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Abstract

In this paper, we examine local geometric properties of level sets of the
Brownian sheet, and in particular, we identify the asymptotic distribution of
the area of sets which correspond to certain tall excursions of the sheet. It is
equal to the area of certain individual connected components of the random set
{(s, t) : B(t) > b(s)}, where B is a standard Brownian motion and b is (essen-
tially) a Bessel process of dimension 3. This limit distribution is studied and, in
particular, explicit formulas are given for the probability that a point belongs to
a specific connected component, and for the expected area of a component given
the height of the excursion of B(t)− b(s) in this component. These formulas are
evaluated numerically and compared with the results from direct simulations of
B and b.
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1 Introduction

This paper is motivated by the authors’ previous study [1] of level sets and excursions
of a standard Brownian sheet {W (s, t), s ≥ 0, t ≥ 0}. The sample paths of the
Brownian sheet are functions of two variables, so when we speak of an excursion of W
above the level α, we mean the restriction of W to a single connected component of
the set {(s, t) : W (s, t) > α}. We call these components bubbles.

The focus of [1] was on the distribution and size of clusters of bubbles of {W > α},
α > 0, in a neighborhood of the point (S, t0), where t0 > 0 is fixed and S = inf{s ≥
0 : W (s, t0) = α}. For simplicity, let us take t0 = α = 1. In particular, bounds on the
height and width of bubbles that intersected certain curves were given [1, Theorems 3.9
and 3.11]. Here, we want to look at some properties of a single bubble. In particular,
we will examine its area.

The key to the results of [1] was the following local decomposition of the Brownian
sheet in the neighborhood of (S, 1):

W (S − u, 1 + v/S) = 1 +B(v) − b(u) − x(u, v/S),(1)

where B = {B(v), v ≥ 0} is a standard Brownian motion started at the origin,
b = {b(u), u ≥ 0} is a Bessel process of dimension 3 (or Bessel(3) process, for short)
also started at the origin and independent of B, and, conditioned on S = s, x =
{x(u, v), s ≥ u ≥ 0, v ≥ 0} is a standard Brownian sheet (see [1, (15) and Lemma
2.4]). In the neighborhood of (S, 1), x is of smaller magnitude than B or b. Indeed,
B(v) and b(u) are on the order of

√
v and

√
u respectively, while x(u, v) is on the order

of
√
uv.

In view of (1), it is natural to expect that for small u and v, the set {(u, v) :
W (S − u, 1 + v) > 1} would be well-approximated by the set

{(u, v) : B(v) − b(u) > 0},(2)

and that in particular, the bubbles themselves should be well-approximated by the
connected components of the latter. Using the structure of the components of the set
(2), we show in Section 5 that the area of bubbles corresponding to excursions of W
high above level 1 does indeed converge in distribution as the bubbles approach (S, 1)
to the area of a component of the set (2).

It is then natural to study the limiting process

{B(v) − b(u), u ≥ 0, v ≥ 0}(3)

and in particular the area of its excursions. This is analogous in spirit to studying an
excursion of Brownian motion. While the excursion theory of the standard Brownian
motion is well developed, we are not aware of any studies of these components for
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non-trivial planar processes, and processes of the form (3) are of particular interest,
since such processes provide in fact local approximations to solutions of hyperbolic
stochastic partial differential equations (s.p.d.e.’s).

Indeed, a typical hyperbolic partial differential equation in RI 2 can be transformed
by a change of variables to the case where the second-order part of the differential
operator is ∂2/∂s∂t. Therefore the basic hyperbolic s.p.d.e. to consider is

∂2

∂s∂t
ξ(s, t) = f(s, t, ξ(s, t)) Y (ds, dt) + g(s, t, ξ(s, t),(4)

where ξ is given on the coordinate axes, Y is a non-atomic random measure, and f
and g are smooth functions. Let T = (U, V ) be a (deterministic or random) point
in RI 2

+. How does the solution ξ of (4) behave in the neighborhood of T , say in the
region D = {(s, t) : s ≥ U, t ≥ V }. Of course, this depends on T , but in general ξ
will satisfy an equation similar to (4). If T is random, the right-hand side of (4) may
change slightly due to conditioning, so that in general, ξ will coincide in D with the
solution ζ of the equation

∂2

∂s∂t
ζ(s, t) = X(ds, dt) in D,(5)

ζ(s, V ) = ξ(s, V ), ζ(U, t) = ξ(U, t), s ≥ U, t ≥ V,

where X is some random measure. Now the solution to (5) can be decomposed into
two parts, one of which accounts for the boundary condition and the other for the
driving noise, that is, ζ = ζ1 + ζ2, where ζ1 satisfies

∂2

∂s∂t
ζ1(s, t) = 0 in D,(6)

ζ1(s, V ) = ξ(s, V ), ζ1(U, t) = ξ(U, t), s ≥ U, t ≥ V,

and ζ2 satisfies

∂2

∂s∂t
ζ2(s, t) = X(ds, dt) in D,(7)

ζ2(s, V ) = 0, ζ2(U, t) = 0, s ≥ U, t ≥ V.

The point of this is that typically, the dominant term in the neighborhood of T is
ζ1, which is the solution to a homogeneous wave equation with random boundary
condition, and it is well-known that the solution to (6) is given by

ζ1(s, t) = ξ(s, V ) + ξ(U, s),
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which is of the same form as (3). For hyperbolic equations in which the differen-
tial operator does not have the reduced form of equation (4), the same type of local
decomposition involving the sum of two single-parameter processes is possible.

In order to understand the structure of components of the set (3), and thereby de-
scribe the approximate local structure of excursions of solutions to hyperbolic s.p.d.e.’s,
it is necessary to have a convenient way of recognizing whether two distinct points be-
long to the same component of this set (obviously, plotting the set is one way, but it
is not helpful for calculations!). This is achieved by Algorithm A of Section 2, which
can be applied to any pair of processes X1 and X2.

In Section 3, we then focus on the special case of importance for the Brownian
sheet, namely when X1 is a Brownian motion B and X2 is a Bessel(3) process b, and
we address the following question: what is the probability that a point in RI 2

+ belongs
to a particular connected component of {B > b} = {(s, t) : B(t) > b(s)}? We establish
an explicit formula for this probability. Then a simple integration over the point gives
us the expected area of the component. We actually compute the conditional expected
area, given (essentially) the height of the excursion. The formula is of the following
type:

E{ area of bubble | height } =
∑

n∈NI

pn,

where pn is an integral over a particular simplex in 7+6(n− 1)-dimensional Euclidean
space, of functions f and g which are derived from probabilities concerning Bessel(3)
processes. The computation of pn is achieved by using the Markov property of a
particular four-parameter diffusion. The same methods would apply if B and b were
more general diffusions, but we have no need for this added generality.

In Section 4, we expand the functions f and g in series whose terms are explicitly
derived from the standard Gaussian density. Since these series converge rapidly, they
can be evaluated numerically, as can the pn themselves. We have carried out this
evaluation for p1 and p2. Since the pn converge to 0 exponentially, this is in fact a
reasonable approximation to the expected area of the whole bubble. These calculations
have been checked by a direct simulation of the processes b and B. These results are
reported in Remark 4.4.

As mentioned earlier, in Section 5 we use our results on the structure of components
of the set (2) to prove that the area of bubbles which correspond to excursions of W
high above level 1 near (S, 1) has approximately the same distribution as the area of a
component of the set (2).
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2 Structure of clusters

In this section, we are going to study in detail the structure of components of the set
{B > b} = {(s, t) : B(t) > b(s)}. The particular distribution of these processes will
not play any role until the next section, and in fact, Proposition 2.2 applies to any
pair of continuous single-parameter processes, and Proposition 2.4 applies to any pair
of diffusions. We use the notation B and b here so that specific notation can be set up
for later use.

The components of {B > b} are not isolated; rather, they occur in clusters. In each
region where such a cluster occurs, we can assume that b is making an excursion below
some level H > 0. At the same time, B is necessarily positive, so it must be making
an excursion above some level L ≥ 0. We are going to assume that L > 0 and that
B = L at both extremities of its excursion, since the case of excursion intervals from
the origin can in fact be derived from this (see Remark 3.2).

Fix 0 < L < H . Suppose that IH ≡ ]a1, a2[ is an excursion interval of b below the
level H , and JL ≡ ]c1, c2[ is an excursion interval of B above L. Let R′ = IH × JL, and
let

M = inf
a1≤u≤a2

b(u) , M = sup
c1≤v≤c2

B(v) .

Let S and T be the (unique) times in ]a1, a2[ and ]c1, c2[ respectively such that

b(S) = M, B(T ) = M.

Fix two real numbers m and m such that L < m < m < H . We condition on the
event {M = m, M = m}, and set

σ = sup{s ∈ (a1, S) : b(s) = m}, τ = sup{t ∈ (c1, T ) : B(t) = m},
σ′ = inf{s ∈ (S, a2) : b(s) = m}, τ ′ = inf{t ∈ (T , c2) : B(t) = m},
I0 = ]σ, σ′[ , J0 = ]τ, τ ′[ .

