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TIME-REVERSAL IN HYPERBOLIC S.P.D.E.’S

BY ROBERT C. DALANG1 AND JOHN B. WALSH

Ecole Polytechnique Fédérale de Lausanne and University of British Columbia

This paper studies questions of changes of variables in a class of
hyperbolic stochastic partial differential equations in two variables driven by
white noise. Two types of changes of variables are considered: naive changes
of variables which do not involve a change of filtration, which affect the
equation much as though it were deterministic, and changes of variables that
do involve a change of filtration, such as time-reversals. In particular, if the
process in reversed coordinates does satisfy an s.p.d.e., then we show how
this s.p.d.e. is related to the original one. Time-reversals for the Brownian
sheet and for equations with constant coefficients are considered in detail.
A necessary and sufficient condition is provided under which the reversal
of the solution to the simplest hyperbolic s.p.d.e. with certain random initial
conditions again satisfies such an s.p.d.e. This yields a negative conclusion
concerning the reversal in time of the solution to the stochastic wave equation
(in one spatial dimension) driven by white noise.

1. Introduction. This paper was motivated by questions of changes of
variables in stochastic partial differential equations (s.p.d.e.’s). To illustrate the
issues, consider first the analogous question for a stochastic differential equation
of the form

dXt = b(t,Xt ) dt + σ(t,Xt ) dWt, X0 = x0.(1.1)

Given a smooth increasing function ϕ: R+ → R+ with ϕ(0) = 0 and ϕ′(u) > 0,
for all u ≥ 0, set Yu = Xϕ(u). Then (Yu) is a (weak) solution of the following
equation:

dYu = b
(
ϕ(u),Yu

)
ϕ′(u) du+ σ

(
ϕ(u),Yu

)√
ϕ′(u)dB̃(u),

for some Brownian motion B̃ . That is, the change of variables t = ϕ(u) affects
equation (1.1) much as though it were an ordinary differential equation.

On the other hand, consider the change of variables t = 1 − u, namely, time-
reversal. It is well known [8] that the process (X̂u =X1−u, 0 ≤ u≤ 1) is a solution
of the stochastic differential equation

dX̂u = b̂(u, X̂u) du+ σ̂ (u, X̂u) dB̂u, X̂0 =X1,
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where B̂ is a Brownian motion independent of X1, and b̂ and σ̂ are given by the
formulas

σ̂ (u, x)= σ(1− u,x),

(1.2)

b̂(u, x)=−b(1− u,x)+
∂
∂x
(ρ1−u(x)σ (1− u,x))

ρ1−u(x)
,

where ρt(·) is the density function of Xt . In the simplest case in which b ≡ 0,
σ ≡ 1, X is a standard Brownian motion and these formulas give the following
equation for X̂:

dX̂u =− X̂u

1 − u
du+ dB̂u.

As expected, the reversal of Brownian motion is a Brownian bridge.
These considerations have been considerably extended [5, 11], to include

infinite systems of stochastic differential equations. Of course, the presence of the
density of X1−u and the derivative in x makes the extensions highly non-trivial,
but under certains conditions, the formulas above (suitably reinterpreted) give an
equation for the reversed process.

With s.p.d.e.’s, there is a much wider choice of changes of variables than with
s.d.e.’s. However, the fundamental issue is similar to that of s.d.e.’s: if the change
of variables respects the filtration, then the s.p.d.e. in the new variables is easily
obtained from the s.p.d.e. in the old variables, almost as for deterministic p.d.e.’s
(see Section 3). However, if the change of variables implies a change of filtration,
then the situation is much more delicate. The aim of this paper is to examine
this issue in the context of hyperbolic s.p.d.e.’s in two variables, driven by two-
parameter white noise.

If one considers a change of variables such as time reversal in an s.p.d.e., one
might be tempted to make use of the results of [5, 11]. Indeed, in an abstract sense,
an s.p.d.e. can be interpreted as an infinite system of s.d.e’s. However, the class of
s.p.d.e.’s is only a small subset of the class of infinite systems of s.d.e.’s, and there
is no reason to expect, given an infinite system of s.d.e.’s for the reversed process,
that it will correspond to an s.p.d.e.

The outline of this paper is as follows. In Section 2, we recall the basic existence
theory for hyperbolic s.p.d.e.’s in two variables, and establish some properties of
the solution that will be needed in the sequel, including questions related to its
planar quadratic variation. In Section 3, we consider changes of variables which
do not involve a change of filtration, and we give in Theorem 3.2 the equation
that is satisfied by the process in the new variables. In Section 4, we relate linear
s.p.d.e.’s to random p.d.e.’s interpreted as equations in the space of (Schwarz)
distributions. In Section 5, we consider specifically the issue of reversal in one
or two coordinates, and show in Proposition 5.2 how the equation for the process

Administrator
ˆ = 1−ˆb(u, x)=−b(1−u, x)+∂∂x (ρ1−u(x)σ (1−u, x))ρ1−u(x),
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in reversed coordinates, if there is one, must be related to the original equation.
Section 6 particularizes to reversals of the Brownian sheet, while Section 7
extends this to certain hyperbolic s.p.d.e.’s with constant coefficients. Finally, in
Section 8, we consider hyperbolic s.p.d.e.’s with certain random initial conditions,
and establish in Theorem 8.1 a necessary and sufficient condition for the reversal in
two coordinates to satisfy an s.p.d.e. with local coefficients. This theorem implies
that the reversal in time of the solution to the wave equation driven by space-time
white noise (with vanishing initial conditions) does not satisfy an s.p.d.e. with local
coefficients (see Remarks 8.2 and 8.3).

2. Existence theory for hyperbolic s.p.d.e.’s in the plane. Consider the
(reduced) hyperbolic s.p.d.e.

∂2X

∂s∂t
+ a1(s, t)

∂X

∂s
+ a2(s, t)

∂X

∂t
+ a3(s, t,X)= a4(s, t)Ẇ ,(2.1)

with initial data

X(s,0)=X0 +M1
s , X(0, t)=X0 +M2

t .

Here, Ẇ is a space-time white noise. The coefficients a1, . . . , a4 are deterministic
functions: a1, a2 and a3 are continuously differentiable and have bounded first
partials, a4 is bounded and continuous, and a3(s, t,X) = a3(s, t,X(s, t)). The
boundary conditions X0, M1 and M2 are (possibly) random, independent of the
white noise Ẇ , and M1 and M2 are continuous processes, with M1

0 =M2
0 = 0.

Equation (2.1) was studied in [4] using the theory of two-parameter processes.
It was also studied in [14], [15], where it was formulated in mild form, using the
Green’s function, and it was shown that the two-parameter form, the mild form,
and the weak form (see below) are equivalent, and have a unique solution.

To get the weak form of (2.1), multiply both sides by a test function φ ∈C(2)(R2),

and integrate over the rectangle Rst
def= [0, s] × [0, t] to get

∫∫
Rst

φ(u, v)

(
∂2X

∂u∂v
+ a1(u, v)

∂X

∂u
+ a2(u, v)

∂X

∂v

)
dudv

=
∫∫

Rst

φ(u, v)
[
a4(u, v)W(dudv)− a3(u, v,X)dudv

]
.

(2.2)

Use the integration by parts formula
∫ b

a
dx

∫ d

c
dy f (x, y)

∂2g

∂x∂y

= f (b, d)g(b, d)− f (a, d)g(a, d)− f (b, c)g(b, c)+ f (a, c)g(a, c)

−
∫ b

a

[
∂f

∂x
(x, d)g(x, d)− ∂f

∂x
(x, c)g(x, c)

]
dx(2.3)
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−
∫ d

c

[
∂f

∂y
(b, y)g(b, y)− ∂f

∂y
(a, y)g(a, y)

]
dy

+
∫ b

a
dx

∫ d

c
dy

∂2f

∂x∂y
g(x, y),

with f = φ, g =X, to get all the derivatives onto φ:

X(s, t)φ(s, t)−X(s,0)φ(s,0)−X(0, t)φ(0, t)+X(0,0)φ(0,0)

−
∫ s

0

(
X(u, t)

[
∂φ

∂u
(u, t)− a2(u, t)φ(u, t)

]

−X(u,0)
[
∂φ

∂u
(u,0)− a2(u,0)φ(u,0)

])
du

−
∫ t

0

(
X(s, v)

[
∂φ

∂v
(s, v)− a1(s, v)φ(s, v)

]

−X(0, v)
[
∂φ

∂v
(0, v)− a1(0, v)φ(0, v)

])
dv

+
∫∫

Rst

X(u, v)

[
∂2φ

∂u∂v
(u, v)− ∂

∂u

(
a1(u, v)φ(u, v)

)

− ∂

∂v

(
a2(u, v)φ(u, v)

)]
dudv

=
∫∫

Rst

φ(u, v)
[
a4(u, v)W(dudv)− a3(u, v,X)dudv

]
.

(2.4)

We say that a jointly measurable and locally integrable process (X(s, t), (s, t) ∈
R2+) is a weak solution of (2.1) if (2.4) holds a.s. for each (s, t) ∈ R2+ and each func-
tion φ ∈ C(2)(R2+). A slight extension of [15, Theorem 1] (which only considers
more restrictive initial conditions) shows that if E(X2

0) < ∞, E(supu≤s(M1
u)

2)

< ∞ and E(supv≤t (M2
v )

2) < ∞, then there exists a unique weak solution
of (2.1) which has continuous sample paths, and which has the property that
sup(u,v)∈Rst

E(X(u, v)2) <∞.
The weak solution of (2.1) has an integral representation using the Green’s

function for equation (2.1). The Green’s function and its properties are studied
in [15, Propositions 10 and 11]: it is a function γ (s, t;u, v) defined for (s, t) ∈ R2+
and (u, v) ∈ Rst , which has the following properties.

(a) For fixed (S,T ), for all s ≤ S and t ≤ T , γ (s, t; ·, ·) has continuous and
uniformly bounded first derivatives and a continuous and uniformly bounded
second order mixed derivative in Rst . For u ≤ S and v ≤ T , γ (·, · ;u, v)
has continuous and uniformly bounded first derivatives and a continuous and
uniformly bounded second order mixed derivative in RST \ Ruv . (Note: The
continuity statements are not made in [14], [15] because in those papers, a1 and



TIME-REVERSAL IN S.P.D.E.’S 217

a2 are not assumed to be C1. However, under this assumption, they follow easily
from the proof in [14], Proposition 3.2.)

(b) For (u, v) ∈Rst ,

γ (s, t;u, v)= 1−
∫ t

v
a1(u,w)γ (s, t;u,w)dw−

∫ s

u
a2(r, v)γ (s, t; r, v) dr;

(c) For (u, v) ∈Rst ,

∂2γ

∂u∂v
(s, t;u, v)− ∂

∂u

(
a1(u, v)γ (s, t;u, v))− ∂

∂v

(
a2(u, v)γ (s, t;u, v))= 0;

(d) ∂γ
∂u
(s, t;u, t)− a2(u, t)γ (s, t;u, t)= 0, u≤ s;

(e) ∂γ
∂v
(s, t; s, v)− a1(s, v)γ (s, t; s, v)= 0, v ≤ t;

(f) γ (s, t; s, t)= 1.

Moreover, there exists a universal constant C > 0 such that:

(g) sup(s,t)∈R2+ sup(u,v)∈Rst
|γ (s, t;u, v)| ≤ C;

(h) sup s≥u∨r,
t≥v∨w

|γ (s, t;u, v)− γ (s, t; r,w)| ≤ C(|u− r| + |v −w|);
(i) sup s∧r≥u,

t∧w≥v
|γ (s, t;u, v)− γ (r,w;u, v)| ≤C(|s − r| + |t −w|).

