\qquad
Student-No: \qquad Section:

Grade:

The remainder of this page has been left blank for your workings.

Riemann Sum and FTC

1. 8 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate the infinite sum

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{3 i^{2} \cos \left(\frac{i^{3}}{n^{3}}+2\right)}{n^{3}}
$$

by first writing it as a definite integral and then evaluating it.

$$
\text { Answer: } \sin (3)-\sin (2)
$$

Solution: We identify $a=0, b=1, \Delta(x)=\frac{1}{n}, x_{i}=\frac{i}{n}$, and

$$
f\left(x_{i}\right)=3 x_{i}^{2} \cos \left(x_{i}^{3}+2\right)
$$

This yields,

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{3 i^{2} \cos \left(\frac{i^{3}}{n^{3}}+2\right)}{n^{3}}=\int_{0}^{1} 3 x^{2} \cos \left(x^{3}+2\right) d x
$$

To calculate the integral, let $u=x^{3}+2$. Then $d u=3 x^{2} d x, u(0)=2$, and $u(1)=3$. Then

$$
\int_{0}^{1} 3 x^{2} \cos \left(x^{3}+2\right) d x=\int_{2}^{3} \cos (u) d u=[\sin (u)]_{2}^{3}=\sin (3)-\sin (2)
$$

(b) Define $F(x)$ and $g(x)$ by $F(x)=\int_{0}^{x} \frac{1}{2 t^{2}+2} d t$ and $g(x)=x^{2} F(x)$. Calculate $g^{\prime}(1)$.

$$
\text { Answer: } \frac{1}{4}(\pi+1)
$$

Solution: We first write:

$$
g^{\prime}(x)=2 x F(x)+x^{2} F^{\prime}(x)=2 x \int_{0}^{x} \frac{1}{2 t^{2}+2} d t+\frac{x^{2}}{2 x^{2}+2}
$$

Then we calculate the first term on the rhs to get:

$$
g^{\prime}(x)=2 x \frac{1}{2} \int_{0}^{x} \frac{1}{t^{2}+1} d t+\frac{x^{2}}{2\left(x^{2}+1\right)}
$$

and using the fact that $\arctan (0)=0$, finally:

$$
g^{\prime}(x)=x \arctan x+\frac{x^{2}}{2\left(x^{2}+1\right)}
$$

Taking $x=1$, we get:

$$
g^{\prime}(1)=1 \cdot \arctan 1+\frac{1^{2}}{2\left(1^{2}+1\right)}=\frac{1}{4}(\pi+1)
$$

Indefinite Integrals

2. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate the indefinite integral $\int \frac{4 x}{\sqrt{2 x-1}} d x$.

$$
\text { Answer: } \frac{4}{3}(x+1)(2 x-1)^{1 / 2}+C
$$

Solution: Using the substitution $u=2 x-1, u^{\prime}=2$ and writing $2 x=u+1$, we get:

$$
\begin{aligned}
\int \frac{4 x}{\sqrt{2 x-1}} d x=\int 2 \frac{2 x}{\sqrt{2 x-1}} d x=\int \frac{u+1}{\sqrt{u}} d u & =\frac{2}{3} u^{3 / 2}+2 u^{1 / 2}+C \\
& =u^{1 / 2}\left(\frac{2}{3} u+2\right)+C
\end{aligned}
$$

Substituting back $u=2 x-1$, we get:

$$
\int \frac{4 x}{\sqrt{2 x-1}} d x=(2 x-1)^{1 / 2}\left(\frac{2}{3}(2 x-1)+2\right)+C=\frac{4}{3}(x+1)(2 x-1)^{1 / 2}+C
$$

(b) Calculate the indefinite integrat $\int(6+8 \sin \theta)^{\frac{5}{2}} \cos \theta d \theta$.