Let R0 = I0×J0. There will be many components of {W > 1}—and of {B > b}—in
R′, and also in R0. However, there is a distinguished component C0 of {B > b} ∩ R′,
namely the one which contains (S, T ), the point of R′ at which B(t)− b(s) is maximal
(see Figure 1). We call this distinguished component a Brownian bubble and will study
it in some detail. In particular, we are interested in the expected area of C0: how much
smaller is it than that of R0, or than that of {B > b} ∩ R0? A standard application
of Fubini’s theorem shows that this area will be easy to compute once we have the
probability of the event F = {(s, t) ∈ C0}. However, in order to compute P (F ), it is
necessary to have a convenient way to recognize whether or not a given ω ∈ Ω belongs
to F . (Plotting the region C0 is one way, but it is not very convenient!). A more useful
method is supplied by Algorithm A below.

Notice that the pair of intervals I = I0 and J = J0 have the following property.
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Figure 1: A Brownian bubble surrounded by smaller components.

(P) The interval I is an excursion interval of b below the maximum value m of B on
J , J is an excursion interval of B above the minimum value m of b on I, and
m−m > 0.

Remark 2.1 Observe that whenever two intervals I and J satisfy (P), any component
of {B > b} that meets I × J is necessarily entirely contained in I × J , for B ≤ b on
the boundary. In particular, C0 ⊂ R0.

Evidently, a point (s, t) belongs to C0 if and only if there exists a continuous curve
from (s, t) to (S, T ) contained in {B > b}. A priori, there is no restriction on the
nature of this curve. Let us call (I0 × {T}) ∪ ({S} × J0) the axes of C0. They are
contained in C0 and they divide the rectangle R, and hence C0, into four quadrants.
Any curve from (s, t) which reaches the axes of C0 can reach (S, T ) in one more step,
so we can restrict our attention to paths which do not cross the axes, and therefore
remain in one quadrant.

Given points (s1, t1), . . . , (sn, tn), let 〈(s1, t1), . . . , (sn, tn)〉 be the polygonal curve
which connects successive points. If the segments of this curve are alternately vertical
and horizontal, and if it is non-self-intersecting, we will call it a stepped path. The cur-
vature number of a stepped path is the number of right-angles in it; e.g. the curvature
number of the stepped path 〈(s1, t1), . . . , (sn, tn)〉 is n− 2.

We are going to describe an algorithm which, given (s, t) ∈ R, determines whether
or not (s, t) belongs to C0. When it does, the algorithm constructs a stepped path
Γ∗ ⊂ {B > b} of (nearly) minimal curvature number which connects (s, t) and (S, T ).
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This will lead to a formula for the probability that these two points belong to the
same connected component of {B > b} (which in turn will give us an estimate for the
probability that they are in the same component of {W > 1}).

The algorithm is most easily described in terms of the process Y (s, t) = B(t)− b(s).
This process takes on it maximum in C0 at (S, T ). Fix (s, t) and suppose that Y (s, t) >
0. The algorithm is as follows: starting at (s, t), look at the horizontal segment through
(s, t) which is contained in C0, and go to the point (S1, t) on this segment where Y
achieves its maximum on this segment. Then look at the vertical segment through
(S1, t) contained in C0 and move to the point (S1, T 1) where Y achieves its maximum
on this vertical segment. Repeat these steps, looking alternatively at horizontal and
vertical segments until either (S, T ) is reached, or until you fail to find a new maximum
value. In the first case, it is clear that (s, t) belongs to C0, and we are going to show
that in the second case, it does not.

To do this, it is necessary to restate the procedure in terms of the processes b and
B. This is done in the algorithm below, which outputs YES if the two points are in
the same component of {B > b} and NO otherwise.

Algorithm A. Let (s, t) ∈ R0.
Stage 0. If b(s) ≥ B(t), output NO and stop. Otherwise set M0 = B(t), S0 = s,

T 0 = t, Γ0 = {(s, t)} and go to stage 1.

We define the stages by induction, starting with n = 1.

Stage 2n − 1. Let In be the (open) excursion interval of b below Mn−1 which
contains Sn−1. Define Mn and Sn by

Mn = b(Sn) = min
u∈In

b(u) ,

and set Γ2n−1 = Γ2n−2 ∪ 〈(Sn−1, T n−1), (Sn, T n−1)〉 .

(a) If Sn = S, then let Γ∗ = Γ2n−1 ∪ 〈(S, T n−1), (S, T )〉, output YES, and stop.
(b) If Sn = Sn−1, output NO and stop.
(c) Otherwise, go to stage 2n.

Stage 2n. Let Jn be the open excursion interval of B above Mn which contains
T n−1. Define Mn and T n by

Mn = B(Tn) = max
v∈Jn

B(v) ,

and set Γ2n = Γ2n−1 ∪ 〈(Sn, Tn−1), (Sn, Tn)〉 .

(a) If Tn = T , then let Γ∗ = Γ2n ∪ 〈(Sn, T ), (S, T )〉, output YES, and stop.
(b) If T n = T n−1, then output NO and stop.
(c) Otherwise, go to stage 2n+ 1.
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Proposition 2.2 Consider 0 < L < H , R′, R0, S and T as above. Assume M < M
and let (s, t) ∈ R0. Then Algorithm A outputs YES if (s, t) and (S, T ) belong to the
same connected component of {B > b}, and outputs NO otherwise. In particular,
with probability one, it terminates in a finite number of stages. When it outputs YES,
the number of stages is equal to the curvature number of the stepped path Γ∗. This
curvature number is at most one more than the minimal curvature number among all
stepped paths in {B > b} from (s, t) to (S, T ).

Proof. Let us first check that Γn ⊂ {B > b} for all n. At stage zero, either the
algorithm terminates immediately or Γ0 = {(s, t)} ⊂ {B > b}.

Supppose by induction that we have constructed sequences Mk, Mk, Sk, T k, Ik, and
Jk, k = 0, . . . , n − 1 and a stepped path Γ2n−2 with endpoints (s, t) and (Sn−1, T n−1)
such that

M < Mn−1 < Mn−2 < · · · < M1 < M 0 < M 0 < · · · < Mn−2 < Mn−1 < M ,

I1 ⊂ I2 ⊂ · · · ⊂ In−1 ⊂ I0 and J1 ⊂ J2 ⊂ · · · ⊂ Jn−1 ⊂ J0,(8)

Γ2n−2 ⊂ {B > b} .
where











Ik is an excursion interval of b below Mk−1 ,
Jk is an excursion interval of B above Mk ,
Mk = b(Sk) = minIk b and Mk = B(T k) = maxJk

B .
(9)

At stage 2n − 1 ≥ 1, In is the excursion interval of b below Mn−1, so Mn−2 <
Mn−1 < M implies In−1 ⊂ In ⊂ I0. It follows that M ≤ Mn ≤ Mn−1. If u is between
Sn−1 and Sn, then u ∈ In so b(u) < Mn−1 and B(Tn−1) = Mn−1 > b(u). Thus
〈(Sn−1, Tn−1), (Sn, T n−1)〉 ⊂ {B > b}, which implies that Γ2n−1 ⊂ {B > b}. A similar
argument shows that Γ2n ⊂ {B > b}.

Next we check that the algorithm terminates correctly. It returns NO in three cases.
The first is trivial: if b(s) ≥ B(t) at stage zero, then (s, t) /∈ {B > b}. The second case
is at stage 2n−1, if Sn = Sn−1 while Sn 6= S. Since S and Sn are the minimum points
of their respective excursions, evidently S /∈ In. Moreover, Mn = Mn−1, so, if we were
to go on to the next stage, we would find that Jn = Jn−1—they are not disjoint, and
they are both excursion intervals of B above the same level Mn−1—and hence that
T n = T n−1. Evidently T /∈ Jn. But (s, t) ∈ In × Jn and if T n = T n−1 and Sn = Sn−1,
then In and Jn satisfy (P). Thus (s, t) ∈ C0 implies C0 ⊂ In × Jn, a contradiction.
It follows that (s, t) and (S, T ) are in different components. The third case occurs at
stage 2n, when T n = T n−1. This is the same as the previous case—just interchange s
and t.

Observe that having reached stage 2n− 1, if the algorithm does go on to stage 2n,
then S 6= Sn 6= Sn−1, so M < Mn < Mn−1. Similarly, having reached stage 2n, if the
algorithm does go on to stage 2n+ 1, then T 6= Tn 6= Tn−1, so Mn−1 < Mn < M .
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The algorithm returns YES in two cases: at stage 2n− 1 when Sn = S and at stage
2n when T n = T . We will check the first; the second is similar. At stage 2n − 1,
Γ2n−1 ∈ {B > b} and Γ2n−1 ends at (S, T n−1), which is on the axes of C0. These are
contained in C0, so we need only add on a segment of the axes to Γn−1 to reach (S, T ).
Thus (s, t) ∈ C0.

We now check that the algorithm terminates with probability one. If it has not
terminated by stage 2n − 2, we have constructed sequences Mk, Mk, Ik and Jk as in
(8)-(9). The intervals

Ik ≡ ]Uk, U
′
k[ , Jk ≡ ]Vk, V

′
k [(10)

increase strictly with k. By construction, b(Un) = Mn−1 = b(U ′
n) and B(Vn) = Mn =

B(V ′
n). Now if Mn < Mn−1, then either Un < Sn < Un−1 or U ′

n−1 < Sn < U ′
n. Assume

the former, since the latter case is similar. Then on [Un, Un−1], b goes from Mn−1

down to Mn and back up to Mn−2. To do so, it has to cross the non-empty interval
]M 1,M 0[. In particular, the number of upcrossings of ]M 1,M 0[ by b during In is at
least one larger than the number of upcrossings of this interval during In−1.

