\qquad
Student-No: \qquad Section:

Grade:

The remainder of this page has been left blank for your workings.

Riemann Sum and FTC

1. 8 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate the infinite sum

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{3 i^{2} \sin \left(\frac{i^{3}}{n^{3}}+2\right)}{n^{3}}
$$

by first writing it as a definite integral and then evaluating it.

$$
\text { Answer: }-\cos (3)+\cos (2)
$$

Solution: We identify $a=0, b=1, \Delta(x)=\frac{1}{n}, x_{i}=\frac{i}{n}$, and

$$
f\left(x_{i}\right)=3 x_{i}^{2} \sin \left(x_{i}^{3}+2\right) .
$$

This yields,

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{3 i^{2} \sin \left(\frac{i^{3}}{n^{3}}+2\right)}{n^{3}}=\int_{0}^{1} 3 x^{2} \sin \left(x^{3}+2\right) d x
$$

To calculate the integral, let $u=x^{3}+2$. Then $d u=3 x^{2} d x, u(0)=2$, and $u(1)=3$. Then

$$
\int_{0}^{1} 3 x^{2} \sin \left(x^{3}+2\right) d x=\int_{2}^{3} \sin (u) d u=[-\cos (u)]_{2}^{3}=-\cos (3)+\cos (2) .
$$

(b) Define $F(x)$ and $g(x)$ by $F(x)=\int_{2}^{x} \frac{t}{2 t^{2}+1} d t$ and $g(x)=F(2 x)+x F(x)$. Calculate $g^{\prime}(0)$.

$$
\text { Answer: }-\frac{\ln 9}{4}
$$

Solution: We use the product rule and the chain rule to get: $g^{\prime}(x)=2 F^{\prime}(2 x)+$ $F(x)+x F^{\prime}(x)$. From FTC I, we get:

$$
\begin{aligned}
F^{\prime}(x) & =\frac{x}{2 x^{2}+1} \\
F^{\prime}(2 x) & =\frac{2 x}{8 x^{2}+1}
\end{aligned}
$$

Taking $x=0$, the two contributions above vanish, so we are left with calculating $F(0)$. We use a standard substitution $u=2 t^{2}+1, u^{\prime}=4 t$ such that:

$$
F(x)=\frac{1}{4} \int_{2}^{x} \frac{4 t}{2 t^{2}+1} d t=\frac{1}{4}\left[\ln \left(2 t^{2}+1\right)\right]_{2}^{x}=\frac{1}{4}\left(\ln \left(2 x^{2}+1\right)-\ln 9\right)
$$

Taking $x=0$, we finally get:

$$
g^{\prime}(0)=\frac{1}{4}(\ln 1-\ln 9)=-\frac{\ln 9}{4}
$$

Midterm B: Page 3 of 11

Indefinite Integrals

2. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate the indefinite integral $\int x(x-2)^{5} d x$.

$$
\begin{array}{|l|}
\hline \text { Answer: } \frac{1}{7}(x-2)^{7}+\frac{1}{3}(x-2)^{6}+C \\
\text { OR } \frac{x}{6}(x-2)^{6}-\frac{1}{42}(x-2)^{7}+C \\
\hline
\end{array}
$$

Solution: Method 1: Using the substitution $u=x-2, u^{\prime}=1$ and writing $x=u+2$, we get:

$$
\int x(x-2)^{5} d x=\int(u+2) u^{5} d u=\int\left(u^{6}+2 u^{5}\right) d u=\frac{1}{7} u^{7}+\frac{1}{3} u^{6}+C
$$

Substituting back $u=x-2$, we get:

$$
\int x(x-2)^{5} d x=\frac{1}{7}(x-2)^{7}+\frac{1}{3}(x-2)^{6}+C
$$

Method 2: We use integration by parts with $u=x$ and $v^{\prime}=(x-2)^{5}$. We get $u^{\prime}=1$ and $v=\frac{1}{6}(x-2)^{6}$. This gives

$$
\int x(x-2)^{5} d x=\frac{x}{6}(x-2)^{6}-\int \frac{1}{6}(x-2)^{6} d x=\frac{x}{6}(x-2)^{6}-\frac{1}{42}(x-2)^{7}+C
$$

