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Markov Properties for Certain Random Fields

E. Carnal1 and J. B. Walsh2

Abstract

Lévy’s Markov and sharp Markov properties for random fields are studied,
first in a general setting, and then in the context of two-parameter processes.
It is shown that if Lévy’s Markov property holds relative to finite unions of
sets in some neighborhood base, then it holds for all bounded open sets. Two-
parameter Gaussian processes which satisfy the usual Markov property along
certain one-parameter curves are shown to satisfy Lévy’s Markov property;
they are in fact transforms of the Brownian sheet. Finally, a new proof is
given that the Poisson sheet satisfies Lévy’s sharp Markov property relative
to all bounded relatively convex open sets.

1 Introduction

Let E be a topological space and let {Xt, t ∈ E} be a stochastic process
with parameter set E. There are a number of legitimate generalizations of
the Markov property for X. One of the most appealing was suggested by
P. Lévy. It is roughly this. If A ⊂ E, then the processes {Xt, t ∈ A} and
{Xt, t ∈ Ac} are conditionally independent given {Xt, t ∈ ∂A}. If one thinks
of A as the “past”, of Ac as the “future”, and of ∂A as the “present”, this
becomes the statement that the past and future are conditionally independent
given the present, which is just the ordinary Markov property. We call this
the sharp Markov property below; there are others which are equally relevant
in certain situations, and even the sharp Markov property must be modified
slightly if it is to apply to a large class of processes.

1This paper is based on a portion of the first author’s doctoral dissertation. Tragically,
E. Carnal died while this manuscript was still in a preliminary state. The present version
has been assembled by the second author from the preliminary version and the thesis, with
an additional section suggested by the first author’s unfinished work.

2Department of Mathematics, University of British Columbia
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Our aim is to look at several of these Markov-like properties and the
relations between them. The basic question addressed in the first section
is this: if the Markov property holds for a certain class of sets, when can
it be extended to a larger class? The second and third sections are largely
influenced by the Brownian sheet, a process whose parameter set is RI 2

+ so
the Markov properties we look at are connected with the order properties
of the plane. We concentrate on Gaussian processes in section two, and the
Poisson sheet in section three.

2 Markov Properties and Conditional Inde-

pendence

Let (E, d) be a separable metric space, and let (Ω,F , P ) be a probability
space. Suppose that for each subset A ⊂ E there exists a sub-σ-field of F ,
denoted F(A), and that for any sequence A1, A2, . . . of sets, F(

⋃

nAn) =
∨nF(An). Let X denote the collection of these σ-fields: X = {F(A) : A ⊂
E}. If the F(A) are generated by a stochastic process, say F(A) = σ{Yt, t ∈
A}, we say that X is the natural filtration of the process. However, there
are many situations in which no process enters, so we will concentrate on the
σ-fields rather than on the processes.

For A ⊂ E, define
G(A) =

⋂

ε>0

F(Aε) .

where Aε = {x : d(x,A) < ε}. We call G(A) the germ field of A.
Let A, B, and C be σ-fields. We write A ⊥ B | C to mean that A and B are

conditionally independent given C, and we say that C is a splitting field for
A and B. Let us recall several useful properties of conditional independence.
The first lemma is immediate and the second is due to Hunt [5].

Lemma 2.1 (i) A ⊥ B | C if and only if for all A ∈ A,

P{A | B ∨ C} = P {A | C} ;

(ii) if A′ ⊂ A and B′ ⊂ B, then

A ⊥ B | C =⇒ A′ ⊥ B′ | C .
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Lemma 2.2 Suppose D ⊂ A ∪ B is a collection of subsets of Ω. (Caution:
A ∪ B, not A ∨ B.) If A ⊥ B | C then

(i) A∨ C ⊥ B ∨ C | C;
(ii) A ⊥ B | C ∨ σ(D).

We will often use part (ii) in the following form: if D1 ⊂ A and D2 ⊂ B
then A ⊥ B | C ⇒ A ⊥ B | C ∨ σ(D1) ∨ σ(D2).

Lemma 2.3 Suppose C1, C2, D1, and D2 are σ-fields, with C1 ∪ C2 ⊂ B.
Then

(i) if A ⊥ B | Ci, i = 1, 2, then A ⊥ B | C1 ∩ C2 .
(ii) If A ⊥ B | D1 ∨ D2 and A ⊥ D2 | D1, then A ⊥ B ∨D2 | D1 .

Proof. (i) is due to McKean [7], and (ii) follows from Lemma 2.1:

P{A | B ∨ D1 ∨ D2} = P{A | D1 ∨ D2} = P{A | D2}

for A ∈ A. ♣

If the σ-fields X are generated by a Gaussian process, we have an addi-
tional property whose proof is elementary.

