Mathematics 101 — Midterm — 45 minutes

13 & 14 February 2020

- The test consists of 12 pages and 6 questions. Questions 1, 2 and 3 contain multiple independent sub-questions. Question 4 is split into 3 dependent sub-questions. Question 5 is a single question. Question 6 is split into 2 dependent sub-questions. The total number of sub-questions is 13, and is worth a total of 44 marks.
- No memory aids. No calculators. No communication devices or other electronic devices.
- Show all your work; little or no credit will be given for a numerical answer without the correct accompanying work.

Student number				
Section				
Preferred Name				
Given Name				
Family Name				

Question:	1	2	3	4	5	6	Total
Points:	8	12	8	8	4	4	44
Score:							

This page has been left blank for your workings.

Riemann Sum and FTC

- 1. 8 marks Each part is worth 4 marks. Please write your answers in the boxes.
 - (a) Calculate the infinite sum

$$\lim_{n\to\infty}\sum_{i=1}^n\frac{3i^2\cos(\frac{i^3}{n^3}+2)}{n^3}$$

by first writing it as a definite integral and then evaluating it.

Answer:		

(b)	Define $F(x)$ and $g(x)$ by $F(x) =$	\int_{0}^{x}	$\frac{1}{2t^2+2}$	dt and $g(x) = x^2 F(x)$.	Cal-
	culate $g'(1)$.	<i>3</i> 0	_		

A marron.		
Answer:		

Indefinite Integrals

- 2. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
 - (a) Calculate the indefinite integral $\int \frac{4x}{\sqrt{2x-1}} dx$.

Answer:

(b) Calculate the indefinite integral $\int (6 + 8 \sin \theta)^{\frac{5}{2}} \cos \theta \, d\theta$.

Answer:

(c) (A Little Harder): Calcu	late the indefinite integral $\int x^3 \sin(x^2) dx$.
	Answer:

Definite Integrals

- 3. 8 marks Each part is worth 4 marks. Please write your answers in the boxes.
 - (a) Calculate $\int_{-\pi}^{\pi} (\sin x + x^2) \sin(x) dx$.

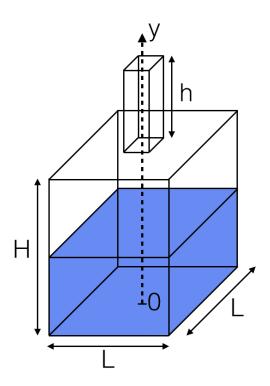
Answer:

(b) Calculate $\int_0^1 \arctan(3x) dx$.

Answer:

Areas, volumes and work

Please write your answers in the boxes. Do not use absolute values in your expressions, always work out: (i) the outer function and the inner function for volumes or (ii) which function lies above the other function for areas.


4. (a) 2 marks Sketch by hand the finite area enclosed between the curves

Answer:		
4 marks Write the defin	nite integral with specific limits of integration	ion
that determines this finite		.011
	Answer:	

(c) 2 marks Evaluate the integral.	
	Answer:

5.		gral, with specified limits of integration, for
	the volume obtained by revolvi	ing the bounded region between $x = \frac{(y+1)^2}{16}$
	and $x = y - 2$ about the horizon	ntal line $y = 1$. Do not evaluate the inte-
	gral.	
	A	answer:

6. A tank of height H and of square cross section of edge length L is half full with water of density $\rho = 1000kg/m^3$. The top of the tank features a spout of height h. We take the vertical axis y upwards oriented with its origin at the bottom of the tank. We assume gravity acceleration is $g = 10m/s^2$. We take H = 8m, L = 3m and h = 4m.

(a) 2 marks Formulate the total work to pump the water out of the tank by the top of the spout as a definite integral.

Answer:		

(b)	2 marks	Evaluate th	ne definite inte	gral.	
				Answer:	

 $This\ page\ has\ been\ left\ blank\ for\ your\ workings.$