Mathematics 101 — Midterm — 45 minutes

14 & 15 February 2019

- The test consists of 10 pages and 5 questions. Questions 1, 2 and 3 contain multiple independent sub-questions. Question 4 is a single question. Question 5 is split into 3 dependent sub-questions. The total number of sub-questions is 13, and is worth a total of 44 marks.
- No memory aids. No calculators. No communication devices or other electronic devices.
- Show all your work; little or no credit will be given for a numerical answer without the correct accompanying work.

Student number				
Section				
Preferred Name				
Given Name				
Family Name				

Question:	1	2	3	4	5	Total
Points:	12	8	12	4	8	44
Score:						

This page has been left blank for your workings.

Indefinite Integrals

- 1. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
 - (a) Calculate the indefinite integral $\int \arctan\left(\frac{1}{x}\right) dx$ for x > 0.

Answer:

(b) Calculate the indefinite integral $\int -3x\sqrt{3+3x}\,dx$ for x<1.

Answer:

(c) (A Little Harder): Calculate the indefinite integral $\int \frac{x^2+x+4}{x^3+3x+x^2+3} dx$.			
	Answer:		

Definite Integrals

- 2. $\boxed{8 \text{ marks}}$ Each part is worth 4 marks. Please write your answers in the boxes.
 - (a) Calculate $\int_1^e \frac{1-\ln(x)}{x} dx$.

Answer:		

(b) Calculate $\int_{4}^{5} \frac{x-4}{\sqrt{8x-14-x^2}} dx$.

Answer:

Riemann Sum and FTC

- 3. 12 marks Each part is worth 4 marks. Please write your answers in the
 - (a) Which definite integral corresponds to $\lim_{n\to\infty} \sum_{i=1}^n \ln(\frac{3i}{n} \frac{3}{n} + 1) \sin(\frac{6i}{n} \frac{6}{n}) \frac{3}{n}$?

 - (A) $\int_0^3 \ln(x+1)\sin(2x)dx$ (B) $3\int_0^1 \ln(x+1)\sin(2x)dx$ (C) $\frac{1}{2}\int_0^6 \ln(x+1)\sin(2x)dx$ (D) $\int_0^6 \ln(\frac{x}{2}+1)\sin(x)dx$

 - (E) $2\int_0^3 \ln(\frac{x}{2} + 1)\sin(x)dx$

Answer:			

(b) Define F(x) and g(x) by $F(x) = \int_{-1}^{x} t^2 dt$ and $g(x) = (F(x^2))^4$. Calculate g'(1).

Answer:

(c)	Let $F(x) = \int_{x^2}^{x^3} 9e^{t^2} dt$. Find the equation of the tangent line to the graph
	of $y = F(x)$ at $x = 1$. Tip: recall that the tangent line to the graph of
	$y = F(x)$ at $x = x_0$ is given by the equation $y = F(x_0) + F'(x_0)(x - x_0)$.
	Answer:

Areas and volumes

Please write your answers in the boxes. Do not use absolute values in your expressions, always work out: (i) the outer function and the inner function for volumes or (ii) which function lies above the other function for areas.

4.	4 marks Write a definite integral, with specified limits of integration, for
	the volume obtained by revolving the bounded region between $y = \sqrt{x-1}$
	and $x = 1 + \sqrt{y}$ about the horizontal line $y = -2$. Do not evaluate the
	integral.

Answer:			

	2 marks Sketch by hand the fin $2y - x = 15$	ite area enclosed by $y^2 + x = 0$ and
	Answer:	
(- \ [
(b) [4 marks Write a definite integral determines this finite area.	with specific limits of integration that
		Answer:

(c)	2 marks	Evaluate the integral to compute the area enclosed.		
			Answer:	