$
\begin{aligned}
u(x) & =x^{2} \Rightarrow u^{\prime}(x)=2 x \\
v^{\prime}(x) & =\sin x \Rightarrow v(x)=-\cos x \\
\int x^{2} \sin x d x & =-x^{2} \cos x-\int 2 x(-\cos x) d x
\end{aligned}
$$

and then again integration by parts on $\int x \cos x d x$ with $u(x)=x$ and $v^{\prime}(x)=$ $\cos x$, and finally get:

$$
\int x^{2} \sin x d x=-x^{2} \cos x+2(x \sin x+\cos x)+C
$$

(b) Calculate the indefinite integral $\int 4 x \sqrt{3-4 x} d x$ for $x<3 / 4$.

$$
\text { Answer: }-\frac{2}{5}(3-4 x)^{3 / 2}\left(\frac{1}{2}+x\right)+C
$$

Solution: We take $u(x)=3-4 x$, then we have $u^{\prime}(x)=-4$ and we replace $4 x$ by $3-u(x)$, such that we write

$$
\int 4 x \sqrt{3-4 x} d x=-\frac{1}{4} \int(-4) 4 x \sqrt{3-4 x} d x=-\frac{1}{4} \int(3-u) u^{1 / 2} u^{\prime} d x
$$

and apply substitution rule as:

$$
-\int(3-u) u^{1 / 2} u^{\prime} d x=-\left(\int 3 u^{1 / 2}-u^{3 / 2} d u\right)_{u=3-4 x}
$$

Anti-differentiating the simple polynomial function $3 u^{1 / 2}-u^{3 / 2}$ and eventually substituting $u(x)=3-4 x$, we finally get:
$\int 4 x \sqrt{3-4 x} d x=-\frac{1}{2}\left((3-4 x)^{3 / 2}-\frac{1}{5}(3-4 x)^{5 / 2}\right)+C=-\frac{2}{5}(3-4 x)^{3 / 2}\left(\frac{1}{2}+x\right)+C$
Note that this problem can also be solved by IBP (but more challenging) with:

$$
\begin{aligned}
u(x) & =4 x \Rightarrow u^{\prime}(x)=4 \\
v^{\prime}(x) & =(3-4 x)^{1 / 2} \Rightarrow v(x)=\frac{2}{3}\left(\frac{-1}{4}\right)(3-4 x)^{3 / 2}=-\frac{1}{6}(3-4 x)^{3 / 2}
\end{aligned}
$$

such that

$$
\begin{aligned}
I & =4 x\left(-\frac{1}{6}\right)(3-4 x)^{3 / 2}-\int 4\left(\frac{-1}{6}\right)(3-4 x)^{3 / 2} d x \\
& =\left(-\frac{2}{3} x\right)(3-4 x)^{3 / 2}+\frac{2}{3} \int(3-4 x)^{3 / 2} d x
\end{aligned}
$$

Given that the anti-derivative of $\int(3-4 x)^{3 / 2} d x$ is $\frac{2}{5}\left(\frac{-1}{4}\right)(3-4 x)^{5 / 2}+C=$ $-\frac{1}{10}(3-4 x)^{5 / 2}+C$, we get:

$$
\begin{aligned}
I=(3-4 x)^{3 / 2}\left(-\frac{2}{3} x-\frac{2}{30}(3-4 x)\right)+C & =(3-4 x)^{3 / 2}\left(-\frac{1}{5}-\frac{6}{15} x\right)+C \\
& =-\frac{2}{5}(3-4 x)^{3 / 2}\left(\frac{1}{2}+x\right)+C
\end{aligned}
$$

(c) (A Little Harder): Calculate the indefinite integral $\int \frac{\sqrt{x^{2}-9}}{x^{2}} d x, x>3$. Use the following known result: $\int \sec x d x=\ln |\sec x+\tan x|+C$. Write your final answer without any trigonometric function.

$$
\text { Answer: } \ln \left|x+\sqrt{x^{2}-9}\right|-\frac{\sqrt{x^{2}-9}}{x}+C
$$

Solution: We use the trigonometric substitution $x(\theta)=3 \sec \theta$, then $x^{\prime}(\theta)=$ $3 \sec \theta \tan \theta$, and we get

$$
I=\int \frac{\sqrt{x^{2}-9}}{x^{2}} d x=\int \frac{\sqrt{9 \sec ^{2} \theta-9}}{9 \sec ^{2} \theta} 3 \sec \theta \tan \theta d \theta=\int \frac{\tan ^{2} \theta}{\sec \theta} d \theta
$$

$\frac{\tan ^{2} \theta}{\sec \theta}$ can be written as $\frac{\sec ^{2} \theta-1}{\sec \theta}=\sec \theta-\cos \theta$. Using the known result, we get:

$$
I=\ln |\sec \theta+\tan \theta|-\sin \theta+C
$$

Drawing a right triangle with $\cos \theta=3 / x$, we can write $\sin \theta=\frac{\sqrt{x^{2}-9}}{x}$, give the expressions of $\sec \theta$ and $\tan \theta$ as function of x and eventually establish that:

$$
I=\ln \left|\frac{1}{3}\left(x+\sqrt{x^{2}-9}\right)\right|-\frac{\sqrt{x^{2}-9}}{x}+C
$$

