Mathematics 101 - Midterm - 45 minutes

$13 \& 14$ February 2020

- The test consists of 12 pages and 6 questions. Questions 1,2 and 3 contain multiple independent sub-questions. Question 4 is split into 3 dependent sub-questions. Question 5 is a single question. Question 6 is split into 2 dependent sub-questions. The total number of sub-questions is 13 , and is worth a total of 44 marks.
- No memory aids. No calculators. No communication devices or other electronic devices.
- Show all your work; little or no credit will be given for a numerical answer without the correct accompanying work.

Student number								
Section								
Preferred Name								
Given Name								
Family Name								

Question:	1	2	3	4	5	6	Total
Points:	8	12	8	8	4	4	44
Score:							

This page has been left blank for your workings.

Midterm A: Page 2 of 12

Riemann Sum and FTC

1. 8 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate the infinite sum

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{3 i^{2}}{n^{3}\left(\frac{i^{3}}{n^{3}}+2\right)}
$$

by first writing it as a definite integral and then evaluating it.
Answer:
(b) Define $F(x)$ and $g(x)$ by $F(x)=\int_{2 \pi}^{x} t \sin t d t$ and $g(x)=(x-\sqrt{\pi}) F\left(x^{2}\right)$. Calculate $g^{\prime}(\sqrt{\pi})$.

Answer:

Midterm A: Page 3 of 12

Indefinite Integrals

2. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate the indefinite integral $\int 2(x+3)^{3} \sin \left((x+3)^{2}\right) \mathrm{d} x$.

Answer:
(b) Calculate the indefinite integral $\int(5+2 \sin \theta)^{\frac{15}{2}} \cos \theta d \theta$.

Answer:
(c) (A Little Harder): Calculate the indefinite integral $\int x^{3} e^{x^{2}} d x$.

> Answer:

Definite Integrals

3. 8 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate $\int_{0}^{\pi / 4} \sec ^{4}(x) \tan (x) d x$.
Answer:
(b) Calculate $\int_{0}^{1} \frac{5 x^{2}}{3 x^{2}+3} d x$.

Answer:

Areas, volumes and work

Please write your answers in the boxes. Do not use absolute values in your expressions, always work out: (i) the outer function and the inner function for volumes or (ii) which function lies above the other function for areas.
4. (a) 2 marks Sketch by hand the finite area enclosed between the curves defined by the functions $y=x^{2}+2$ and $y+x=2$

Answer:
(b) 4 marks Write the definite integral with specific limits of integration that determines this finite area.

Answer:
(c) 2 marks Evaluate the integral.

Answer:

Midterm A: Page 8 of 12
5. 4 marks Write a definite integral, with specified limits of integration, for the volume obtained by revolving the bounded region between $y=3 \sqrt{x}+1$ and $y=x+3$ about the vertical line $x=-2$. Do not evaluate the integral.

Answer:

6. A tank of height H and of square cross section of edge length L is half full with water of density $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$. The top of the tank features a spout of height h. We take the vertical axis y upwards oriented with its origin at the bottom of the tank. We assume gravity acceleration is $g=10 \mathrm{~m} / \mathrm{s}^{2}$. We take $H=4 m, L=10 m$ and $h=2 m$.

(a) 2 marks Formulate the total work to pump the water out of the tank by the top of the spout as a definite integral.

Answer:
(b) 2 marks Evaluate the definite integral.

> Answer:

This page has been left blank for your workings.

Midterm A: Page 12 of 12