If we replace φ(u, v) by γ (s, t;u, v) in (2.4) and use (c), (d) and (e), we get

X(s, t)= γ (s, t; s,0)X(s,0)+ γ (s, t;0, t)X(0, t)− γ (s, t;0,0)X(0,0)

−
∫ s

0
X(u,0)

[
∂γ

∂u
(s, t;u,0)− a2(u,0)γ (s, t;u,0)

]
du

(2.5)

−
∫ t

0
X(0, v)

[
∂γ

∂v
(s, t;0, v)− a1(0, v)γ (s, t;0, v)

]
dv

+
∫∫

Rst

γ (s, t;u, v)[a4(u, v)W(dudv)− a3(u, v,X)dudv
]
.

DEFINITION 2.1. If % =]a, b]× ]c, d] ⊂ R2+ is a rectangle, the planar
increment of X over % is

X(%)
def= X(b,d)−X(a,d)−X(b, c)+X(a, c).

It is shown in [15], Propositions 2.1 and 2.20 that the solution of (2.4) also
satisfies (2.5). One can extend (2.4) to certain non-smooth φ, and in particular to
indicator functions, as follows.
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LEMMA 2.1. Let 0 < ui < vi , i = 1,2, and set % =]u1, v1]× ]u2, v2].
Suppose that (X(s, t)) is a weak solution of (2.1). Then

X(%)−
∫∫

%
X(u, v)

[
∂a1

∂u
(u, v)+ ∂a2

∂v
(u, v)

]
dudv

+
∫ v1

u1

[
X(u,v2)a2(u, v2)−X(u,u2)a2(u,u2)

]
du

+
∫ v2

u2

[
X(v1, v)a1(v1, v)−X(u1, v)a1(u1, v)

]
dv

=
∫∫

%

[
a4(u, v)W(dudv)− a3(u, v,X)dudv

]
.

(2.6)

Further, if (X(s, t)) is a continuous process such that (2.6) holds for all rectangles
%⊂ R2+, then (2.4) holds for all φ ∈C(2)(R2+) and therefore X is a weak solution
of (2.1).

PROOF. Fix (s, t) ∈ R2+. We only consider the case where s > v1 and t > v2,
as the other cases are similar. Let ψ(x) be a non-negative smooth function with
compact support, such that ψ(0) > 0 and

∫
ψ(x)dx = 1. Define

φiε(x)= 1

ε

∫ x

0

(
ψ

(
y − ui

ε

)
−ψ

(
y − vi

ε

))
dy,

and let φε(u, v)= φ1ε(u)φ2ε(v). If we put φε into (2.4), the first three lines vanish
if ε is small, and we get

∫∫
Rst

X(u, v)

[
φ′

1ε(u)φ
′
2ε(v)− a1(u, v)φ

′
1ε(u)φ2ε(v)

−a2(u, v)φ1ε(u)φ
′
2ε(v)

−φ1ε(u)φ2ε(v)

(
∂a1

∂u
(u, v)+ ∂a2

∂v
(u, v)

)]
dudv

=
∫∫

Rst

φ1ε(u)φ2ε(v)
[
a4(u, v)W(dudv)− a3(u, v,X)dudv

]
.

(2.7)

Notice that as ε ↓ 0, φiε converges boundedly and pointwise to 1[ui,vi ] while
φ′
iε converges weakly to δui − δvi . Since X, the ai , and their first partials are

continuous, the left-hand side of (2.7) converges to the left-hand side of (2.6).
At the same time, the ai are bounded and φε converges pointwise and boundedly
to the indicator function of %, so the right-hand side of (2.7) converges in L2 to
the right-hand side of (2.6), proving this equality.

Assume now that (2.6) holds for all % ∈ R2+. Fix (s, t) ∈R2+ and φ ∈ C(2)(R2+).
We shall show that (2.4) holds. For n ∈ N and i, j ∈ {0, . . . , n}, set sni = is/n,
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tnj = j t/n, %n
i,j =]sni , sni+1]× ]tnj , tnj+1], φi,j = φ(sni , t

n
j ), and

φn =
n∑

i=0

n∑
j=0

φi,j1%n
i,j
.

Finally, set Xi,j =X(sni , t
n
j ). Apply (2.6) to each %n

i,j , multiply by φi,j , then sum
over i and j , to see that

n−1∑
i=0

n−1∑
j=0

φi,j (Xi+1,j+1 −Xi,j+1 −Xi+1,j +Xi,j )

−
∫∫

Rst

φn(u, v)X(u, v)

[
∂a1

∂u
(u, v)+ ∂a2

∂v
(u, v)

]
dudv

+
n−1∑
i=0

n−1∑
j=0

φi,j

∫ sni+1

sni

[
X(u, tnj+1)a2(u, t

n
j+1)−X(u, tnj )a2(u, t

n
j )

]
du

+
n−1∑
i=0

n−1∑
j=0

φi,j

∫ tnj+1

tnj

[
X(sni+1, v)a1(s

n
i+1, v)−X(sni , v)a1(s

n
i , v)

]
dv

=
∫∫

Rst

φn(u, v)
[
a4(u, v)W(dudv)− a3(u, v,X)dudv

]
.

(2.8)

By a double summation by parts (see also [7] or [12], page 24), the first double
sum above can be written

φn−1,n−1Xn,n − φn−1,0Xn,0 − φ0,n−1X0,n + φ0,0X0,0

+
n−1∑
i=1

n−1∑
j=1

(φi−1,j−1 − φi,j−1 − φi−1,j + φi,j )Xi,j

−
n−1∑
j=1

(φn−1,j − φn−1,j−1)Xn,j −
n−1∑
i=1

(φi,n−1 − φi−1,n−1)Xi,n

+
n∑

j=1

(φ0,j − φ0,j−1)X0,j +
n−1∑
i=1

(φi,0 − φi−1,0)Xi,0,

the second double sum in (2.8) can be written

−
n−1∑
i=0

n−1∑
j=1

(φi,j − φi,j−1)

∫ sni+1

sni

X(u, tnj )a2(u, t
n
j ) du

+
n−1∑
i=0

∫ sni+1

sni

(
φi,n−1X(u, tnn )a2(u, t

n
n )− φi,0X(u, tn0 )a2(u, t

n
0 )

)
du,
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and the third double sum in (2.8) can be written

−
n−1∑
i=1

n−1∑
j=0

(φi,j − φi−1,j )

∫ tnj+1

tnj

X(sni , v)a1(s
n
i , v) dv

+
n−1∑
j=0

∫ tnj+1

tnj

(
φn−1,jX(snn, v)a1(s

n
n, v)− φ0,jX(sn0 , v)a1(s

n
0 , v)

)
dv.

With these three expressions, we can let n→∞ in (2.8), to see that the left-hand
side converges a.s. By comparing terms, this limit is easily identified with the
left-hand side of (2.4). As for the right-hand side of (2.8), it clearly converges as
n→∞ in L2 to the right-hand side of (2.4). This proves the lemma. �

2.1. Semimartingale initial data. We want to consider solutions with fairly
regular initial values. In this context, “initial values” refers to the values of X on
the boundary of R2+, and “fairly regular” means that the boundary values should
be well-behaved semimartingales.

Let Y = (Yt , t ≥ 0) be a semimartingale with the decomposition Yt =Mt + Vt ,
where Mt is a martingale (in some given filtration), and Vt is a process of locally
finite variation. Let 〈Y 〉t = 〈M〉t be the predictable increasing process associated
to Y .

DEFINITION 2.2. We say that a semimartingale Y is smooth if:

(i) M and V are continuous;
(ii) t �→ 〈Y 〉t and t �→ Vt are continuously differentiable;

(iii) d〈Y 〉
dt

is L1-bounded in compact t-sets, and dV
dt

is L2-bounded in compact
t-sets.

Notice that a smooth semimartingale need not have smooth sample paths (quite
the opposite, it will only have smooth sample paths if its martingale part is
constant). It is the characteristics of the semimartingales, not the semimartingales
themselves, which are smooth. One can think of a smooth semimartingale as the
solution of a stochastic differential equation dY = σ dWt + µdt , where σ(x, t)

and µ(x, t) are Lipschitz continuous.

REMARK 2.2. It is straightforward to show that if f is a bounded, continuous,

adapted process and Y is a smooth semimartingale, then Zt
def= ∫ t

0 f (s) dYs is also
a smooth semimartingale.

ASSUMPTION A. Let Y 1
u = X(u,0) and Y 2

v = X(0, v). (Y 1
u , u ≥ 0) and

(Y 2
v , v ≥ 0) are smooth semimartingales (in their respective natural filtrations)

which are independent of Ẇ , with semimartingale decomposition Y i
u =Mi

u + V i
u ,

i = 1,2.
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Under this assumption, denote

σ 2
i (u)

def= d〈Y i〉u
du

, i = 1,2,

µi(u)
def= dV i

u

du
, i = 1,2,

and for (s, t) ∈R2+, set

Fs,t = σ(Y 1
u , Y

2
v , Ẇu,v, u≤ s, v ≤ t).

LEMMA 2.3. Under Assumption A, for any (s, t) ∈ R2+, the processes
(X(u, t), 0 ≤ u≤ s) and (X(s, v), 0 ≤ v ≤ t) are smooth semimartingales (in the
respective filtrations (Fu,t , 0 ≤ u≤ s) and (Fs,v, 0 ≤ v ≤ t)), and the Lp-bounds
on their characteristics are uniform for (s, t) in compact sets.

Moreover, if %=]u1, v1]×]u2, v2], (2.6) can be written

X(%)+
∫ v2

u2

dv

∫ v1

u1

a1(u, v)X(du, v)+
∫ v1

u1

du

∫ v2

u2

a2(u, v)X(u, dv)

=
∫∫

%

[
a4(u, v)W(dudv)− a3(u, v,X)dudv

]
.

(2.9)

PROOF. Since X(u,0) = Y 1
u and X(0, v) = Y 2

v are semimartingales, we can
integrate by parts in the first two integrals on the right-hand side of (2.5) to get

X(s, t) = γ (s, t;0,0)X(0,0)+
∫ s

0
γ (s, t;u,0) dY 1

u +
∫ t

0
γ (s, t;0, v) dY 2

v(2.10)

+
∫ s

0
Y 1
u a2(u,0)γ (s, t;u,0) du+

∫ t

0
Y 2
v a1(0, v)γ (s, t;0, v) dv

+
∫∫

Rst

γ (s, t;u, v)a4(u, v)W(dudv)

−
∫∫

Rst

γ (s, t;u, v)a3(u, v,X)dudv(2.11)

def= I1(s, t)+ · · · + I7(s, t).

The integrals with respect to dY 1
u and dY 2

v are stochastic integrals relative
to semimartingales. One can show that each of them has a version which is
continuous in (s, t), and we will always take that version.

We will show that if we fix s or t , I1, . . . , I7 are smooth semimartingales in the
remaining variable. By symmetry, it is enough to fix t . Let us decompose I1, . . . , I7
into their martingale and bounded variation parts in s.
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Note that I1, I3, I4, I5 and I7 are each C(1) and have no martingale part, so
〈I1〉 = 〈I3〉 = 〈I4〉 = 〈I5〉 = 〈I7〉 ≡ 0. Indeed, this is clear for I1, I5 and I7 thanks
to the differentiability of s �→ γ (s, t;u, v) (property (a) above). In I3, one can
differentiate (with care!) inside the stochastic integral to see that

∂

∂s
I3(s, t)=

∫ t

0

∂

∂s
γ (s, t;0, v) dY 2

v ,(2.12)

which is continuous in s by (a). For I4, write

γ (s, t;u, v)= γ (u, t;u, v)+
∫ s

u

∂

∂r
γ (r, t;u, v) dr

and use Fubini’s theorem:

I4(s, t)=
∫ s

0
Y 1
u a2(u,0)γ (u, t;u,0) du+

∫ s

0
dr

∫ r

0
Y 1
u a2(u,0)

∂

∂r
γ (r, t;u,0) du,

which is clearly differentiable in s. The same idea can be used in I2 and I6,
although one has to use Fubini’s theorem for mixed stochastic/Riemann inte-
grals [16]:

I2(s, t)=
∫ s

0
γ (u, t;u,0) dY 1

u +
∫ s

0
dr

∫ r

0

∂

∂r
γ (r, t;u,0) dY 1

u(2.13)

=
∫ s

0
γ (u, t;u,0) dM1

u +
∫ s

0
γ (u, t;u,0)µ1(u) du

+
∫ s

0
dr

∫ r

0

∂

∂r
γ (r, t;u,0) dY 1

u

and

I6(s, t)=
∫∫

Rst

γ (u, t;u, v)a4(u, v)W(dudv)

+
∫ s

0
dr

∫∫
Rrt

∂

∂r
γ (r, t;u, v)a4(u, v)W(dudv).

