\qquad
Student-No: \qquad Section:

Grade:

The remainder of this page has been left blank for your workings.

Riemann Sum and FTC

1. 8 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate the infinite sum

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{6 i^{2}}{n^{3}\left(\frac{i^{3}}{n^{3}}+1\right)}
$$

by first writing it as a definite integral and then evaluating it.

$$
\text { Answer: } 2 \ln (2)=\ln (4)
$$

Solution: We identify $a=0, b=1, \Delta(x)=\frac{1}{n}, x_{i}=\frac{i}{n}$, and

$$
f\left(x_{i}\right)=\frac{6 x_{i}^{2}}{x_{i}^{3}+1} .
$$

This yields,

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{6 i^{2}}{n^{3}\left(\frac{i^{3}}{n^{3}}+1\right)}=\int_{0}^{1} \frac{6 x^{2}}{x^{3}+1} d x .
$$

To calculate the integral, let $u=x^{3}+1$. Then $d u=3 x^{2} d x, u(0)=1$, and $u(1)=2$. Then

$$
\int_{0}^{1} \frac{6 x^{2}}{x^{3}+4} d x \neq 2 \int_{1}^{2} \frac{1}{u} d u=2[\ln (u)]_{1}^{2}=2 \ln (2) .
$$

(b) Define $F(x)$ and $g(x)$ by $F(x)=\int_{2 \sqrt{\pi}}^{x} t \cos \left(t^{2}\right) d t$ and $g(x)=x^{3} F(x)$. Calculate $g^{\prime}(\sqrt{\pi})$.

$$
\text { Answer: }-\pi^{2}
$$

Solution: We use the product rule to get: $g^{\prime}(x)=3 x^{2} F(x)+x^{3} F^{\prime}(x)$. From FTC I, we get:

$$
F^{\prime}(x)=x \cos \left(x^{2}\right)
$$

and we calculate $F(x)$ using the substitution $u=t^{2}, u^{\prime}=2 t$ and the fact that $\sin (4 \pi)=0$, such that:

$$
F(x)=\int_{2 \sqrt{\pi}}^{x} t \cos \left(t^{2}\right) d t=\frac{1}{2}\left[\sin \left(t^{2}\right)\right]_{2 \sqrt{\pi}}^{x}=\frac{1}{2} \sin \left(x^{2}\right)
$$

Bringing pieces together, we can write:

$$
g^{\prime}(x)=\frac{3}{2} x^{2} \sin \left(x^{2}\right)+x^{4} \cos \left(x^{2}\right)
$$

Taking $x=\sqrt{\pi}$, we finally get:

$$
g^{\prime}(\sqrt{\pi})=\frac{3}{2} \pi \sin (\pi)+\pi^{2} \cos (\pi)=-\pi^{2}
$$

Midterm E: Page 3 of 10

Indefinite Integrals

2. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate the indefinite integral $\int 4(x-2)^{7} \sin \left((x-2)^{4}\right) \mathrm{d} x$.

Answer:

$$
-(x-2)^{4} \cos \left((x-2)^{4}\right)+\sin \left((x-2)^{4}\right)+C
$$

Solution: We start by substituting $u=(x-2)^{4}$. This gives:

$$
\int u \sin (u) \mathrm{d} u
$$

We now do integration by parts and obtain:

$$
\left(u(-\cos (u))-\int-\cos (u) \mathrm{d} u\right)
$$

which simplifies to

$$
u(-\cos (u))+\sin (u)+C .
$$

Now resubstitute u to get the final answer:

$$
(x-2)^{4}\left(-\cos \left((x-2)^{4}\right)\right)+\sin \left((x-2)^{4}\right)+C .
$$

(b) Calculate the indefinite integral $\int(2+3 \sin \theta)^{\frac{9}{2}} \cos \theta d \theta$.

