Mathematics 101 — Midterm — 45 minutes

14 & 15 February 2019

- The test consists of 10 pages and 5 questions. Questions 1, 2 and 3 contain multiple independent sub-questions. Question 4 is a single question. Question 5 is split into 3 dependent sub-questions. The total number of sub-questions is 13, and is worth a total of 44 marks.
- No memory aids. No calculators. No communication devices or other electronic devices.
- Show all your work; little or no credit will be given for a numerical answer without the correct accompanying work.

Student number				
Section				
Preferred Name				
Given Name				
Family Name				

Question:	1	2	3	4	5	Total
Points:	12	8	12	4	8	44
Score:						

This page has been left blank for your workings.

Indefinite Integrals

- 1. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
 - (a) Calculate the indefinite integral $\int \cos x \ln(\sin x) dx$ for $\sin x > 0$.

Answer:

(b) Calculate the indefinite integral $\int 2x\sqrt{3-2x}\,dx$ for x<3/2.

Answer:

(c) (A Little Harder): Calculate the indefinite integral $\int \frac{\sqrt{x^2-16}}{x^2} dx, x > 4$
Use the following known result: $\int \sec x dx = \ln \sec x + \tan x + C$. Write
your final answer without any trigonometric function.
Answer:

Definite Integrals

- 2. 8 marks Each part is worth 4 marks. Please write your answers in the boxes.
 - (a) Calculate $\int_1^5 \frac{x-1}{x^2(x+1)} dx$.

Answer:		
11110 11 01 1		

(b) Calculate $\int_2^3 \frac{x-2}{\sqrt{4x-2-x^2}} dx$.

Answer:

Riemann Sum and FTC

- 3. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
 - (a) Which definite integral corresponds to $\lim_{n\to\infty} \sum_{i=1}^n \left(\frac{6i}{n} + e^{9\frac{i^2}{n^2}}\right) \sin\left(\frac{2i}{n} + 1\right) \frac{1}{n}$?
 - (A) $\int_0^9 (x + e^{x^2}) \sin(x+1) dx$
 - (B) $\int_0^6 (x + e^{\frac{1}{4}x^2}) \sin(\frac{1}{3}x + 1) dx$
 - (C) $\int_0^3 (2x + e^{x^2}) \sin(\frac{2}{3}x + 1) dx$
 - (D) $\int_0^2 (3x + e^{\frac{9}{4}x^2}) \sin(x+1) dx$ (E) $\int_0^1 (6x + e^{9x^2}) \sin(2x+1) dx$

Answer:		

(b) Define F(x) and g(x) by $F(x) = \int_1^x \ln t \, dt$ and $g(x) = (F(x^2))^2$ for x > 1. Calculate g'(2). Give the answer as a function of $\ln 2$.

Answer:

(c)	Let $F(x) = \int_{x^2}^{x^3} 2e^{t^2} dt$. Find the equation of the tangent line to the graph
	of $y = F(x)$ at $x = 1$. Tip: recall that the tangent line to the graph of
	$y = F(x)$ at $x = x_0$ is given by the equation $y = F(x_0) + F'(x_0)(x - x_0)$.
	Answer:

Areas and volumes

Please write your answers in the boxes. Do not use absolute values in your expressions, always work out: (i) the outer function and the inner function for volumes or (ii) which function lies above the other function for areas.

4.	4 marks Write a definite integral, with specified limits of integration, for the
	volume obtained by revolving the bounded region between $x = 10 - (y - 1)^2$
	and $x = 2 + (y - 1)^2$ about the vertical line $x = 1$. Do not evaluate the
	integral.

Answer:			

Answer:	
4 marks Write a definite integer determines this finite area.	gral with specific limits of integration that
	Answer:

(c)	2 marks	Evaluate the integral to compute the area enclosed.		
			Answer:	