This gives us the semimartingale decomposition of I2 and I6—so that we have
the decomposition of all the Ij—and we see that

∂

∂s
〈I2〉st = γ 2(s, t; s,0)σ 2

1 (s),

∂

∂s
〈I6〉st =

∫ t

0
γ 2(s, t; s, v)a2

4(s, v) dv.

Now, a4 is bounded by hypothesis and γ is bounded by property (g), and
both are continuous and deterministic. Further, σ 2

1 (s) is continuous and locally
L1-bounded by the smoothness of Y 1. So we conclude that the derivatives of the
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〈Ij 〉 are all continuous and L1-bounded, and the bound is uniform for (s, t) in
bounded sets.

We must also check that the ∂
∂s
(V

j
s ) are continuous and L2-bounded, and that

the bound is uniform for (s, t) in bounded sets. Since we have explicit formulas
for V 1, . . . , V 6, this is straightforward. We will just check I3, which contains a
stochastic integral, and leave the rest to the reader. Fix Rs0t0 .

Since I3 is C(1), V3 = I3 and from (2.12) we must bound

A(s, t)
def= E

{(
∂

∂s
I3

)2}
= E

{(∫ t

0

∂

∂s
γ (s, t;0, v) dY 2

v

)2}
, (s, t) ∈ Rs0t0 .

Now dY 2
v = dM2

v +µ2(v) dv, so

A(s, t)≤ 2E
{(∫ t

0

∂

∂s
γ (s, t;0, v) dM2

v

)2}

+ 2E
{(∫ t

0

∂

∂s
γ (s, t;0, v)µ2(v) dv

)2}
.

The first expectation equals 2E{∫ t
0 (

∂
∂s
γ (s, t;0, v))2σ 2

2 (v) dv}. If (u, v) ≺ (s, t) ∈
Rs0t0 , there is a constant K = Ks0t0 such that | ∂

∂s
γ (s, t;0, v)| ≤ K by (a). The

second expectation is bounded by 2K2E{(∫ t0
0 |µ2(v)|dv)2}. Thus, by the Schwarz

inequality, if (s, t) ∈ Rs0t0 ,

A(s, t)≤ 2K2t0

(
sup
v≤t0

E{σ 2
2 (v)} + sup

v≤t0
E{µ2

2(v)}
)
.

Now Y is a smooth semimartingale, so this is bounded independently of (s, t),
hence A(s, t) is uniformly bounded for (s, t) ∈Rs0t0 , as claimed.

To get (2.9), integrate by parts in the first double integral on the left-hand side
of (2.6). �

The following is a direct consequence of Lemma 2.3.

COROLLARY 2.4. Let % =]s − h, s]× ]t − k, t]. Under Assumption A, for
any (s0, t0) ∈ R2+ there exists a constant C =Cs0t0 such that if (s, t) ∈ Rs0t0 ,

E
{(
X(%)

)2} ≤ Chk,

E
{(
X(s, t)−X(s − h, t − k)

)2} ≤ C(h+ k).

2.2. Iterated quadratic variation. The aim of this section is to show that
sample paths of the solution X of (2.1) determine the coefficient a4(s, t) in (2.1).
This will be needed in Section 5. To this aim, we shall show that a4(·, ·) can be
determined by computing a quantity analogous to the planar quadratic variation
(see [9]) of X.
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Set tni = i 2−n and %nm
ij =]tni−1, t

n
i ]× ]tmj−1, t

m
j ]. Define

Qn,m(s, t)=
[2ns]∑
i=1

[2mt]∑
j=1

|X(%nm
ij )|2

and

[X](s, t)= lim
n→∞ lim

m→∞Qn,m(s, t),

if this iterated limit exists a.s. We call [X](s, t) the iterated quadratic variation
of X. In general, even if [X](s, t) exists, the limit in inverse order may not exist,
but for solutions of (2.1), it turns out that the limit can be taken in either order.

LEMMA 2.5. If X has finite iterated quadratic variation and if Y has zero
iterated quadratic variation, then the iterated quadratic variation of X + Y is
equal to that of X.

PROOF. Clearly,

|X(%nm
ij )+ Y (%nm

ij )|2 = |X(%nm
ij )|2 + 2X(%nm

ij )Y (%nm
ij )+ |Y (%nm

ij )|2.
Sum each term over i = 1, . . . , [2ns] and j = 1, . . . , [2mt], let m → ∞, then
n→∞. The third term has iterated limit 0 by hypothesis, and, using the Cauchy–
Schwarz inequality, one sees that the second does too. Therefore, [X + Y ](s, t)=
[X](s, t). �

LEMMA 2.6. If

Y (s, t)= y0 + f1(s)+ f2(t)+
∫∫

Rst

f (u, v) dudv

for some integrable function f , continuous functions f1 and f2, and y0 ∈ R, then
[Y ](s, t)= 0 for all s and t .

PROOF. Notice that the planar increments of the first three terms vanish, so

[Y ](s, t)= lim
n→∞ lim

m→∞
[2ns]∑
i=1

[2mt]∑
j=1

(∫∫
%nm

ij

f (u, v) dudv

)2

.

For fixed n and i, y �→ ∫∫
]tni−1,t

n
i ]×[0,y] f (u, v) dudv is a function with bounded

variation, so

lim
m→∞

[2mt]∑
j=1

(∫∫
%nm

ij

f (u, v) dudv

)2

= 0,

and therefore [Y ](s, t)= 0. �
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PROPOSITION 2.7. Under Assumption A, the iterated quadratic variation of
the weak solution X of (2.1) is

[X](s, t)=
∫∫

Rst

a2
4(u, v) dudv.

PROOF. Consider the decomposition (2.10) of X(s, t) into the sum of I1(s, t),

. . . , I7(s, t). Each of these terms can be expressed in the form needed to
apply Lemma 2.6: indeed, for I7, for instance, the differentiability properties
of γ (·, ·;u, v) listed in Section 2.1 imply that (s, t) �→ I7(s, t) is absolutely
continuous with respect to Lebesgue measure, so

I7(s, t)=
∫∫

Rst

∂2I7

∂u∂v
(u, v) dudv,

and the terms I1, I4 and I5 can be expressed in an analogous way. It follows
therefore from Lemma 2.6 that [I1] ≡ [I4] ≡ [I5] ≡ [I7] ≡ 0. Notice that as
in (2.13),

I2(s, t) =
∫ s

0
γ (u, t;u,0) dY 1

u +
∫ s

0
dr

∫ r

0

∂

∂r
γ (r, t;u,0) dY 1

u

def= I 1
2 (s, t)+ I 2

2 (s, t),

and similarly,

I3(s, t) =
∫ t

0
γ (s, v;0, v) dY 2

v +
∫ t

0
dy

∫ y

0

∂

∂y
γ (s, y;0, v) dY 2

v

def= I 1
3 (s, t)+ I 2

3 (s, t)

and

I6(s, t) =
∫∫

Rst

a4(u, v)W(dudv)

+
∫ t

0
dy

∫∫
Rsy

∂

∂y
γ (u, y;u, v)a4(u, v)W(dudv)

+
∫ s

0
dr

∫∫
Rrt

∂

∂r
γ (r, t;u, v)a4(u, v)W(dudv)

def= I 1
6 (s, t)+ I 2

6 (s, t)+ I 3
6 (s, t).

As above (for I7(s, t)), it clearly follows from Lemma 2.6 that

[I 2
2 ] ≡ [I 2

3 ] ≡ [I 2
6 ] ≡ [I 3

6 ] ≡ 0.

Observe that

[I 1
2 ](s, t)= lim

n→∞ lim
m→∞

[2ns]∑
i=1

[2mt]∑
j=1

(∫ tni

tni−1

(
γ (u, tmj ;u,0)− γ (u, tmj−1;u,0)

)
dY 1

u

)2

.
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Because the function t �→ ∫ tni
tni−1

γ (u, t;u,0) dY 1
u has bounded variation, its quad-

ratic variation vanishes, so for fixed n, the limit as m→∞ above vanishes, and
therefore [I 1

2 ](s, t)= 0.

Turning to I 1
3 , notice that

[I 1
3 ](s, t)= lim

n→∞ lim
m→∞

[2ns]∑
i=1

[2mt]∑
j=1

(∫ tmj

tmj−1

(
γ (tni , v;0, v)− γ (tni−1, v;0, v)

)
dY 2

v

)2

= lim
n→∞

[2ns]∑
i=1

∫ t

0

(
γ (tni , v;0, v)− γ (tni−1, v;0, v)

)2
d〈Y 2〉v.

But the map u �→ ∫ t
0 γ (u, v;0, v) d〈Y 2〉v has bounded variation, so [I 1

3 ](s, t)= 0.
Finally,

[I 1
6 ](s, t)= lim

n→∞ lim
m→∞

[2ns]∑
i=1

[2mt]∑
j=1

(∫∫
%nm

ij

a4(u, v)W(dudv)

)2

.

Now

Z̃n
i (y)

def=
∫∫
]tni−1,t

n
i ]×[0,y]

a4(u, v)W(dudv)

is a continuous martingale with quadratic variation

〈Z̃n
i 〉y =

∫∫
]tni−1,t

n
i ]×[0,y]

a2
4(u, v) dudv,

so

[I 1
6 ](s, t)= lim

n→∞
[2ns]∑
i=1

∫∫
]tni−1,t

n
i ]×[0,t]

a2
4(u, v) dudv

=
∫∫
[0,s]×[0,t]

a2
4(u, v) dudv.

Together with Lemma 2.5, this proves the proposition. �

REMARK 2.8. Proposition 2.7 implies that |a4(s, t)| can be determined from
the sample paths of (X(s, t)). In fact, as long as a4 is never zero, one can determine
the sign of a4 as well, since Ẇ is then X-measurable and the iterated covariation
(defined by polarization) of X and W is [X,W ]st = ∫∫

Rst
a4(u, v) dudv.
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3. Naive changes of variables. Changes of variables in deterministic ordi-
nary and partial differential equations are well-understood and are usually handled
by a judicious use of the chain rule. This is no longer true with stochastic equa-
tions, however. These are more delicate because of the complicating factor of the
filtration. A change of variables may involve an implicit change of filtration, and
this can affect the equation in more than one way.

First, it can change the stochastic calculus. Itô integrals depend in a fundamental
way on the underlying filtration. A change of variables may involve a change
in coordinates, which in turn may call for a new filtration. For instance, the
usual filtration for the Brownian sheet is a two-parameter filtration which depends
strongly on the coordinates: the “past” at point (s, t) is generally taken to be
Ps,t =Rs,t , and one sets Fs,t = σ {Ẇu,v, (u, v) ∈Ps,t }. However, a rotation by 45◦
changes the Brownian sheet into a solution of the stochastic wave equation [16],
and the most natural filtration for such an evolution equation may be a one-
parameter filtration (F̂t ) ordered by time: the “past” at time t and position x is
Pt,x = {(s, y) : s ≤ t, y ∈ R} (which does not depend on x), and the sigma-field
F̂t is generated by the white noise in Pt,x . So a change of variables which includes
a change of filtration may involve a delicate transformation of stochastic integrals.

