First Name: \qquad Last Name: \qquad
Student-No: \qquad Section:

> Grade:

The remainder of this page has been left blank for your workings.

Riemann Sum and FTC

1. 8 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate the infinite sum

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{3 i^{2}}{n^{3}} \sqrt{\frac{i^{3}}{n^{3}}+2}
$$

by first writing it as a definite integral and then evaluating it.
Answer: $2 \sqrt{3}-\frac{4}{3} \sqrt{2}$.
Solution: We identify $a=0, b=1, \Delta(x)=\frac{1}{n}, x_{i}=\frac{i}{n}$, and

$$
f\left(x_{i}\right)=3 x_{i}^{2} \sqrt{x_{i}^{3}+2}
$$

This yields,

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{3 i^{2}}{n^{3}} \sqrt{\frac{i^{3}}{n^{3}}+2}=\int_{0}^{1} 3 x^{2} \sqrt{x^{3}+2} d x
$$

To calculate the integral, let $u=x^{3}+2$. Then $d u=3 x^{2} d x, u(0)=2$, and $u(1)=3$. Then

$$
\int_{0}^{1} 3 x^{2} \sqrt{x^{3}+2} d x=\int_{2}^{3} \sqrt{u} d u=\left[\frac{2}{3} u^{3 / 2}\right]_{2}^{3}=2 \sqrt{3}-\frac{4}{3} \sqrt{2}
$$

(b) Define $F(x)$ and $g(x)$ by $F(x)=\int_{0}^{x^{2}} e^{-t^{2}} d t$ and $g(x)=F(\sin x)$. Calculate $g^{\prime}(\pi / 4)$.

$$
\text { Answer: } e^{-1 / 4}
$$

Solution: We use the product rule to get: $g^{\prime}(x)=F(u(x))^{\prime}=F^{\prime}(u) u^{\prime}(x)$ with $u(x)=\sin ^{2} x$.
By FTC I, we get $F^{\prime}(u)=e^{-u^{2}}$, such that:

$$
g^{\prime}(x)=e^{-\sin ^{4}(x)} 2 \sin (x) \cos (x)
$$

Taking $x=\pi / 4$, we get:

$$
g^{\prime}(\pi / 4)=e^{-1 / 4} 2 \frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2}
$$

Indefinite Integrals

2. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate the indefinite integral $\int 3(x+1)^{5} \sin \left((x+1)^{3}\right) \mathrm{d} x$.

$$
\begin{array}{|l|}
\hline \text { Answer: } \\
-(x+1)^{3} \cos \left((x+1)^{3}\right)+\sin \left((x+1)^{3}\right)+C
\end{array}
$$

Solution: We start by substituting $u=(x+1)^{3}$. This gives:

$$
\int u \sin (u) \mathrm{d} u
$$

We now do integration by parts and obtain:

$$
\left(u(-\cos (u))-\int-\cos (u) \mathrm{d} u\right)
$$

which simplifies to

$$
u(-\cos (u))+\sin (u)+C .
$$

Now resubstitute u to get the final answer:

$$
(x+1)^{3}\left(-\cos \left((x+1)^{3}\right)\right)+\sin \left((x+1)^{3}\right)+C
$$

(b) Calculate the indefinite integral $\int(1+3 \sin \theta)^{\frac{11}{2}} \cos \theta d \theta$.

Answer: $\frac{2}{39}(1+3 \sin \theta)^{\frac{13}{2}}+C$
Solution: By substitution, with

$$
\begin{aligned}
u(\theta) & =1+3 \sin \theta \\
u^{\prime}(\theta) & =3 \cos \theta
\end{aligned}
$$

Then

$$
\int(1+3 \sin \theta)^{\frac{11}{2}} \cos \theta d \theta=\int \frac{1}{3} u^{\frac{11}{2}} d u
$$

so that

$$
\frac{1}{3} \frac{2}{13}(1+3 \sin \theta)^{\frac{13}{2}}+C
$$

(c) (A Little Harder): Calculate the indefinite integral $\int \frac{\ln \left(9+x^{2}\right)}{x^{2}} d x$.