The same is true for B when Mn > Mn−1. At each stage, one of the two, Mk or Mk,
must change, so that either b or B has to have at least n/2 upcrossings of ]M1,M0[
in the respective intervals I0, J0. Since both are continuous functions, the number of
upcrossings of a non-empty interval must be finite, so the algorithm must terminate.
This proves that the algorithm will decide correctly whether or not (s, t) ∈ C0.

It remains to show that the curvature number of Γ∗ is (nearly) minimal. Assume
that (s, t) ∈ C0—so Γ∗ does in fact exist—and let Γ ⊂ {B > b} be any stepped path
from (s, t) to (S, T ). Let R1, R2, R3, . . . be the sequence of rectangles I1 × {t}, I1 ×
J1, I2 × J1, I2 × J2, . . . , In × Jn−1, In × Jn, . . . . Notice that (s, t) ∈ R1 ⊂ R2 ⊂ . . . .
Let N be the largest n for which (S, T ) is not in the closure R̄n of Rn. Then Γ must
cross the boundaries of R1, . . . , RN (since R1 is a segment, R1 = ∂R1; Γ will not exit
R1 through an extremity).

By construction, Mn ≤ b ≤Mn−1 on In, and b = Mn−1 at the endpoints. Similarly,
Mn ≤ B ≤ Mn on Jn and B = Mn at the endpoints. Consequently, if k is even, so
that Rk is of the form In× Jn, then B = Mn ≤ b on the horizontal portion Īn× ∂Jn of
the boundary; thus this is in {B > b}c, and Γ cannot intersect it. Now Γ is a stepped
path, made up of vertical and horizontal segments. If it must cross the boundary of
Rk, k even, it must do so through one of the sides; this can only happen during a
horizontal segment of Γ. Similarly, for odd k, where Rk is of the form In+1 × Jn, the
vertical portion of the boundary is in {B > b}c, since B ≤ Mn = b there. This time
the path Γ cannot cross the sides, but must cross the top or bottom, which it must do
during a vertical segment. Thus Γ must exit R1 vertically, cross ∂R2 horizontally, ∂R3

vertically, ∂R4 horizontally, and so on. The horizontal segments Hn and Hm crossing
the boundary of R2n and R2m are distinct when n < m, since Hn cannot cross the
vertical portions of the boundary of R2n+1. Similarly, the vertical segments Vn and
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Vm crossing the boundary of R2n+1 and R2m+1 are distinct when n < m. Since Γ is a
stepped path, it must make at least one right angle between each of these crossings.
There are N crossings in addition to the vertical segment which leaves R1, so that the
curvature number of Γ must be at least N .

In fact, let Γo be any path with minimal curvature number No. If the segment of
Γo containing (s, t) is horizontal, then there is at least 1 right-angle to exit R1, one
additional right-angle to exit R2, . . . , so No ≥ N . If the segment of Γo containing (s, t)
is vertical, then no right angle is necessary to exit R1, there is at least one right-angle
to exit R2, one additional right-angle to exit R3, . . . , so No ≥ N − 1.

When the algorithm terminates at stage K, the curvature number of Γ∗ is also K,
since each stage except the first adds one right-angle to Γ∗, and there is one additional
righ-angle added just before the algorithm outputs YES. If K = 2n− 1, then Sn = S
or, equivalently, S ∈ In and if K = 2n then T ∈ Jn. Thus, when K = 2n− 1, S ∈ In
but T /∈ Jn−1, hence (s, t) /∈ In × Jn−1 = R2n−1. It follows that N = 2n − 1 = K in
this case. It is easy to see that if K = 2n, we also have N = K. In particular, if the
segment of Γo containing (s, t) is horizontal, then No ≥ N = K by the above, so the
algorithm has indeed constructed a minimal path. Otherwise, it might be the case that
No = N − 1 = K − 1, so the curvature number of Γ∗ could be one more than minimal.
♣

Remark 2.3 (a) There is one arbitrary aspect to Algorithm A, namely the way it
starts: the first segment of Γ∗ is always horizontal. It could just as easily have been
vertical. If (s, t) belongs to C0 but Algorithm A does not construct a path with minimal
curvature number, then the vertical counterpart to it will. This follows from the last
lines of the proof above.

(b) All components of {B > b} are Brownian bubbles, i.e. are distinguished com-
ponents for some choice of rationals H > L and excursion intervals IH and JL. To
see this, assume B(t) > b(s), and let C0 be the component of {B > b} which contains
(s, t). This component is bounded. Indeed, the excursion interval J ′ of B above 0
which contains t is finite, so the maximum H ′ of B on this interval is also finite. Now
the first hit ρ of H ′ by b is finite, and clearly, C0 ⊂ [0, ρ] × J ′. Let (S, T ) be the
point in C0 where Y achieves its maximum, let I0 be the excursion interval of b below
M = B(T ) which contains S, and let J0 be the excursion interval of B above M = b(S)
which contains T .

It is not difficult to see that the intervals I0, J0 and levelsM , M satisfy (P). Choosing
rationals H slightly larger than M and L slightly smaller than M , and considering the
excursion intervals IH ⊃ I0 and JL ⊃ J0, it is easy to see that C0 is the distinguished
component in R′ = IH × JL.

(c) All components of {B > b} are obtained by enumerating rationals 0 < L < H ,
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excursions IL of B above L, and excursions IH of b below H , such that

L < M ≡ min
IH

b < M ≡ max
IL

B < H.

If we move along a stepped path starting from (S, T ), our successive directions of
motion can be described by a sequence (i, D1, D2, . . .), where i ∈ {1, 2, 3, 4} indicates
the initial direction (1 for right, 2 for up, . . . ), and the Dk ∈ {right, left} indicate
the direction of each turn. The following theorem indicates just how complex the
component C0 may be.

Theorem 2.4 For any finite sequence of rights and lefts, there is a point (s, t) in C0

for which the stepped path from (S, T ) to (s, t) with minimal curvature number has
exactly that sequence of right and left turns.

Proof. Since this theorem is not used in the rest of the paper, we will not give
a complete proof. Rather, we indicate how to construct a point (s, t) for which the
minimal path Γ from (S, T ) to this point is described by the sequence (1, left, left, left,
right). It will be clear from the continuity and nowhere-differentiability of the paths
of b and B that a similar construction is possible for any n ∈ NI and finite sequence
(i, D1, D2, . . . , Dn). For s ≥ S and t ≥ T , set

b∗(s) = max
S≤u≤t

b(u), B∗(t) = min
T≤v≤t

B(v).

Let I ′2 ⊂ I0 be an open interval to the right of S where b accomplishes an excursion
below b∗, and let M 2, K2 and S2 be such that

M2 = b(S2) = min
I′2

b < max
I′2

b = K2,

and let J2 be the excursion interval of B above M 2 which contains T . The first segment
of Γ will be [S, S2]×{T}. (We are starting the construction of Γ from (S, T ), whereas
the algorithm starts from the opposite endpoint (s, t). This is why we define M 2 and
S2 before M 1 and S1.)

Since the first turn of Γ is to the left, we let t increase from T until the first time τ1
that B hits level (K2 +M 2)/2. This level is in ]M,M [ , so τ1 ∈ J0. The paths of B are
continuous and nowhere differentiable, so there is ε1 > 0 such that M2 < B(v) < K2

for v ∈ [τ1, τ1 + ε1], and there is an open interval J ′
2 ⊂ ]τ1, τ1 + ε1[ on which B is

accomplishing an excursion above B∗. Let L2, M2, T 2 be such that

M2 = B(T 2) = max
J ′

2

B > min
J ′

2

B = L2.

11



The second segment of Γ will be {S2} × [T , T 2]. We now let I2 ⊂ I0 be the excursion
interval of b below M2 which contains S2.

Since the second turn of Γ is to the left, we let s decrease from S2 until the first
time σ1 that b hits (M 2 +L2)/2. Since this level is in ]M 2,M2[ , σ1 belongs to I2. Now
there is ε2 > 0 such that [σ1 − ε2, σ1] ⊂ I2 and L2 < b(u) < M 2 for u ∈ [σ1 − ε2, σ1],
and there is an open interval I ′1 ⊂ ]σ1−ε2, σ1[ on which b is accomplishing an excursion
below b∗. Let M 1, K1 and S1 be such that

M1 = b(S1) = min
I′1

b < max
I′1

b = K1,

and let J1 be the excursion interval of B above M 1 which contains T 2. The third
segment of Γ will be [S1, S2] × {T 2}.

Since the third turn of Γ is to the left, we let t decrease from T 2 until the first time
τ2 that B hits level (K1 +M 1)/2. Since this level is in ]M 1,M 2[ , τ2 belongs to J2. Now
there is ε3 > 0 such that [τ2 − ε3, τ2] ⊂ J2 and M 1 < B(v) < K1 for v ∈ [τ2 − ε3, τ2],
and there is an open interval J ′

1 ⊂ ]τ2−ε3, τ2[ on which B is accomplishing an excursion
above B∗. Let L1, M1, T 1 be such that

M1 = B(T 1) = max
J ′

1

B > min
J ′

1

B = L1.

The fourth segment of Γ will be {S1} × [T 1, T 2]. Let I1 be the excursion interval of b
below M 1 which contains S1.