Second, a change in filtration may change the nature of some underlying proc-
esses. If the equation involves a given martingale measure or white noise, for
example, there is a chance that it may no longer be either a martingale measure
or a white noise relative to the new filtration.

This can occur even with the simplest linear stochastic differential equations
when they are reversed in time. Consider, for instance, a stationary Ornstein–
Uhlenbeck process (Xt , 0 ≤ t ≤ 1). This satisfies the Itô stochastic differential
equation

dXt = dWt −Xt dt, X0 given,(3.1)

for some Brownian motion (Wt). In the notations of this paper, we re-write this
equation as

dX

dt
= Ẇ −X,

where Ẇ is a white noise on the line. Let us make the change of variables s = 1− t

and set X̂s =X1−s . If we could use the chain rule as we would with an ordinary
differential equation, we would have

dX̂

ds
=−Ẇ + X̂.(3.2)

White noise is symmetric, so if Ẇ is a white noise, so is −Ẇ , but the drift term,
X̂, now apparently makes the process drift away from zero. On the other hand,
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the change of variables s = 1− t is just a time-reversal and a stationary Ornstein–
Uhlenbeck process is reversible, so X̂ has the same distribution as X and must
satisfy

dX̂

ds
= ˙̂
W − X̂,(3.3)

for some white noise ˙̂
W . The drift term is now plainly toward zero.

As it turns out, both (3.2) and (3.3) are correct equations, and there is no
contradiction. Both equations involve white noises, to be sure, but the filtrations

relative to which Ẇ and ˙̂
W are white noises are not apparent in (3.2) or (3.3).

Writing the integral forms of (3.2) and (3.3) clarifies the situation: (3.2) should be
interpreted as

X̂1 − X̂s =−W [0,1 − s] +
∫ 1

s
X̂u du,

which is equivalent to

X1−s −X0 =W [0,1− s] −
∫ 1−s

0
Xv dv,(3.4)

and this is precisely (3.1), whereas (3.3) should be interpreted as

X̂s − X̂0 = Ŵ [0, s] −
∫ s

0
X̂u du,

which is equivalent to

X1−s −X1 = Ŵ [0, s] −
∫ 1

1−s
Xv dv.(3.5)

Implicit in (3.3) is the fact that Ŵ is a white noise in the natural filtration of X̂
and is independent of X̂0 =X1. Equating (3.4) and (3.5), we find the relationship
between W and Ŵ :

Ŵ [0, s] =X0 −X1 +W [0,1 − s] −
∫ 1−s

0
Xv dv+

∫ 1

1−s
Xv dv.

Differentiating rather informally, this translates into ˙̂
W =−Ẇ + 2X̂, which is just

enough to reconcile (3.2) and (3.3).
In short, when we change variables in an s.p.d.e., we must be careful to specify

how the filtrations transform.
When we speak of a naive change of variables ζ in an s.p.d.e., we mean that the

new filtration is the image of the old one under ζ : if Ft = σ(Ẇu,v, (u, v) ∈ Pt ),

then F̂t = σ(
˙̂
Wu,v, (u, v) ∈ ζ−1(Pt )). We will see that naive changes of variables

in s.p.d.e.’s work as expected. It is only when the filtrations change that we find
new phenomena.
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3.1. Changing variables in stochastic integrals. Let O ⊂ R2 be an open set
and let ζ be a one-to-one C(∞) map of O onto an open set D ⊂ R2. Suppose the
Jacobian J of ζ never vanishes. Then for a Borel subset A⊂D and an integrable
function f on A, ∫

A
f (z) dz=

∫
ζ−1(A)

f (ζ(ξ))J (ξ) dξ.(3.6)

If W is a white noise on D, define a set function Ŵ on O by

Ŵ (B)=
∫
ζ(B)

1√
J (ζ−1(z))

W(dz).(3.7)

LEMMA 3.1. Ŵ (B) is a standard white noise on O, and if A is a Borel subset
of D and if f is a deterministic square-integrable function on A,∫

A
f (z)W(dz)=

∫
ζ−1(A)

f (ζ(ξ))
√
J (ξ)Ŵ (dξ).(3.8)

PROOF. Ŵ (B) is clearly a mean zero Gaussian random variable (if finite) and
from (3.7) and (3.6),

E{Ŵ(B)2} =
∫
ζ(B)

J (ζ−1(z))−1 dz

=
∫
B
J (ξ)−1J (ξ) dξ

= |B|,
which shows that Ŵ is defined and has the correct variance on sets of finite Le-
besgue measure. Moreover, if A and B are disjoint subsets of O, ζ(A) and ζ(B)

are disjoint in D, so Ŵ (A) and Ŵ (B) are independent, being stochastic integrals
of W over disjoint sets.

Equation (3.8) holds by (3.7) if f is of the form f (z)= 1B(z), hence it holds
for simple f by linearity, and for square-integrable f by the usual functional
completion argument. �

3.2. Changing variables in s.p.d.e.’s. Let X be a weak solution of (2.1) and
let a1, . . . , a4 satisfy the assumptions stated at the beginning of Section 2. Let
∂1 = ∂/∂s, ∂2 = ∂/∂t , and set

L= ∂1∂2 + a1∂1 + a2∂2,

so that the formal adjoint of L is

L∗φ = ∂1∂2φ − ∂1(a1φ)− ∂2(a2φ).
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Then for φ ∈ C(2)(R2+), X will satisfy (2.4), which we write in the form

(Xφ)(Rst )+
∮
∂Rst

X(z)
[∇φ(z)− φ(z)(a2(z)î − a1(z)ĵ)

] · Tds

+
∫
Rst

(
X(z)L∗φ(z)+ a3(z,X)φ(z)

)
dz=

∫
Rst

φ(z)a4(z)W(dz),

(3.9)

where T is the unit tangent vector, î = (1,0), ĵ = (0,1), ds is the element of arc

length, and X =X0 on the boundary of R2+, where X0(s,0)
def= X0 +M1

s , X0(0, t)
=X0 +M2

t , as in (2.1).
Let ζ be a C(∞) homeomorphism of an open set O onto an open set D ⊂ R2

such that D ⊃ R2+, and let D̂ = ζ−1(R2+). Let Ŵ be the white noise on O which is

related to W by (3.7). If φ̂(ξ) def= φ(ζ(ξ)), then a straightforward calculation gives
us a differential operator L̂∗ on D̂ for which

(L∗φ)
(
ζ(ξ)

) = L̂∗φ̂(ξ).

We let L̂ be the formal adjoint of L̂∗, define

X̂(ξ)
def= X

(
ζ(ξ)

)
,

and for i = 3,4, we set âi(ξ, x)= ai(ζ(ξ), x).

THEOREM 3.2. The process X̂ is a weak solution of the stochastic partial
differential equation

L̂(J X̂)+ â3J = â4
√
J
˙̂
W,(3.10)

with boundary values X̂(ξ) = X0(ζ(ξ)) on ζ−1(∂R2+). [Note: Formally, equa-
tion (3.10) is interpreted as equation (3.12) below.]

PROOF. The map ζ is a smooth homeomorphism on a neighborhood of R2+,
so its restriction is a smooth homeomorphism of D̂ onto the closed set R2+, which
takes the boundary of R2+ onto a (possibly proper) subset of the boundary of D̂.
Clearly X̂ has the correct boundary values, so we need only check that (3.10) holds
in the interior. For this, we check the weak form of the equation for φ ∈C

(∞)
K (R2+)

whose support is in the interior of R2+. If we choose (s, t) large enough so that the
support of φ is in the interior of Rst , the boundary terms of (3.9) drop out and we
are left with∫

Rst

(
X(z)L∗φ(z)+ a3(z,X)φ(z)

)
dz=

∫∫
Rst

φ(z)a4(z)W(dz).(3.11)

The left-hand side is a Riemann integral and transforms under the mapping ζ in
the usual way, while the right-hand side is a stochastic integral which transforms
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according to Lemma 3.1. Since the homeomorphism induces a one-to-one map
of X to X̂, there is a function â3 such that â3(ξ, X̂) = a3(ζ(ξ),X). So, setting
ξ = ζ−1(z), we have X(z)= X̂(ξ), L∗φ(z)= L̂∗φ̂(ξ), and (3.11) becomes∫

D̂

(
X̂(ξ)L̂∗φ̂(ξ)+ â3(ξ, X̂)φ̂(z)

)
J (ξ) dξ =

∫
D̂
φ̂(ξ)â4(ξ)

√
J (ξ)

˙̂
W(dξ),(3.12)

which is the weak form of (3.10). �

EXAMPLE 3.1. This example will be used in the proof of Theorem 7.1.
Assume that ai = ai(s, t), i = 1, . . . ,4, and O = D = R2+. Let ζ(x, y) =
(s(x), t (y)), where

s(x)= e2a − e2a(1−x)

2a
, t (y)= e2b − e2b(1−y)

2b
.

Suppose that X(s, t) satisfies

∂2X

∂s∂t
+ a1

∂X

∂s
+ a2

∂X

∂t
+ a3X = a4Ẇ ,(3.13)

with initial conditions X(s,0)≡ X(0, t) ≡ 0. Set âi(x, y) = ai(s(x), t (y)). With
the notations above, J (x, y)= s′(x)t ′(y),

(L∗φ)(s(x), t (y))= ∂2φ

∂s∂t
(s(x), t (y))− ∂(a1φ)

∂s
(s(x), t (y))− ∂(a2φ)

∂t
(s(x), t (y))

and

L̂∗φ̂(x, y)= 1

s′(x)t ′(y)
∂2φ̂

∂x∂y
(x, y)− 1

s′(x)
∂(â1φ̂)

∂x
(x, y)− 1

t ′(y)
∂(â2φ̂)

∂y
(x, y).

Therefore,

L̂φ̂ = ∂2

∂x∂y

(
1

s′(x)t ′(y)
φ̂

)
+ â1

∂

∂x

(
1

s′(x)
φ̂

)
+ â2

∂

∂y

(
1

t ′(y)
φ̂

)
.

Let X̂(x, y)=X(s(x), t (y)). Then by (3.10), X̂ satisfies

∂2X̂

∂x∂y
+ â1e

2b(1−y) ∂X̂

∂x
+ â2e

2a(1−x) ∂X̂

∂y
+ â3X̂e2a(1−x)+2b(1−y)

= â4e
a(1−x)+b(1−y) ˙̂W,

with initial conditions X̂(s,0)≡ X̂(0, t)≡ 0.

EXAMPLE 3.2. Assume a1 and a2 are constants, a3 = a3(s, t, x) and a4 =
a4(s, t). Suppose O = (−∞,1]2 and ζ(u, v)= (1−u,1−v). Suppose that X(s, t)

satisfies

∂2X

∂s∂t
+ a1

∂X

∂s
+ a2

∂X

∂t
+ a3X = a4Ẇ ,



232 R. C. DALANG AND J. B. WALSH

with initial conditions X(s,0)≡X(0, t)≡ 0. With the notations above, J (u, v)≡1,
and

L∗φ(1−u,1−v)= ∂2φ

∂s∂t
(1−u,1−v)−a1

∂φ

∂s
(1−u,1−v)−a2

∂φ

∂t
(1−u,1−v),

so

L̂φ̂ = ∂2φ̂

∂u∂v
− a1

∂φ̂

∂u
− a2

∂φ̂

∂v
.

Therefore, X̂(u, v)=X(1 − u,1− v) satisfies

L̂X̂(u, v)+ â3(u, v, X̂)= â4(u, v)
˙̂
W,

with boundary conditions X̂(u,1) ≡ X̂(1, v) ≡ 0. This statement should be
compared with the very different conclusion of Theorem 6.3, in which the change
of variables is the same but the boundary conditions and the underlying filtration
are different.

4. Linear s.p.d.e.’s as distributional p.d.e.’s. Let us specialize to the linear
case, where a3(s, t,X) = a3(s, t)X(s, t). There is a meta-theorem which states
that linear s.p.d.e.’s are simply random p.d.e.’s with distribution values. We will
illustrate this.

