\qquad
Student-No: \qquad Section:

Grade:

The remainder of this page has been left blank for your workings.

Riemann Sum and FTC

1. 8 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate the infinite sum

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{3 i^{2}}{n^{3}\left(\frac{i^{3}}{n^{3}}+2\right)}
$$

by first writing it as a definite integral and then evaluating it.

$$
\text { Answer: } \ln (3)-\ln (2)
$$

Solution: We identify $a=0, b=1, \Delta(x)=\frac{1}{n}, x_{i}=\frac{i}{n}$, and

$$
f\left(x_{i}\right)=\frac{3 x_{i}^{2}}{x_{i}^{3}+2} .
$$

This yields,

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{3 i^{2}}{n^{3}\left(\frac{i^{3}}{n^{3}}+2\right)}=\int_{0}^{1} \frac{3 x^{2}}{x^{3}+2} d x .
$$

To calculate the integral, let $u=x^{3}+2$. Then $d u=3 x^{2} d x, u(0)=2$, and $u(1)=3$. Then

$$
\int_{0}^{1} \frac{3 x^{2}}{x^{3}+2} d x d x=\int_{2}^{3} \frac{1}{u} d u=[\ln (u)]_{2}^{3}=\ln (3)-\ln (2) .
$$

(b) Define $F(x)$ and $g(x)$ by $F(x)=\int_{2 \pi}^{x} t \sin t d t$ and $g(x)=(x-\sqrt{\pi}) F\left(x^{2}\right)$. Calculate $g^{\prime}(\sqrt{\pi})$.

Answer: 3π

Solution: We first write:

$$
g^{\prime}(x)=F\left(x^{2}\right)+(x-\sqrt{\pi})\left(F\left(x^{2}\right)\right)^{\prime}
$$

We do not need to evaluate $\left(F\left(x^{2}\right)\right)^{\prime}$ as when we take $x=\sqrt{\pi}$, the second term on the rhs cancels out. So we only need to calculate $F\left(x^{2}\right)$. By integration by parts with $u=t$ and $v^{\prime}=\sin t$, we get:

$$
\begin{aligned}
\int_{2 \pi}^{x^{2}} t \sin t d t=[-t \cos t]_{2 \pi}^{x^{2}}+\int_{2 \pi}^{x^{2}} \cos t d t & =[-t \cos t+\sin t]_{2 \pi}^{x^{2}} \\
& =-x^{2} \cos x^{2}+\sin x^{2}+2 \pi
\end{aligned}
$$

Taking $x=\sqrt{\pi}$, we get:

$$
g^{\prime}(\sqrt{\pi})=-\pi \cdot(-1)+2 \pi=3 \pi
$$

Indefinite Integrals

2. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate the indefinite integral $\int 2(x+3)^{3} \sin \left((x+3)^{2}\right) \mathrm{d} x$.

Answer:

$$
-(x+3)^{2} \cos \left((x+3)^{2}\right)+\sin \left((x+3)^{2}\right)+C
$$

Solution: We start by substituting $u=(x+3)^{2}$. This gives:

$$
\int u \sin (u) \mathrm{d} u
$$

We now do integration by parts and obtain:

$$
\left(u(-\cos (u))-\int-\cos (u) \mathrm{d} u\right)
$$

which simplifies to

$$
u(-\cos (u))+\sin (u)+C .
$$

Now resubstitute u to get the final answer:

$$
(x+3)^{2}\left(-\cos \left((x+3)^{2}\right)\right)+\sin \left((x+3)^{2}\right)+C
$$

(b) Calculate the indefinite integral $\int(5+2 \sin \theta)^{\frac{15}{2}} \cos \theta d \theta$.