Since the fourth turn is to the right, we let s decrease from S1 until the first time
σ0 that b hits level (M 1 + L1)/2. Since this level is in ]M 1,M1[ , σ0 ∈ I1. Set s = σ0,
t = T 1, and let [s, S1] × {T 1} be the fifth and last segment of Γ.

Starting from (S, T ), the successive turns of Γ are (1, left, left, left, right), and we
claim that Algorithm A applied to (s, t) constructs the path Γ. Indeed, the points
S1, S2, T 1, T 2, and the intervals I1, I2, J1, and J2 are exactly those constructed by
the algorithm. Moreover, the path Γ is a minimal path from (s, t) to (S, T ). Details
are left to the reader. ♣
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3 The expected area of a Brownian bubble

In this section and in the remainder of the paper, we make explicit use of the fact that
B is a Brownian motion and b is a Bessel(3) process independent of B, though the
reader will notice that the methods and proof of Proposition 3.6 apply to all pairs of
independent time-homogeneous diffusions.

Let C0 be a connected component of {B > b}. Since this component is bounded
(see Remark 2.3 (b)), there is a point (S, T ) ∈ C0 at which B(t) − b(s) is maximal in
C0, equal to M , say. Given M , we are interested in probabilistic properties of C0; in
particular, we are going to exhibit a formula for its expected area. Before doing this,
let us examine the excursions of b and B which give rise to C0.

By Remark 2.3 (b), there are rationals 0 < L < H and a pair of excursions of b
and B from H and L, respectively, for which C0 is the distinguished component. In
particular, S (resp. T ) is the minimum (resp. maximum) point of an excursion of b
(resp. B) below M = B(T ) (resp. above M = b(S)). Clearly, M = M −M .

Since b and B are independent, b is independent of M and B is independent of
M . It follows that if we let I0 ≡ ]σ, σ′[ be the excursion interval of b below M which
contains S, and let J0 ≡ ]τ, τ ′[ be the excursion interval of B above M which contains
T , then given M and M , these two intervals behave like ordinary excursion intervals
of the two processes.

Lemma 3.1 Given S = s, T = t, M = m and M = m, the processes

X1 = {m− b(σ′ − u), 0 ≤ u < σ′ − s} , X3 = {B(τ ′ − v) −m, 0 ≤ v < τ ′ − t} ,
X2 = {b(s + u) −m, 0 ≤ u ≤ σ′ − s} , X4 = {m− B(t+ v), 0 ≤ v ≤ τ ′ − t} ,

are all Bessel(3) processes killed at the first hit of m−m.

Proof. X2 and X4 are Bessel(3) processes by a result of D. Williams (see e.g. [8,
Chap.XII, Theorem (4,5)], since they represent a Bessel(3) process and a Brownian
motion started respectively from the bottom and the top of an excursion. The other
two processes are obtained by reversing X2 and X4 from their lifetimes, so they are
also Bessel(3) processes [8, Chap.VII, Proposition (4,8)]. ♣

Remark 3.2 (a) If we are observing the process {Y (s, t) ≡ B(t)− b(s), (s, t) ∈ RI 2
+},

rather than the processes b and B, we cannot determine M and M in general. However,
σ, σ′, τ and τ ′ can be determined, since for instance σ′ = inf{s ≥ S : Y (T , s) = 0}. In
addition, probabilistic properties of C0 only depend on M , not on the particular values
of M and M (as long as M −M = M). Indeed, consider for instance C0 ∩ {(s, t) : s ≥
s, t ≥ t}, and observe that b(s+ u) < B(t+ v) if and only if X2(u) +X4(v) < M , and
the distribution of these processes does not depend on M or M by Lemma 3.1.
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(b) If we wanted to consider excursion intervals of b below L of the form [0, a2[ , we
would only have to set m = 0 and s = 0. The process X1 would no longer be relevant
and the entire component would be contained in [0, σ′] × [τ, τ ′].

Let Q(0, x; s, y) be the probability measure on Ω0 = C(RI +, RI ) (equipped with its
usual topology of uniform convergence on compact sets and Borel sigma-field) under
which the canonical coordinate process χ has the following distribution: on [0, s], χ
is a Bessel(3) process started at position x and conditioned to hit level y for the first
time at time s; on [s,∞], χ is the constant process χ ≡ y. Fix 0 < m < m, 0 < s < σ′

0,
0 < t < τ ′0, set m = m−m and consider the following probability measures on Ω0:

R1
x,u = Q(0, m− x; u− s,m), R2

x,u = Q(0, x−m; σ′
0 − u,m),

R3
y,v = Q(0, y −m; v − t,m), R4

y,v = Q(0, m− y; τ ′0 − v,m).

Other measures on Ω0 of interest to us are P x
0 , under which χ is a Brownian motion

started at x and killed when it first hits 0, and Qx, under which χ is a Bessel(3)
process started at x. Let T (a) = inf{u ≥ 0 : χ(u) = a}, and let (Gu) be the canonical
(completed) filtration on Ω0. The following lemma states the well-known relationships
between these measures.

Lemma 3.3 (a) Suppose 0 < x ≤ a and let Λ ∈ GT (a). Then Qx{Λ} = a
x
P x

0 {Λ}.
(b) Suppose 0 < x < a < c , 0 < s < t, and let Λ ∈ GT (a). Then

Q(0, x; t, c){Λ, T (a) ∈ ds} = P x
0 {Λ, T (a) ∈ ds}P

a
0 {s+ T (c) ∈ dt}
P x

0 {T (c) ∈ dt} .

Proof. The first part comes from the fact that a Bessel(3) is an h-transform of killed
Brownian motion with the function h(x) = x on [0,∞); since T (a) < ∞ a.s. for a
Bessel from x < a, and since χ(T (a)) = a on {T (a) < ∞}, (a) follows from Doob’s
h-transform formula [2, Chap. 2.X]. The second part follows from the first by the
strong Markov property, since the numerator is just x

c
Qx{Λ, T (a) ∈ ds, T (c) ∈ dt} and

the denominator is x
c
Qx{T (c) ∈ dt}. ♣

Lemma 3.4 Fix s < s < σ′
0 and t < t < τ ′0, and define

χ1(u) ≡M − b(s− u), 0 ≤ u < s− s , χ3(v) ≡ B(t− v) −M, 0 ≤ v < t− t ,
χ2(u) ≡ b(s+ u) −M, 0 ≤ u < σ′

0 − s , χ4(v) ≡M − B(t+ v), 0 ≤ v < τ ′0 − t .

(a) Given S = s, T = t, M = m, M = m, σ′ = σ′
0, τ

′ = τ ′0, b(s) = x and B(t) = y,
these processes are independent, and the distribution of χi is Ri

x,s for i = 1, 2, and is
Ri
y,t for i = 3, 4.
(b) For i = 1, . . . , 4, let (Gi(u)) be the natural (completed) filtration of χi and let

T be a stopping time relative to this filtration. Then the conditional distribution of
(χi(T + ·)) given Gi(T ) is Ri

χi(T ),ζi
, where ζ1 = s − T , ζ2 = s + T , ζ3 = t − T and

ζ4 = t+ T .
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Proof. We only consider the case i = 1, since the other three cases are similar. Given
S = s, T = t, M = m, M = m, and σ′ = σ′

0, the distribution of the process X1 defined
in Lemma 3.1 is R1

m,σ′0
by definition. Now both (a) and (b) are consequences of the

fact that for Λ ∈ G1(σ
′
0),

R1
m,σ′0

(Λ) =
Q0{Λ, σ′ ∈ dσ′

0}
Q0{σ′ ∈ dσ′

0}
.

Indeed, χ1 has the strong Markov property under Q0, and a standard calculation shows
that R1

m,σ′0
inherits this property from Q0, and that given b(s) = x, the conditional

distribution of χ1 is R1
x,s, proving (a). A similar calculation establishes (b). ♣

Remark 3.5 We are effectively translating the origin to the point (s, t). The processes
χi represent b and B going in the four directions from this point, modified to make
them into Bessel processes.

Let Σ be the sigma-field generated by S, T , M , m, σ, σ′, τ , and τ ′. We are going
to determine a formula for the probability p that (s, t) ∈ C0 given that S = s, T = t,
M = m, M = m, σ = σ0, σ

′ = σ′
0, τ = τ0, τ

′ = τ ′0, b(s) = x and B(t) = y. By
symmetry, we can confine ourselves to those (s, t) for which s ≥ s and t ≥ t. Let

pn ≡ pn(s, x; t, y; s, t,m,m, σ
′
0, τ

′
0)

be the conditional probability that Algorithm A terminates and outputs YES either at
stage 2n− 1 or at stage 2n, given Σ ∨ σ{b(s), B(t)}. We will give an explicit formula
for pn involving only the distribution of Brownian motion. Clearly,

p =
∑

n≥1

pn.