Lemma 2.4 Suppose X is the natural filtration of a Gaussian process. Let
A, B1, B2, and C be subsets of E. If F(A) ⊥ F(Bi) | F(C), i = 1, 2, then
F(A) ⊥ F(B1 ∪ B2) | F(C).

Definition 2.1 X has the sharp Markov property (SMP) relative to a
set A ⊂ E if F(A) ⊥ F(Ac) | F(∂A). X has the Markov property (MP)
relative to a set A ⊂ E if F(A) ⊥ F(Ac) | G(∂A).

Here are some elementary facts about the SMP and the MP which follow
easily from the above lemmas.

Proposition 2.5 The following three statements are equivalent:
(i) X has the SMP relative to A;
(ii) F(Ā) ⊥ F(Āc) | F(∂A) ;
(iii) F(A \ ∂A) ⊥ F(Ac \ ∂A) | F(∂A) .
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Proof. F(Ā) = F(A)∨F(∂A) and F(Āc) = F(Ac)∨F(∂A), so (i) ⇒ (ii)
by Lemma 2.2 (i). Note that (iii) ⇒ (ii) by the same reasoning, while both
implications (ii) ⇒ (i) and (ii) ⇒ (iii) follow from Lemma 2.1 (ii). ♣

Proposition 2.6 The following are equivalent:
(i) X has the MP relative to A;
(ii) if G is a neighborhood of ∂A, then

F(A) ⊥ F(Ac) | F(G) ;

(iii) G(A) ⊥ G(Ac) | G(∂A) .

Proof. Note that F(G) = F(G∩A)∨F(G∩Ac) , and let D = F(G∩A)∪
F(G ∩ Ac) in Lemma 2.2 (ii) to see that (i) ⇒ (ii).

To see that (ii) ⇒ (iii), let Λ1 ∈ G(A), Λ2 ∈ G(Ac), and let Gn be a 1
n
-

neighborhood of ∂A. By (ii) and Lemma 2.2 (i), F(A ∪Gn) ⊥ F(Ac ∪Gn) |
F(Gn) so P{Λ1 ∩ Λ2 | F(Gn)} = P{Λ1 | F(Gn)}P{Λ2 | F(Gn)}. Note that
⋂

n F(Gn) = G(∂A), so that the martingale convergence theorem can be ap-
plied to each term to see that P {Λ1 ∩ Λ2 | G(∂A)} = P {Λ1 | G(∂A)}P {Λ2 | G(∂A)} .

Finally, (iii) ⇒ (i) by Lemma 2.1 (ii). ♣

Proposition 2.7 If X has the SMP relative to A, it also has the MP relative
to A.

Proof. By Lemma 2.2 (ii), F(A) ⊥ F(Ac) | F(G) for any neighborhood
G of ∂A, and the result follows from Proposition 2.6. ♣

Proposition 2.8 Let A1 and A2 be subsets of E such that ∂(A1 ∪ A2) =
∂A1∪∂A2 . If X has the SMP (respectively MP) relative to Ai, i = 1, 2, then
X has the SMP (respectively MP) relative to A1 ∪A2.

Proof. Suppose X has the SMP relative to Ai, i = 1, 2. Let Di = ∂Ai.
By Proposition 2.5, F(Āi) ⊥ F(Āc

i) | F(Di), i = 1, 2. Let D = F(Ā2 ∩ Ā1)∪
F(Ā2 ∩ Ā

c
1). Then σ(D) = F(Ā2), so by Lemma 2.2 (ii),

F(Ā1) ⊥ F(Āc
1) | F(D1) ∨ F(Ā2) .
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Similarly, F(D1) = F(D1 ∩ A2) ∨ F(D1 ∩ Ac
2), so a second application of

Lemma 2.2 (ii) shows that F(Ā2) ⊥ F(Āc
2) | F(D1 ∪D2).

By Lemma 2.1 (ii),

F(Ā1) ⊥ F(Ac
1 ∩ A

c
2) | F(D1) ∨ F(Ā2)

and
F(Ā2) ⊥ F(Ac

1 ∩ A
c
2) | F(D1 ∪D2) .

By Lemma 2.3 (ii) with D1 = F(D1 ∪D2), and D2 = F(Ā2),

F(Ā1 ∪ Ā2) ⊥ F(Ac
1 ∩A

c
2) | F(D1 ∪D2) .

But D1 ∪D2 = ∂(A1 ∪ A2), so this implies the SMP relative to A1 ∪ A2.
If X has the MP relative to A, repeat the argument with the Di replaced

by neighborhoods Gi of ∂Ai, and apply Proposition 2.6. ♣

Proposition 2.9 Let (Gn) be a sequence of disjoint open sets. If X sat-
isfies the SMP (respectively MP) relative to each Gn, it satisfies the SMP
(respectively MP) relative to

⋃

nGn.

