\qquad
Student-No: \qquad Section:

Grade:

The remainder of this page has been left blank for your workings.

Indefinite Integrals

1. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate the indefinite integral $\int \cos x \ln (\sin x) d x$ for $\sin x>0$.

Answer: $\sin x(\ln (\sin x)-1)+C$
Solution: We do integration by parts with:

$$
\begin{gathered}
u(x)=\ln (\sin x) \Rightarrow u^{\prime}(x)=\frac{\cos x}{\sin x} \\
v^{\prime}(x)=\cos x \Rightarrow v(x)=\sin x \\
\int \cos x \ln (\sin x) d x=\sin x \ln (\sin x)-\int \frac{\cos x}{\sin x} \sin x d x
\end{gathered}
$$

The second term on the rhs is simply $-\int \cos x d x$, and we finally get:

$$
\int \cos x \ln (\sin x) d x=\sin x(\ln (\sin x)-1)+C
$$

(b) Calculate the indefinite integral $\int 2 x \sqrt{3-2 x} d x$ for $x<3 / 2$.

$$
\text { Answer: }-\frac{2}{5}(3-2 x)^{3 / 2}(1+x)+C
$$

Solution: We take $u(x)=3-2 x$, then we have $u^{\prime}(x)=-2$ and we replace $2 x$ by $3-u(x)$, such that we write

$$
\int 2 x \sqrt{3-2 x} d x=-\frac{1}{2} \int(-2) 2 x \sqrt{3-2 x} d x=-\frac{1}{2} \int(3-u) u^{1 / 2} u^{\prime} d x
$$

and apply substitution rule as:

$$
\int(3-u) u^{1 / 2} u^{\prime} d x=\left(\int 3 u^{1 / 2}-u^{3 / 2} d u\right)_{u=3-2 x}
$$

Anti-differentiating the simple polynomial function $3 u^{1 / 2}-u^{3 / 2}$ and eventually substituting $u(x)=3-2 x$, we finally get:

$$
\int 2 x \sqrt{3-2 x} d x=-\left((3-2 x)^{3 / 2}-\frac{1}{5}(3-2 x)^{5 / 2}\right)+C=-\frac{2}{5}(3-2 x)^{3 / 2}(1+x)+C
$$

Note that this problem can also be solved by IBP (but more challenging) with:

$$
\begin{aligned}
u(x) & =2 x \Rightarrow u^{\prime}(x)=2 \\
v^{\prime}(x) & =(3-2 x)^{1 / 2} \Rightarrow v(x)=\frac{2}{3}\left(\frac{-1}{2}\right)(3-2 x)^{3 / 2}=-\frac{1}{3}(3-2 x)^{3 / 2}
\end{aligned}
$$

such that

$$
\begin{aligned}
I & =2 x\left(-\frac{1}{3}\right)(3-2 x)^{3 / 2}-\int 2\left(-\frac{1}{3}\right)(3-2 x)^{3 / 2} d x \\
& =\left(-\frac{2}{3} x\right)(3-2 x)^{3 / 2}-\frac{2}{3} \int(3-2 x)^{3 / 2} d x
\end{aligned}
$$

Given that the anti-derivative of $\int(3-2 x)^{3 / 2} d x$ is $\frac{2}{5}\left(-\frac{1}{2}\right)(3-2 x)^{5 / 2}+C=$ $-\frac{1}{5}(3-2 x)^{5 / 2}+C$, we get:

$$
\begin{aligned}
I=(3-2 x)^{3 / 2}\left(-\frac{2}{3} x-\frac{2}{15}(3-2 x)\right)+C & =(3-2 x)^{3 / 2}\left(-\frac{6}{15}-\frac{2}{5} x\right)+C \\
& =-\frac{2}{5}(3-2 x)^{3 / 2}(1+x)+C
\end{aligned}
$$