Let χi , i = 1, . . . , 4 be the processes defined in Lemma 3.4, set

χi∗(v) = inf
0≤u≤v

χi(u), χ∗
i (v) = sup

0≤u≤v
χi(u),

and let χi∗ = χi∗(∞) and χ∗
i = χ∗

i (∞) be the inf and sup over all time. Let Qx
i ⊗Qy

j be
the joint distribution of χi and χj, given that χi(0) = x, χj(0) = y. Define the hitting
times Si for the χi by

Si(a) = inf{u ≥ 0 : χi(u) = a},

with the usual convention that the sup of the empty set is ∞.
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Consider the sequence of random variables (Mk) and (Mk) defined in (8)–(9), and
the Uk, U

′
k, Vk, V

′
k defined in (10). Let

Ti(a) =

{

Si(M − a) if i = 1, 4,
Si(a−M) if i = 2, 3,

and
Z(a) = min{M − χ∗

1(T1(a)), M + χ2
∗(T2(a))},

Z(a) = max{M + χ∗
3(T3(a)), M − χ4

∗(T4(a))} .
(11)

Observe that on the set where Ti(Mk−1), i = 1, 2 and Ti(Mk), i = 3, 4 are finite,

T k1 ≡ T1(Mk−1) = s− Uk , T k2 ≡ T2(Mk−1) = U ′
k − s ,

T k3 ≡ T3(Mk) = t− Vk , T k4 ≡ T4(Mk) = V ′
k − t ,

(12)

and
Mn = Z(Mn−1), Mn = Z(Mn).(13)

Finally, consider the densities

fm,s,m,σ′0(u, u
′, x, y; u1, u2, m1) du1 du2 dm1

= R1
x,u ⊗R2

x,u′{u− T1(y) ∈ du1, u
′ + T2(y) ∈ du2, Z(y) ∈ dm1}

and

gm,t,m,τ ′0(v, v
′, y, x; v1, v2, m1) dv1 dv2 dm1

= R3
y,v ⊗R4

y,v′{v − T3(x) ∈ dv1, v
′ + T4(x) ∈ dv2, Z(x) ∈ dm1}.

We will generally omit the subscripts on f and g in what follows.

Proposition 3.6 Set m−1 = b(s) = x, m0 = m0 = B(t) = y, u0 = s = u′0, v0 = t = v′0
and, for n ≥ 1, let An denote the set of all ((uk, u

′
k, vk, v

′
k, mk, mk), 1 ≤ k ≤ n − 1) ∈

RI 6(n−1), such that

m < mn−1 < · · · < m1 < x < m0 < · · · < mn−1 < m ,

s < un−1 < · · · < u1 < s < u′1 < · · · < u′n−1 < σ′
0 ,(14)

t < vn−1 < · · · < v1 < t < v′1 < · · · < v′n−1 < τ ′0 .

Then p1 is equal to

R1
x,s{χ1

∗ > m− y} +
∫ s

s
du1

∫ σ′0

s
du2

∫ x

m
dm1 f(s, s, x, y; u1, u2, m1)(15)

×R3
y,t{χ3

∗ > m1 −m},
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and, for n ≥ 2, pn is equal to the following integral:

∫

An

(n−1
∏

k=1

duk du
′
k dmk dvk dv

′
k dmk f(uk−1, u

′
k−1, mk−2, mk−1; uk, u

′
k, mk)

× g(vk−1, v
′
k−1, mk−1, mk; vk, v

′
k, mk)

)(

R1
mn−2,un−1

{χ1
∗ > m−mn−1}(16)

+
∫ un−1

s
dun

∫ σ′0

u′n−1

du′n

∫ mn−1

m
dmn f(un−1, u

′
n−1, mn−2, mn−1; un, u

′
n, mn)

×R3
mn−1,vn−1

{χ3
∗ > mn −m}

)

Remark 3.7 (a) The fact that formula (16) is valid comes from the Markov property
of the processes χi, i = 1, . . . , 4. Since the path Γ constructed by Algorithm A will
wind around itself in general, it is not obvious how a Markov property can be brought
into play. The key idea is that the sequence R1 ⊂ R2 ⊂ . . . of rectangles constructed
in the proof of Proposition 2.2 forms the “past” for the 4-parameter diffusion

χ̄ = (χ1(u1), . . . , χ4(u4)),

and that once Γ leaves Rk, it never returns. So we will be using the Markov property
for χ̄.

(b) If B and b were arbitrary time-homogeneous diffusions, the same formula would
apply provided f and g were redefined using appropriate other measures rather than
the measures Ri

x,u.

Proof of Proposition 3.6. We are given S = s, T = t, σ′ = σ′
0, τ

′ = τ ′0, b(s) = m,
B(t) = m, b(s) = x and B(t) = y, such that m < x < y < m. For n ≥ 1, we shall
calculate the conditional probability that Algorithm A terminates successfully—i.e. it
stops and outputs YES—at stage 2n − 1 or 2n, given these values. By symmetry we
may assume that s < s and t < t.

Stages 1 and 2 are somewhat special since the algorithm cannot output NO at these
times. It succeeds at stage 1 if b(u) < y for all u ∈ ]s, s[ , or equivalently, if χ1

∗ > m− y
for in that case s1 = s. If it does not succeed at stage 1, χ1 must hit m − y before
s− s, which means that T1(y) < s− s. The algorithm then terminates successfully at
stage 2 if B(v) > M1 for all v ∈ ]t, t[ , or equivalently, if χ3

∗ > Z(y)−m. So by Lemma
3.4 (a),

p1 = R1
x,s ⊗ R2

x,s ⊗ R3
y,t({χ1

∗ > m− y} ∪ {T1(y) < s− s, χ3
∗ > Z(y) −m}).

But this can be written

R1
x,s{χ1

∗ > m− y} +
∫ s−s

0

∫ x

m
R1
x,s ⊗R2

x,s{T1(y) ∈ du1, Z(y) ∈ dm1}

×R3
y,t{χ3

∗ > m1 −m}.
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Formula (15) follows by the change of variables in u1 7→ s− u1 and the definition of f .
The above derivation for n = 1 is somewhat informal. We now fix n ≥ 2 and give

a formal proof in that case. We begin by a precise definition of the σ-fields relative to
which we shall use the multiparameter Markov property. We refer the reader to [7] for
definitions relating to multiparameter processes that we use below. Define T 0

3 = T 0
4 = 0,

and for n ≥ 1,

Ŝn = (T n1 , T
n
2 , T

n−1
3 , T n−1

4 ), T̂n = (T n1 , T
n
2 , T

n
3 , T

n
4 ).

These two random variables are stopping points relative to the four-parameter filtration

F(u) = G1(u1) ∨ G2(u2) ∨ G3(u3) ∨ G4(u4), u = (u1, u2, u3, u4),

where Gi(u) is defined in Lemma 3.4. Associated to these stopping points are the
σ-fields Ĝn = F(Ŝn) and Ĥn = F(T̂n) (these represent the information about the χi
available at Ŝn and T̂n). Since T ni ≤ T n+1

i , i = 1, . . . , 4, Ĝn ⊂ Ĥn ⊂ Ĝn+1, for all n.
Applying Lemma 3.4 (b) and (12), it is not difficult to see that the conditional

distribution of (χ̄(Ŝn + u)) given Ĝn is

R1
Mn−1,Un

⊗ R2
Mn−1,U ′

n
⊗ R3

Mn−1,Vn−1
⊗ R4

Mn−1,V
′

n−1
.(17)

Indeed, since the χi are independent, χ̄ has the strong Markov property [3, Theorem
3.3], and

χ1(T
n
1 ) = m−Mn−1, χ2(T

n
2 ) = Mn−1 −m,

χ3(T
n−1
3 ) = Mn−1 −m, χ4(T

n−1
4 ) = m−Mn−1.

Similarly, the conditional distribution of (χ̄(T̂n + ū)) given Ĥn is

R1
Mn−1,Un

⊗ R2
Mn−1,U ′

n
⊗R3

Mn,Vn
⊗ R4

Mn,V
′

n
.(18)

Now fix n ≥ 2 and assume that the algorithm has continued through stage 2n− 2.
It has then constructed a sequence ((Uk, U

′
k, Vk, V

′
k,Mk,Mk), 1 ≤ k ≤ n− 1) as in (8),

(9) and (10). In particular, this sequence belongs to An a.s. By (12), the inequalities
on Uk, U

′
k, Vk and V ′

k in (14) are equivalent to 0 < T 1
i < · · · < T n−1

i <∞, i = 1, . . . , 4.
Algorithm A will terminate successfully at stage 2n− 1 if s ∈ In, which means that

b(u) < Mn−1 for all u ∈ ]s, Un−1[ , or equivalently that χ1
∗ > m−Mn−1. The algorithm

will end unsuccessfully if Mn = Mn−1, for then sn = sn−1. On the other hand, if
Mn < Mn−1, then the new minimum Mn must be reached in the set In − In−1, or
equivalently, either there is u satisfying T n−1

1 < u < T n1 and χ1(u) = Z(Mn−1), or
there is u satisfying T n−1

2 < u < T n2 and χ2(u) = Z(Mn−1). In particular, we do not
have to look back at previous portions of the paths of χ1 or χ2 to determine whether
the algorithm continues. Algorithm A continues on to stage 2n when

T n1 < s− s and Z(Mn−1) < Mn−1 = Z(Mn−2) .(19)
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Similarly, having attained stage 2n, Algorithm A stops successfully if χ3
∗ > Mn−m,

and it continues on if

T n3 < t− t and Z(Mn) > Mn−1 = Z(Mn−1).(20)

Again, we do not have to look back at previous portions of the paths of χ3 or χ4 to
verify the second inequality.

Putting (19) and (20) together, we see that the condition for continuing through
stage 2n−2 is that there exist ((uk, u

′
k, vk, v

′
k, mk, mk), 1 ≤ k ≤ n−1) in An such that

s− T 1
1 = u1, Z(y) = m1, t− T 1

3 = v1, Z(m1) = m1,
s− T 2

1 = u2, Z(m1) = m2, t− T 2
3 = v1, Z(m2) = m2,

...
...