Since $x+\sqrt{x^{2}-9}>0$ for $x>3$ and $\ln (a b)=\ln a+\ln b$, we can simplify by absorbing $\ln \frac{1}{3}$ into the constant C as:

$$
I=\ln \left|x+\sqrt{x^{2}-9}\right|-\frac{\sqrt{x^{2}-9}}{x}+C
$$

Definite Integrals

2. 8 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate $\int_{0}^{\pi / 3} \sec ^{3 / 2} x \tan x d x$.

Answer: $\frac{2}{3}[2 \sqrt{2}-1]$
Solution: This is a trigonometric integral that is calculated as:

$$
I=\int_{0}^{\pi / 3} \sec ^{3 / 2} x \tan x d x=\int_{0}^{\pi / 3} \sec ^{1 / 2} x \sec x \tan x d x=\frac{2}{3}\left[\sec ^{3 / 2} x\right]_{0}^{\pi / 3}
$$

which gives:

$$
I=\frac{2}{3}\left[2^{3 / 2}-1\right]=\frac{2}{3}[2 \sqrt{2}-1]
$$

(b) Calculate $\int_{-1}^{0} \frac{x+1}{\sqrt{-2 x+1-x^{2}}} d x$.

Answer: $\sqrt{2}-1$
Solution: We can rewrite $-2 x+1-x^{2}$ as $2-(x+1)^{2}$ and use a trigonometric substitution as

$$
\begin{array}{ll}
x+1=\sqrt{2} \sin \theta & , \quad x^{\prime}(\theta)=\frac{d x}{d \theta}=\sqrt{2} \cos \theta \\
x=-1 \Rightarrow \theta=0 & , \quad x=0 \Rightarrow \theta=\pi / 4
\end{array}
$$

to get:

$$
I=\int_{-1}^{0} \frac{x+1}{\sqrt{-2 x+1-x^{2}}} d x=\int_{0}^{\pi / 4} \frac{\sqrt{2} \sin \theta}{\sqrt{2-2 \sin ^{2} \theta}} \sqrt{2} \cos \theta d \theta
$$

Now we replace $\sqrt{1-\sin ^{2} \theta}$ by $\sqrt{\cos ^{2} \theta}=|\cos \theta|=\cos \theta$ as $\cos \theta$ is positive on $[0, \pi / 4]$ and finally calculate:

$$
I=\sqrt{2} \int_{0}^{\pi / 4} \sin \theta d \theta=\sqrt{2}[-\cos \theta]_{0}^{\pi / 4}=\sqrt{2}-1
$$

Note that this problem can also be solved by standard substitution: $u(x)=$ $-2 x+1-x^{2}, u^{\prime}(x)=-2-2 x=-2(x+1), u(-1)=2, u(0)=1$ as

$$
\int_{-1}^{0} \frac{x+1}{\sqrt{-2 x+1-x^{2}}} d x=-\frac{1}{2} \int_{-1}^{0} \frac{-2(x+1)}{\sqrt{-2 x+1-x^{2}}} d x=-\frac{1}{2} \int_{-1}^{0} u^{\prime} u^{-1 / 2} d x
$$

$$
\begin{aligned}
& \text { and then } \\
& \qquad-\frac{1}{2} \int_{-1}^{0} u^{\prime} u^{-1 / 2} d x=-\frac{1}{2} \int_{2}^{1} u^{-1 / 2} d u=\left[-u^{1 / 2}\right]_{2}^{1}=-1+2^{1 / 2}
\end{aligned}
$$

Riemann Sum and FTC

3. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Which definite integral corresponds to $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{i}{n}+1\right) e^{-2 \frac{i^{2}}{n^{2}} \frac{2}{n}}$?
(A) $2 \int_{0}^{1} x e^{-2(x-1)^{2}} d x$
(B) $2 \int_{0}^{1}(x+1) e^{-2 x^{2}} d x$
(C) $\int_{1}^{2} x e^{-2(x-1)^{2}} d x$
(D) $\int_{1}^{2}(x+1) e^{-2 x^{2}} d x$
(E) $\int_{0}^{1}(x+1) e^{-2 x^{2}} d x$

Answer: B
Solution: Pick $x_{i}=\frac{i}{n}$, so $x_{0}=0, x_{n}=1$ and $\Delta x=\frac{1}{n}$. Then we can rewrite the summation as:

$$
\sum_{i=1}^{n}\left(x_{i}+1\right) e^{-2 x_{i}^{2}} 2 \Delta x
$$

which corresponds to the Right Riemann Sum for option (B).
(b) Define $F(x)$ and $g(x)$ by $F(x)=\int_{0}^{x} \sin ^{2} t d t$ and $g(x)=x F\left(x^{3}\right)$. Calculate $g^{\prime}\left(\pi^{1 / 3}\right)$.