(b) Calculate the indefinite integral $\int(5+3 \sin \theta)^{\frac{7}{2}} \cos \theta d \theta$.

$$
\text { Answer: } \frac{2}{27}(5+3 \sin \theta)^{\frac{9}{2}}+C
$$

Solution: By substitution, with

$$
\begin{aligned}
u(\theta) & =5+3 \sin \theta \\
u^{\prime}(\theta) & =3 \cos \theta
\end{aligned}
$$

Then

$$
\int(5+3 \sin \theta)^{\frac{7}{2}} \cos \theta d \theta=\int \frac{1}{3} u^{\frac{7}{2}} d u
$$

so that

$$
\frac{1}{3} \frac{2}{9}(5+3 \sin \theta)^{\frac{9}{2}}+C
$$

(c) (A Little Harder): Calculate the indefinite integral $\int x(\ln x)^{2} d x$ for $x>0$.

$$
\text { Answer: } \frac{x^{2}}{2}[\ln (x)]^{2}-\frac{x^{2}}{2} \ln (x)+x^{2} / 4+C
$$

Solution: We use integration by parts with $u=(\ln x)^{2}$ and $d v / d x=x$. We get $d u / d x=2 \ln (x) / x$ and $v=x^{2} / 2$. This gives

$$
I=\int x(\ln x)^{2} d x=\frac{x^{2}}{2}[\ln x]^{2}-\int x \ln x d x .
$$

Now do integration by parts again on the second integral. Put $u=\ln x$ and $d v / d x=x$ so that $d u / d x=1 / x$ and $v=x^{2} / 2$. This gives

$$
I=\frac{x^{2}}{2}[\ln x]^{2}-\left(\frac{x^{2}}{2} \ln x-\frac{1}{2} \int x d x\right) .
$$

Performing the last integral and putting in the constant gives

$$
I=\frac{x^{2}}{2}[\ln (x)]^{2}-\frac{x^{2}}{2} \ln (x)+x^{2} / 4+C .
$$

Definite Integrals

3. 8 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate $\int_{\pi / 2}^{\pi} \cos ^{3}(x) \sin ^{2}(x) d x$.

Answer: $-\frac{2}{15}$
Solution: This is a trigonometric integral that is calculated as:

$$
\begin{aligned}
I=\int_{\pi / 2}^{\pi} \cos ^{3}(x) \sin ^{2}(x) d x & =\int_{\pi / 2}^{\pi} \cos ^{2}(x) \sin ^{2}(x) \cos (x) d x \\
& =\int_{\pi / 2}^{\pi}\left(1-\sin ^{2}(x)\right) \sin ^{2}(x) \cos (x) d x \\
& =\int_{\pi / 2}^{\pi}\left(\sin ^{2}(x)-\sin ^{4}(x)\right) \cos (x) d x
\end{aligned}
$$

which gives, upon substituting $u=\sin (x)$ and $d u=\cos (x) d x$:

$$
I=\left[\frac{1}{3} \sin ^{3}(x)-\frac{1}{5} \sin ^{5}(x)\right]_{\pi / 2}^{\pi}=-\frac{1}{3}+\frac{1}{5}=-\frac{2}{15}
$$

(b) Calculate $\int_{0}^{1} \arctan (2 x) d x$.

$$
\text { Answer: } \arctan (2)-\frac{1}{4} \ln (5)
$$

Solution: We use integration by parts with $u=\arctan (2 x)$ and $v^{\prime}=1$. We get $u=\frac{2}{1+4 x^{2}}$ and $v=x$. This gives

$$
\begin{aligned}
I=\int_{0}^{1} \arctan (2 x) d x & =[x \arctan (2 x)]_{0}^{1}-\int_{0}^{1} \frac{2 x}{1+4 x^{2}} d x \\
& =\arctan (2)-\frac{1}{4} \int_{0}^{1} \frac{8 x}{1+4 x^{2}} d x
\end{aligned}
$$

Using the substitution $u=1+4 x^{2}, u^{\prime}=8 x$, we get:

$$
I=\arctan (2)-\frac{1}{4}[\ln (u)]_{1}^{5}=\arctan (2)-\frac{1}{4} \ln (5)
$$

Areas, volumes and work

Please write your answers in the boxes. Do not use absolute values in your expressions, always work out: (i) the outer function and the inner function for volumes or (ii) which function lies above the other function for areas.
4. (a) 2 marks Sketch by hand the finite area enclosed between the curves defined by the functions $y+x^{2}-3=0$ and $y=-1$

Answer:

Solution: The area is the region enclosed between the red and blue curves:

(b) 4 marks Write the definite integral with specific limits of integration that determines this finite area.