...
...

s− T n−1
1 = un−1, Z(mn−2) = mn−1, t− T n−1

3 = vn−1, Z(mn−1) = mn−1.

(21)

We also request that T k2 = s+ u′k and T k4 = t+ v′k, 1 ≤ k ≤ n− 1.
In order to compute pn, we condition successively on Ĝn, Ĥn−1, Ĝn−1, . . . , Ĥ1, Ĝ1.

If we use the Markov property on (21) and the conditional distributions (17) and (18),
we see that pn is equal to

∫

An

(

n−1
∏

k=1

R1
mk−2,uk−1

⊗ R2
mk−2,u

′

k−1
{uk−1 − T k1 ∈ duk, u

′
k−1 + T k2 ∈ du′k, Z(mk−1) ∈ dmk}

×R3
mk−1,vk−1

⊗R4
mk−1,v

′

k−1
{vk−1 − T k3 ∈ dvk, v

′
k−1 + T k4 ∈ dv′k, Z(mk) ∈ dmk}

)

×
(

R1
mn−2,un−1

{χ1
∗ > m−mn−1}

+
∫ un−1

s

∫ mn−1

m
R1
mn−2,un−1

⊗ R2
mn−1,u′n−1

{un−1 − T n1 ∈ dun, Z(mn−1) ∈ dmn}

R3
mn−1,vn−1

{χ3
∗ > mn −m}

)

.

Now (16) follows from the definitions of f and g. ♣

Remark 3.8 A good approximation to p can be obtained from the sum of the first
few terms of the series

∑

n∈NI pn. Indeed, there is 0 < c < 1 such that

∞
∑

k=n

pk ≤ cn.(22)

This comes from the following. Let Fn be the event “Algorithm A stops at stage 2n−1
or later”. Then

∞
∑

k=n

pk = P (Fn) = P (Fn−1 ∩ Fn) =
∫

Fn−1

P (Fn | Ĝ2n−1) dP ≤ λ1,nλ2,nP (Fn−1),
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where λ1,n is the R1
Mn−2,Un−1

⊗ R2
Mn−2,U ′

n−1
-probability that χ1 has at least one down-

crossing of [m−Mn−1, m−Mn−2] or that χ2 has at least one upcrossing of the interval
[Mn−2,Mn−1]. λ2,n is defined similarly relative to χ3 and χ4. Clearly, λ1,n is not greater
than the R1

y,s⊗R2
y,s-probability that χ1 has at least on downcrossing of [m− y,m− x]

or that χ2 has at least one upcrossing of [x, y]. A similar inequality is valid for λ2,n,
hence (22).
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4 Expressions for the densities and numerical re-

sults

In this section, we complete the calculation of the expected area of C0. We will provide
an exact explicit formula and will discuss the results of a numerical evaluation and of
simulations.

The densities f and g and the probabilities appearing in (16) can be written in
terms of one function and its derivatives. Let I ⊂ RI + be an interval with endpoints
a and c, and let x ∈ I. Let P x be the probability measure on Ω0 under which χ is a
Brownian motion started at x. Let

K(x, a, c, u) ≡ P x{T (c) ≤ u ∧ T (a)}

and observe that when a < x < c,

K(x, a, c, u) =

{

P x
0 {T (c) ≤ u, χ∗(T (c)) > a} if a < x < c,
P x

0 {T (c) ≤ u, χ∗(T (c)) < a} if c < x < a.

since I ⊂ RI +. Define

φ(x, a, c, u) ≡ ∂

∂u
K(x; a, b, u), φ̂(x, a, c, u) ≡ ∂

∂a
φ(x, a, c, u),

and observe that if a < x < c, then

φ(x, a, c, u) du = P x
0 {T (c) ∈ du, χ∗(T (c)) > a}(23)

and −φ̂(x, a, c, u) gives the joint density of (T (c), χ∗(T (c))), whereas if c < x < a, then

φ(x, a, c, u) du = P x
0 {T (c) ∈ du, χ∗(T (c)) < a}(24)

and φ̂(x, a, c, u) gives the joint density of (T (c), χ∗(T (c))). A closed form expression is
available for φ: let

p(u, x, y) ≡ (2πu)−1/2e−(y−x)2/(2u),

and

p̃(u, x, y) ≡ ∂

∂x
p(u, x, y), p̂(u, x, y) ≡ ∂

∂y
p̃(u, x, y) = − ∂

∂x
p̃(u, x, y) .

Then

φ(x, a, c, u) = −
+∞
∑

n=−∞

p̃(u, |c− x|, 2n|c− a|)(25)
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(see [6, Chap. 2, (8.25) and (8.26)]), and it follows that

φ̂(x, a, c, u) = sgn (c− a)
+∞
∑

n=−∞

2n p̂(u, |c− x|, 2n|c− a|).

From these expressions, we can write the functions appearing in Proposition 3.6 in
closed form.

Lemma 4.1 For m ≤ m1 ≤ x ≤ y ≤ m, 0 ≤ s ≤ u1 ≤ u and 0 ≤ t ≤ u′ ≤ u2, the
function f(u, u′, x, y; u1, u2, m1) is equal to

(−φ(m− x,m−m1, m− y, u− u1)φ̂(x−m,m1 −m, y −m, u2 − u′)

+ φ̂(m− x,m−m1, m− y, u− u1)φ(x−m,m1 −m, y −m, u2 − u′))(26)

× φ(m− y, 0, m, u1 − s)

φ(m− x, 0, m, u− s)

φ(y −m, 0, m, σ′
0 − u2)

φ(x−m, 0, m, σ′
0 − u′)

and

R1
x,u{χ1

∗ > m− y} =
φ(m− x,m− y,m, u− s)

φ(m− x, 0, m, u− s)
,(27)

R3
y,v{χ3

∗ > x−m} =
φ(y −m, x−m,m, v − t)

φ(y −m, 0, m, v − t)
.(28)

Proof. For Λ ∈ G1(T1(y)), R
1
x,u{Λ, T1(y) ∈ d(u− u1)} is equal to

Qm−x{Λ, T (m− y) ∈ d(u− u1)}
Qm−y{T (m) ∈ d(u1 − s)}
Qm−x{T (m) ∈ d(u− s)}

by Lemma 3.3 (b), and the ratio in this expression is equal to

m− x

m− y

φ(m− y, 0, m, u1 − s)

φ(m− x, 0, m, u− s)

by Lemma 3.3 (a) and (23), and similarly, for Λ ∈ G2(T2(y)), R
2
x,u′{Λ, T2(y) ∈ d(u2 −

u′)} is equal to

Qx−m{Λ, T (y −m) ∈ d(u2 − u′)} x−m

y −m

φ(y −m, 0, m, σ′
0 − u2)

φ(x−m, 0, m, σ′
0 − u′)

.

Since Z(y) is G1(T1(y)) ⊗ G2(T2(y))-measurable, (26) will follow once we compute the
density

Qm−x ⊗Qx−m{u− T1(y) ∈ du1, u
′ + T2(y) ∈ du2, Z(y) ∈ dm1}.
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Using (11), we have

Z(y) = min{m− χ∗
1(T1(y)), m+ χ2

∗(T2(y))},

and there are two ways for the minimum to be in dm1: either χ∗
1(T1(y)) < m − m1

while χ2
∗(T2(y)) ∈ d(m1−m), or else χ∗

1(T1(y)) ∈ d(m−m1) while χ2
∗(T2(y)) > m1−m.

Since χ1 and χ2 are independent, the above density is equal to

Qm−x{T (m− y) ∈ d(u− u1), χ
∗(T (m− y)) < m−m1}

×Qx−m{T (y −m) ∈ d(u2 − u′), χ∗(T (y −m)) ∈ d(m1 −m)}
+Qm−x{T (m− y) ∈ d(u− u1), χ

∗(T (m− y)) ∈ d(m−m1)}
×Qx−m{T (y −m) ∈ d(u2 − u′), χ∗(T (y −m)) > m1 −m}.

Applying Lemma 3.3 (a) to transform the Qx-measures into P x
0 -measures and taking

(23) and (24) into account, (26) follows.
Formula (27) follows from (23) by Lemma 3.3 (a), since

R1
x,u{χ1

∗ > m− y} =
Qm−x{T (m) ∈ d(u− s), χ∗(T (m)) > m− y}

Qm−x{T (m) ∈ d(u− s)} ,

and the proof of (28) is similar. Details are left to the reader. ♣

Remark 4.2 There is a similar expression for the function g, but it is simpler to notice
the following relationship between f and g:

gm,t,m,τ ′0(v, v
′, y, x; v1, v2, m1) =

fm,t,m,τ ′0(v, v
′, m+m− y,m+m− x; v1, v2, m+m−m1)

by definition of f and g, since

R1
x,u = R3

m+m−x,u and R2
x,u = R4

m+m−x,u

provided t and τ ′0 are replaced in the definition of these measures by s and σ′
0, re-

spectively, and since the symmetry with respect to (m + m)/2 transforms Z(x) into
Z(m+m− x).