Proof. Suppose X satisfies the SMP relative to each Gn. Since ∂(
⋃N

1 Gn) =
⋃N

1 ∂Gn for each N , Proposition 2.8 and an induction argument imply that
X has the SMP relative to

⋃N
1 Gn. Fix N and let Λ ∈ F(

⋃N
1 Gn). For m > N

the SMP implies that

P {Λ | F(
⋂m

1 G
c
n)} = P {Λ | F(

⋃m
1 ∂Gn)} .

Let m→ ∞. By the martingale convergence theorem,

P {Λ |
⋂∞

m=1 F(
⋂m

n=1G
c
n)} = P {Λ | F(

⋃∞
1 ∂Gn)} .

Let G =
⋃∞

1 Gn. Then Gc =
⋂∞

1 Gc
n ⊃ ∂G ⊃

⋃∞
1 ∂Gn, so that

⋂∞
m=1 F (

⋂m
1 G

c
n) ⊃ F (

⋂∞
1 Gc

n) = F (Gc) ⊃ F(∂G) ⊃ F (
⋃∞

1 ∂Gn).

Thus it follows that P {Λ | F(Gc)} = P {Λ | F(∂G)} , since both sides equal
P {Λ | F (

⋃∞
1 ∂Gn)} . This is true for Λ ∈ F(

⋃N
1 Gn) for any N , hence for

Λ ∈
∨∞

1 F(Gn) = F(G) . By Lemma 2.1, we are done. The argument for the
MP is similar. ♣
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Corollary 2.10 Suppose the space E is connected and locally connected and
that the SMP (respectively the MP) holds for every open connected set whose
complement is also connected. Then it holds for every open set.

Proof. If G is open, write G =
⋃

nGn, where the Gn are the connected
components of G. Let On = (Ḡn)

c and let (Onj) denote the connected
components of On. If A is an open set containing Ḡn, it must intersect
each Onj. Indeed, if it missed Onj, say, then Onj and A ∪

(

⋃

k 6=j Onk

)

would

disconnect Ḡn ∪ (
⋃

k Onk) = E . It follows that Oc
nj = Ḡn ∪

(

⋃

k 6=j Onk

)

is

connected. Thus the hypothesis applies to the Onj: the SMP (respectively
MP) holds for each Onj, hence for On =

⋃

nOnj by Proposition 2.9. As
Oc

n = Ḡn, we have
F(On) ⊥ F(Ḡn) | F(∂On) ,

(respectively, F(On) ⊥ F(Ḡn) | G(∂On)), hence by Proposition 2.5 (respec-
tively Proposition 2.6 and Lemma 2.1 (ii)) the SMP (respectively MP) holds
for Gn. A final application of Proposition 2.9 shows that the SMP (respec-
tively MP) holds for G. ♣

Let A △ B = (A \ B) ∪ (B \ A) denote the symmetric difference of A
and B. For x ∈ E, let d(x,B) = inf{d(s, y) : y ∈ B} . For any set B, let
Nε(B) = {x : d(x,B) < ε} be the ε-neighborhood of B. The next results
concern the MP rather than the SMP. We first show that if the MP holds
for a class of sets which approximate A well enough, it also holds for A.

Theorem 2.11 Let A ∈ E and let {Aα, α ∈ T} be a family of sets with the
property that for each ε > 0 there is an α ∈ T such that A△Aα ⊂ Nε(∂A) .
Then if X has the MP relative to Aα for each α ∈ T , it also has the MP
relative to A.

Proof. Let ε > 0 and let G = Nε(∂A) . There exists α such that Aα△A ⊂
G . Thus A\G = Aα \G and Ac \G = Ac

α \G . It follows that ∂Aα ⊂ G . By
hypothesis and Proposition 2.6, F(Aα) ⊥ F(Ac

α) | F(G) , hence by Lemma
2.2 (i),

F(Aα ∪G) ⊥ F(Ac
α ∪G) | F(G) .

Since A ⊂ Aα∪G andAc ⊂ Ac
α∪G , Lemma 2.1 (ii) implies that F(A) ⊥ F(Ac) | F(G) ,

and the result follows from Proposition 2.6. ♣
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Notice that we gain nothing by assuming that X has the SMP—not just
the MP—relative to each Aα, for the conclusion would still only be that X
satisfied the MP relative to A. One can use this theorem when the Aα are
sets which either increase or decrease to A. Here is a typical application.

Corollary 2.12 Let A be a class of open subsets of E which contains a
neighborhood basis of connected subsets of E. Let Af be the class of all finite
unions of sets in A. Then if X has the MP relative to each set in Af , it has
the MP relative to each relatively compact open subset of E.