Answer: $\frac{2}{33}(2+3 \sin \theta)^{\frac{11}{2}}+C$
Solution: By substitution, with

$$
\begin{aligned}
u(\theta) & =2+3 \sin \theta \\
u^{\prime}(\theta) & =3 \cos \theta
\end{aligned}
$$

Then

$$
\int(2+3 \sin \theta)^{\frac{9}{2}} \cos \theta d \theta=\int \frac{1}{3} u^{\frac{9}{2}} d u
$$

so that

$$
\frac{1}{3} \frac{2}{11}(2+3 \sin \theta)^{\frac{11}{2}}+C
$$

(c) (A Little Harder): Calculate the indefinite integral $\int 2 x^{5} \sqrt{1-x^{2}} d x$ for $|x| \leq 1$.

$$
\begin{aligned}
& \text { Answer: }-\frac{2}{7}\left(1-x^{2}\right)^{7 / 2}+\frac{4}{5}\left(1-x^{2}\right)^{5 / 2}-\frac{2}{3}(1- \\
& \left.x^{2}\right)^{3 / 2}+C
\end{aligned}
$$

Solution: We use the substitution $u(x)=1-x^{2}, u^{\prime}(x)=-2 x$, and then use $x^{2}=1-u$ to replace the remaining x^{4} term. This gives

$$
\begin{aligned}
I=\int x^{4} \sqrt{1-x^{2}} 2 x d x & =-\int(1-u)^{2} u^{1 / 2} d u \\
& =-\int\left(u^{5 / 2}-2 u^{3 / 2}+u^{1 / 2}\right) d u=-\frac{2}{7} u^{7 / 2}+\frac{4}{5} u^{5 / 2}-\frac{2}{3} u^{3 / 2}+C .
\end{aligned}
$$

Putting in $u=1-x^{2}$ gives the final answer

$$
I=-\frac{2}{7}\left(1-x^{2}\right)^{7 / 2}+\frac{4}{5}\left(1-x^{2}\right)^{5 / 2}-\frac{2}{3}\left(1-x^{2}\right)^{3 / 2}
$$

Definite Integrals

3. 8 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate $\int_{\pi / 4}^{\pi / 3} \frac{\sec ^{2}(x)}{\tan ^{3 / 2}(x)} d x$.

$$
\text { Answer: } 2-\frac{2}{3^{1 / 4}}
$$

Solution: We let $u=\tan (x)$ and obtain:

$$
I=\int_{1}^{\sqrt{3}} \frac{d u}{u^{3 / 2}}=-\left.2 u^{-1 / 2}\right|_{1} ^{\sqrt{3}}=2-\frac{2}{3^{1 / 4}}
$$

(b) Calculate $\int_{0}^{1} \arctan (4 x) d x$.

$$
\text { Answer: } \arctan (4)-\frac{1}{8} \ln (17)
$$

Solution: We use integration by parts with $u=\arctan (4 x)$ and $v^{\prime}=1$. We get $u=\frac{4}{1+16 x^{2}}$ and $v=x$. This gives

$$
\begin{aligned}
I=\int_{0}^{1} \arctan (4 x) d x & =[x \arctan (4 x)]_{0}^{1}-\int_{0}^{1} \frac{4 x}{1+16 x^{2}} d x \\
& =\arctan (4)-\frac{1}{8} \int_{0}^{1} \frac{32 x}{1+16 x^{2}} d x
\end{aligned}
$$

Using the substitution $u=1+16 x^{2}, u^{\prime}=32 x$, we get:

$$
I=\arctan (4)-\frac{1}{8}[\ln (u)]_{1}^{17}=\arctan (4)-\frac{1}{8} \ln (17)
$$

Areas, volumes and work

Please write your answers in the boxes. Do not use absolute values in your expressions, always work out: (i) the outer function and the inner function for volumes or (ii) which function lies above the other function for areas.
4. (a) 2 marks Sketch by hand the finite area enclosed between the curves defined by the functions $y^{2}-3=-x$ and $x=-1$

Answer:

Solution: The area is the region enclosed between the red and blue curves:

(b) 4 marks Write the definite integral with specific limits of integration that determines this finite area.