$$
\text { Answer: }-\frac{\ln \left(9+x^{2}\right)}{x}+\frac{2}{3} \arctan \left(\frac{x}{3}\right)+C
$$

Solution: We use integration by parts with $u=\ln \left(9+x^{2}\right)$ and $v^{\prime}=\frac{1}{x^{2}}$, such that $u^{\prime}=\frac{2 x}{9+x^{2}}$ and $v=-\frac{1}{x}$. This gives:

$$
\int \frac{\ln \left(9+x^{2}\right)}{x^{2}} d x=-\frac{1}{x} \ln \left(9+x^{2}\right)-\int-\frac{1}{x} \frac{2 x}{9+x^{2}} d x=-\frac{1}{x} \ln \left(9+x^{2}\right)+2 \int \frac{1}{9+x^{2}} d x
$$

We calculate the second term on the rhs by first rewriting it as:

$$
\int \frac{1}{9+x^{2}} d x=\frac{1}{9} \int \frac{1}{1+\left(\frac{x}{3}\right)^{2}} d x=\frac{1}{3} \int \frac{1 / 3}{1+\left(\frac{x}{3}\right)^{2}} d x
$$

followed by a substitution with $u=\frac{x}{3}, u^{\prime}=\frac{1}{3}$ such that

$$
\frac{1}{3} \int \frac{1 / 3}{1+\left(\frac{x}{3}\right)^{2}} d x=\frac{1}{3} \int \frac{1}{1+u^{2}} d u=\frac{1}{3} \arctan (u)+C=\frac{1}{3} \arctan \left(\frac{x}{3}\right)+C
$$

The final result is

$$
\int \frac{\ln \left(9+x^{2}\right)}{x^{2}} d x=-\frac{\ln \left(9+x^{2}\right)}{x}+\frac{2}{3} \arctan \left(\frac{x}{3}\right)+C
$$

Definite Integrals

3. 8 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate $\int_{-\pi / 2}^{\pi / 2}\left(3+x^{3}\right) \cos (x) d x$.

Answer: 6

Solution: Upon splitting the integral, the second integral vanishes because the function $x^{3} \cos (x)$ is odd and domain is symmetric, and we only need to compute

$$
I=\int_{-\pi / 2}^{\pi / 2} 3 \cos (x) d x=3[\sin (x)]_{-\pi / 2}^{\pi / 2}=6
$$

(b) Calculate $\int_{0}^{1} \frac{3 x^{2}}{2 x^{2}+2} d x$.

$$
\text { Answer: } \frac{3}{2}\left(1-\frac{\pi}{4}\right)
$$

Solution: We first rewrite the definite integral as

$$
\begin{aligned}
I=\int_{0}^{1} \frac{3 x^{2}}{2 x^{2}+2} d x=\frac{3}{2} \int_{0}^{1} \frac{x^{2}}{x^{2}+1} d x & =\frac{3}{2} \int_{0}^{1} \frac{x^{2}+1-1}{x^{2}+1} d x \\
& =\frac{3}{2} \int_{0}^{1}\left(1-\frac{1}{x^{2}+1}\right) d x
\end{aligned}
$$

In this form, the integrand is very easy to anti-differentiate and we finally get:

$$
I=\frac{3}{2}[x-\arctan (x)]_{0}^{1}=\frac{3}{2}\left(1-\frac{\pi}{4}\right)
$$

Areas, volumes and work

Please write your answers in the boxes. Do not use absolute values in your expressions, always work out: (i) the outer function and the inner function for volumes or (ii) which function lies above the other function for areas.
4. (a) 2 marks Sketch by hand the finite area enclosed between the curves defined by the functions $y=1-x^{2}$ and $2 y+2=2 x$

Answer:

Solution: The area is the region enclosed between the red and blue curves:

(b) 4 marks Write the definite integral with specific limits of integration that determines this finite area.