Proof. Let G be open and relatively compact in E, and let ε > 0. Then
Ḡ is compact, and can be covered by a finite number, say A1, . . . , An of
connected elements of A which have diameter less than ε/2. By throwing
away some of the Ai if necessary, we may assume that each Ai intersects Ḡ.
Let A =

⋃n
i=1Ai . Now G ⊂ Ḡ ⊂ A, so ∂G ⊂ A \G = A△G . If z ∈ A△G,

then z ∈ Aj for some j; since Aj ∩ Ḡ 6= φ, Aj must contain points of Ḡ and
of Gc. Since Ai is connected by hypothesis, it must contain points of ∂G
(otherwise, Ai ∩G and Ai ∩ (Ḡ)c would disconnect Ai). Thus d(z, ∂G) < ε ,
hence A△G ⊂ Nε(∂G), and the result follows from Theorem 2.11. ♣

3 Markov Properties in the Plane

Let I and J be intervals, not necessarily bounded or open, and let E = I×J .
By rectangle, we mean a bounded sub-rectangle of E of the form I ′×J ′, where
I ′ ⊂ I and J ′ ⊂ J . We define the partial order ≺ and its complementary

order
c
≺ by

(s, t) ≺ (s′, t′) iff s ≤ s′ and t′ ≤ t ;

(s, t)
c
≺ (s′, t′) iff s ≤ s′ and t ≥ t′ .

Generalizations of the results of this section from RI 2 to RI n are straightfor-
ward for the most part, though they may be messy. For instance, one needs
2n−1 partial orders in RI n in place of the two above. We will confine our
remarks to RI 2 for simplicity.

We will define several versions of the Markov property. Our main concern
is with Gaussian processes, so we will consider the case where X is the natural
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filtration of a Gaussian process Y = {Yz, z ∈ E} . If z = (s, t), we will often
write Y (s, t) in place of Yz.

Definition 3.1 X satisfies the Markov property (resp. sharp Markov

property) if it has the MP (resp. SMP) relative to all open relatively com-
pact subsets of E. X has the elementary Markov property if it has the
MP relative to all finite unions of open rectangles. X has the order Mar-

kov property if, whenever γ = {γ(u), u ∈ [0, 1]} is a parameterized curve
in E with the property that γ is increasing relative to either of the two partial

orders ≺ or
c
≺, that {Yγ(u), u ∈ [0, 1]} is a Markov process.

There are many other Markov-type properties which have been suggested
for two-parameter processes. Wong and Zakai [14] have studied a property
which is related to both the MP and the order MP, and Nualart and Sanz
[10] and Korezlioglu et al [6] have considered a closely related property.

Proposition 3.1 The MP and the elementary MP are equivalent.

Proof. The MP clearly implies the elementary MP. The converse follows
from Corollary 2.12 since the rectangles form a base for the topology of E.♣

We will now specialize to centered Gaussian processes, for which Markov
properties are more tractable. For a mean-zero Gaussian process {Yz, z ∈ E} ,
the order MP reduces to the following:

if z1, z2, and z3 are points in E for which either z1 ≺ z2 ≺ z3
or z1

c
≺ z2

c
≺ z3, then Yz1

⊥ Yz2
| Yz3

.

If Γ(z, z′) is the covariance function of Y , then it is easily seen that
Yz1

⊥ Yz2
| Yz3

if and only if

Γ(z1, z3) = Γ(z1, z2)Γ(z2, z3)(Γ(z2, z2))
−1(1)

with the convention that 0
0

= 0 .
The MP for a Gaussian process evidently reduces to a study of the covari-

ance function. We say a covariance function Γ(z, z′) is of Markov tensor

product type, or more simply, of product type, if there exist covariance
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functions Γ1(s, s
′), s, s′ ∈ I and Γ2(t, t

′), t, t′ ∈ J , each of which is the covari-
ance function of a one-parameter Gaussian Markov process, and a function
f on E such that, if z = (s, t) and z′ = (s′, t′), then

Γ(z, z′) = f(z)f(z′)Γ1(s, s
′)Γ2(t, t

′) .(2)

For example, the Brownian sheet {W (s, t), s ≥ 0, t ≥ 0} is a Gaussian
process which has a covariance function of product type:

Γ((s, t′), (s′, t′)) = (s ∧ s′)(t ∧ t′) .(3)

Theorem 3.2 Suppose Y is a mean zero Gaussian process with a contin-
uous covariance function which does not vanish on the diagonal. Then the
following are equivalent.

(i) Y has the order MP;
(ii) Γ is of product type;
(iii) there exist continuous increasing functions f on I and g on J , a

continuous function h on E, and a Brownian sheet W , such that

Y (s, t) ≡ h(s, t)W (f(s), g(t)) ,

where “≡” means equivalence in distribution.