Define a function f1(u, x, y) by

f1(u, x, y) =
∑

n∈Z

(p̃(u, 0, x+ 2ny) − p̃(u, 0,−x− 2ny))

=
∑

n∈Z

2(x+ 2ny) exp(−(x+ 2ny)2/(2u))/(2πu3)
1
2 .
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Theorem 4.3 The expected area of C0 ∩ {(s, t) : s ≥ s, t ≥ t} given S = s, T = t,
M = m, M = m, σ′ = σ′

0 and τ ′ = τ ′0 is expressed (explicitly) by the formula

∫ σ′0

s
ds
∫ τ ′0

t
dt
∫ m

m
dx
∫ m

x
dy ps(x)qt(y)

∑

n≥1

pn(s, x; t, y; s, t,m,m, σ
′
0, τ

′
0),

where pn is given in Proposition 3.6 (together with Lemma 4.1) and

ps(x) = −f1(s− s, x−m,m)
φ(x−m, 0, m, σ′

0 − s)

φ̂(0, 0, m, σ′
0 − s)

,(29)

qt(y) = −f1(t− t,m− y,m)
φ(m− y, 0, m, τ ′0 − t)

φ̂(0, 0, m, τ ′0 − t)
.(30)

Proof. By Fubini’s Theorem, the expected area of C0 ∩ {(s, t) : s > s, t > t}
is the integral over the rectangle R̃ = [s, σ′

0] × [t, τ ′0] of P{(s, t) ∈ C0} (P denotes
the conditional probability given the six variables in the statement of the theorem).
Conditioning in addition with respect to the values of b(s) and B(t) and letting ps(x)
and qt(y) be the respective densities of b(s) and B(t), this is equal to

∫

R̃

∫

{m≤x≤y≤m}
ps(x)qt(y)P{(s, t) ∈ C0 | b(s) = x,B(t) = y}.

By Lemma 3.1, the conditional probability is exactly
∑

n≥1 pn by definition of pn, and
so we only need to check that (29) and (30) are indeed expressions for the densities of
b and B, more precisely for m + X2(s − s) and m − X4(t − t) under R2

m,s and R4
m,t

,

respectively. This will become clear once we compute the densities of X2(s − s) and
X4(t− t) under R2

m,s and R4
m,t

, respectively.

By definition of R2
m,s and the strong Markov property of Q0, R2

m,s{X2(s− s) ∈ dx}
is equal to

Q0{X2(s− s) ∈ dx, T (m) > s− s} Q
x{T (m) ∈ d(σ′

0 − s)}
Q0{T (m) ∈ d(σ′

0 − s)} .(31)

By Lemma 3.3 and (23), the denominator is equal to

lim
a↓0

Qa{T (m) ∈ d(σ′
0 − s)} = m lim

a↓0

1

a
φ(a, 0, m, σ′

0 − s)

= m
∂

∂x
φ(0, 0, m, σ′

0 − s).

Using (25), it is not difficult to see that this is equal to −mφ̂(0, 0, m, σ′
0 − s), hence the

denominator in (29). By (23), the second factor in the numerator of (31) is

m

x
P x

0 {Tm ∈ d(σ′
0 − s)} =

m

x
φ(x, 0, m, σ′

0 − s),
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and by [5, (3.1)] the first factor is equal to

lim
a↓0

x

a
P a

0 {X2(s− s) ∈ dx, T (m) > s− s},

which, by [6, Chap.2, (8.12)] is equal to xf1(s − s, x,m). Formula (29) follows. The
proof of (30) is similar and is left to the reader. ♣

Remark 4.4 The main interest of Theorem 4.3 is that it provides a formula for the
expected area of C0∩{(s, t) : s ≥ s, t ≥ t} which is both exact and explicit. In addition,
this formula is amenable to numerical integration, since the various series which enter
into it converge very rapidly. We have carried out the computation of

∫ σ′0

s
ds
∫ τ ′0

t
dt
∫ m

m
dx
∫ m

x
dy ps(x)qt(y)pn(s, x; t, y; s, t,m,m, σ

′
0, τ

′
0),(32)

for n = 1, 2 using the Monte-Carlo method as follows (by Remark 3.8, p1 +p2 is a good
approximation of p!). First, consider the case n = 1. Using Proposition 3.6, (32) can
be rewritten as

∫ σ′0

s
ds
∫ τ ′0

t
dt
∫ m

m
dx
∫ m

x
dy
∫ s

s
du1

∫ σ′0

s
du2

∫ x

m
dm1

(

ps(x)qt(y)

(φ(m− x,m− y,m, s− s)/((s− s)(σ′
0 − s)(x−m)φ(m− x, 0, m, s− s))

−f(s, s, x, y; u1, u2, m1)φ(y −m,m1 −m,m, t− t)/φ(y −m, 0, m, t− t)
)

The integral is then evaluated by picking a point (u1, s, u2; t;m1, x, y) at random ac-
cording to the uniform distribution on the product of three simplices

{s ≤ u1 ≤ s ≤ u′1 ≤ σ′
0} × {t ≤ t ≤ τ ′0} × {m ≤ m1 ≤ x ≤ y ≤ m},

taking the average value of the function in parenthesis at these points, and multiplying
by the product of the volumes of the simplices. The case n = 2 is similar, but the
integral is then 13-dimensional. The computations were carried out on a Sun Sparc-
station using a program written in C. The random number generator used was the
standard random() function supplied with C-compilers. A point was chosen at ran-
dom on a simplex by first picking the point at random uniformly in the corresponding
hyper-rectangle, then ordering the components. The computation was done for m = 1,
σ′

0 −s = 1 and τ ′0 − t = 1 using k random points, with various values of k (between 100
and 10000) and initial seed for the random number generator. Since the denominator
in formulas (26)–(28) and (29)–(30) can be arbitrarily close to 0, we in fact fixed ε > 0
and picked a point at random in the product of three simplices

{s+ ε ≤ u1 ≤ u′1 ≤ σ′
0 − ε} × {t+ ε ≤ t ≤ τ ′0 − ε} × {m+ ε ≤ m1 ≤ x ≤ y ≤ m− ε},
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Figure 2: Distribution of the percentage of bubble area.

yielding an underestimate of the actual integral. Averaging out these results gave the
following values for the average area an of points with curvature number n for n = 1, 2:

a1 = 0.318, a2 = 0.060.

Hence, a reasonable lower bound for the expected area of points with curvature number
≤ 2 would be 0.378. For comparison, the expected are of {B > b} ∩ ([s, σ′

0] × [t, τ ′o])
was also computed, and found to be near 0.512.

These numerical results have been checked by doing 1000 direct simulations on a
NeXT station of the two processes B and b started at the bottom of an excursion (so
each is a Bessel(3) process), constructing the bubble from these and determining the
area of the set of points with a given curvature number. The approximate Bessel(3)
processes are constructed by taking the modulus of a three-dimensional random walk.
The average area an of points with curvature number n is given below for n = 1, . . . , 5.

a1 = 0.328, a2 = 0.099, a3 = 0.018, a4 = 0.0026, a5 = 0.0003 .

An empirical approximation of the conditional density function of the random variable

Z = 100 × area of C0/ area of R0,

given m = 1, was obtained by counting the proportion qj of times the plotted area fell
into the interval ]j/10, (j + 1)/10]. The results are given in Figure 2.

26



5 The asymptotic area of high local excursions of

the Brownian sheet

In this section, we use the results of the previous sections to determine the asymptotic
distribution of the area of components of {W > 1} which correspond to high excur-
sions that we encounter as we approach (S, 1) along certain curves, where {W (s, t), s ≥
0, t ≥ 0} is the standard Brownian sheet and (S, 1) is the point defined in the intro-
duction. Consider the processes B, b and x that enter into the decomposition (1) of
W near (S, 1).

We recall briefly the result of [1, Section 3]. For β > 0, let

ψβ(s) = s(log(1/s))−2(log log(1/s))−β,

fix κ > 0, and for n ∈ NI , let In = [e−n, e1−n]. In the proof of [1, Theorem 3.1] (see also
[1, Remark 3.2], it was shown that if β ≤ 2, then there are infinitely many s for which
1 −W (S − s, 1) = b(s) is unusually small while W (S − s, 1 + ψβ(s)) is comparatively
large. More precisely, let νn be the unique time in In for which b(νn) = minIn b. Then
there are infinitely many n such that

W (S − νn, 1 + ψβ(e
−n)/S) > 1 + κψβ(e

−n)
1
2 and b(νn) < ψβ(e

−n)
1
2 .(33)

In view of (1), the components of {W > 1} which correspond to the highest excursions
of W above 1 are those which intersect the vertical segment {S − νn}× [1,∞). Notice
that the typical magnitude of b(νn) is

√
νn, so (33) describes a somewhat unusual event.

Let Qn be the component of {(s, t) : W (S − s, 1 + t/S) > 1} which contains
(νn, ψβ(e

−n)). This component may be empty if for instance, W < 1 at this point,
but according to the above, it will be non-empty for infinitely many n.

In [1, Theorems 3.9 and 3.11], we gave bounds on the asymptotic height and width
of Qn. Here, we want to go deeper into the study of functionals of Qn which are
authentically two-dimensional. The most natural such functional is the area An of
Qn, and we are going to identify the asymptotic conditional distribution of An given
conditions (33).

Let {c(u), u ∈ RI } be a process such that c(0) is uniform on [0, 1] and (c(u) −
c(0), u ≥ 0) and (c(−u)−c(0), u ≥ 0) are independent Bessel(3) processes independent
of c(0). Let {B̃(v), v ≥ 0} be a Brownian motion independent of c, and let A be the
area of the component Q of {(u, v) : B̃(v) − c(u) > 0} which contains (0, 1).