Let L= ∑
i,j aij ∂i∂j +

∑
i bi∂i+c be a partial differential operator on a domain

D ⊂ R2+, whose coefficients aij , bi , and c are deterministic Lipschitz functions,
with aij ∈ C(2)(D), bi ∈ C(1)(D) and c ∈ C(D). Let F ∈ L1(D), G ∈ L2(D) be
deterministic functions, and consider the s.p.d.e. in D,

LX = F +GẆ.(4.1)

We say that X is a weak solution of (4.1) in D if for each φ ∈C
(∞)
K (D),∫

D
X(z)(L∗φ)(z) dz=

∫
D
φ(z)

[
G(z)W(dz)+ F(z) dz

]
(4.2)

with probability one.

PROPOSITION 4.1. If X = (X(z), z ∈ D) is a weak solution of (4.2) with
continuous sample paths, and if D̂ is an open, relatively compact subdomain
of D, then X defines a random distribution on D̂. With probability one, it is a
distributional solution of (4.1) on D̂.

PROOF. To say X is a distribution is to say it is a continuous linear functional
on a nuclear space. Let us choose the nuclear space to be the completion of
C
(∞)
K (D̂) in the vector space topology generated by the seminorms

Fn(φ)= ‖φ‖2
2 +

n∑
k=1

n∑
B=1

‖∂k1∂B2φ‖2
2,

where ‖φ‖ is the norm of φ in L2(D̂).
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Let L∗φ = ∑
ij ∂i∂j (aijφ)−

∑
i ∂i(biφ)+ cφ be the formal adjoint of L. If ω is

such that z �→X(z,ω) is continuous on D, X(·,ω) defines a distribution on D̂ by

X(φ,ω)=
∫
D̂
φ(z)X(z,ω)dz,

and LX is also a distribution: LX(φ)=X(L∗φ).
On the right hand side of (4.2), F + GẆ also defines a distribution: (F +

GẆ)(φ)= ∫
D̂
φ(z)[F(z) dz+G(z)W(dz)] a.s. for each φ (see [16], Chapter 4).

Then (4.2) says that for a fixed φ ∈ C
(∞)
K ,

(LX)(φ,ω)= (F +GẆ)(φ,ω)(4.3)

for a.e. ω. This is true simultaneously for a countable dense set of φ, hence for all
φ by continuity, since both sides are distributions. �

We chose a particularly simple space of distributions to avoid having to discuss
the boundary behavior of X. It should be clear that one can extend this to include
boundaries.

In other words, equation (4.2), and even equation (2.1), is an equation in
distribution space which holds for a.e. ω. Consequently, all operations which are
legal on such equations are legal on this one—as long as they do not change the
definition of the stochastic integral in (2.4). It is interesting to consider the previous
section from this point of view. In particular, if we multiply X by a deterministic
C(∞) function, we can just use the usual calculus to see what s.p.d.e. it satisfies.

COROLLARY 4.2. Suppose that A = (aij ) and f ∈ C(2)(D), f > 0. Let
L1 =L− c. If X satisfies (4.1) and if f X̃ =X, then X̃ satisfies

L1X̃+ 1

f
∇f · (A+AT )∇T X̃+ Lf

f
X̃ = 1

f
(F + f−1GẆ).(4.4)

EXAMPLE 4.1. Suppose X satisfies (3.13). Let Y (s, t)= eas+btX(s, t). Then
Y (s, t) satisfies

∂2Y

∂s∂t
+(a1−b)

∂Y

∂s
+(a2−a)

∂Y

∂t
+(a3+ab−a1a−a2b)Y = eas+bta4 Ẇ .(4.5)

5. Changing filtrations: final values as initial conditions. We now want to
consider some changes of variables which involve changes of filtration, namely
time-reversal.
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Consider the linear form of (2.1):

∂2X

∂s∂t
+ a1(s, t)

∂X

∂s
+ a2(s, t)

∂X

∂t
+ a3(s, t)X(s, t)= a4(s, t)Ẇ ,(5.1)

where the initial values X(s,0) and X(0, t) are given, and satisfy Assumption A.
Thus, let X be a weak solution of (5.1). We will consider two fundamental types

of time reversal.

• Reversal in one coordinate: (s, t) �→ (1− s, t).

Let X̂(s, t)=X(1 − s, t), 0 ≤ s ≤ 1, and let F̂s be the one-parameter filtration
F̂s = σ {X̂(u, v) :u≤ s} = σ {X(u, v) :u≥ 1 − s}.

By symmetry, results for this type of reversal will translate directly to the
reversal (s, t) �→ (s,1− t).

• Reversal in two coordinates: (s, t) �→ (1 − s,1− t).

Let X̂(s, t) = X(1 − s,1 − t), 0 ≤ s ≤ 1, 0 ≤ t ≤ 1, and let (F̂st ) be the two-
parameter filtration defined by F̂st = σ {X̂(u, v) :u≤ s, v ≤ t} = σ {X(u, v) :u≥
1 − s, v ≥ 1− t}.

Let us suppose that Y = X̂ is the weak solution of an s.p.d.e. of the form

∂2Y

∂s∂t
+ â1(s, t)

∂Y

∂s
+ â2(s, t)

∂Y

∂t
+ â3(s, t)Y = â4(s, t)

˙̂
W,

(5.2)
s ≥ 0, t ≥ 0,

where the initial values for Y are specified on the axes of R2+: in the case
of one parameter reversal, Y (0, t) = X(1, t), Y (s,0) = X(1 − s,0), and in the
case of two-parameter reversal, Y (0, t)=X(1,1 − t), Y (s,0)=X(1 − s,1); and

â1, . . . , â4 satisfy the smoothness conditions of Section 2 and ˙̂
W is a white noise

relative to the new filtration (F̂t ), independent of the boundary values of Y .
The first question we shall ask is this: “If the reversed process actually is the

solution of (5.2), what can we say about the coefficients â1, . . . , â4?”
Let us first establish a property of the original solution, which clarifies the

independence of the solution and the white noise. Let

Gst = σ
{
X(u, v) :u≤ s or v ≤ t

}
,

Hst = σ
{
W(A) : Borel A⊂]s,∞[×]t,∞[ }.

Note that Hst represents information in the strict future of (s, t), while Gst

represents information in the wide-sense past, which is roughly everything not
in the strict future.

PROPOSITION 5.1. Let X be a weak solution of (5.1). Then for each s ≥ 0,
t ≥ 0, Gst and Hst are independent.
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PROOF. From (2.5), X(s, t) is measurable with respect to F 0
st

def= σ {Y 1
u , u ≤

s} ∨ σ {Y 2
v , v ≤ t} ∨ σ {W([0, u] × [0, v]), u≤ s and v ≤ t}.

If A ⊂]s,∞[×]t,∞[, and either u ≤ s or v ≤ t , then W(A) is independent
of W([0, u] × [0, v]). White noise is a Gaussian process, so it follows that Hst is
independent of σ {W([0, u]×[0, v]), u≤ s or v ≤ t}. Since the Y i are independent
of the white noise, it follows that Hst is independent of ∨u≤s or v≤tF 0

uv ⊃ Gst . �

Set %= [s−h, s]×[t −h, t] and %̂= [1− s,1− s+h]×[1− t,1− t +h], and
consider a two-parameter reversal. If X̂ is a weak solution of (5.2), Proposition 5.1

implies that ˙̂
W |

%̂
is independent of

Ĝ1−s,1−t
def= σ

{
Y (u, v), u≤ 1− s or v ≤ 1 − t

}
= σ

{
X(u,v), u≥ s or v ≥ t

}
.

(5.3)

PROPOSITION 5.2. Consider reversal in two coordinates, and set ŝ = 1 − s,
t̂ = 1 − t . Suppose that the reversed process Y = X̂ is a solution of (5.2) in the
above sense. Then the ai and âi are related as follows:

â4(ŝ, t̂ )= a4(s, t);(5.4)

E

{∫
%
a4(s, t)W(ds dt) | Ĝŝ t̂

}

= (
a1(s, t)+ â1(ŝ, t̂ )

)(
X(s, t)−X(s − h, t)

)
h

+ (
a2(s, t)+ â2(ŝ, t̂ )

)(
X(s, t)−X(s, t − h)

)
h

+ (
a3(s, t)− â3(ŝ, t̂ )

)
X(s, t)h2

+ E(s, t;h),

(5.5)

where

E
{
E(s, t;h)2} ≤ Ch4.(5.6)

REMARK 5.3. If we consider reversal in one coordinate, then we would set
Y (s, t)= X̂(s, t)=X(1 − s, t), ŝ = 1− s, t̂ = t and

Ĝ1−s,t
def= σ

{
Y (u, v), u≤ 1 − s or v ≤ t

} = σ
{
X(u,v), u≥ s or v ≤ t

}
.

Then %̂= [1 − s,1 − s + h] × [t − h, t] and Proposition 5.1 implies that ˙̂
W |

%̂
is

independent of Ĝŝ t̂ . So with these definitions, formula (5.5) remains valid.

PROOF OF PROPOSITION 5.2. Equality (5.4) follows from Proposition 2.7.
From (2.9),

X̂(%̂)+
∫∫

%̂
â1(u, v)X̂(du, v) dv+

∫∫
%̂
â2(u, v) du X̂(u, dv)

+
∫∫

%̂
â3(u, v)X̂(u, v) dudv=

∫∫
%̂
â4(u, v)Ŵ (dudv).

(5.7)
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On the other hand,

X(%)+
∫∫

%
a1(u, v)X(du, v) dv+

∫∫
%
a2(u, v) duX(u, dv)

+
∫∫

%
a3(u, v)X(u, v) dudv=

∫∫
%
a4(u, v)W(dudv).

(5.8)

By definition, X̂(%̂) = X(%), and X̂(ŝ, t̂ ) = X(s, t). Subtract these equations to
see that

∫∫
%
a4(u, v)W(dudv)−

∫∫
%̂
â4(u, v)Ŵ (dudv)

=
∫∫

%
a1(u, v)X(du, v) dv−

∫∫
%̂
â1(u, v)X̂(du, v) dv

+
∫∫

%
a2(u, v) duX(u, dv)−

∫∫
%̂
â2(u, v) du X̂(u, dv)

+
∫∫

%
a3(u, v)X(u, v) dudv−

∫∫
%̂
â3(u, v)X̂(u, v) dudv.

(5.9)

Approximate ai(u, v) and X(u, v) by ai(s, t) and X(s, t) to see that
∫∫

%
a4(u, v)W(dudv)−

∫∫
%̂
â4(u, v)Ŵ (dudv)

= a1(s, t)
(
X(s, t)−X(s − h, t)

)
h

− â1(ŝ, t̂ )
(
X̂(ŝ − h, t̂)− X̂(ŝ, t̂ )

)
h+ E1 − Ê1

+ a2(s, t)
(
X(s, t)−X(s, t − h)

)
h

− â2(ŝ, t̂ )
(
X̂(ŝ, t̂ − h)− X̂(ŝ, t̂ )

)
h+ E2 − Ê2

+ (
a3(s, t)− â3(ŝ, t̂ )

)
X(s, t)h2 + E3 − Ê3,

(5.10)

where the Ei and Êi are the errors in the respective approximations. Now condition
on Ĝŝt̂ . Note that Ŵ is a white noise with respect to the reversed filtration and that
Y = X̂ is a solution of (5.2), so Proposition 5.1 implies that the white noise on %̂

is independent of Ĝŝ,t̂ , and therefore

E

{∫∫
%̂
â4(u, v)Ŵ (dudv) | Ĝŝ,t̂

}
= 0.

