\qquad
Student-No: \qquad Section:

Grade:

The remainder of this page has been left blank for your workings.

Riemann Sum and FTC

1. 8 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate the infinite sum

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{3 i^{2} e^{\frac{i^{3}}{n^{3}}+2}}{n^{3}}
$$

by first writing it as a definite integral and then evaluating it.

$$
\text { Answer: } e^{3}-e^{2}
$$

Solution: We identify $a=0, b=1, \Delta(x)=\frac{1}{n}, x_{i}=\frac{i}{n}$, and

$$
f\left(x_{i}\right)=3 x_{i}^{2} \exp \left(x_{i}^{3}+2\right)
$$

This yields,

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{3 i^{2} \exp \left(\frac{i^{3}}{n^{3}}+2\right)}{n^{3}}=\int_{0}^{1} 3 x^{2} \exp \left(x^{3}+2\right) d x
$$

To calculate the integral, let $u=x^{3}+2$. Then $d u=3 x^{2} d x, u(0)=2$, and $u(1)=3$. Then

$$
\int_{0}^{1} 3 x^{2} \exp \left(x^{3}+2\right) d x=\int_{2}^{3} \exp (u) d u=[\exp (u)]_{2}^{3}=e^{3}-e^{2}
$$

(b) Define $F(x)$ and $g(x)$ by $F(x)=\int_{0}^{x}(2 t-1) e^{t} d t$ and $g(x)=x^{2} F(x)$. Calculate $g^{\prime}(1 / 2)$.

Answer: $3-2 e^{1 / 2}$
Solution: We use the product rule to get: $g^{\prime}(x)=2 x F(x)+x^{2} F^{\prime}(x)$. From FTC I, we get:

$$
F^{\prime}(x)=(2 x-1) e^{x}
$$

and we calculate $F(x)$ using integration by parts with $u=2 t-1, v^{\prime}=e^{t}$, such that:

$$
F(x)=\int_{0}^{x}(2 t-1) e^{t} d t=\left[(2 t-1) e^{t}\right]_{0}^{x}-\int_{0}^{x} 2 e^{t} d t=\left[(2 t-3) e^{t}\right]_{0}^{x}=(2 x-3) e^{x}+3
$$

Bringing pieces together, we can write:

$$
g^{\prime}(x)=2 x\left((2 x-3) e^{x}+3\right)+x^{2}(2 x-1) e^{x}
$$

Taking $x=1 / 2$, we finally get:

$$
g^{\prime}(1 / 2)=2 \frac{1}{2}\left(\left(2 \frac{1}{2}-3\right) e^{1 / 2}+3\right)=3-2 e^{1 / 2}
$$

Indefinite Integrals

2. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate the indefinite integral $\int(x+2)(x-7)^{4} d x$.

Answer: $\frac{1}{6}(x-7)^{6}+\frac{9}{5}(x-7)^{5}+C$
Solution: Using the substitution $u=x-7, u^{\prime}=1$ and writing $x=u+7$, we get:

$$
\int(x+2)(x-7)^{4} d x=\int(u+9) u^{4} d u=\int\left(u^{5}+9 u^{4}\right) d u=\frac{1}{6} u^{6}+\frac{9}{5} u^{5}+C
$$

Substituting back $u=x-2$, we get:

$$
\int(x+2)(x-7)^{4} d x=\frac{1}{6}(x-7)^{6}+\frac{9}{5}(x-7)^{5}+C
$$

(b) Calculate the indefinite integral $\int(8+2 \sin \theta)^{\frac{3}{2}} \cos \theta d \theta$.

$$
\text { Answer: } \frac{1}{5}(8+2 \sin \theta)^{\frac{5}{2}}+C
$$

Solution: By substitution, with

$$
\begin{aligned}
u(\theta) & =8+2 \sin \theta \\
u^{\prime}(\theta) & =2 \cos \theta
\end{aligned}
$$

