\qquad
Student-No: \qquad Section:

Grade:

The remainder of this page has been left blank for your workings.

Indefinite Integrals

1. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate the indefinite integral $\int \frac{\ln x}{\sqrt{x}} d x$ for $x>0$.

$$
\text { Answer: } 2 \sqrt{x}(\ln x-2)+C
$$

Solution: We do integration by parts with:

$$
\begin{aligned}
u(x) & =\ln x \Rightarrow u^{\prime}(x)=\frac{1}{x} \\
v^{\prime}(x) & =x^{-1 / 2} \Rightarrow v(x)=2 x^{1 / 2} \\
\int \frac{\ln x}{\sqrt{x}} d x & =2 x^{1 / 2} \ln x-\int \frac{1}{x} 2 x^{1 / 2} d x
\end{aligned}
$$

The second term on the rhs is simply $2 \int x^{-1 / 2} d x$, and we finally get:

$$
\int \frac{\ln x}{\sqrt{x}} d x=2 \sqrt{x}(\ln x-2)+C
$$

(b) Calculate the indefinite integral $\int-2 x \sqrt{3+2 x} d x$ for $x>-3 / 2$.

$$
\text { Answer: } \frac{2}{5}(3+2 x)^{3 / 2}(1-x)+C
$$

Solution: We take $u(x)=3+2 x$, then we have $u^{\prime}(x)=2$ and we replace $-2 x$ by $3-u(x)$, such that we write

$$
\int-2 x \sqrt{3+2 x} d x=\frac{1}{2} \int 2(-2 x) \sqrt{3+2 x} d x=\frac{1}{2} \int(3-u) u^{1 / 2} u^{\prime} d x
$$

and apply substitution rule as:

$$
\int(3-u) u^{1 / 2} u^{\prime} d x=\left(\int 3 u^{1 / 2}-u^{3 / 2} d u\right)_{u=3+2 x}
$$

Anti-differentiating the simple polynomial function $3 u^{1 / 2}-u^{3 / 2}$ and eventually substituting $u(x)=3+2 x$, we finally get:

$$
\int-2 x \sqrt{3+2 x} d x=\left((3+2 x)^{3 / 2}-\frac{1}{5}(3+2 x)^{5 / 2}\right)+C=\frac{2}{5}(3+2 x)^{3 / 2}(1-x)+C
$$

Note that this problem can also be solved by IBP (but more challenging) with:

$$
\begin{aligned}
u(x) & =-2 x \Rightarrow u^{\prime}(x)=-2 \\
v^{\prime}(x) & =(3+2 x)^{1 / 2} \Rightarrow v(x)=\frac{2}{3}\left(\frac{1}{2}\right)(3+2 x)^{3 / 2}=\frac{1}{3}(3+2 x)^{3 / 2}
\end{aligned}
$$

such that

$$
\begin{aligned}
I & =-2 x \frac{1}{3}(3+2 x)^{3 / 2}-\int(-2) \frac{1}{3}(3+2 x)^{3 / 2} d x \\
& =\left(-\frac{2}{3} x\right)(3+2 x)^{3 / 2}+\frac{2}{3} \int(3+2 x)^{3 / 2} d x
\end{aligned}
$$

Given that the anti-derivative of $\int(3+2 x)^{3 / 2} d x$ is $\frac{2}{5}\left(\frac{1}{2}\right)(3+2 x)^{5 / 2}+C=$ $\frac{1}{5}(3+2 x)^{5 / 2}+C$, we get:

$$
\begin{aligned}
I=(3+2 x)^{3 / 2}\left(-\frac{2}{3} x+\frac{2}{15}(3+2 x)\right)+C & =(3+2 x)^{3 / 2}\left(\frac{6}{15}-\frac{2}{5} x\right)+C \\
& =\frac{2}{5}(3+2 x)^{3 / 2}(1-x)+C
\end{aligned}
$$

(c) (A Little Harder): Calculate the indefinite integral $\int \frac{x^{2}+x+3}{x^{3}+4 x-x^{2}-4} d x$.

$$
\text { Answer: } \ln |x-1|+\frac{1}{2} \arctan \left(\frac{x}{2}\right)+C
$$

Solution: This is a partial fraction indefinite integral. We first recognize that $x=1$ is a root of the denominator, such that we can write

$$
x^{3}+4 x-x^{2}-4=(x-1)\left(a x^{2}+b x+c\right)=a x^{3}+(b-a) x^{2}+(c-b) x-c
$$

which gives $a=1, b=0$ and $c=4$, such that we can now write:

$$
\frac{x^{2}+x+3}{x^{3}+3 x+x^{2}+3}=\frac{A}{x-1}+\frac{B x+C}{x^{2}+4}=\frac{A\left(x^{2}+4\right)+(B x+C)(x-1)}{x^{3}+4 x-x^{2}-4}
$$

which gives $A=1, B=0$ and $C=1$. We can now calculate the indefinite integral as:

$$
\int \frac{x^{2}+x+3}{x^{3}+4 x-x^{2}-4} d x=\int \frac{1}{x-1}+\frac{1}{x^{2}+4} d x=\ln |x-1|+\frac{1}{2} \arctan \left(\frac{x}{2}\right)+C
$$

Definite Integrals

2. 8 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate $\int_{-\pi / 2}^{\pi / 2} 3 \cos ^{3} x d x$.