On the other hand, all the terms on the right-hand side except the errors are Ĝŝ,t̂ -

measurable, so that we get (5.5) with E(s, t;h)= ∑3
i=1 E{Ei − Êi | Ĝŝ,t̂}.
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In order to complete the proof of the proposition, we need only show that there
exists C > 0 such that E{E2

i } ≤ Ch4 and E{Ê2
i } ≤ Ch4 for i = 1, . . . ,3. Consider

E1 =
∫∫

%

(
a1(u, v)− a1(s, t)

)
X(du, v) dv

+ a1(s, t)

∫ t

t−h

(
X(s, v)−X(s − h, v)− (

X(s, t)−X(s − h, t)
))
dv(5.11)

def= I1 + I2.

Let X(du, v)= dMv
u + dV v

u be the semimartingale decomposition of X(·, v) and
write

I1 =
∫ t

t−h

∫ s

s−h

(
a1(u, v)− a1(s, t)

)
(dMv

u + dV v
u ) dv

and use the Schwarz inequality:

E{I 2
1 } ≤ 2hE

{∫ t

t−h

∫ s

s−h

(
a1(u, v)− a1(s, t)

)2
d〈Mv〉s dv

}

+ 2hE
{∫ t

t−h

(∫ s

s−h

(
a1(u, v)− a1(s, t)

)
dV v

u

)2

dv

}
.

(5.12)

By Lemma 2.3, d〈Mv〉u = σ 2(u, v) du and dV v
u = µ(u, v) du. Moreover, a1

has uniformly bounded derivatives, so |a1(u, v)−a1(s, t)| ≤C(|s−u|+|t−v|)≤
2Ch. Thus, this is less than or equal to

8Ch3
∫ t

t−h

∫ s

s−h
E{σ 2(u, v)}dudv

+ 8Ch3
∫ t

t−h
E

{(∫ s

s−h
|µ(u, v)|du

)2}
dv.

(5.13)

By Lemma 2.3, E{µ2(u, v)} and E{σ 2(u, v)} are bounded for (u, v) in compact
sets, so there is a constant C′ for which E{I 2

1 } is bounded by C′h5.
Let Z(v)=X(]s − h, s]×]v, t]) and note that

I2 =−a1(s, t)

∫ t

t−h
Z(v) dv,

so that

E{I 2
2 } = a2

1(s, t)

∫ t

t−h

∫ t

t−h
E

{
Z(u)Z(v)

}
dudv

≤ a2
1(s, t)

∫ t

t−h

∫ t

t−h
E

{
Z2(u)

}1/2
E

{
Z2(v)

}1/2
dudv.
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From Corollary 2.4, E{Z2(u)} ≤ Ch(t − v) ≤ Ch2, so this is bounded by, say,
C′′a2

1(s, t)h
4. Thus, for small h,

E{E2
1 } ≤ 2E{I 2

1 } + 2E{I 2
2 } ≤ C′h5 +C′′h4 ≤ Ch4

for a suitable constant C which depends only on s + t , the coefficients ai , and the
smoothness of the initial semimartingales Y i . The errors Ê1, E2, and Ê2 are similar.

Moving to E3, we have

E3 =
∫∫

%

(
a3(u, v)X(u, v)− a3(s, t)X(s, t)

)
dudv

=
∫∫

%

(
a3(u, v)− a3(s, t)

)
X(u, v) dudv

+ a3(s, t)

∫∫
%

(
X(u,v)−X(s, t)

)
dudv

def= J1 + J2.

Using the same reasoning as above, we see that

E{J 2
1 } ≤ E

{(∫∫
%
ChX(u, v) dudv

)2}

= C2h2
∫
%×%

E{X(u,v)X(u′, v′)}dudv du′ dv′.
But E{X(u,v)X(u′, v′)} ≤ sup(u,v)∈%E{X2(u, v)} ≤ C′, so E{J 2

1 } ≤ Ch6. Fur-
ther,

E{J 2
2 } = a2

3(s, t)

∫
%×%

E
{(
X(u,v)−X(s, t)

)(
X(u′, v′)−X(s, t)

)}
dudv du′ dv′,

while sup(u,v)∈%E{(X(u, v) − X(s, t))2} ≤ 2Ch by Corollary 2.4. Thus, this is

bounded by 2Ca2
3(s, t)h

5. The same bound holds for Ê3 by symmetry.
Adding the errors together, we see that E{E2(s, t;h)} ≤ Ch4 for small h. �

REMARK 5.4. The only error term above which has order as large as O(h4)

is I2. The others are all O(h5) or smaller.

6. Reversals of the Brownian sheet.

6.1. Reversal in one coordinate.

THEOREM 6.1. Let (W(s, t)) be a standard Brownian sheet. Set Y (s, t) =
W(1 − s, t). Then there is a standard Brownian sheet (B(s, t)) independent of
(W(1, t), t ≥ 0) such that (Y (s, t)) is the weak solution on [0,1[×R+ of

∂2Y

∂s∂t
+ 1

1 − s

∂Y

∂t
= ∂2B

∂s∂t
,(6.1)

with initial conditions Y (0, t)=W(1, t), Y (s,0)= 0.
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REMARK 6.2. Set %= [s − h, s] × [t −h, t]. One easily checks (with Ĝŝ,t̂ as
in Remark 5.3), that

E
(
W(%) | Ĝŝ,t̂

) = h

s

(
W(s, t)−W(s, t − h)

)
,

so from (5.5), we guess that â1(ŝ, t̂) = 1/s, that is, â1(s, t) = 1/(1 − s), and
â2 ≡ â3 ≡ 0. Therefore, Proposition 5.2 suggests that (6.1) should hold. Of course,
we still must prove that (6.1) does indeed hold.

PROOF OF THEOREM 6.1. According to Lemma 2.1, with (2.6) written as
in (2.9), it suffices to show that the following expression is a Brownian sheet:

Y (s, t)− Y (s,0)− Y (0, t)+ Y (0,0)+
∫ s

0

du

1− u

(
Y (u, t)− Y (u,0)

)
.

Replace Y (s, t) by W(1 − s, t) and do the change of variables u �→ 1 − u to see
that this expression equals

W(1− s, t)−W(1, t)+
∫ 1

1−s

du

u
W(u, t).

Do the change of variables x = 1/u to get

W(1− s, t)−W(1, t)+
∫ 1

1−s

1

dx

x
W(1/x, t).(6.2)

Let ξ(s, t)= sW(1/s, t). Then (ξ(s, t)) is a standard Brownian sheet [16] and the
expression above can be written

(1− s)ξ

(
1

1− s
, t

)
− ξ(1, t)+

∫ 1
1−s

1

dx

x2 ξ(x, t).

Integrate by parts to see that this expression is equal to

∫ 1
1−s

1
ξ(dx, t)

1

x
=

∫ 1
1−s

1

∫ t

0
ξ(dx, dy)

1

x

def= B(s, t).

It is not difficult to check that (B(s, t)) is a Brownian sheet. For instance, if s < s′
and t < t ′, then

E
(
B(s, t)B(s′, t ′)

) =
∫ 1

1−s

1
dx

∫ t

0
dy

1

x2 = t
1

x

∣∣∣∣
1

1
1−s

= t
(
1− (1− s)

) = st,

while if s < s′ and t ′ < t , this covariance is st ′.
We now check that (B(s, t)) is independent of (W(1, t), t ≥ 0). More generally,

fix a ≥ 1, b ≥ 0, and show that (B(s, t)) is independent of W(a,b). If 0 ≤ s ≤ 1
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and t ≤ b, then we use the fact that B(s, t) is equal to the expression in (6.2) to
write

E
(
B(s, t)W(a, b)

) = E

([
W(1 − s, t)−W(1, t)+

∫ 1

1−s

du

u
W(u, t)

]
W(a,b)

)

=−st +
∫ 1

1−s

du

u
ut

=−st + st

= 0.

If t ≥ b, then

E
(
B(s, t)W(a, b)

)=−sb+
∫ 1

1−s

du

u
ub=−sb+ sb= 0.

This proves the desired independence and completes the proof. �

6.2. Reversal in two coordinates.

THEOREM 6.3. Let (W(s, t)) be a standard Brownian sheet. Set

Y (s, t)=W(1 − s,1− t).

Then there is a standard Brownian sheet (B(s, t)) independent of (W(x,1),
W(1, x),0 ≤ x ≤ 1) such that (Y (s, t)) is a weak solution on [0,1[2 of

∂2Y

∂s∂t
+ 1

1− t

∂Y

∂s
+ 1

1− s

∂Y

∂t
+ 1

(1− s)(1 − t)
Y (s, t)= ∂2B

∂s∂t
,(6.3)

with initial conditions Y (0, x)=W(1,1 − x), Y (x,0)=W(1− x,1), 0 ≤ x ≤ 1.

REMARK 6.4. With % and Ĝŝ,t̂ defined as in (5.3), it is not difficult to check
that

E
(
W(%) | Ĝŝ,t̂

) = h

t

(
W(s, t)−W(s − h, t)

)+ h

s

(
W(s, t)−W(s, t − h)

)

+ h2

st
W(s, t).

This formula also can be obtained from [3], Theorem 4.2. From (5.5), we guess
that

â1(ŝ, t̂ )= 1

t
, â2(ŝ, t̂)= 1

s
, â3(ŝ, t̂ )= 1

st
.

Proposition 5.2 suggests, therefore, that equation (6.3) should hold.
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PROOF OF THEOREM 6.3. Again according to Lemma 2.1, with (2.6) written
as in (2.9), it suffices to show that the following expression is a Brownian sheet:

Y (s, t)− Y (s,0)− Y (0, t)+ Y (0,0)+
∫ t

0

dv

1− v

(
Y (s, v)− Y (0, v)

)

+
∫ s

0

du

1− u

(
Y (u, t)− Y (u,0)

)+
∫ s

0

du

1 − u

∫ t

0

dv

1 − v
Y (u, v).

Replace Y (s, t) by W(1− s,1− t) and do the change of variables (u, v) �→ (1−u,

1− v) to get

W(1− s,1− t)−W(1 − s,1)−W(1,1− t)+W(1,1)

+
∫ 1

1−t

dv

v

(
W(1− s, v)−W(1, v)

)+
∫ 1

1−s

du

u

(
W(u,1− t)−W(u,1)

)

+
∫ 1

1−s

du

u

∫ 1

1−t

dv

v
W(u, v).

(6.4)

Now do the change of variables x = 1/u, y = 1/v, to see that this equals

W
(]1 − s,1]× ]1− t,1]) +

∫ 1
1−t

1

dy

y

(
W(1− s,1/y)−W(1,1/y)

)

+
∫ 1

1−s

1

dx

x

(
W(1/x,1− t)−W(1/x,1)

)

+
∫ 1

1−s

1

dx

x

∫ 1
1−t

1

dy

y
W(1/x,1/y).

Let ξ(s, t)= stW(1/s,1/t). Then (ξ(s, t)) is a standard Brownian sheet, and the
expression above can be written

(1 − s)(1− t)ξ

(
1

1− s
,

1

1− t

)
− (1− s)ξ

(
1

1− s
,1

)

− (1− t)ξ

(
1,

1

1− t

)
+ ξ(1,1)

−
∫ 1

1−t

1

[
(1 − s)

−1

y2
ξ

(
1

1− s
, y

)
− −1

y2
ξ(1, y)

]
dy

−
∫ 1

1−s

1

[
(1 − t)

−1

x2 ξ

(
x,

1

1− t

)
− −1

x2 ξ(x,1)
]
dx

+
∫ 1

1−s

1
dx

∫ 1
1−t

1
dy

1

x2y2
ξ(x, y).

(6.5)

Using formally the formula for integration by parts (2.3) (whose use is justified in
Remark 6.5 below), with f (x, y)= 1/(xy) and g(x, y)= ξ(x, y), we see that this
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equals
∫∫
[1, 1

1−s×[1, 1
1−t ]

1

xy
ξ(dx, dy)

def= B(s, t).(6.6)

It is now straightforward to check that (B(s, t)) so defined is a standard Brownian
sheet. For instance, if s < s′ and t ′ < t , then

E
(
B(s, t)B(s′, t ′)

) =
∫ 1

1−s

1
dx

∫ 1
1−t ′

1
dy

1

x2y2
= −1

x

∣∣∣∣
1

1−s

1
· −1

y

∣∣∣∣
1

1−t ′

1
= st ′.