Answer: $\int_{-2}^{2}\left(4-y^{2}\right) d y$
Solution: We first find the intersection points of the two curves, given by the solution of:

$$
3-y^{2}=-1 \Leftrightarrow y^{2}=4
$$

The intersection points are therefore $(-1,-2)$ and $(-1,2)$. We then label the curve $x_{B}=3-y^{2}$ and $x_{R}=-1$ and notice that $x_{B} \geq x_{R}$ for $-2 \leq y \leq 2$. The area is therefore given by the following definite integral:

$$
A=\int_{-2}^{2}\left(3-y^{2}+1\right) d y=\int_{-2}^{2}\left(4-y^{2}\right) d y
$$

(c) 2 marks Evaluate the integral.

Answer: $\frac{32}{3}$

Solution:

$$
A=\int_{-2}^{2}\left(4-y^{2}\right) d y=\left[4 y-\frac{y^{3}}{3}\right]_{-2}^{2}=16-\frac{16}{3}=\frac{32}{3}
$$

Midterm E: Page 8 of 10
5. 4 marks Write a definite integral, with specified limits of integration, for the volume obtained by revolving the bounded region between $y=5 \sqrt{x}-2$ and $y=x+2$ about the vertical line $x=-3$. Do not evaluate the integral.

$$
\text { Answer: } \pi \int_{3}^{18}(y+1)^{2}-\left(\frac{(y+2)^{2}}{25}+3\right)^{2} d y
$$

Solution: Intersection points are given by $5 \sqrt{x}-2=x+2$.
Solving for x, we determine the 2 intersection points

$$
I_{1}=(1,3) \quad, \quad I_{2}=(16,18)
$$

We integrate in y, hence we write x as a function of y for the 2 curves and apply a shift of +3 , we finally establish:

$$
\pi \int_{3}^{18}(y+1)^{2}-\left(\frac{(y+2)^{2}}{25}+3\right)^{2} d y
$$

6. A tank of height H and of square cross section of edge length L is half full with water of density $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$. The top of the tank features a spout of height h. We take the vertical axis y upwards oriented with its origin at the bottom of the tank. We assume gravity acceleration is $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
We take $H=4 m, L=6 m$ and $h=7 m$.

(a) 2 marks Formulate the total work to pump the water out of the tank by the top of the spout as a definite integral.

Answer: $3.6 \cdot 10^{5} \int_{0}^{2}(11-y) d y$
Solution: The cross section of the tank as a function of y is constant and equal to L^{2}. So the elementary volume, mass and force of a slice of height Δy read:

$$
\begin{array}{r}
\Delta V=L^{2} \Delta y \\
\Delta M=\rho L^{2} \Delta y \\
\Delta F=g \rho L^{2} \Delta y
\end{array}
$$

The displacement of a slice of height Δy at position y is $H+h-y$, and the elementary work of that slice is:

$$
\Delta W=g \rho L^{2}(H+h-y) \Delta y=g \rho L^{2}(11-y) \Delta y
$$

Now we integrate from bottom $y=0$ to half height $H / 2=4 / 2=2$ as

$$
W=\int_{0}^{2} g \rho L^{2}(11-y) d y=3.6 \cdot 10^{5} \int_{0}^{2}(11-y) d y
$$

(b) 2 marks Evaluate the definite integral.

$$
\text { Answer: } 7.2 \cdot 10^{6} \mathrm{~J}
$$

Solution:

$$
\begin{aligned}
W=3.6 \cdot 10^{5} \int_{0}^{2}(11-y) d y=3.6 \cdot 10^{5}\left[11 y-\frac{y^{2}}{2}\right]_{0}^{2} & =3.6 \cdot 10^{5}\left(11 \cdot 2-\frac{2^{2}}{2}\right) \\
& =3.6 \cdot 10^{5} \cdot 20=7.2 \cdot 10^{6} \mathrm{~J}
\end{aligned}
$$