$$
\text { Answer: } \int_{-2}^{1}\left(2-x-x^{2}\right) d x
$$

Solution: We first find the intersection points of the two curves, given by the solution of:

$$
1-x^{2}=x-1 \Leftrightarrow(x-1)(x+2)=0
$$

The intersection points are therefore $(-2,-3)$ and $(1,0)$. We then label the curve $y_{B}=1-x^{2}$ and $y_{R}=x-1$ and notice that $y_{B} \geq y_{R}$ for $-2 \leq x \leq 1$. The area is therefore given by the following definite integral:

$$
A=\int_{-2}^{1}\left(1-x^{2}-x+1\right) d x=\int_{-2}^{1}\left(2-x-x^{2}\right) d x
$$

(c) 2 marks Evaluate the integral.

$$
\text { Answer: } \frac{9}{2}=4.5
$$

Solution:

$$
A=\int_{-2}^{1}\left(2-x-x^{2}\right) d x=\left[2 x-\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{-2}^{1}=6+\frac{3}{2}-3=\frac{9}{2}
$$

5. 4 marks Write a definite integral, with specified limits of integration, for the volume obtained by revolving the bounded region between $y=4 \sqrt{x}-2$ and $y=x+1$ about the vertical line $x=-1$. Do not evaluate the integral.

$$
\text { Answer: } \pi \int_{2}^{10} y^{2}-\left(\frac{(y+2)^{2}}{16}+1\right)^{2} d y
$$

Solution: Intersection points are given by $4 \sqrt{x}-2=x+1$.
Solving for x, we determine the 2 intersection points

$$
I_{1}=(1,2) \quad, \quad I_{2}=(9,10)
$$

We integrate in y, hence we write x as a function of y for the 2 curves and apply a shift of +1 , we finally establish:

$$
\pi \int_{2}^{10} y^{2}-\left(\frac{(y+2)^{2}}{16}+1\right)^{2} d y
$$

6. A tank of height H and of square cross section of edge length L is half full with water of density $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$. The top of the tank features a spout of height h. We take the vertical axis y upwards oriented with its origin at the bottom of the tank. We assume gravity acceleration is $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
We take $H=4 m, L=4 m$ and $h=2 m$.

(a) 2 marks Formulate the total work to pump the water out of the tank by the top of the spout as a definite integral.

Answer: $1.6 \cdot 10^{5} \int_{0}^{2}(6-y) d y$
Solution: The cross section of the tank as a function of y is constant and equal to L^{2}. So the elementary volume, mass and force of a slice of height $\Delta y \mathrm{read}$:

$$
\begin{array}{r}
\Delta V=L^{2} \Delta y \\
\Delta M=\rho L^{2} \Delta y \\
\Delta F=g \rho L^{2} \Delta y
\end{array}
$$

The displacement of a slice of height Δy at position y is $H+h-y$, and the elementary work of that slice is:

$$
\Delta W=g \rho L^{2}(H+h-y) \Delta y=g \rho L^{2}(6-y) \Delta y
$$

Now we integrate from bottom $y=0$ to half height $H / 2=4 / 2=2$ as

$$
W=\int_{0}^{2} g \rho L^{2}(6-y) d y=1.6 \cdot 10^{5} \int_{0}^{2}(6-y) d y
$$

(b) 2 marks Evaluate the definite integral.

$$
\text { Answer: } 1.6 \cdot 10^{6} \mathrm{~J}
$$

Solution:

$$
\begin{aligned}
W=1.6 \cdot 10^{5} \int_{0}^{2}(6-y) d y=1.6 \cdot 10^{5}\left[6 y-\frac{y^{2}}{2}\right]_{0}^{2} & =1.6 \cdot 10^{5}\left(6 \cdot 2-\frac{2^{2}}{2}\right) \\
& =1.6 \cdot 10^{5} \cdot 10=1.6 \cdot 10^{6} \mathrm{~J}
\end{aligned}
$$