This proves that (6.3) holds.
It remains to prove that (B(s, t)) is independent of (W(a,1), W(1, a), 0 ≤ a

≤ 1). For this, it suffices to compute the covariance between the expression in (6.4)
and W(a,1), then W(1, a). We omit the second computation and do the first.

From the covariance of the Brownian sheet and elementary geometric consider-
ations, using the fact that B(s, t) is equal to the expression in (6.4), we see that for
a ≤ 1− s,

E
(
B(s, t)W(a,1)

)=
∫ 1

1−s

du

u
(−at)+

∫ 1

1−s

du

u

∫ 1

1−t

dv

v
(av)= 0,

and for 1− s ≤ a ≤ 1,

E
(
B(s, t)W(a,1)

) = (a − 1+ s)t +
∫ 1

1−t

dv

v
(−v(a − 1+ s))

+
∫ a

1−s

du

u
(−ut)+

∫ 1

a

du

u
(−at)

+
∫ a

1−s

du

u

∫ 1

1−t

dv

v
(uv)+

∫ 1

a

du

u

∫ 1

1−t

dv

v
(av)

= 0.

This completes the proof. �

REMARK 6.5. We justify here the two-parameter integration by parts used
in (6.5) and (6.6) above. Set a = c= 1, b= 1/(1− s), d = 1/(1− t), f1(x)= 1/x,
f2(y)= 1/y. The expression in (6.6) is equal to

I =
∫∫
[a,b]×[c,d]

f1(x)f2(y)ξ(dx, dy)=
∫ b

a
f1(x)Z1(dx),

where (Z1(x), a ≤ x ≤ b) is the martingale defined by

Z1(x)=
∫∫
[a,x]×[c,d]

f2(y)ξ(dx, dy).
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Using the standard integration by parts formula for semimartingales [13], Chap-
ter IV, Proposition (3.11), in which the mutual variation term vanishes because f1
has bounded variation, we see that

I = f1(b)Z1(b)− f1(a)Z1(a)−
∫ b

a
Z1(x)

∂f1

∂x
(x) dx

= f1(b)

∫∫
[a,b]×[c,d]

f2(y)ξ(dx, dy)

−
∫ b

a

(∫∫
[a,x]×[c,d]

f2(y)ξ(du, dy)

)
∂f1

∂x
(x) dx.

Now, for fixed x, let

Zx
2 (y)=

∫∫
[a,x]×[c,y]

ξ(du, dv)= ξ(x, y)− ξ(x, c)− ξ(a, y)+ ξ(a, c).

Then

I = f1(b)

∫ d

c
f2(y)Z

b
2(dy)−

∫ b

a
dx

∂f1

∂x
(x)

∫ d

c
f2(y)Z

x
2 (dy).

In both stochastic integrals, use again the standard integration by parts formula, to
see that this equals

f1(b)

[
f2(d)Z

b
2(d)− f2(c)Z

b
2(c)−

∫ d

c
Zb

2 (y)
∂f2

∂y
(y) dy

]

−
∫ b

a
dx

∂f1

∂x
(x)

(
f2(d)Z

x
2 (d)− f2(c)Z

x
2 (c)−

∫ d

c
Zx

2 (y)
∂f2

∂y
dy

)
.

Now replace a, b, c, d , f1(x) and f2(y) by their values, to see, after simplification,
that this is the expression in (6.5).

REMARK 6.6. Equation (6.3) is reminiscent of the equation for a Brownian
bridge (Xs, 0 ≤ s ≤ 1):

dXs + Xs

1− s
= dBs,

where (Bs) is a standard Brownian motion. The law of the reversed process
(B(1− s), 0 ≤ s ≤ 1), is the same as the law of (Yt ), where

Yt = (1− t)Z +Xt,

and Z is a standard normal random variable independent of the Brownian bridge
(Xt ). A similar identity in law occurs for the Brownian sheet, as is shown in the
following theorem. This identity is related to some results of [1], [10].
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THEOREM 6.7. Let (W(s, t)) and (X(s, t)) be standard Brownian sheets. Set

U(s, t)=X(s, t)− sX(1, t)− tX(s,1)+ stX(1,1),(6.7)

Z(s, t)= (1 − s)X(1,1− t)+ (1− t)X(1 − s,1)− (1− s)(1 − t)X(1,1).(6.8)

Then U and Z are independent, and Y = U + Z has the same law as (W(1 − s,

1 − t), (s, t) ∈ [0,1]2). In particular, Y is a weak solution of (6.3) with initial
conditions Y (0, x)=W(1,1− x), Y (x,0)=W(1− x,1), 0 ≤ x ≤ 1.

The proof of this theorem relies on two lemmas.

LEMMA 6.8. Z is a weak solution of the equation

∂2Z

∂s∂t
+ 1

1− t

∂Z

∂s
+ 1

1 − s

∂Z

∂t
+ 1

(1− s)(1 − t)
Z(s, t)= 0.(6.9)

PROOF. Again according to Lemma 2.1, with (2.6) written as in (2.9), it
suffices to show that the following integral vanishes:

Z(%)+
∫ t

0

dv

1 − v

(
Z(s, v)−Z(0, v)

)

+
∫ s

0

du

1 − u

(
Z(u, t)−Z(u,0)

)+
∫ s

0

du

1 − u

∫ t

0

dv

1− v
Z(u, v).

Use formula (6.8) to see, after simplification, that this expression is indeed equal
to 0. �

LEMMA 6.9.

E
(
Z(s, t)Z(s′, t ′)

) = (
1 − (s ∧ s′)(t ∧ t ′)

)
(1 − s ∨ s′)(1− t ∨ t ′)(6.10)

and

E
(
U(s, t)U(s′, t ′)

) = (s ∧ s′)(t ∧ t ′)(1 − s ∨ s′)(1− t ∨ t ′).(6.11)

PROOF. Using elementary algebra, one checks that

Z(s, t)= (
1 − s + 1− t − (1 − s)(1− t)

)
X(1 − s,1− t)

+ (
1 − s − (1 − s)(1− t)

)(
X(1,1 − t)−X(1 − s,1− t)

)
+ (

1 − t − (1− s)(1 − t)
)(
X(1 − s,1)−X(1 − s,1− t)

)
− (1 − s)(1 − t)X

([1 − s,1] × [1 − t,1])
= (1 − st)X(1 − s,1− t)

+ t (1 − s)
(
X(1,1 − t)−X(1 − s,1− t)

)
+ s(1 − t)

(
X(1 − s,1)−X(1 − s,1− t)

)
− (1 − s)(1 − t)X

([1 − s,1] × [1 − t,1]).
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The four terms in the last expression are independent. It is now a tedious but
elementary calculation, using the covariance of the Brownian sheet, to check that
E(Z(s, t)Z(s′, t ′)) is given by formula (6.10). This is left to the reader, as is the
similar calculation that establishes formula (6.11). �

PROOF OF THEOREM 6.7. From Lemma 6.9, we see that Y =U +Z has the
same covariance, hence the same law, as (W(1− s,1− t)). This of course implies
that there is a white noise Ḃ such that Y is the solution of equation (6.3), but we
prefer to give a direct derivation. By Lemma 6.8, it suffices to check that there is a
Brownian sheet (ξ(s, t)) such that (U(s, t)) is the solution of

∂2U

∂s∂t
+ 1

1− t

∂U

∂s
+ 1

1− s

∂U

∂t
+ 1

(1− s)(1 − t)
U(s, t)= ∂2ξ

∂s∂t
.(6.12)

Let (Ŵ (s, t), (s, t) ∈ [0,1]2) be the standard Brownian sheet defined by

Ŵ (s, t)=X
([1− s,1] × [1 − t,1]),

so that

X(s, t)= Ŵ
([1 − s,1] × [1− t,1]).(6.13)

Because U vanishes on the axes, the double integral of the left-hand side of (6.12)
over %= [0, s] × [0, t] is equal to

U(s, t)+
∫ t

0

dv

1 − v
U(s, v)+

∫ s

0

du

1− u
U(u, t)+

∫ s

0

du

1 − u

∫ t

0

dv

1 − v
U(u, v).

Replace U(·, ·) by its expression in terms of X given in (6.7) to get

X(s, t)− sX(1, t)− tX(s,1)+ stX(1,1)

+
∫ t

0

dv

1 − v

(
X(s, v)− sX(1, v)− vX(s,1)+ svX(1,1)

)

+
∫ s

0

du

1− u

(
X(u, t)− uX(1, t)− tX(u,1)+ utX(1,1)

)

+
∫ s

0

du

1− u

∫ t

0

dv

1− v

(
X(u,v)− uX(1, v)− vX(u,1)+ uvX(1,1)

)
.

Rearrange the terms and simplify to get

X(s, t)+
∫ t

0

dv

1 − v

(
X(s, v)−X(s,1)

)

+
∫ s

0

du

1 − u

(
X(u, t)−X(1, t)

)
(6.14)
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+
∫ s

0
du

∫ t

0
dv

(
X(1,1)− X(1, v)

1− v
+ vX(1,1)

1− v

− X(u,1)

1− u
+ uX(1,1)

1− u

+ X(u,v)− uX(1, v)− vX(u,1)+ uvX(1,1)

(1 − u)(1− v)

)
.

The integrand in the double integral simplifies to

X(u,v)−X(1, v)−X(u,1)+X(1,1)

(1 − u)(1− v)
.

Now replace X(·, ·) by its expression in terms of Ŵ given in (6.13) and do the
changes of variables u �→ 1− u, v �→ 1− v, to see that (6.14) is equal to

Ŵ (1 − s,1− t)− Ŵ (1− s,1)− Ŵ (1,1− t)+ Ŵ (1,1)

+
∫ 1

1−t

dv

v

(
Ŵ (1− s, v)− Ŵ (1, v)

)+
∫ 1

1−s

du

u

(
Ŵ (u,1− t)− Ŵ (u,1)

)

+
∫ 1

1−s

du

u

∫ 1

1−t

dv

v
Ŵ (u, v).

This is exactly the expression in (6.4), with W replaced by Ŵ , and we have shown
in the lines that follow (6.4) that this expression is a standard Brownian sheet that
is independent of (Ŵ (1− x,1), Ŵ (1,1− x), 0 ≤ x ≤ 1). �

7. Reversal in hyperbolic s.p.d.e.’s. We shall consider the reversal in two
coordinates of the weak solution of the hyperbolic equation with constant
coefficients

∂2X

∂s∂t
+ a1

∂X

∂s
+ a2

∂X

∂t
+ a3X(s, t)= Ẇ ,(7.1)

with vanishing initial conditions X(s,0) = 0, X(0, t) = 0. The reversal in one
coordinate could be done similarly, and in fact, more simply. In this equation, the
case a3 &= a1a2 corresponds to the stochastic telegraph equation [6], Chapter IV,
Section 43, whereas in the special case where a3 = a1a2, equation (7.1) can be
transformed into the wave equation by a change of variables and parameters. We
shall restrict ourselves to this special case.

THEOREM 7.1. Fix a1, a2, a3 ∈ R and suppose a3 = a1a2 &= 0. Let (X(s, t))

be the weak solution of (7.1) with vanishing initial conditions, and set X̂(s, t) =
X(1− s,1− t). Then there is a Brownian sheet (B(s, t)) independent of (X(u,1),
X(1, u), 0 ≤ u≤ 1) such that (X̂(s, t)) is the solution on [0,1[2 of

∂2X̂

∂s∂t
+ â1(s, t)

∂X̂

∂s
+ â2(s, t)

∂X̂

∂t
+ â3(s, t)X̂(s, t)= ∂2B

∂s∂t
,(7.2)
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with initial conditions X̂(s,0)=X(1 − s,1), X̂(0, t)=X(1,1 − t), where

â1(s, t)= 2a1e
2a1(1−s)

e2a1(1−s) − 1
− a1, â2(s, t)= 2a2e

2a2(1−s)

e2a2(1−s) − 1
− a2,(7.3)

and â3(s, t)= â1(s, t)â2(s, t).