Then

$$
\int(8+2 \sin \theta)^{\frac{3}{2}} \cos \theta d \theta=\int \frac{1}{2} u^{\frac{3}{2}} d u
$$

so that

$$
\frac{1}{2} \frac{2}{5}(8+2 \sin \theta)^{\frac{5}{2}}+C
$$

(c) (A Little Harder): Calculate the indefinite integral $\int e^{-2 x} \sin x d x$.

$$
\text { Answer: }-\frac{1}{5} e^{-2 x} \cos x-\frac{2}{5} e^{-2 x} \sin x+C
$$

Solution: We integrate by parts once using $u=e^{-2 x}$ and $d v / d x=\sin x$. Then, $d u / d x=-2 e^{-2 x}$ and $v=-\cos x$, and we get

$$
I=-e^{-2 x} \cos x-2 \int e^{-2 x} \cos x d x
$$

We then integrate by parts one more time using $u=e^{-2 x}$ and $d v / d x=\cos x$. Then, $d u / d x=-2 e^{-2 x}$ and $v=\sin x$. We get
$I=-e^{-2 x} \cos x-2\left[e^{-2 x} \sin x+2 \int e^{-2 x} \sin x d x\right]=-e^{-2 x} \cos x-2 e^{-2 x} \sin x-4 I$.
Solving for I, we get $5 I=-e^{-2 x} \cos x-2 e^{-2 x} \sin x$, which upon dividing by five gives the final result.

Definite Integrals

3. 8 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate $\int_{0}^{\pi / 4} \sec ^{4}(x) \tan ^{3}(x) d x$.

Answer: $\frac{5}{12}$
Solution: This is a trigonometric integral that is calculated as:

$$
\begin{aligned}
I=\int_{0}^{\pi / 4} \sec ^{4}(x) \tan ^{3}(x) d x & =\int_{0}^{\pi / 4} \sec ^{3}(x) \tan ^{2}(x) \sec (x) \tan (x) d x \\
& =\int_{0}^{\pi / 4} \sec ^{3}(x)\left(\sec ^{2}(x)-1\right) \sec (x) \tan (x) d x \\
& =\int_{0}^{\pi / 4}\left(\sec ^{5}(x)-\sec ^{3}(x)\right) \sec (x) \tan (x) d x
\end{aligned}
$$

which gives, upon substituting $u=\sec (x)$ and $d u=\sec (x) \tan (x) d x$:

$$
\begin{aligned}
I=\left[\frac{1}{6} \sec ^{6}(x)-\frac{1}{4} \sec ^{4}(x)\right]_{0}^{\pi / 4} & =\frac{1}{6}\left(\left(\frac{2}{\sqrt{2}}^{6}\right)-1\right)+\frac{1}{4}\left(\left(\frac{2}{\sqrt{2}}^{4}\right)-1\right) \\
& =\frac{7}{6}-\frac{3}{4}=\frac{5}{12}
\end{aligned}
$$

(b) Calculate $\int_{0}^{1} \frac{7 x^{2}}{5 x^{2}+5} d x$.

$$
\text { Answer: } \frac{7}{5}\left(1-\frac{\pi}{4}\right)
$$

Solution: We first rewrite the definite integral as

$$
\begin{aligned}
I=\int_{0}^{1} \frac{7 x^{2}}{5 x^{2}+5} d x=\frac{7}{5} \int_{0}^{1} \frac{x^{2}}{x^{2}+1} d x & =\frac{7}{5} \int_{0}^{1} \frac{x^{2}+1-1}{x^{2}+1} d x \\
& =\frac{7}{5} \int_{0}^{1}\left(1-\frac{1}{x^{2}+1}\right) d x
\end{aligned}
$$

In this form, the integrand is very easy to anti-differentiate and we finally get:

$$
I=\frac{7}{5}[x-\arctan (x)]_{0}^{1}=\frac{7}{5}\left(1-\frac{\pi}{4}\right)
$$

Areas, volumes and work

Please write your answers in the boxes. Do not use absolute values in your expressions, always work out: (i) the outer function and the inner function for volumes or (ii) which function lies above the other function for areas.
4. (a) 2 marks Sketch by hand the finite area enclosed between the curves defined by the functions $y^{2}+x=1$ and $x=y-1$

