$\qquad$
Student-No: $\qquad$ Section:

Grade:

The remainder of this page has been left blank for your workings.

## Indefinite Integrals

1. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate the indefinite integral $\int \arctan \left(\frac{1}{x}\right) d x$ for $x>0$.

Answer: $x \arctan \frac{1}{x}+\frac{1}{2} \ln \left(1+x^{2}\right)+C$
Solution: We do integration by parts with:

$$
\begin{gathered}
u(x)=\arctan \left(\frac{1}{x}\right) \Rightarrow u^{\prime}(x)=-\frac{1}{1+x^{2}} \\
v^{\prime}(x)=1 \Rightarrow v(x)=x \\
\int \arctan \left(\frac{1}{x}\right) d x=x \arctan \left(\frac{1}{x}\right)-\int-\frac{x}{1+x^{2}} d x
\end{gathered}
$$

The second term on the rhs can be easily calculated by substituting $u(x)=1+x^{2}$, and we finally get:

$$
\int \arctan \left(\frac{1}{x}\right) d x=x \arctan \left(\frac{1}{x}\right)+\frac{1}{2} \ln \left(1+x^{2}\right)+C
$$

(b) Calculate the indefinite integral $\int-3 x \sqrt{3+3 x} d x$ for $x<1$.

$$
\text { Answer: } \frac{2}{5}(3+3 x)^{3 / 2}\left(\frac{2}{3}-x\right)+C
$$

Solution: We take $u(x)=3+3 x$, then we have $u^{\prime}(x)=3$ and we replace $-3 x$ by $3-u(x)$, such that we write

$$
\int-3 x \sqrt{3+3 x} d x=\frac{1}{3} \int 3(-3 x) \sqrt{3+3 x} d x=\frac{1}{3} \int(3-u) u^{1 / 2} u^{\prime} d x
$$

and apply substitution rule as:

$$
\int(3-u) u^{1 / 2} u^{\prime} d x=\left(\int 3 u^{1 / 2}-u^{3 / 2} d u\right)_{u=3+3 x}
$$

Anti-differentiating the simple polynomial function $3 u^{1 / 2}-u^{3 / 2}$ and eventually substituting $u(x)=3+3 x$, we finally get:

$$
\int-3 x \sqrt{3+3 x} d x=\frac{2}{3}\left((3+3 x)^{3 / 2}-\frac{1}{5}(3+3 x)^{5 / 2}\right)+C=\frac{2}{5}(3+3 x)^{3 / 2}\left(\frac{2}{3}-x\right)+C
$$

Note that this problem can also be solved by IBP (but more challenging) with:

$$
\begin{aligned}
u(x) & =-3 x \Rightarrow u^{\prime}(x)=-3 \\
v^{\prime}(x) & =(3+3 x)^{1 / 2} \Rightarrow v(x)=\frac{2}{3}\left(\frac{1}{3}\right)(3+3 x)^{3 / 2}=\frac{2}{9}(3+3 x)^{3 / 2}
\end{aligned}
$$

such that

$$
\begin{aligned}
I & =-3 x\left(\frac{2}{9}\right)(3+3 x)^{3 / 2}-\int-3 \frac{2}{9}(3+3 x)^{3 / 2} d x \\
& =\left(-\frac{2}{3} x\right)(3+3 x)^{3 / 2}+\frac{2}{3} \int(3+3 x)^{3 / 2} d x
\end{aligned}
$$

Given that the anti-derivative of $\int(3+3 x)^{3 / 2} d x$ is $\frac{2}{5}\left(\frac{1}{3}\right)(3+3 x)^{5 / 2}+C=$ $\frac{2}{15}(3+3 x)^{5 / 2}+C$, we get:

$$
\begin{aligned}
I=(3+3 x)^{3 / 2}\left(-\frac{2}{3} x+\frac{4}{45}(3+3 x)\right)+C & =(3+3 x)^{3 / 2}\left(\frac{4}{15}-\frac{2}{5} x\right)+C \\
& =\frac{2}{5}(3+3 x)^{3 / 2}\left(\frac{2}{3}-x\right)+C
\end{aligned}
$$

(c) (A Little Harder): Calculate the indefinite integral $\int \frac{x^{2}+x+4}{x^{3}+3 x+x^{2}+3} d x$.