Proof. (i) ⇒ (ii). By taking Zz = Γ(z, z)−
1

2Yz if necessary, we can as-
sume that Γ(z, z) = 1. Let z1, z2, and z3 be in E. The condition (2) that
Yz1

⊥ Yz2
| Yz3

becomes

Γ(z1, z3) = Γ(z1, z2)Γ(z2, z3) .(4)

Let z = (s, t) ≺ (s′, t′) = z′ and put z̄ = (s, t′) and z = (s′, t). Both
z ≺ z̄ ≺ z′ and z ≺ z ≺ z′, so

Γ(z, z′) = Γ(z, z̄)Γ(z̄, z′) = Γ(z, z)Γ(z, z′) .(5)

Furthermore, both z̄
c
≺ z′

c
≺ z′ and z̄

c
≺ z

c
≺ z so

Γ(z̄, z) = Γ(z̄, z′)Γ(z′, z) = Γ(z̄, z)Γ(z, z)(6)

Divide the second two terms of (5) by the corresponding terms of (6). Since
Γ is symmetric, we see that Γ(z, z̄)2 = Γ(z, z′)2, so that Γ(z, z̄) = ±Γ(z, z′)
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and hence that Γ(z, z̄) = Γ(z, z′) . Indeed, Γ is continuous and non-vanishing
by (4) and the plus sign holds if z = z̄ = z, so it holds everywhere.

In terms of s and t,

Γ((s, t), (s, t′)) = Γ((s′, t), (s′, t′))

so that the left-hand side depends only on (t, t′), not on s. By symmetry,

Γ((s, t), (s′, t)) = Γ((s, t′), (s′, t′)) ,

which depends only on (s, s′). Putting these together, we define Γ1(s, s
′) =

Γ((s, t), (s′, t)) and Γ2(t, t
′) = Γ((s, t)(s, t′)); then by (5)

Γ((s, t), (s′, t′)) = Γ1(s, s
′)Γ2(t, t

′) .

Now Γ1 is the covariance function of the process {Y (s, t), s, t ∈ I} for fixed
t, which is a Gaussian Markov process since Y is Markovian along horizontal
lines by hypothesis. By symmetry, Γ2 is also a Markovian covariance function,
so Γ is of product type.

(ii) ⇒ (iii): By [7, §3.1] there exist continuous functions ϕi and ψi such
that ϕi/ψi is increasing, and Γi(u, v) = ϕi(u ∧ v)ψi(u ∨ v) . It follows that if
W (s, t) is a Brownian sheet, the process

Z(s, t) = ψ1(s)ψ2(t)W

(

ϕ1(s)

ψ1(s)
,
ϕ2(t)

ψ2(t)

)

has covariance function Γ1Γ2. Thus we take f(s) = ϕ1(s)ψ1(s)
−1, g(s) =

ϕ2(s)ψ2(s)
−1, and h(s, t) = ψ1(s)ψ2(t) .

(iii) ⇒ (i): The map (s, t) 7→ (f(s), g(t)) preserves both partial orders “≺”

and “
c
≺”, so we need only show that the Brownian sheet satisfies the order

MP. This follows by direct calculation using (3). ♣

Corollary 3.3 Suppose that Y is a centered Gaussian process whose covari-
ance is continuous and non-zero on the diagonal. If Y has the order MP, it
also has the MP, and it has the SMP for finite unions of rectangles.
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Proof. The mapping (s, t) 7→ (f(s), g(t)) of E into RI 2
+ preserves order

and set operations, and maps rectangles onto rectangles. By Theorem 3.2,
it is enough to prove the Corollary for the Brownian sheet W . By [11, 3, 2]3

W satisfies the SMP for finite unions of rectangles. Thus it satisfies the MP
by Proposition 3.1. ♣

Remark 3.1 The condition that the covariance function be continuous in
Theorem 3.2 and Corollary 3.3 is not necessary, but it simplifies the proof
enormously. The results are proved in [2] without the continuity condition.

4 Markov Properties of the Poisson Sheet

Let Π be a homogeneous Poisson random measure on the Borel sets B of RI 2
+,

that is

(i) Π(A) is a Poisson r.v. with parameter |A|, A ∈ B;
(ii) If A1, . . . , An are disjoint, Π(Ai), i = 1, . . . , n are independent and

Π(
⋃

iAi) =
∑

i Π(Ai) ,

where |A| is the Lebesgue measure of A. The measure Π is a sum of point
masses. The points form a Poisson point process on RI 2

+. We will use the
symbol Π for both the random measure and the point process. “Points”
below will refer to the points of this process.

