Mathematics 101 - Midterm - 45 minutes

14 \& 15 February 2019

- The test consists of 10 pages and 5 questions. Questions 1,2 and 3 contain multiple independent sub-questions. Question 4 is a single question. Question 5 is split into 3 dependent sub-questions. The total number of sub-questions is 13 , and is worth a total of 44 marks.
- No memory aids. No calculators. No communication devices or other electronic devices.
- Show all your work; little or no credit will be given for a numerical answer without the correct accompanying work.

Question:	1	2	3	4	5	Total
Points:	12	8	12	4	8	44
Score:						

This page has been left blank for your workings.

Midterm E: Page 2 of 10

Indefinite Integrals

1. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate the indefinite integral $\int \cos x \ln (\sin x) d x$ for $\sin x>0$.

Answer:
(b) Calculate the indefinite integral $\int 2 x \sqrt{3-2 x} d x$ for $x<3 / 2$.
Answer:
(c) (A Little Harder): Calculate the indefinite integral $\int \frac{\sqrt{x^{2}-16}}{x^{2}} d x, x>4$. Use the following known result: $\int \sec x d x=\ln |\sec x+\tan x|+C$. Write your final answer without any trigonometric function.

Answer:

Midterm E: Page 4 of 10

Definite Integrals

2. 8 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate $\int_{1}^{5} \frac{x-1}{x^{2}(x+1)} d x$.
(b) Calculate $\int_{2}^{3} \frac{x-2}{\sqrt{4 x-2-x^{2}}} d x$.

Answer:

Riemann Sum and FTC

3. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Which definite integral corresponds to $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{6 i}{n}+e^{9 \frac{i}{}^{2}}\right) \sin \left(\frac{2 i}{n}+\right.$ 1) $\frac{1}{n}$?
(A) $\int_{0}^{9}\left(x+e^{x^{2}}\right) \sin (x+1) d x$
(B) $\int_{0}^{6}\left(x+e^{\frac{1}{4} x^{2}}\right) \sin \left(\frac{1}{3} x+1\right) d x$
(C) $\int_{0}^{3}\left(2 x+e^{x^{2}}\right) \sin \left(\frac{2}{3} x+1\right) d x$
(D) $\int_{0}^{2}\left(3 x+e^{\frac{9}{4} x^{2}}\right) \sin (x+1) d x$
(E) $\int_{0}^{1}\left(6 x+e^{9 x^{2}}\right) \sin (2 x+1) d x$

Answer:
(b) Define $F(x)$ and $g(x)$ by $F(x)=\int_{1}^{x} \ln t d t$ and $g(x)=\left(F\left(x^{2}\right)\right)^{2}$ for $x>1$. Calculate $g^{\prime}(2)$. Give the answer as a function of $\ln 2$.

Answer:
(c) Let $F(x)=\int_{x^{2}}^{x^{3}} 2 e^{t^{2}} d t$. Find the equation of the tangent line to the graph of $y=F(x)$ at $x=1$. Tip: recall that the tangent line to the graph of $y=F(x)$ at $x=x_{0}$ is given by the equation $y=F\left(x_{0}\right)+F^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$.

Answer:

Areas and volumes

Please write your answers in the boxes. Do not use absolute values in your expressions, always work out: (i) the outer function and the inner function for volumes or (ii) which function lies above the other function for areas.
4. 4 marks Write a definite integral, with specified limits of integration, for the volume obtained by revolving the bounded region between $x=10-(y-1)^{2}$ and $x=2+(y-1)^{2}$ about the vertical line $x=1$. Do not evaluate the integral.

Answer:
5. (a) 2 marks Sketch by hand the finite area enclosed by $y^{2}+1=-x$ and $2 y=-9-x$

Answer:
(b) 4 marks Write a definite integral with specific limits of integration that determines this finite area.

Answer:

Midterm E: Page 9 of 10
(c) 2 marks Evaluate the integral to compute the area enclosed.

> Answer:

Midterm E: Page 10 of 10