Answer: $\frac{1}{28}(6+8 \sin \theta)^{\frac{7}{2}}+C$
Solution: By substitution, with

$$
\begin{aligned}
u(\theta) & =6+8 \sin \theta \\
u^{\prime}(\theta) & =8 \cos \theta
\end{aligned}
$$

Then

$$
\int(6+8 \sin \theta)^{\frac{5}{2}} \cos \theta d \theta=\int \frac{1}{8} u^{\frac{5}{2}} d u
$$

so that

$$
\frac{1}{8} \frac{2}{7}(6+8 \sin \theta)^{\frac{7}{2}}+C
$$

(c) (A Little Harder): Calculate the indefinite integral $\int x^{3} \sin \left(x^{2}\right) d x$.

$$
\text { Answer: }-\frac{1}{2} x^{2} \cos \left(x^{2}\right)+\frac{1}{2} \sin \left(x^{2}\right)+C
$$

Solution: First set $s=x^{2}$ so that $d s / d x=2 x$. Therefore, $x^{3} d x$ is replaced by $\frac{1}{2} s d s$. This yields

$$
I=\int x^{3} \sin \left(x^{2}\right) d x=\frac{1}{2} \int s \sin s d s
$$

Now do one step of integration by parts. Let $u=s$ and $d v / d s=\sin s$ so that $d u / d s=1$ and $v=-\cos s$. We get

$$
I=\frac{1}{2}\left[-s \cos s+\int \cos s d s\right] .
$$

Performing the final integration, adding the constant, and replacing $s=x^{2}$ gives the result

$$
I=-\frac{1}{2} x^{2} \cos \left(x^{2}\right)+\frac{1}{2} \sin \left(x^{2}\right)+C .
$$

Definite Integrals

3. 8 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate $\int_{-\pi}^{\pi}\left(\sin x+x^{2}\right) \sin (x) d x$.

Answer: π
Solution: Upon splitting the integral, the second integral vanishes because the function is odd and domain is symmetric, and we only need to compute

$$
I=\int_{-\pi}^{\pi}\left(\sin x+x^{2}\right) \sin (x) d x=\int_{-\pi}^{\pi} \sin ^{2}(x) d x
$$

First we recognize that the integrand is even and we use the trig identity $\sin ^{2}(x)=\frac{1-\cos (2 x)}{2}$, we get

$$
I=2 \int_{0}^{\pi} \frac{1-\cos (2 x)}{2} d x=\int_{0}^{\pi}(1-\cos (2 x)) d x=\left[x-\frac{1}{2} \sin (2 x)\right]_{0}^{\pi}=\pi
$$

(b) Calculate $\int_{0}^{1} \arctan (3 x) d x$.

Answer: $\arctan (3)-\frac{1}{6} \ln (10)$
Solution: We use integration by parts with $u=\arctan (3 x)$ and $v^{\prime}=1$. We get $u=\frac{3}{1+9 x^{2}}$ and $v=x$. This gives

$$
\begin{aligned}
I=\int_{0}^{1} \arctan (3 x) d x & =[x \arctan (3 x)]_{0}^{1}-\int_{0}^{1} \frac{3 x}{1+9 x^{2}} d x \\
& =\arctan (3)-\frac{1}{6} \int_{0}^{1} \frac{18 x}{1+9 x^{2}} d x
\end{aligned}
$$

Using the substitution $u=1+9 x^{2}, u^{\prime}=18 x$, we get:

$$
I=\arctan (3)-\frac{1}{6}[\ln (u)]_{1}^{10}=\arctan (3)-\frac{1}{6} \ln (10)
$$

Areas, volumes and work

Please write your answers in the boxes. Do not use absolute values in your expressions, always work out: (i) the outer function and the inner function for volumes or (ii) which function lies above the other function for areas.
4. (a) 2 marks Sketch by hand the finite area enclosed between the curves defined by the functions $y^{2}+2=x$ and $y+x=2$

Answer:

Solution: The area is the region enclosed between the red and blue curves:

(b) 4 marks Write the definite integral with specific limits of integration that determines this finite area.