If z = (s, t) ∈ RI 2
+, let Rz (or Rst) denote the rectangle [0, s]× [0, t]. The

Poisson sheet {Xz, z ∈ RI 2
+} is defined by Xz = Π(Rz).

It is not hard to see from (i) and (ii) that X satisfies the SMP for rectan-
gles, but it is not obvious that X will satisfy the SMP relative to any much
larger class of sets. The Brownian sheet, for instance, satisfies the SMP for
finite unions of rectangles, but not for many other sets [11, 12, 13, 3]. How-
ever, it turns out that the Poisson sheet satisfies the SMP for all bounded
open sets.

The reason for the difference between the Poisson sheet and the Brown-
ian sheet is in the global behavior: the Brownian sheet is continuous, while
the Poisson sheet has discontinuities which propagate on lines. These dis-
continuities are the key to the SMP. In fact, all two parameter processes of

3This result is difficult. A short and elegant proof has recently been found by Z-M
Yang [15].
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independent increments with no Gaussian part satisfy the SMP with respect
to bounded open sets, though this is a rather delicate fact in the case where
the processes can have negative as well as positive jumps [4].

We will not prove this general theorem here, even for the Poisson sheet;
we will limit ourselves to the special case of relatively convex open sets. (In
fact, because of a delay in publishing this article—due entirely to the second
author—it has been necessary to delete a conjecture in the original version,
to the effect that the result should be true without the restriction of relative
convexity. This conjecture has been proved in part by Merzbach and Nualart
[8], who have shown that the SMP holds for a large class of point processes
and for domains with piecewise-monotone boundaries; and by Dalang and
the second author [4].) Both of the above proofs depend on earlier non-
trivial results. By limiting ourselves to relatively convex sets, we can give a
proof which is elementary and self-contained, and which avoids most of the
cumbersome technicalities which come with increased generality.

The proper notion of convexity for the Poisson sheet is relative convexity.
A set A ⊂ RI 2

+ is relatively convex if for each horizontal or vertical line L,
L ∩A is connected. Thus “relatively convex” means convex relative to hori-
zontal and vertical lines. A convex set is relatively convex, but the converse
is not true. The cross in the Swiss flag, for instance, is relatively convex but
not convex. A relatively convex set need not be connected.

Theorem 4.1 The Poisson sheet satisfies the sharp Markov property rela-
tive to all bounded open relatively convex sets, but not with respect to all
unbounded open relatively convex sets. If A is a bounded open relatively con-
vex set, then F(∂A) is the minimal splitting field of F(A) and F(Ac).

We will deal with the unbounded sets first. Let T be the triangular region
{(s, t) : s > t} ⊂ RI 2

+ . Then ∂T is the diagonal of the first quadrant, and
F(∂T ) = σ{X(t, t), t ≥ 0} . Let

Λ1 = {∃ exactly one point in T ∩ R11}

Λ2 = {∃ exactly one point in T c ∩ R11}

Λ3 = {∃ exactly one point in R11} .

Now Λ3 = {X(1, 1) = 1} ∈ F(∂T ) and Λ1 ∩ Λ2 ∩ Λ3 = φ, so

P
{

⋂3
1 Λi | F(∂T )

}

6= P {Λ1 ∩ Λ3 | F(∂T )}P {Λ2 ∩ Λ3 | F(∂T )}
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since the first probability is zero and each of the last two is strictly positive.
Thus F(T ) is not conditionally independent of F(T c) given F(∂T ) .

Before dealing with the rest of the theorem we need some facts about
relatively convex sets. The reader who is willing to limit himself to convex
sets can skip points 1◦–6◦. In what follows, A is an open, bounded, connected,
relatively convex subset of RI 2

+ . Let I = {s : ∃ t ∋ (s, t) ∈ A} . A is
connected, so I is an interval, say I = (α, β) . For s ∈ I, define M(s) =
sup{t : (s, t) ∈ A} and m(s) = inf{t : (s, t) ∈ A} .

1◦ If M(u) < λ < M(v) , there exists an s between u and v such that
(s, λ) ∈ A.

Proof. If not, the half planes {t < λ and {t > λ} disconnect A.

2◦ There exist s0 and s1, not necessarily unique, such that M increases on
(α, s1) and decreases on (s1, β) ; and m decreases on (α, s0) and increases on
(s0, β) .

Proof. If the statement for M is false there exist λ and u < v < w such
that M(v) < λ < M(u) ∧M(w) . By 1◦, there exist s′ < v < s′′ such that
the points (s′, λ) and (s′′, λ) are in A. By relative convexity, (v, λ) ∈ A
contradicting the definition of M(v).

Extend M and m to α and β by continuity and define M̄(s) = sup{t :
(s, t) ∈ Ā} and m̄(s) = inf{t : (s, t) ∈ Ā} for s ∈ [α, β] . The following facts
are now elementry, so we omit the proofs. We state them for M ; analogous
statements hold for m.