Answer: 4
Solution: This is a trigonometric integral that is calculated as:

$$
I=\int_{-\pi / 2}^{\pi / 2} 3 \cos ^{3} x d x=3 \int_{-\pi / 2}^{\pi / 2} \cos x \cos ^{2} x d x=3 \int_{-\pi / 2}^{\pi / 2} \cos x\left(1-\sin ^{2} x\right) d x
$$

which gives:

$$
I=3\left[\sin x-\frac{\sin ^{3} x}{3}\right]_{-\pi / 2}^{\pi / 2}=4\left(\frac{2}{3}+\frac{2}{3}\right)=4
$$

(b) Calculate $\int_{-2}^{-1} \frac{x+2}{\sqrt{-4 x-2-x^{2}}} d x$.

$$
\text { Answer: } \sqrt{2}-1
$$

Solution: We can rewrite $-4 x-2-x^{2}$ as $2-(x+2)^{2}$ and use a trigonometric substitution as

$$
\begin{array}{ll}
x+2=\sqrt{2} \sin \theta & , \quad x^{\prime}(\theta)=\frac{d x}{d \theta}=\sqrt{2} \cos \theta \\
x=-2 \Rightarrow \theta=0 & , \quad x=-1 \Rightarrow \theta=\pi / 4
\end{array}
$$

to get:

$$
I=\int_{-2}^{-1} \frac{x+2}{\sqrt{-4 x-2-x^{2}}} d x=\int_{0}^{\pi / 4} \frac{\sqrt{2} \sin \theta}{\sqrt{2-2 \sin ^{2} \theta}} \sqrt{2} \cos \theta d \theta
$$

Now we replace $\sqrt{1-\sin ^{2} \theta}$ by $\sqrt{\cos ^{2} \theta}=|\cos \theta|=\cos \theta$ as $\cos \theta$ is positive on $[0, \pi / 4]$ and finally calculate:

$$
I=\sqrt{2} \int_{0}^{\pi / 4} \sin \theta d \theta=\sqrt{2}[-\cos \theta]_{0}^{\pi / 4}=\sqrt{2}-1
$$

Note that this problem can also be solved by standard substitution: $u(x)=$ $-4 x-2-x^{2}, u^{\prime}(x)=-4-2 x=-2(x+2), u(-2)=2, u(-1)=1$ as

$$
\int_{-2}^{-1} \frac{x+2}{\sqrt{-4 x-2-x^{2}}} d x=-\frac{1}{2} \int_{-2}^{-1} \frac{-2(x+2)}{\sqrt{-4 x-2-x^{2}}} d x=-\frac{1}{2} \int_{-2}^{-1} u^{\prime} u^{-1 / 2} d x
$$

$$
\begin{aligned}
& \text { and then } \\
& \qquad-\frac{1}{2} \int_{-2}^{-1} u^{\prime} u^{-1 / 2} d x=-\frac{1}{2} \int_{2}^{1} u^{-1 / 2} d u=\left[-u^{1 / 2}\right]_{2}^{1}=-1+2^{1 / 2}
\end{aligned}
$$

Riemann Sum and FTC

3. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Which definite integral corresponds to $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\sqrt{i^{2}+9 n^{2}}}{i^{2}}$?
(A) $\int_{0}^{3} \frac{\sqrt{x^{2}+1}}{x^{2}} d x$
(B) $3 \int_{0}^{1} \frac{\sqrt{x^{2}+1}}{x^{2}} d x$
(C) $\frac{1}{3} \int_{0}^{1} \frac{\sqrt{x^{2}+1}}{x^{2}} d x$
(D) $\int_{0}^{1} \frac{\sqrt{x^{2}+9}}{x^{2}} d x$
(E) $\int_{0}^{3} \frac{\sqrt{x^{2}+9}}{x^{2}} d x$

Answer: D
Solution: Pick $x_{i}=\frac{i}{n}$, so $x_{0}=0, x_{n}=1$ and $\Delta x=\frac{1}{n}$. Then we can rewrite the summation as:

$$
\sum_{i=1}^{n} \frac{\sqrt{n^{2} x_{i}^{2}+9 n^{2}}}{n^{2} x_{i}^{2}}=\sum_{i=1}^{n} \frac{\sqrt{x_{i}^{2}+9}}{n x_{i}^{2}}=\sum_{i=1}^{n} \frac{\sqrt{x_{i}^{2}+9}}{x_{i}^{2}} \Delta x
$$

which corresponds to the Right Riemann Sum for option (D).
(b) Define $F(x)$ and $g(x)$ by $F(x)=\int_{x}^{2 x} \cos ^{2} t d t$ and $g(x)=x F(x)$. Calculate $g^{\prime}(\pi)$.