Answer: $\frac{1}{17}(5+2 \sin \theta)^{\frac{17}{2}}+C$
Solution: By substitution, with

$$
\begin{aligned}
u(\theta) & =5+2 \sin \theta \\
u^{\prime}(\theta) & =2 \cos \theta
\end{aligned}
$$

Then

$$
\int(5+2 \sin \theta)^{\frac{15}{2}} \cos \theta d \theta=\int \frac{1}{2} u^{\frac{15}{2}} d u
$$

so that

$$
\frac{1}{2} \frac{2}{17}(5+2 \sin \theta)^{\frac{17}{2}}+C
$$

(c) (A Little Harder): Calculate the indefinite integral $\int x^{3} e^{x^{2}} d x$.

$$
\text { Answer: } \frac{1}{2} x^{2} e^{x^{2}}-\frac{1}{2} e^{x^{2}}+C
$$

Solution: We use the substitution $s=x^{2}, d s / d x=2 x$ so that $x d x$ is replaced by $1 / 2 d s$. This gives

$$
I=\int x^{3} e^{x^{2}} d x=\frac{1}{2} \int s e^{s} d s
$$

Now do integration by parts. Set $u=s$ and $d v / d s=e^{s}$ so that $d u / d s=1$ and $v=e^{s}$. This yields

$$
I=\frac{1}{2} \int s e^{s} d s=\frac{1}{2}\left[s e^{s}-\int e^{s} d s\right]
$$

Performing the last integration and setting $s=x^{2}$ we get

$$
I=\frac{1}{2} x^{2} e^{x^{2}}-\frac{1}{2} e^{x^{2}}+C .
$$

Definite Integrals

3. 8 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate $\int_{0}^{\pi / 4} \sec ^{4}(x) \tan (x) d x$.

Answer: 3/4
Solution: This is a trigonometric integral that is calculated as by holding one $\sec ^{2}(x)$ and replacing the other $\sec ^{2}(x)$ by $1+\tan ^{2}(x)$:

$$
\begin{aligned}
I=\int_{0}^{\pi / 4} \sec ^{4}(x) \tan (x) d x & =\int_{0}^{\pi / 4}\left(1+\tan ^{2}(x)\right) \tan (x) \sec ^{2}(x) d x \\
& =\int_{0}^{\pi / 4}\left(\tan (x)+\tan ^{3}(x)\right) \sec ^{2}(x) d x
\end{aligned}
$$

which gives, upon substituting $u=\tan (x)$ and $d u=\sec ^{2}(x) d x$:

$$
I=\int_{0}^{1}\left(u+u^{3}\right) d u=\left[\frac{u^{2}}{2}+\frac{u^{4}}{4}\right]_{0}^{1}=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}
$$

(b) Calculate $\int_{0}^{1} \frac{5 x^{2}}{3 x^{2}+3} d x$.

$$
\text { Answer: } \frac{5}{3}\left(1-\frac{\pi}{4}\right)
$$

Solution: We first rewrite the definite integral as

$$
\begin{aligned}
I=\int_{0}^{1} \frac{5 x^{2}}{3 x^{2}+3} d x=\frac{5}{3} \int_{0}^{1} \frac{x^{2}}{x^{2}+1} d x & =\frac{5}{3} \int_{0}^{1} \frac{x^{2}+1-1}{x^{2}+1} d x \\
& =\frac{5}{3} \int_{0}^{1}\left(1-\frac{1}{x^{2}+1}\right) d x
\end{aligned}
$$

In this form, the integrand is very easy to anti-differentiate and we finally get:

$$
I=\frac{5}{3}[x-\arctan (x)]_{0}^{1}=\frac{5}{3}\left(1-\frac{\pi}{4}\right)
$$

Areas, volumes and work

Please write your answers in the boxes. Do not use absolute values in your expressions, always work out: (i) the outer function and the inner function for volumes or (ii) which function lies above the other function for areas.
4. (a) 2 marks Sketch by hand the finite area enclosed between the curves defined by the functions $y=x^{2}+2$ and $y+x=2$

Answer:

Solution: The area is the region enclosed between the red and blue curves:

(b) 4 marks Write the definite integral with specific limits of integration that determines this finite area.

$$
\text { Answer: }-\int_{-1}^{0}\left(x+x^{2}\right) d x
$$

Solution: We first find the intersection points of the two curves, given by the solution of:

$$
x^{2}+2=2-x \Leftrightarrow x(x+1)=0 .
$$

The intersection points are therefore $(0,2)$ and $(-1,3)$. We then label the curve $y_{R}=x^{2}+2$ and $y_{B}=2-x$ and notice that $y_{B} \geq y_{R}$ for $-1 \leq x \leq 0$. The area is therefore given by the following definite integral:

$$
A=\int_{-1}^{0}\left(2-x-x^{2}-2\right) d x=\int_{-1}^{0}\left(-x-x^{2}\right) d x=-\int_{-1}^{0}\left(x+x^{2}\right) d x
$$

(c) 2 marks Evaluate the integral.

Answer: $\frac{1}{6}$

Solution:

$$
A=-\int_{-1}^{0}\left(x+x^{2}\right) d x=-\left[\frac{x^{2}}{2}+\frac{x^{3}}{3}\right]_{-1}^{0}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}
$$

5. 4 marks Write a definite integral, with specified limits of integration, for the volume obtained by revolving the bounded region between $y=3 \sqrt{x}+1$ and $y=x+3$ about the vertical line $x=-2$. Do not evaluate the integral.

$$
\text { Answer: } \pi \int_{4}^{7}(y-1)^{2}-\left(\frac{(y-1)^{2}}{9}+2\right)^{2} d y
$$

Solution: Intersection points are given by $3 \sqrt{x}+1=x+3$.
Solving for x, we determine the 2 intersection points

$$
I_{1}=(1,4) \quad, \quad I_{2}=(4,7)
$$

We integrate in y, hence we write x as a function of y for the 2 curves and apply a shift of +2 , we finally establish:

$$
\pi \int_{4}^{7}(y-1)^{2}-\left(\frac{(y-1)^{2}}{9}+2\right)^{2} d y
$$

6. A tank of height H and of square cross section of edge length L is half full with water of density $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$. The top of the tank features a spout of height h. We take the vertical axis y upwards oriented with its origin at the bottom of the tank. We assume gravity acceleration is $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
We take $H=4 m, L=10 m$ and $h=2 m$.

(a) 2 marks Formulate the total work to pump the water out of the tank by the top of the spout as a definite integral.

Answer: $10^{6} \int_{0}^{2}(6-y) d y$
Solution: The cross section of the tank as a function of y is constant and equal to L^{2}. So the elementary volume, mass and force of a slice of height Δy read:

$$
\begin{array}{r}
\Delta V=L^{2} \Delta y \\
\Delta M=\rho L^{2} \Delta y \\
\Delta F=g \rho L^{2} \Delta y
\end{array}
$$

The displacement of a slice of height Δy at position y is $H+h-y$, and the elementary work of that slice is:

$$
\Delta W=g \rho L^{2}(H+h-y) \Delta y=g \rho L^{2}(6-y) \Delta y
$$

Now we integrate from bottom $y=0$ to half height $H / 2=4 / 2=2$ as

$$
W=\int_{0}^{2} g \rho L^{2}(6-y) d y=10^{6} \int_{0}^{2}(6-y) d y
$$

(b) 2 marks Evaluate the definite integral.

$$
\text { Answer: } 10^{7} \mathrm{~J}
$$

Solution:

$$
\begin{aligned}
W=10^{6} \int_{0}^{2}(6-y) d y=10^{6}\left[6 y-\frac{y^{2}}{2}\right]_{0}^{2} & =10^{6}\left(6 \cdot 2-\frac{2^{2}}{2}\right) \\
& =10^{6} \cdot 10=10^{7} \mathrm{~J}
\end{aligned}
$$