3◦ M̄ ≥M and M̄(s) = M(s) at points of continuity of M . If M has a jump
at s, the vertical line segment with endpoints (s,M(s)) and (s, M̄(s)) forms
part of ∂A. The set N ≡ { jumps of M̄ } is countable.

4◦ ∂A is composed of points {(s,M(s)) : s a continuity point of M}, {(s,m(s)) :
s a continuity point of m}, and vertical segments.

For a more graphical description of A, let a = m̄(s0) and b = M̄(s1).
The points (s0, a) and (s1, b) are the “lowest” and “highest” points of ∂A.
Similarly, there exist t0 and t1 such that (α, t0) and (β, t1) are in ∂A. We
call these four points relative extreme points of A. In terms of these, we have
the following picture of ∂A.

5◦ ∂A consists of four curves, (some of which may be degenerate):

13



the upper left segment UL with end points (α, t0) and (s1, b) ;
the upper right segment UR with end points (s1, b) and (β, t1) ;
the lower right segment LR with end points (s0, a) and (β, t1) ;
the lower left segment LL with end points (α, t0) and (s0, a) .

For example, if A is a disc, the relative extreme points are at three, six,
nine and twelve o’clock, while the curves UL, UR, LR, and LL are respectively
from nine to twelve o’clock, from twelve to three o’clock, from three to six
o’clock, and from six to nine o’clock.

6◦ Let t = c be a horizontal line. Then there is a countable set N1 such
that if c 6∈ N1 and a < c < b , then t = c meets ∂A in exactly two points.
Furthermore, if it meets, say, UL at the point (s, c), either

(i) (s, c) is in the interior of a vertical segment of UL, or
(ii) M is continuous at s and M(s − ε) < M(s) < M(s + ε) for small

ε > 0 .

The Poisson sheet X has integer values. Each point of the point pro-
cess gives rise to a jump discontinuity of X or, rather, since X has a two-
dimensional parameter set, it gives rise to a pair of discontinuities which
originate at the point. One runs horizontally, the other vertically (see figure
1).

r

r

rA

-

6

s

t

X = 0

X = 1
X = 2

X = 3

X = 2

X = 1

Figure 1: The discontinuities of X

When we speak of a discontinuity of X we mean one of these semi-infinite
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line segments, either horizontal or vertical, along which S has a jump discon-
tinuity. If either discontinuity crosses ∂A, it causes a discontinuity of X|∂A.
These jumps of X|∂A give us information about the Poisson measure Π. To
be more explicit, let us define

∆YU(s) = lim
r↓↓s, r∈Q

X(r,M(r)) − lim
r↑↑s, r∈Q

X(r,M(r))

∆YL(s) = lim
r↓↓s, r∈Q

X(r,m(r)) − lim
r↑↑s, r∈Q

X(r,m(r)) .

If we interchange the roles of s and t, we get analogous processes ∆ỸU(t) and
∆ỸL(t). All four are clearly F(∂A)-measurable.

We will use several facts about the Poisson point process without special
mention, such as the fact that with probability one, no two points fall on any
single horizontal or vertical line, and if K is any given set of measure zero,
with probability one no point falls in K, and no two discontinuities of X can
cross in K.

Lemma 4.2 For a.e. ω, the following hold.
(i) If Π({(s, t)}) = 1 then

(a) t < m(s) and s ∈ (α, β) \N ⇒ ∆YL(s) = 1 ;
(b) t < M(s) and s ∈ (α, β) \N ⇒ ∆YU(s) = 1 .

(ii) Conversely, suppose s ∈ (s1, β) \N and ∆YU(s) = 1 , where s1 is defined
in 2◦. Then ∃ t < M(s) ∋ Π({(s, t)}) = 1 .
(iii) If s ∈ (α, s1) \N and ∆YU(s) = 1 . Then either

(a) ∃ t < M(s) ∋ Π({(s, t)}) = 1 or
(b) ∃ s′ < s ∋ Π({(s′,M(s))}) = 1 , and ∆ỸU(M(s)) 6= 0 .