REMARK 7.2. The case a1 = a2 = 0 has been discussed in Theorem 6.3. In
order to recover this case from the theorem above, it is not possible to set ai = 0
in (7.3), but there is no problem in taking the limit as ai → 0. Doing this for
i = 1,2 leads to equation (6.3).

PROOF OF THEOREM 7.1. Define X̃(s, t) = ea2s+a1tX(s, t). From Exam-
ple 4.1, we see that X̃ satisfies the equation

∂2X̃

∂s∂t
= ea2s+a1t Ẇ .

Therefore, there is a Brownian sheet W̃ such that

X̃(s, t)= W̃

(
e2a2s − 1

2a2
,
e2a1t − 1

2a1

)
,

and therefore,

X(s, t)= e−a2s−a1t W̃

(
e2a2s − 1

2a2
,
e2a1t − 1

2a1

)

and

X̂(s, t)= e−a2(1−s)−a1(1−t)W̃

(
e2a2(1−s) − 1

2a2
,
e2a1(1−t) − 1

2a1

)
.

Set

Z(s, t)= W̃

(
e2a2 − 1

2a2
− s,

e2a1 − 1

2a1
− t

)
.

Then

X̂(s, t)= e−a2(1−s)−a1(1−t)Z

(
e2a2 − e2a2(1−s)

2a2
,
e2a1 − e2a1(1−t)

2a1

)
.

By Theorem 6.3, (Z(s, t)) is a solution of the equation

∂2Z

∂s∂t
+ f (a1, t)

∂Z

∂s
+ f (a2, s)

∂Z

∂t
+ f (a1, s)f (a2, t)Z = Ḃ,

where B is a Brownian sheet independent of
(
Z

(
e2a2 − 1

2a2
, x

)
, Z

(
x,

e2a1 − 1

2a1

)
, 0 ≤ x ≤ 1

)
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and

f (a, x)=
(
e2a − 1

2a
− x

)−1

.

Let

Y (s, t)=Z

(
e2a2 − e2a2(1−s)

2a2
,
e2a1 − e2a1(1−t)

2a1

)
.

From Example 3.1, we conclude that (Y (s, t)) is a solution of the equation

∂2Y

∂s∂t
+ g(a1, s)

∂Y

∂s
+ g(a2, t)

∂Y

∂t
+ g(a1, s)g(a2, t)Y = ea2(1−s)+a1(1−t) ˙̂W,

where ˙̂
W is a white noise and

g(a, x)= 2ae2a(1−x)

e2a(1−x)− 1
.

Again by Example 4.1, we conclude that (X̂(s, t)) solves equation (7.2). This
proves the theorem. �

8. Reversal with initial conditions.

THEOREM 8.1. Let X0 be a N(0, σ 2) random variable, (M1
s ) and (M2

t ) be
Gaussian martingales such that M1

0 =M2
0 = 0 and E((Mi

u)
2) = fi(u), i = 1,2.

We assume that X0, (M1
s ) and (M2

t ) are independent.
Let X be the weak solution of the s.p.d.e.

∂2X

∂s∂t
= Ẇ ,(8.1)

with the initial conditions X(s,0) = X0 +M1
s and X(0, t) = X0 +M2

t , s, t ≥ 0.
Then there exists a Brownian sheet (B(s, t)) such that X̂(s, t) = X(1 − s,1 − t)

satisfies an s.p.d.e. of the form

∂2X̂

∂s∂t
+ a1(s, t)

∂X̂

∂s
+ a2(s, t)

∂X̂

∂t
+ a3(s, t)X̂ = a4(s, t)Ḃ(8.2)

if and only if a4 ≡ 1 and there are real numbers T1 > 0 and T2 > 0 such
that fi(u) = T3−iu and T1T2 = σ 2. In other words, X can be embedded into a
Brownian sheet W̃ as follows:

X(s, t)= W̃ (T1 + s, T2 + t), (s, t) ∈ R2.(8.3)
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PROOF. We know from Theorem 6.3 that the reversal of W̃ in both coordinates
does satisfy an s.p.d.e. of the form (8.2). So we assume that X̂ satisfies such an
s.p.d.e. and show that X can be embedded into a Brownian sheet (the fact that a4
must be identically equal to 1 follows immediately from Proposition 2.7).

Fix s, t such that s + t = 2 − r , and let % = [s − h, s] × [t − h, t]. According
to (5.5),

E
(
W(%) | F̂ (r)

) = a1(s, t)h
(
X(s, t)−X(s − h, t)

)

+ a2(s, t)h
(
X(s, t)−X(s, t − h)

)+ a3(s, t)h
2X(s, t)

+ ε(s, t;h),
or, equivalently, for u+ v ≥ s + t ,

E
([
W(%)− a1h

(
X(s, t)−X(s − h, t)

)
− a2h

(
X(s, t)−X(s, t − h)

)− a3h
2X(s, t)− ε

]
X(u,v)

) = 0.
(8.4)

Because X solves (8.1), Lemma 2.3 implies that

X(s, t)=X0 +M1
s +M2

t +W(s, t),

and therefore,

X(s, t)−X(s − h, t)=M1
s −M1

s−h +W(s, t)−W(s − h, t),

X(s, t)−X(s, t − h)=M2
t −M2

t−h +W(s, t)−W(s, t − h).

Write (8.4) for u≤ s − h to get

− a2h
(
hf ′

2(t)+ o(h)+ uh
)− a3h

2(
σ 2 + f1(u)+ f2(t)+ ut

)
(8.5)

−E
(
εX(u, v)

) = 0,

for u≥ s and v ≥ t to get

h2 − a1h
(
hf ′

1(s)+ o(h)+ ht
) − a2h

(
hf ′

2(t)+ o(h)+ hs
)

− a3h
2(
σ 2 + f1(s)+ f2(t)+ st

)−E
(
εX(u, v)

) = 0,
(8.6)

and for v ≤ t − h to get

− a1h
(
hf ′

1(s)+ o(h)+ hv
)− a3h

2(σ 2 + f1(s)+ f2(v)+ sv
)

(8.7)
+E

(
εX(u, v)

) = 0.

Divide the three equations by h2, let h ↓ 0 and use the fact that Var ε(s, t;h) =
o(h4) to get the three equations

−a2
(
f ′

2(t)+ u
)− a3

(
σ 2 + f1(u)+ f2(t)+ ut

) = 0,(8.8)

1 − a1
(
f ′

2(s)+ t
)− a2

(
f ′

2(t)+ s
)− a3

(
σ 2 + f1(s)+ f2(t)+ st

) = 0,(8.9)

−a1
(
f ′

1(s)+ v
)− a3

(
σ 2 + f1(s)+ f2(v)+ sv

) = 0(8.10)
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(the first equation is valid for u≤ s, the third for v ≤ t). From (8.8), we get

f1(u)=−f2(t)− a2

a3
f ′

2(t)− σ 2 − u

(
t + a2

a3

)
,(8.11)

and from (8.10) we get

f2(v)=−f1(s)− a1

a3
f ′

1(s)− σ 2 − v

(
s + a1

a3

)
.(8.12)

Therefore, f1 and f2 are affine functions of u and v, respectively. Because
f1(0)= f2(0)= 0, there are numbers T1 > 0 and T2 > 0 such that

f1(u)= T2u, f2(v)= T1v.(8.13)

Identifying coefficients in (8.11) and (8.12) with those in (8.13), we see that

T1 =−s − a1/a3, T2 =−t − a2/a3,

and these expressions cannot depend on s and/or t . In addition,

−f2(t)− a2

a3
f ′

2(t)− σ 2 = 0,

and from (8.13), the left-hand side is equal to

−T1t − a2

a3
T1 − σ 2 = 0.

Because −t − a2/a3 = T2, we conclude that

T1T2 = σ 2.

This completes the proof. �

REMARK 8.2. Theorem 8.1 implies the following fact regarding the reversal
in time of the weak solution of the stochastic wave equation

∂u

∂τ 2
(τ, x)− ∂u

∂x2
(τ, x)= Ẇ (τ, x), τ > 0, x ∈R,

with vanishing initial conditions. Indeed, one would like to know if the reversed
process û(τ, x)= u(1− τ, x) also satisfies an s.p.d.e., and if so, which one.

Set

X(s, t)= u

(
s + t√

2
,
t − s√

2

)
.

It is not difficult to see, as in Theorem 3.2, for instance, that X is a solution of the
s.p.d.e.

∂2X

∂s∂t
= ˙̃
W, s + t > 0,
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where ˙̃
W is again a white noise, and the initial conditions are zero along the line

s + t = 0. In the region where (s, t) ∈R2+, X therefore also solves the initial value
problem

∂2X

∂s∂t
= ˙̃
W, X(s,0)=M1

s , X(0, t)=M2
t ,

where M1
s

def= X(s,0) [resp. M2
t

def= X(0, t)] is the Gaussian martingale such that
Mi

0 ≡ 0 and E((Mi
x)

2)= x2/2.
By Theorem 8.1, the process X̂(s, t) = X(1 − s,1 − t) does not satisfy an

s.p.d.e. of the form (8.2), and therefore, again by Theorem 3.2, û does not satisfy
a second order hyperbolic s.p.d.e. of the form

∂u

∂τ 2 − ∂u

∂x2 + a(τ, x)
∂û

∂τ
+ b(τ, x)

∂û

∂x
+ c(τ, x)û(τ, x)= f (τ, x)Ḃ(τ, x)(8.14)

were Ḃ is a white noise independent of u(1, ·).
Of course, the coefficients in (8.14) are local [i.e., only depend on τ and x], so

it still may be possible that û satisfies an s.p.d.e. in which the term c(τ, x)û(τ, x)

in (8.14) is replaced by C(τ, x, û(τ, ·)), where C(τ, x, v(·)) is a linear functional
of v(·).

REMARK 8.3. Requesting that the reversal X̂ of the weak solution to (8.1)
satisfy a linear equation is natural, since X̂ is Gaussian. On the other hand, it
is the fact that the terms in (8.2) are local [i.e. only depend on X(s, t) and its
derivatives at (s, t)] that prevents X̂ from satisfying such an equation unless
X is a Brownian sheet. It is interesting to point out that even in the setting
of d-dimensional diffusions, with d decoupled equations, most kinds of initial
conditions will lead to coupled equations for the reversed process. The simplest
example, suggested to the first author by E. Mayer-Wolf and O. Zeitouni, is the
following. Let B = (B1, . . . ,Bd) be a d-dimensional Brownian motion

dXi
t = dBi

t , Xi
0 = Y i, i = 1, . . . , d,

where (Y 1, . . . , Y d) is an Rd -valued and centered Gaussian random variable,
independent of B , with covariance matrix H. Then the law of Xt is N(0,H+ uI),
where I is the d × d identity matrix. According to the d-dimensional version
of (1.2), the system of diffusion equations for X̂u = (X1

1−u, . . . ,X
d
1−u) is

dX̂i
u = dB̂i

u −
d∑

j=1

ai,j (u)X̂
j
u du,(8.15)

where (ai,j (u))= (H+ (1− u)I)−1. Unless H is diagonal (that is, Y 1, . . . , Y d are
independent), the drift in (8.15) is “non-local,” in that it depends on all components
of X̂j

u.
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This example, Theorem 8.1 and Remark 8.2 suggest that the only type of
equation that the reversal of (8.1) may satisfy is an equation with non-local
coefficients. This should motivate the development of an existence theory for such
equations.
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