Answer: $\frac{\pi}{2}$
Solution: We use the product rule to get: $g^{\prime}(x)=F\left(x^{3}\right)+x F^{\prime}\left(x^{3}\right)$, and the chain rule and FTC I to calculate $F^{\prime}\left(x^{3}\right)=F^{\prime}(y) y^{\prime}(x)=3 x^{2} \sin ^{2}\left(x^{3}\right)$ with $y(x)=x^{3}$. So we have:

$$
g^{\prime}(x)=F\left(x^{3}\right)+3 x^{3} \sin \left(x^{3}\right)
$$

and $g^{\prime}\left(\pi^{1 / 3}\right)=F\left(\left(\pi^{1 / 3}\right)^{3}\right)+3\left(\pi^{1 / 3}\right)^{3} \sin ^{2}\left(\left(\pi^{1 / 3}\right)^{3}\right)=F(\pi)+3 \pi \sin ^{2}(\pi)=F(\pi)$, as $\sin \pi=0$. Now we calculate $F(\pi)$ as

$$
F(\pi)=\int_{0}^{\pi} \sin ^{2} t d t=\int_{0}^{\pi} \frac{1}{2} d t-\int_{0}^{\pi} \frac{\cos (2 t)}{2} d t=\frac{\pi}{2}-\left[\frac{\sin (2 t)}{4}\right]_{0}^{\pi}=\frac{\pi}{2}
$$

and get $g^{\prime}\left(\pi^{1 / 3}\right)=\frac{\pi}{2}$.
(c) Let $F(x)=\int_{x^{2}}^{x^{3}} 3 e^{t^{2}} d t$. Find the equation of the tangent line to the graph of $y=F(x)$ at $x=1$. Tip: recall that the tangent line to the graph of $y=F(x)$ at $x=x_{0}$ is given by the equation $y=F\left(x_{0}\right)+F^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$.

$$
\text { Answer: } y=3 e(x-1)
$$

Solution: We first write $F(x)$ for any real number c as:

$$
F(x)=-\int_{c}^{x^{2}} 3 e^{t^{2}} d t+\int_{c}^{x^{3}} 3 e^{t^{2}} d t
$$

Then use FTC I and the chain rule to get:

$$
F^{\prime}(x)=-3 e^{x^{4}} 2 x+3 e^{x^{6}} 3 x^{2}
$$

Then we calculate $F(1)$ and $F^{\prime}(1)$, we get $F(1)=\int_{1}^{1} 3 e^{t^{2}} d t=0$ and $F^{\prime}(1)=3 e$, and finally the equation of the tangent $y-F(1)=F^{\prime}(1)(x-1)$ becomes

$$
y=3 e(x-1)
$$

Areas and volumes

Please write your answers in the boxes. Do not use absolute values in your expressions, always work out: (i) the outer function and the inner function for volumes or (ii) which function lies above the other function for areas.
4. 4 marks Write a definite integral, with specified limits of integration, for the volume obtained by revolving the bounded region between $y=(x-2)^{2}$ and $y=x+4$ about the horizontal line $y=10$. Do not evaluate the integral.

$$
\text { Answer: } \pi \int_{0}^{5}\left((x-2)^{2}-10\right)^{2}-(x-6)^{2} d x
$$

Solution: Intersection points are given by $(x-2)^{2}=x+4$.
Solving for x, we determine the 2 intersection points

$$
I_{1}=(0,4) \quad, \quad I_{2}=(5,9)
$$

We integrate in x, hence we write y as a function of x for the 2 curves and apply a shift of -10 , we finally establish:

$$
\pi \int_{0}^{5}\left((x-2)^{2}-10\right)^{2}-(x-6)^{2} d x
$$

5. (a) 2 marks Sketch by hand the finite area enclosed by $y^{2}-x=0$ and $x-3 y=10$

Answer:

Solution: The area is the region enclosed between the red and blue curves:

(b) 4 marks Write a definite integral with specific limits of integration that determines this finite area.

Answer: $\int_{-2}^{5}\left(-y^{2}+3 y+10\right) d y$
Solution: We first find the intersection between the two curves, given by the solution of:

$$
y^{2}=3 y+10 \Leftrightarrow(y+2)(y-5)=0 .
$$

We then label the curve $x_{R}=y^{2}$ and $x_{B}=3 y+10$ and notice that $x_{B} \geq x_{R}$ for $-2 \leq y \leq 5$. The area is therefore given by the following definite integral:

$$
A=\int_{-2}^{5}\left(3 y+10-y^{2}\right) d y=\int_{-2}^{5}\left(-y^{2}+3 y+10\right) d y
$$

(c) 2 marks Evaluate the integral to compute the area enclosed.

Answer: $\frac{343}{6}$

Solution:

$$
A=\left[-\frac{y^{3}}{3}+\frac{3 y^{2}}{2}+10 y\right]_{-2}^{5}=\frac{343}{6}
$$