Proof. (i) See figure 1.
(ii) If ∆YU(s) 6= 0 and s 6∈ N , there is a discontinuity of S passing through
∂A at (s,M(s)). Since s > s1, the point is in UR, and s 7→ M(s) is strictly
decreasing by 6◦. If the discontinuity is horizontal, ∆YU(s) = −1 (see figure
1), a contradiction. Thus it is vertical, and comes from a point located at
(s, t) for some t < M(s).
(iii) If (a) doesn’t hold, the discontinuity through (s,M(s)) is horizontal.
By 6◦ M is strictly increasing there, so the discontinuity must enter A at
(s,M(s)), and it must then exit to the right at some point (s′′,M(s)), causing
a discontinuity of X|∂A, hence ∆ỸU(M(s)) 6= 0 . ♣
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Let D0 be the collection of sets of the forms

VU(c, d) ≡ {(s, t) : c < s < d, 0 < t < M(s)} ;

VL(c, d) ≡ {(s, t) : c < s < d, 0 < t < m(s)} ;

along with their counterparts HU(c, d) and HL(c, d), gotten by interchanging
s and t, and sets of the form Rz, for z ∈ ∂A. (VU and VL are vertical strips
bounded above by portions of ∂A, and HU and HL are horizontal strips
bounded to the right by portions of ∂A.) Let D′ be the class of sets of the
form B \ A, for sets A ⊂ B such that A,B ∈ D0. Then let D be the class
of finite disjoint unions of sets in D′. The following lemma is the key to the
SMP.

Lemma 4.3 If D ∈ D, then Π(D) is F(∂A)-measurable.

Proof. It is enough to show measurability for the sets in D0. By Lemma
4.2 (i),

Π(VL(c, d)) = #{s ∈ (c, d) \N : ∆YL(s)∆YU(s) 6= 0} ,

where N is the countable set of 3◦. This is F(∂A)-measurable. If c > s1,

Π(VU(c, d)) = #{s ∈ (c, d) \N : ∆YU(s) = 1}

by Lemma 4.2 (i) and (ii), while if d ≤ s1 , Lemma 4.2 (i) and (iii) imply
that

Π(VU(c, d)) = #{s ∈ (c, d) \N : ∆YU(s) = 1 and ∆ỸU(M(s)) = 0} .

Thus these are F(∂A)-measurable.
The same is true of HU(c, d) and HL(c, d) by symmetry, and Π(Rz) = Xz

which is F(∂A)-measurable if z ∈ A. ♣

Let

X1
z = Π(Rz ∩A)

X2
z = Π(Rz ∩A

c) .

Then X1 and X2 are independent processes, and Xz = X1
z +X2

z .
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Lemma 4.4 (i) z ∈ Ā⇒ X2
z ∈ F(∂A) ;

(ii) z ∈ Ac ⇒ X1
z ∈ F(∂A) .

Proof. Let z = (s, t) ∈ Ā . We claim Rz ∩A
c ∈ D, which will prove (i) by

Lemma 4.3. We can choose s′ ≤ s and t′ ≤ t such that (s′, t′) ∈ LL. Then

Rst ∩ A
c = Rs′t′ ∪ VL(s′, s) ∪HL(t′, t) ∈ D .

Similarly, Rz ∩A ∈ D if z ∈ Ac . We leave the verification to the reader. ♣

We can now prove the theorem.

Proof of Theorem 4.1. Let A be a bounded open relatively convex set.
Each connected component is necessarily relatively convex and bounded, so
by Proposition 2.9 we may as well assume that A itself is open, connected,
bounded and relatively convex. Notice that

F(Ā) = σ(X1) ∨ F(∂A) , F(Ac) = σ(X2) ∨ F(∂A) .(7)

Indeed, X = X1 + X2 and σ(X1) ∈ F(Ā) , so σ(X1) ∨ F(∂A) ⊂ F(Ā) .
On the other hand, X2|∂A ∈ F(∂A) by Lemma 4.4 (i) so if z ∈ Ā , Xz ∈
σ(X1) ∨F(∂A). Thus F(Ā) ⊂ σ(X1) ∨ F(∂A) , proving the first half of (7).
The second half is similar, using Lemma 4.4 (ii).

Now both X1|∂A and X2|∂A are F(∂A)-measurable, so

F(∂A) = σ
(

X1|∂A

)

∨ σ
(

X2|∂A

)

.(8)

Let C be the trivial σ-field. X1 andX2 are independent, so certainly σ(X1) ⊥ σ(X2) | C.
By (8) and Lemma 2.2 (i), we see that σ(X1) ⊥ σ(X2) | F(∂A), hence
σ(X1) ∨ F(∂A) ⊥ σ(X2) ∨ F(∂A) | F(∂A), by Lemma 2.2 (i), and we are
done by (7).

Finally, to see that F(∂A) is the minimal splitting field, let S be a splitting
field and let Λ ∈ F(∂A) ⊂ F(Ac) . Since S is a splitting field and Λ is in
both F(Ā) and F(Ac)

P {Λ | S} = P
{

Λ | F(Ā)
}

= IΛ ⇒ Λ ∈ S .

♣
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Montréal, 1968.

[10] D. Nualart and M. Sanz, A Markov property for two parameter Gaussian
processes, Stochastica 3 (1979), p. 1–16.
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