Answer:

Solution: The area is the region enclosed between the red and blue curves:

(b) 4 marks Write the definite integral with specific limits of integration that determines this finite area.

$$
\text { Answer: } \int_{-2}^{1}\left(2-y-y^{2}\right) d y
$$

Solution: We first find the intersection points of the two curves, given by the solution of:

$$
1-y^{2}=y-1 \Leftrightarrow(y-1)(y+2)=0
$$

The intersection points are therefore $(-3,-2)$ and $(0,1)$. We then label the curve $x_{B}=1-y^{2}$ and $x_{R}=y-1$ and notice that $x_{B} \geq x_{R}$ for $-2 \leq y \leq 1$. The area is therefore given by the following definite integral:

$$
A=\int_{-2}^{1}\left(1-y^{2}-y+1\right) d y=\int_{-2}^{1}\left(2-y-y^{2}\right) d y
$$

(c) 2 marks Evaluate the integral.

$$
\text { Answer: } \frac{9}{2}=4.5
$$

Solution:

$$
A=\int_{-2}^{1}\left(2-y-y^{2}\right) d y=\left[2 y-\frac{y^{2}}{2}-\frac{y^{3}}{3}\right]_{-2}^{1}=6+\frac{3}{2}-3=\frac{9}{2}
$$

5. 4 marks Write a definite integral, with specified limits of integration, for the volume obtained by revolving the bounded region between $x=\frac{(y+1)^{2}}{25}$ and $x=y-3$ about the horizontal line $y=-2$. Do not evaluate the integral.

$$
\text { Answer: } \pi \int_{1}^{16}(5 \sqrt{x}+1)^{2}-(x+5)^{2} d x
$$

Solution: Intersection points are given by $\frac{(y+1)^{2}}{25}=y-3$.
Solving for y, we determine the 2 intersection points

$$
I_{1}=(1,4) \quad, \quad I_{2}=(16,19)
$$

We integrate in x, hence we write y as a function of x for the 2 curves and apply a shift of +2 , we finally establish:

$$
\pi \int_{1}^{16}(5 \sqrt{x}+1)^{2}-(x+5)^{2} d x
$$

6. A tank of height H and of square cross section of edge length L is half full with water of density $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$. The top of the tank features a spout of height h. We take the vertical axis y upwards oriented with its origin at the bottom of the tank. We assume gravity acceleration is $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
We take $H=8 m, L=2 m$ and $h=3 m$.

(a) 2 marks Formulate the total work to pump the water out of the tank by the top of the spout as a definite integral.

Answer: $4 \cdot 10^{4} \int_{0}^{4}(11-y) d y$
Solution: The cross section of the tank as a function of y is constant and equal to L^{2}. So the elementary volume, mass and force of a slice of height Δy read:

$$
\begin{array}{r}
\Delta V=L^{2} \Delta y \\
\Delta M=\rho L^{2} \Delta y \\
\Delta F=g \rho L^{2} \Delta y
\end{array}
$$

The displacement of a slice of height Δy at position y is $H+h-y$, and the elementary work of that slice is:

$$
\Delta W=g \rho L^{2}(H+h-y) \Delta y=g \rho L^{2}(11-y) \Delta y
$$

Now we integrate from bottom $y=0$ to half height $H / 2=8 / 2=4$ as

$$
W=\int_{0}^{4} g \rho L^{2}(11-y) d y=4 \cdot 10^{4} \int_{0}^{4}(11-y) d y
$$

(b) 2 marks Evaluate the definite integral.

$$
\text { Answer: } 1.44 \cdot 10^{6} \mathrm{~J}
$$

Solution:

$$
\begin{aligned}
W=4 \cdot 10^{4} \int_{0}^{4}(11-y) d y=4 \cdot 10^{4}\left[11 y-\frac{y^{2}}{2}\right]_{0}^{4} & =4 \cdot 10^{4}\left(11 \cdot 4-\frac{4^{2}}{2}\right) \\
& =4 \cdot 10^{4} \cdot 36=1.44 \cdot 10^{6} \mathrm{~J}
\end{aligned}
$$