(c) (A Little Harder): Calculate the indefinite integral $\int \frac{\sqrt{x^{2}-16}}{x^{2}} d x, x>4$. Use the following known result: $\int \sec x d x=\ln |\sec x+\tan x|+C$. Write your final answer without any trigonometric function.

$$
\text { Answer: } \ln \left(x+\sqrt{x^{2}-16}\right)-\frac{\sqrt{x^{2}-16}}{x}+C
$$

Solution: We use the trigonometric substitution $x(\theta)=4 \sec \theta$, then $x^{\prime}(\theta)=$ $4 \sec \theta \tan \theta$, and we get

$$
I=\int \frac{\sqrt{x^{2}-16}}{x^{2}} d x=\int \frac{\sqrt{16 \sec ^{2} \theta-16}}{16 \sec ^{2} \theta} 4 \sec \theta \tan \theta d \theta=\int \frac{\tan ^{2} \theta}{\sec \theta} d \theta
$$

$\frac{\tan ^{2} \theta}{\sec \theta}$ can be written as $\frac{\sec ^{2} \theta-1}{\sec \theta}=\sec \theta-\cos \theta$. Using the known result, we get:

$$
I=\ln |\sec \theta+\tan \theta|-\sin \theta+C
$$

Drawing a right triangle with $\cos \theta=4 / x$, we can write $\sin \theta=\frac{\sqrt{x^{2}-16}}{x}$, give the expressions of $\sec \theta$ and $\tan \theta$ as function of x and eventually establish that:

$$
I=\ln \left|\frac{1}{4}\left(x+\sqrt{x^{2}-16}\right)\right|-\frac{\sqrt{x^{2}-16}}{x}+C
$$

Since $x+\sqrt{x^{2}-16}>0$ for $x>4$ and $\ln (a b)=\ln a+\ln b$, we can simplify by absorbing $\ln \frac{1}{4}$ into the constant C as:

$$
I=\ln \left(x+\sqrt{x^{2}-16}\right)-\frac{\sqrt{x^{2}-16}}{x}+C
$$

Definite Integrals

2. 8 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate $\int_{1}^{5} \frac{x-1}{x^{2}(x+1)} d x$.

Answer: $-\frac{4}{5}+\ln \left(\frac{25}{9}\right)$
Solution: This is a partial fraction integral. First we recognize that:

$$
\frac{x-1}{x^{2}(x+1)}=-\frac{1}{x^{2}}-\frac{2}{x+1}+\frac{2}{x}
$$

Then we calculate the integral as:
$I=\int_{1}^{5} \frac{x-1}{x^{2}(x+1)} d x=\int_{1}^{5}\left(-\frac{1}{x^{2}}-\frac{2}{x+1}+\frac{2}{x}\right) d x=\left[\frac{1}{x}-2 \ln (x+1)+2 \ln (x)\right]_{1}^{5}$ and eventually

$$
I=\left[\frac{1}{x}+2 \ln \left(\frac{x}{x+1}\right)\right]_{1}^{5}=-\frac{4}{5}+2\left[\ln \left(\frac{5}{6}\right)-\ln \left(\frac{1}{2}\right)\right]=-\frac{4}{5}+\ln \left(\frac{25}{9}\right)
$$

(b) Calculate $\int_{2}^{3} \frac{x-2}{\sqrt{4 x-2-x^{2}}} d x$.

Answer: $\sqrt{2}-1$
Solution: We can rewrite $4 x-2-x^{2}$ as $2-(x-2)^{2}$ and use a trigonometric substitution as

$$
\begin{aligned}
& x-2=\sqrt{2} \sin \theta, \quad x^{\prime}(\theta)=\frac{d x}{d \theta}=\sqrt{2} \cos \theta \\
& x=2 \Rightarrow \theta=0 \quad, \quad x=3 \Rightarrow \theta=\pi / 4
\end{aligned}
$$

to get:

$$
I=\int_{2}^{3} \frac{x-2}{\sqrt{4 x-2-x^{2}}} d x=\int_{0}^{\pi / 4} \frac{\sqrt{2} \sin \theta}{\sqrt{2-2 \sin ^{2} \theta}} \sqrt{2} \cos \theta d \theta
$$