Answer: $\ln |x+1|+\frac{1}{\sqrt{3}} \arctan \left(\frac{x}{\sqrt{3}}\right)+C$
Solution: This is a partial fraction indefinite integral. We first recognize that $x=-1$ is a root of the denominator, such that we can write

$$
x^{3}+3 x+x^{2}+3=(x+1)\left(a x^{2}+b x+c\right)=a x^{3}+(b+a) x^{2}+(b+c) x+c
$$

which gives $a=1, b=0$ and $c=3$. Next, we decompose the fraction as:

$$
\frac{x^{2}+x+4}{x^{3}+3 x+x^{2}+3}=\frac{A}{x+1}+\frac{B x+C}{x^{2}+3}=\frac{A\left(x^{2}+3\right)+(B x+C)(x+1)}{x^{3}+3 x+x^{2}+3}
$$

which gives $A=1, B=0$ and $C=1$. We can now calculate the indefinite integral as:
$\int \frac{x^{2}+x+4}{x^{3}+3 x+x^{2}+3} d x=\int \frac{1}{x+1}+\frac{1}{x^{2}+3} d x=\ln |x+1|+\frac{1}{\sqrt{3}} \arctan \left(\frac{x}{\sqrt{3}}\right)+C$

## Definite Integrals

2. 8 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate $\int_{1}^{e} \frac{1-\ln (x)}{x} d x$.

Answer: $\frac{1}{2}$
Solution: We split the integral into 2 integrals and calculate the 2nd integral by substitution $u(x)=\ln x, u^{\prime}(x)=\frac{1}{x}$ and $f(u)=u$ as:

$$
\left.\int_{1}^{e} \frac{1-\ln (x)}{x} d x=\int_{1}^{e} \frac{1}{x} d x-\int_{1}^{e} \frac{\ln (x)}{x} d x=[\ln (x)]_{1}^{e}-\frac{1}{2}[\ln (x))^{2}\right]_{1}^{e}=1-\frac{1}{2}=\frac{1}{2}
$$

(b) Calculate $\int_{4}^{5} \frac{x-4}{\sqrt{8 x-14-x^{2}}} d x$.

$$
\text { Answer: } \sqrt{2}-1
$$

Solution: We can rewrite $8 x-14-x^{2}$ as $2-(x-4)^{2}$ and use a trigonometric substitution as

$$
\begin{array}{cl}
x-4=\sqrt{2} \sin \theta & x^{\prime}(\theta)=\frac{d x}{d \theta}=\sqrt{2} \cos \theta, \\
x=4 \Rightarrow \theta=0, & x=5 \Rightarrow \theta=\pi / 4
\end{array}
$$

to get:

$$
I=\int_{4}^{5} \frac{x-4}{\sqrt{8 x-14-x^{2}}} d x=\int_{0}^{\pi / 4} \frac{\sqrt{2} \sin \theta}{\sqrt{2-2 \sin ^{2} \theta}} \sqrt{2} \cos \theta d \theta
$$

Now we replace $\sqrt{1-\sin ^{2} \theta}$ by $\sqrt{\cos ^{2} \theta}=|\cos \theta|=\cos \theta$ as $\cos \theta$ is positive on $[0, \pi / 4]$ and finally calculate:

$$
I=\sqrt{2} \int_{0}^{\pi / 4} \sin \theta d \theta=\sqrt{2}[-\cos \theta]_{0}^{\pi / 4}=\sqrt{2}-1
$$

Note that this problem can also be solved by standard substitution: $u(x)=$ $8 x-14-x^{2}, u^{\prime}(x)=8-2 x=-2(x-4), u(4)=2, u(5)=1$ as

$$
\int_{4}^{5} \frac{x-4}{\sqrt{8 x-14-x^{2}}} d x=-\frac{1}{2} \int_{4}^{5} \frac{-2(x-4)}{\sqrt{8 x-14-x^{2}}} d x=-\frac{1}{2} \int_{4}^{5} u^{\prime} u^{-1 / 2} d x
$$

and then

$$
-\frac{1}{2} \int_{4}^{5} u^{\prime} u^{-1 / 2} d x=-\frac{1}{2} \int_{2}^{1} u^{-1 / 2} d u=\left[-u^{1 / 2}\right]_{2}^{1}=-1+2^{1 / 2}
$$

## Riemann Sum and FTC

3. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Which definite integral corresponds to $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \ln \left(\frac{3 i}{n}-\frac{3}{n}+1\right) \sin \left(\frac{6 i}{n}-\frac{6}{n}\right) \frac{3}{n}$ ?
(A) $\int_{0}^{3} \ln (x+1) \sin (2 x) d x$
(B) $3 \int_{0}^{1} \ln (x+1) \sin (2 x) d x$
(C) $\frac{1}{2} \int_{0}^{6} \ln (x+1) \sin (2 x) d x$
(D) $\int_{0}^{6} \ln \left(\frac{x}{2}+1\right) \sin (x) d x$
(E) $2 \int_{0}^{3} \ln \left(\frac{x}{2}+1\right) \sin (x) d x$

Answer: A
Solution: Pick $x_{i}=\frac{3 i}{n}$, so $x_{0}=0, x_{n}=3$ and $\Delta x=\frac{3}{n}$. Then we can rewrite the summation as:

$$
\sum_{i=1}^{n} \ln \left(x_{i-1}+1\right) \sin \left(2 x_{i-1}\right) \Delta x
$$

which corresponds to the Left Riemann Sum for option (A).
(b) Define $F(x)$ and $g(x)$ by $F(x)=\int_{-1}^{x} t^{2} d t$ and $g(x)=\left(F\left(x^{2}\right)\right)^{4}$. Calculate $g^{\prime}(1)$.