Answer: $3 \frac{\pi}{2}$
Solution: We use the product rule to get: $g^{\prime}(x)=F(x)+x F^{\prime}(x)$, and FTC I and the chain rule to calculate $F^{\prime}(x)=2 \cos ^{2}(2 x)-\cos ^{2} x$. So we have:

$$
g^{\prime}(x)=F(x)+x\left(2 \cos ^{2}(2 x)-\cos ^{2} x\right)
$$

and $g^{\prime}(\pi)=F(\pi)+\pi\left(2 \cos ^{2}(2 \pi)-\cos ^{2} \pi\right)=F(\pi)+\pi$. Now we calculate $F(\pi)$ as

$$
F(\pi)=\int_{\pi}^{2 \pi} \cos ^{2} t d t=\int_{\pi}^{2 \pi} \frac{1}{2} d t+\int_{\pi}^{2 \pi} \frac{\cos (2 t)}{2} d t=\frac{\pi}{2}+\left[\frac{\sin (2 t)}{4}\right]_{0}^{\pi}=\frac{\pi}{2}
$$

and get $g^{\prime}(\pi)=\frac{\pi}{2}+\pi=\frac{3 \pi}{2}$.
(c) Let $F(x)=\int_{x^{2}}^{x^{3}} 7 e^{t^{2}} d t$. Find the equation of the tangent line to the graph of $y=F(x)$ at $x=1$. Tip: recall that the tangent line to the graph of $y=F(x)$ at $x=x_{0}$ is given by the equation $y=F\left(x_{0}\right)+F^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$.

$$
\text { Answer: } y=7 e(x-1)
$$

Solution: We first write $F(x)$ for any real number c as:

$$
F(x)=-\int_{c}^{x^{2}} 7 e^{t^{2}} d t+\int_{c}^{x^{3}} 7 e^{t^{2}} d t
$$

Then use FTC I and the chain rule to get:

$$
F^{\prime}(x)=-7 e^{x^{4}} 2 x+7 e^{x^{6}} 3 x^{2}
$$

Then we calculate $F(1)$ and $F^{\prime}(1)$, we get $F(1)=\int_{1}^{1} 7 e^{t^{2}} d t=0$ and $F^{\prime}(1)=7 e$, and finally the equation of the tangent $y-F(1)=F^{\prime}(1)(x-1)$ becomes

$$
y=7 e(x-1)
$$

Areas and volumes

Please write your answers in the boxes. Do not use absolute values in your expressions, always work out: (i) the outer function and the inner function for volumes or (ii) which function lies above the other function for areas.
4. 4 marks Write a definite integral, with specified limits of integration, for the volume obtained by revolving the bounded region between $x=-(y-4)^{2}$ and $x=-2-y$ about the vertical line $x=1$. Do not evaluate the integral.

$$
\text { Answer: } \pi \int_{2}^{7}(-3-y)^{2}-\left(-1-(y-4)^{2}\right)^{2} d y
$$

Solution: Intersection points are given by $-2-y=-(y-4)^{2}$.
Solving for y, we determine the 2 intersection points

$$
I_{1}=(-4,2) \quad, \quad I_{2}=(-9,7)
$$

We integrate in y, hence we write x as a function of y for the 2 curves and apply a shift of -1 , we finally establish:

$$
\pi \int_{2}^{7}(-3-y)^{2}-\left(-1-(y-4)^{2}\right)^{2} d y
$$

5. (a) 2 marks Sketch by hand the finite area enclosed by $y^{2}=3-x$ and $3 y=x+1$

Answer:

Solution: The area is the region enclosed between the red and blue curves:

(b) 4 marks Write a definite integral with specific limits of integration that determines this finite area.

Answer: $\int_{-4}^{1}\left(-y^{2}-3 y+4\right) d y$
Solution: We first find the intersection between the two curves, given by the solution of:

$$
3-y^{2}=3 y-1 \Leftrightarrow(y+4)(y-1)=0 .
$$

We then label the curve $x_{R}=3-y^{2}$ and $x_{B}=3 y-1$ and notice that $x_{B} \leq x_{R}$ for $-4 \leq y \leq 1$. The area is therefore given by the following definite integral:

$$
A=\int_{-4}^{1}\left(3-y^{2}-3 y+1\right) d y=\int_{-4}^{1}\left(-y^{2}-3 y+4\right) d y
$$

(c) 2 marks Evaluate the integral to compute the area enclosed.

Answer: $\frac{125}{6}$

Solution:

$$
A=\left[-\frac{y^{3}}{3}-\frac{3 y^{2}}{2}+4 y\right]_{-4}^{1}=\frac{125}{6}
$$