Theorem 5.1 As n→ ∞, the conditional distribution on (RI ,B(RI )) of ψβ(e
−n)−2An

given conditions (33) converges to the conditional distribution of A given B̃(1)−c(0) >
κ.
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Remark 5.2 (a) Theorem 5.1 describes the following situation. An observer ap-
proaches the point (S, 1) along the curve t = 1 + ψβ(S − s). He observes a sequence
of excursions of W high above level 1, and chooses a subsequence by looking at both
their height and the values of W along the line t = 1 used to define S. The theorem
says that the conditional distribution of the area of these bubbles, suitably normalized,
converges to that of the random variable A.

(b) The main idea in the proof of the theorem is that if the height of an excursion
of W above 1 is large compared to the error term in the approximation (1), then this
component is not very different from the components of {B > b} that we studied in the
previous sections. Our particular method for selecting the component is not essential
for the proof of this result or for the distribution of the limiting processes B̃ and c,
but different methods would lead to a different conditioning of the limit process and
possibly to a different normalization factor.

Lemma 5.3 Suppose (Bn) and (cn) are sequences of continuous processes that con-
verge weakly to B̃ and c respectively. Let A′

n be the area of the component Q′
n of

{(u, v) : Bn(v) − cn(u) > 0}

which contains (0, 1). Then A′
n converges weakly to A.

Proof. By a theorem of Skorohod [4, Chapter 1, Theorem 2.7], we can assume that
Bn, cn, B̃ and c are all defined on the same probability space, and that Bn(·) → B̃(·)
and cn(·) → c(·) uniformly on compact sets with probability one. We are going to
prove that in this case, A′

n → A a.s., which will establish the lemma.
Notice that if (u, v) ∈ Q, then there is ε > 0 and a path Γ ⊂ Q, with extremites

(0, 1) and (u, v), along which B̃− c > ε. Therefore, for sufficiently large n, B̃n− cn > 0
along this path, and so (u, v) ∈ Qn. This implies that Q ⊂ lim inf Qn, so A ≤ lim inf A′

n

a.s.
We now show that

lim supQn ⊂ (Q ∪Q0),(34)

where Q0 ⊂ {(u, v) : B̃(v)− b(u) = 0}. Since the u-sections of this set are level sets of
B̃, hence have Lebesgue measure 0, this last set a.s. has zero two-dimensional Lebesgue
measure, and so (34) will imply lim supA′

n ≤ A a.s., and the proof will be complete.
To prove (34), we need the following fact. If b1 and b2 are two independent non-

degenerate diffusions, and Ei is the set of local extremum values of bi, i = 1, 2, then
P{E1∩E2 6= φ} = 0 (Since the local minimum and maximum of b1 on each dyadic inter-
val has a continuous distribution and b1 and b2 are independent, each local extremum
value of b1 will belong with probability 0 to the countable set of local extremum values
of b2). In particular, the sets of local extremum values of B̃ and c are a.s. disjoint.

Assume that (u0, v0) ∈ Qn for infinitely many n. In order to establish (34), it is
sufficient to prove that if B̃(v0) − b(u0) > 0, then (u0, v0) ∈ Q.
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In view of Remark 2.3 (b) and by property (P) of Section 2, Q is inscribed in a
rectangle R = [σ, σ′] × [τ, τ ′] with the following properties:

c(σ) = c(σ′) = max
v∈[τ,τ ′]

B(v) and B̃(τ) = B̃(τ ′) = min
u∈[σ,σ′]

c(u),

on [σ, σ′], c is accomplishing an excursion below level c(σ) and on [τ, τ ′], B̃ is accom-
plishing an excursion above level B̃(τ). Assume to begin with that (u0, v0) 6∈ R. By
the fact mentioned above, c does not have a local maximum value at level c(σ), nor
does B̃ have a local minimum value at level B̃(τ). Due to the continuity of B̃ and c,
there are ε, ε′, η, η′ > 0 and α > 0 such that

c(σ − ε) = c(σ′ + ε′) > c(σ) + α, B̃(τ − η) = B̃(τ ′ + η′) < B̃(τ) − α,

and
min

u∈[σ−ε,σ′+ε′]
c(u) = min

u∈[σ,σ′]
c(u), max

v∈[τ−η,τ ′+η′]
B̃(v) = max

v∈[τ,τ ′]
B̃(v).

Therefore, on the boundary of the rectangle [σ − ε, σ′ + ε′] × [τ − η, τ ′ + η′], we have
B̃ − c < −α, and therefore (u0, v0) does not belong to Qn for sufficiently large n, a
contradiction.

It follows that (u0, v0) is in the interior of R. Assume that (u0, v0) 6∈ Q. In this
case, we apply Algorithm A with B replaced by B̃ and b replaced by c. The algorithm
will stop after k steps, say, and output NO. When this occurs, the algorithm has
in fact constructed the rectangle R̃ which circumscribes the component of {(u, v) :
B̃(v) − c(u) > 0} which contains (u0, v0), and which satisfies property (P) of Section
2. On the boundary of R̃, we have B̃ − c ≤ 0, but if we extend R̃ slightly as we did
above and use the fact that the local extremum values of B̃ and c are disjoint, then
we obtain a larger rectangle containing (u0, v0) on the boundary of which B̃ − c < −α
for some α > 0. Therefore, (u0, v0) 6∈ Qn for all sufficiently large n, a contradiction. It
follows that (u0, v0) ∈ Q, and the lemma is proved. ♣

Proof of Theorem 5.1. Define

B′
n(t) = ψβ(e

−n)−
1
2B(ψβ(e

−n) t), b′n(s) = ψβ(e
−n)−

1
2 b(e−n + ψβ(e

−n) s),

and an = e−n(e− 1)/ψβ(e
−n). Set εn = e3(1−n)/4. By [1, (17)–(18)], the component of

{(s, t) : B(t) − b(s) ± εn > 0, s ≥ e−n, t ≥ 0}(35)

which contains (νn, ψβ(νn)) is a superset/subset of Qn. Notice that components C of
the set (35) are in one-to-one correspondence with components C ′ of the set

{(s, t) : B′
n(t) − b′n(s) ± εn/ψβ(e

−n) > 0, 0 ≤ s ≤ an, 0 ≤ t},(36)
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and the ratio of the area of C to that of C ′ is ψβ(e
−n)2. The component Qn cor-

responds to the component Q′
n of the set (36) which contains (ν ′n, 1), where ν ′n =

(νn − e−n)/ψβ(e
−n).

Notice that B′
n is a Brownian motion independent of b′n, for all n, so distributional

properties are unchanged if we replace B′
n by B̃. By the Markov property and scaling,

b′ is a Bessel(3) process. The distribution of b′n(0) is that of e−n/2ψβ(e
−n)−

1
2 b(1). In

particular, b′n(0) → ∞.
For −ν ′n ≤ u ≤ an, let cn(u) = b′n(ν

′
n + u). In order to complete the proof, we only

need to check that the conditional distribution of the process (cn(u)) given

B̃(1) − cn(0) ± εn/ψβ(e
−n) > κ and cn(0) < 1(37)

converges to the conditional distribution of c given B̃(1)−c(0) > κ, since the conclusion

of the theorem will then follow from Lemma 5.3 and the fact that εn/ψβ(e
−n)

1
2 → 0.

For this, let α be a random variable with the distribution of b(1) under Q0, set

dn = e−n/2/ψβ(e
−n)

1
2 , αn = dn α and T n1 = inf{s ≥ 0 : b′n(s) = 1}. By the strong

Markov property of b′n and [8, Chap. XII, Cor. (4.4)], the C(RI +, RI )×(C(RI +, RI )×RI )-
valued random variable

((b′n(T
1
n − u), 0 ≤ u ≤ T 1

n), ((b′n(T
1
n + u), u ≥ 0), min

[0,an]
b′n))

has the same conditional distribution given (37) as Zn given B̃(1)−min[0,an−σαn−1] b̂±
εn/ψβ(e

−n) > κ, where

Zn = ((1 + b̃(u), 0 ≤ u ≤ σαn−1), ((b̂(u), u ≥ 0), min
[0,an−σαn−1]

b̂)),

b̃ and b̂ are independent Bessel(3) processes started respectively at 0 and 1, independent
of α, and for a ∈ RI +, σa = inf{u ≥ 0 : b̃(u) = a}. Notice that αn → ∞, so σαn−1 → ∞,
and an − σαn−1 ∼ d2

n(e− 1 − σα) → ∞ in distribution, so

ZnI
{B̃(1)−min[0,an−σαn−1] b̂±εn/ψβ(e−n)

1
2>κ}

→ ZI{B̃(1)−min[0,∞) b̂>κ}

in distribution, where Z = ((1 + b̃(u), u ≥ 0), ((b̂(u), u ≥ 0), min[0,∞) b̂)). Let

T1 = sup{u ≤ 0 : c(u) = 1}. Then since min[0,∞) b̂ is uniform on [0, 1] by [8, Chap.VII,
Cor. (3.4)], the strong Markov property, [8, Chap.VII, Cor. (4.6)] and [8, Chap.VI,
Prop. (3.10)] imply that Z has the same distribution as ((c(T1 − u), u ≥ 0), (c(T1 +
u), u ≥ 0), c(0))), so the proof is complete. ♣
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