$$
\text { Answer: }-\int_{-1}^{0}\left(y+y^{2}\right) d y
$$

Solution: We first find the intersection points of the two curves, given by the solution of:

$$
y^{2}+2=2-y \Leftrightarrow y(y+1)=0
$$

The intersection points are therefore $(2,0)$ and $(3,-1)$. We then label the curve $x_{R}=y^{2}+2$ and $x_{B}=2-y$ and notice that $x_{B} \geq x_{R}$ for $-1 \leq y \leq 0$. The area is therefore given by the following definite integral:

$$
A=\int_{-1}^{0}\left(2-y-y^{2}-2\right) d y=\int_{-1}^{0}\left(-y-y^{2}\right) d y=-\int_{-1}^{0}\left(y+y^{2}\right) d y
$$

(c) 2 marks Evaluate the integral.

$$
\text { Answer: } \frac{1}{6}
$$

Solution:

$$
A=-\int_{-1}^{0}\left(y+y^{2}\right) d y=-\left[\frac{y^{2}}{2}+\frac{y^{3}}{3}\right]_{-1}^{0}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}
$$

5. 4 marks Write a definite integral, with specified limits of integration, for the volume obtained by revolving the bounded region between $x=\frac{(y+1)^{2}}{16}$ and $x=y-2$ about the horizontal line $y=1$. Do not evaluate the integral.

$$
\text { Answer: } \pi \int_{1}^{9}(4 \sqrt{x}-2)^{2}-(x+1)^{2} d x
$$

Solution: Intersection points are given by $\frac{(y+1)^{2}}{16}=y-2$.
Solving for y, we determine the 2 intersection points

$$
I_{1}=(1,3) \quad, \quad I_{2}=(9,11)
$$

We integrate in x, hence we write y as a function of x for the 2 curves and apply a shift of -1 , we finally establish:

$$
\pi \int_{1}^{9}(4 \sqrt{x}-2)^{2}-(x+1)^{2} d x
$$

6. A tank of height H and of square cross section of edge length L is half full with water of density $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$. The top of the tank features a spout of height h. We take the vertical axis y upwards oriented with its origin at the bottom of the tank. We assume gravity acceleration is $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
We take $H=8 m, L=3 m$ and $h=4 m$.

(a) 2 marks Formulate the total work to pump the water out of the tank by the top of the spout as a definite integral.

Answer: $9 \cdot 10^{4} \int_{0}^{4}(12-y) d y$
Solution: The cross section of the tank as a function of y is constant and equal to L^{2}. So the elementary volume, mass and force of a slice of height Δy read:

$$
\begin{array}{r}
\Delta V=L^{2} \Delta y \\
\Delta M=\rho L^{2} \Delta y \\
\Delta F=g \rho L^{2} \Delta y
\end{array}
$$

The displacement of a slice of height Δy at position y is $H+h-y$, and the elementary work of that slice is:

$$
\Delta W=g \rho L^{2}(H+h-y) \Delta y=g \rho L^{2}(12-y) \Delta y
$$

Now we integrate from bottom $y=0$ to half height $H / 2=8 / 2=4$ as

$$
W=\int_{0}^{4} g \rho L^{2}(12-y) d y=9 \cdot 10^{4} \int_{0}^{4}(12-y) d y
$$

(b) 2 marks Evaluate the definite integral.

$$
\text { Answer: } 3.6 \cdot 10^{6} \mathrm{~J}
$$

Solution:

$$
\begin{aligned}
W=9 \cdot 10^{4} \int_{0}^{4}(12-y) d y=9 \cdot 10^{4}\left[12 y-\frac{y^{2}}{2}\right]_{0}^{4} & =9 \cdot 10^{4}\left(12 \cdot 4-\frac{4^{2}}{2}\right) \\
& =9 \cdot 10^{4} \cdot 40=3.6 \cdot 10^{6} \mathrm{~J}
\end{aligned}
$$