Now we replace $\sqrt{1-\sin ^{2} \theta}$ by $\sqrt{\cos ^{2} \theta}=|\cos \theta|=\cos \theta$ as $\cos \theta$ is positive on $[0, \pi / 4]$ and finally calculate:

$$
I=\sqrt{2} \int_{0}^{\pi / 4} \sin \theta d \theta=\sqrt{2}[-\cos \theta]_{0}^{\pi / 4}=\sqrt{2}-1
$$

Note that this problem can also be solved by standard substitution: $u(x)=$ $4 x-2-x^{2}, u^{\prime}(x)=4-2 x=-2(x-2), u(2)=2, u(3)=1$ as

$$
\int_{2}^{3} \frac{x-2}{\sqrt{4 x-2-x^{2}}} d x=-\frac{1}{2} \int_{2}^{3} \frac{-2(x-2)}{\sqrt{4 x-2-x^{2}}} d x=-\frac{1}{2} \int_{2}^{3} u^{\prime} u^{-1 / 2} d x
$$

and then

$$
-\frac{1}{2} \int_{2}^{3} u^{\prime} u^{-1 / 2} d x=-\frac{1}{2} \int_{2}^{1} u^{-1 / 2} d u=\left[-u^{1 / 2}\right]_{2}^{1}=-1+2^{1 / 2}
$$

Riemann Sum and FTC

3. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Which definite integral corresponds to $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{6 i}{n}+e^{9 \frac{i^{2}}{n^{2}}}\right) \sin \left(\frac{2 i}{n}+1\right) \frac{1}{n}$?
(A) $\int_{0}^{9}\left(x+e^{x^{2}}\right) \sin (x+1) d x$
(B) $\int_{0}^{6}\left(x+e^{\frac{1}{4} x^{2}}\right) \sin \left(\frac{1}{3} x+1\right) d x$
(C) $\int_{0}^{3}\left(2 x+e^{x^{2}}\right) \sin \left(\frac{2}{3} x+1\right) d x$
(D) $\int_{0}^{2}\left(3 x+e^{\frac{9}{4} x^{2}}\right) \sin (x+1) d x$
(E) $\int_{0}^{1}\left(6 x+e^{9 x^{2}}\right) \sin (2 x+1) d x$

Answer: E
Solution: Pick $x_{i}=\frac{i}{n}$, so $x_{0}=0, x_{n}=1$ and $\Delta x=\frac{1}{n}$. Then we can rewrite the summation as:

$$
\sum_{i=1}^{n}\left(6 x_{i}+e^{9 x_{i}^{2}}\right) \sin \left(2 x_{i}+1\right) \Delta x
$$

which corresponds to the Right Riemann Sum for option (E).
(b) Define $F(x)$ and $g(x)$ by $F(x)=\int_{1}^{x} \ln t d t$ and $g(x)=\left(F\left(x^{2}\right)\right)^{2}$ for $x>1$. Calculate $g^{\prime}(2)$. Give the answer as a function of $\ln 2$.

Answer: $16 \ln 2(8 \ln 2-3)$
Solution: We use the derivative of the power of a function rule to get $g^{\prime}(x)=$ $2 F^{\prime}\left(x^{2}\right) F\left(x^{2}\right)$, and the chain rule and FTC I to calculate $F^{\prime}\left(x^{2}\right)=F^{\prime}(y) y^{\prime}(x)=$ $2 x \ln x^{2}$ with $y(x)=x^{2}$. Hence we have:

$$
g^{\prime}(x)=4 x \ln x^{2} F\left(x^{2}\right)
$$

and

$$
g^{\prime}(2)=8 \ln 2^{2} F(4)=16 \ln 2 F(4)
$$

By IBP, we calculate:

$$
F(4)=\int_{1}^{4} \ln t d t=[t \ln t]_{1}^{4}-\int_{1}^{4} 1 d t=4 \ln 4-3=8 \ln 2-3
$$

and get $g^{\prime}(2)=16 \ln 2(8 \ln 2-3)$.
(c) Let $F(x)=\int_{x^{2}}^{x^{3}} 2 e^{t^{2}} d t$. Find the equation of the tangent line to the graph of $y=F(x)$ at $x=1$. Tip: recall that the tangent line to the graph of $y=F(x)$ at $x=x_{0}$ is given by the equation $y=F\left(x_{0}\right)+F^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$.

$$
\text { Answer: } y=2 e(x-1)
$$

Solution: We first write $F(x)$ for any real number c as:

$$
F(x)=-\int_{c}^{x^{2}} 2 e^{t^{2}} d t+\int_{c}^{x^{3}} 2 e^{t^{2}} d t
$$

Then use FTC I and the chain rule to get:

$$
F^{\prime}(x)=-2 e^{x^{4}} 2 x+2 e^{x^{6}} 3 x^{2}
$$

Then we calculate $F(1)$ and $F^{\prime}(1)$, we get $F(1)=\int_{1}^{1} 2 e^{t^{2}} d t=0$ and $F^{\prime}(1)=2 e$, and finally the equation of the tangent $y-F(1)=F^{\prime}(1)(x-1)$ becomes

$$
y=2 e(x-1)
$$

Areas and volumes

Please write your answers in the boxes. Do not use absolute values in your expressions, always work out: (i) the outer function and the inner function for volumes or (ii) which function lies above the other function for areas.
4. 4 marks Write a definite integral, with specified limits of integration, for the volume obtained by revolving the bounded region between $x=10-(y-1)^{2}$ and $x=2+(y-1)^{2}$ about the vertical line $x=1$. Do not evaluate the integral.

$$
\text { Answer: } \pi \int_{-1}^{3}\left(9-(y-1)^{2}\right)^{2}-\left(1+(y-1)^{2}\right)^{2} d y
$$

Solution: Intersection points are given by $10-(y-1)^{2}=2+(y-1)^{2}$.
Solving for y, we determine the 2 intersection points

$$
I_{1}=(6,-1) \quad, \quad I_{2}=(6,3)
$$

We integrate in y, hence we write x as a function of y for the 2 curves and apply a shift of -1 , we finally establish:

$$
\pi \int_{-1}^{3}\left(9-(y-1)^{2}\right)^{2}-\left(1+(y-1)^{2}\right)^{2} d y
$$

5. (a) 2 marks Sketch by hand the finite area enclosed by $y^{2}+1=-x$ and $2 y=-9-x$

Answer:

Solution: The area is the region enclosed between the red and blue curves:

(b) 4 marks Write a definite integral with specific limits of integration that determines this finite area.

Answer: $\int_{-2}^{4}\left(-y^{2}+2 y+8\right) d y$
Solution: We first find the intersection between the two curves, given by the solution of:

$$
-1-y^{2}=-2 y-9 \Leftrightarrow(y+2)(y-4)=0 .
$$

We then label the curve $x_{R}=-1-y^{2}$ and $x_{B}=-2 y-9$ and notice that $x_{B} \leq x_{R}$ for $-2 \leq y \leq 4$. The area is therefore given by the following definite integral:

$$
A=\int_{-2}^{4}\left(-1-y^{2}+2 y+9\right) d y=\int_{-2}^{4}\left(-y^{2}+2 y+8\right) d y
$$

(c) 2 marks Evaluate the integral to compute the area enclosed.

Answer: 36

Solution:

$$
A=\left[-\frac{y^{3}}{3}+\frac{2 y^{2}}{2}+8 y\right]_{-2}^{4}=36
$$