$$
\text { Answer: } \frac{64}{27}
$$

Solution: We use the derivative of the power of a function rule to get $g^{\prime}(x)=$ $4 F^{\prime}\left(x^{2}\right)\left(F\left(x^{2}\right)\right)^{3}$, and the chain rule and FTC I to calculate $F^{\prime}\left(x^{2}\right)=F^{\prime}(y) y^{\prime}(x)=$ $x^{4} \cdot 2 x=2 x^{5}$ with $y(x)=x^{2}$. Hence we have:

$$
g^{\prime}(x)=8 x^{5}\left(F\left(x^{2}\right)\right)^{3}
$$

and

$$
g^{\prime}(1)=8 \cdot 1^{5} F(1)^{3}
$$

By simple integration, we calculate:

$$
F(1)=\int_{-1}^{1} t^{2} d t=\left[\frac{t^{3}}{3}\right]_{-1}^{1}=\frac{1}{3}-\frac{-1}{3}=\frac{2}{3}
$$

and get $g^{\prime}(1)=8\left(\frac{2}{3}\right)^{3}=\frac{64}{27}$.
(c) Let $F(x)=\int_{x^{2}}^{x^{3}} 9 e^{t^{2}} d t$. Find the equation of the tangent line to the graph of $y=F(x)$ at $x=1$. Tip: recall that the tangent line to the graph of $y=F(x)$ at $x=x_{0}$ is given by the equation $y=F\left(x_{0}\right)+F^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$.

$$
\text { Answer: } y=9 e(x-1)
$$

Solution: We first write $F(x)$ for any real number $c$ as:

$$
F(x)=-\int_{c}^{x^{2}} 9 e^{t^{2}} d t+\int_{c}^{x^{3}} 9 e^{t^{2}} d t
$$

Then use FTC I and the chain rule to get:

$$
F^{\prime}(x)=-9 e^{x^{4}} 2 x+9 e^{x^{6}} 3 x^{2}
$$

Then we calculate $F(1)$ and $F^{\prime}(1)$, we get $F(1)=\int_{1}^{1} 9 e^{t^{2}} d t=0$ and $F^{\prime}(1)=9 e$, and finally the equation of the tangent $y-F(1)=F^{\prime}(1)(x-1)$ becomes

$$
y=9 e(x-1)
$$

## Areas and volumes

Please write your answers in the boxes. Do not use absolute values in your expressions, always work out: (i) the outer function and the inner function for volumes or (ii) which function lies above the other function for areas.
4. 4 marks Write a definite integral, with specified limits of integration, for the volume obtained by revolving the bounded region between $y=\sqrt{x-1}$ and $x=1+\sqrt{y}$ about the horizontal line $y=-2$. Do not evaluate the integral.

$$
\text { Answer: } \pi \int_{1}^{2}(2+\sqrt{x-1})^{2}-\left(2+(x-1)^{2}\right)^{2} d x
$$

Solution: Intersection points are given by $\sqrt{x-1}=(x-1)^{2}$.
Solving for $x$, we determine the 2 intersection points

$$
I_{1}=(1,0) \quad, \quad I_{2} \hat{=}(2,1) .
$$

We integrate in $x$, hence we write $y$ as a function of $x$ for the 2 curves and apply a shift of +2 , we finally establish:

$$
\pi \int_{1}^{2}(2+\sqrt{x-1})^{2}-\left(2+(x-1)^{2}\right)^{2} d x
$$

5. (a) 2 marks Sketch by hand the finite area enclosed by $y^{2}+x=0$ and $2 y-x=15$

## Answer:

Solution: The area is the region enclosed between the red and blue curves:

(b) 4 marks Write a definite integral with specific limits of integration that determines this finite area.

Answer: $\int_{-5}^{3}\left(-y^{2}-2 y+15\right) d y$
Solution: We first find the intersection between the two curves, given by the solution of:

$$
-y^{2}=2 y-15 \Leftrightarrow(y+5)(y-3)=0 .
$$

We then label the curve $x_{R}=-y^{2}$ and $x_{B}=2 y-15$ and notice that $x_{B} \leq x_{R}$ for $-5 \leq y \leq 3$. The area is therefore given by the following definite integral:

$$
A=\int_{-5}^{3}\left(-y^{2}-2 y+15\right) d y
$$

(c) 2 marks Evaluate the integral to compute the area enclosed.

Answer: $\frac{256}{3}$

## Solution:

$$
A=\left[-\frac{y^{3}}{3}-\frac{2 y^{2}}{2}+15 y\right]_{-5}^{3}=\frac{256}{3}
$$