Answer: $\int_{-2}^{2}\left(4-x^{2}\right) d x$
Solution: We first find the intersection points of the two curves, given by the solution of:

$$
3-x^{2}=-1 \Leftrightarrow x^{2}=4
$$

The intersection points are therefore $(-2,-1)$ and $(2,-1)$. We then label the curve $y_{B}=3-x^{2}$ and $y_{R}=-1$ and notice that $y_{B} \geq y_{R}$ for $-2 \leq x \leq 2$. The area is therefore given by the following definite integral:

$$
A=\int_{-2}^{2}\left(3-x^{2}+1\right) d x=\int_{-2}^{2}\left(4-x^{2}\right) d x
$$

(c) 2 marks Evaluate the integral.

Answer: $\frac{32}{3}$

Solution:

$$
A=\int_{-2}^{2}\left(4-x^{2}\right) d x=\left[4 x-\frac{x^{3}}{3}\right]_{-2}^{2}=16-\frac{16}{3}=\frac{32}{3}
$$

5. 4 marks Write a definite integral, with specified limits of integration, for the volume obtained by revolving the bounded region between $x=\frac{(y-1)^{2}}{9}$ and $x=y-3$ about the horizontal line $y=2$. Do not evaluate the integral.

$$
\text { Answer: } \pi \int_{1}^{4}(3 \sqrt{x}-1)^{2}-(x+1)^{2} d x
$$

Solution: Intersection points are given by $\frac{(y-1)^{2}}{9}=y-3$.
Solving for y, we determine the 2 intersection points

$$
I_{1}=(1,4) \quad, \quad I_{2}=(4,7)
$$

We integrate in x, hence we write y as a function of x for the 2 curves and apply a shift of -2 , we finally establish:

$$
\pi \int_{1}^{4}(3 \sqrt{x}-1)^{2}-(x+1)^{2} d x
$$

6. A tank of height H and of square cross section of edge length L is half full with water of density $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$. The top of the tank features a spout of height h. We take the vertical axis y upwards oriented with its origin at the bottom of the tank. We assume gravity acceleration is $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
We take $H=8 m, L=5 m$ and $h=2 m$.

(a) 2 marks Formulate the total work to pump the water out of the tank by the top of the spout as a definite integral.

Answer: $10^{6} \int_{0}^{4}(10-y) d y$
Solution: The cross section of the tank as a function of y is constant and equal to L^{2}. So the elementary volume, mass and force of a slice of height Δy read:

$$
\begin{array}{r}
\Delta V=L^{2} \Delta y \\
\Delta M=\rho L^{2} \Delta y \\
\Delta F=g \rho L^{2} \Delta y
\end{array}
$$

The displacement of a slice of height Δy at position y is $H+h-y$, and the elementary work of that slice is:

$$
\Delta W=g \rho L^{2}(H+h-y) \Delta y=g \rho L^{2}(10-y) \Delta y
$$

Now we integrate from bottom $y=0$ to half height $H / 2=8 / 2=4$ as

$$
W=\int_{0}^{4} g \rho L^{2}(10-y) d y=2.5 \cdot 10^{5} \int_{0}^{4}(10-y) d y
$$

(b) 2 marks Evaluate the definite integral.

$$
\text { Answer: } 8 \cdot 10^{6} \mathrm{~J}
$$

Solution:

$$
\begin{aligned}
W=2.5 \cdot 10^{5} \int_{0}^{4}(10-y) d y=2.5 \cdot 10^{5}\left[10 y-\frac{y^{2}}{2}\right]_{0}^{4} & =2.5 \cdot 10^{5}\left(10 \cdot 4-\frac{4^{2}}{2}\right) \\
& =2.5 \cdot 10^{5} \cdot 32=8 \cdot 10^{6} \mathrm{~J}
\end{aligned}
$$

