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1. Introduction.

Let (Bt)t≥0 be a Brownian motion on R, B0 = 0, and define

A(t, x) ≡
∫ t

0
I{Bu≤x} du =

∫ x

−∞
L(t, y) dy,

where {L(t, x) : t ≥ 0, x ∈ R} is the jointly continuous local time of
B. The continuous adapted process A(t, Bt) arose naturally in earlier
work on the Brownian excursion filtration (see Rogers & Walsh [6], and
particularly [7]), where it was important to know about the existence
of a local time for A(t, Bt). This would be a consequence of general
results (Meyer [4], Yor [9]) if it were a semimartingale, but it is not;
Rogers & Walsh [8] prove that the p-variation of

Xt ≡ A(t, Bt) −
∫ t

0
L(s, Bs) dBs (1.1)

is infinite if p < 4

3
, and is zero for p > 4

3
. Defining for p, t > 0

V n
p (t) ≡

[nt]
∑

j=1

|X(j/n) −X((j − 1)/n)|p,

the sole aim of this paper is to prove the following result.

Theorem 1.1. For each t > 0, V n
4/3(t) converges in probability and in

L2, the convergence is uniform for t in bounded sets, and the limit is

given by

lim
n→∞

V n
4/3(t) = γ

∫ t

0
L(s, Bs)

2

3 ds, (1.2)

where

γ ≡ 2
2

3

√
π

Γ
(

7

6

)

E

[

(
∫ ∞

−∞
L(1, z)2, dz

) 2

3

]

.
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The proof we present is long, though none of the steps is par-
ticularly difficult. We have to estimate the pth moment of V n

4/3(t) −
γ
∫ t
0 L(s, Bs)

2

3 ds. If the random variables were Gaussian, this would be
relatively easy, thanks to an elegant lemma of Kolmogorov (Lemma 1.3
below). However, they are not. In order to apply Kolmogorov’s Lemma
we approximate the increments by stochastic integrals and then notice
that if we condition on the proper σ-field, these approximations are
Gaussian. This requires a rather careful decomposition of the incre-
ments. To guide the reader, here is an outline of it. For brevity, we
write h = 1

n
throughout, and frequently suppress the dependence on n

in the notation. We develop the increment

∆hXs ≡ Xs+h −Xs

=
∫ Bs+h

Bs

L(s, y) dy +
∫ s+h

s
I{Bu≤Bs+h} du−

∫ s+h

s
L(u,Bu) dBu

=
∫ Bs+h

Bs

L(s, y) dy −
∫ s+h

s
L(s, Bu) dBu +

(

∫ h

0
I{Bs+u−Bs≤Bs+h−Bs} du

−
∫ s+h

s
(L(u,Bu) − L(s, Bu)) dBu

)

=
∫ Bs+h

Bs

L(s, y) dy −
∫ s+h

s
L(s, Bu) dBu + X̂h, (1.3)

where X̂ is defined exactly as X, but in terms of the process B̂t ≡
Bt+s −Bs (which is independent of (Bu)u≤s). Now, as we shall see, the
essential part of ∆hXs is the first two terms in (1.3); and if we write
f(x) ≡ L(s, x+Bs) we can rewrite these two terms as

∫ B̂h

0
f(y) dy −

∫ h

0
f(B̂u) dB̂u

which, by a formal application of Itô’s formula, is equal to

1

2

∫ h

0
f ′(B̂u) du = 1

2

∫ ∞

−∞
f ′(y)L̂(h, y) dy ,

where L̂(t, x) = L(s + t, x + Bs) − L(s, x + Bs) is the local time of

B̂. This is only formal, since f is not differentiable. Nonetheless,
(L(s, y))y∈R is a semimartingale in the excursion filtration (see Perkins
[5], Jeulin [2], p. 261) and can be used for stochastic integration.
An integration by parts leads us to interpret this expression as the
stochastic integral −∫∞−∞

1

2L̂(h, y − Bs)L(s, dy). We must be careful,
though; this integral does not exist as an Itô integral. Even though
the function g(y) ≡ L̂(h, y) is independent of the excursion filtration of
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(Bu)u≤s, the integrand L̂(h, y−Bs) will not be adapted for y < Bs, even
if we augment the excursion filtration with the independent process g.
We shall see that we must interpret it as a “split integral”, and that
the correct formulation of this argument leads to
∫ B̂h

0
L(s, y +Bs) dy −

∫ h

0
L(s, B̂u +Bs) dB̂u = 1

2−
∫ ∞

−∞
L̂(h, y − Bs)L(s, dy),

where −∫ denotes the integral split at Bs, running forward up from Bs

to ∞, and backward down from Bs to −∞; this will be made precise
in §2.

For a subsequent stage of the argument, it turns out to be es-
sential to approximate increments of X by (conditionally) Gaussian
variables. The semimartingale decomposition of (L(s, x))x∈R shows us
what to expect.

Theorem 1.2 (Perkins [5]). Let (Es
x)x∈R be the excursion filtration of

(Bu)0≤u≤s. Then the process

Mx ≡ L(s, x) −
∫ x

−∞
α(y)dy (1.4)

is a continuous (Es
x)-martingale with quadratic-variation process

4
∫ x

−∞
L(s, y) dy.

Here,

α(y) = I{y≥Bs}

[

2I{y≤0} + 2I{y≤Bs}

+I{y≤B̄s}L(s, y)

(

4I(y≥Bs)

L(s, y) + 2y−
− L(s, y) + 2y−

s− A(s, y)

)]

(1.5)

with B̄s ≡ sup{Bu : u ≤ s}, Bs ≡ inf{Bu : u ≤ s}.
In view of this, we may write

∫ ∞

Bs

L̂(h, x−Bs)L(s, dx) =
∫ ∞

Bs

L̂(h, x−Bs)
(

2
√

L(s, x) W+(dx) + α(x) dx
)

and since the support of L̂(h, ·) is small, the stochastic integral with
respect to W+ turns out to be approximately

2
√

L(s, Bs)
∫ ∞

Bs

L̂(h, x− Bs)W+(dx), (1.6)

which is Gaussian, conditional on the σ-field

As ≡ σ
(

Bs, L(s, Bs), (Bs+u − Bs)u≥0

)

.
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The sense in which the increment ∆hXs may be approximated by (1.6)
and the analogous integral over (−∞, Bs) is explained and proved in
§3.

The strategy for proving the theorem is to show that for any ε >
0, and T > 0, there exists δ > 0 and N ∈ N such that if 0 ≤ s ≤ t ≤ T ,
and n ≥ N , and t− s < δ, then

∥

∥

∥

∥

V n
4

3

(t) − V n
4

3

(s) − γ
∫ t

s
L(u,Bu)

2

3 du
∥

∥

∥

∥

2
≤ ε|t− s|. (1.7)

From this, ‖V n
4

3

(t) − γ
∫ t
0 L(u,Bu)

2

3 du ‖2 ≤ εt, and the theorem will

follow. To estimate the L2 norms appearing in (1.7), we have to know

about the covariance of |∆hXs|
4

3 and |∆hXt|
4

3 . It is hard to get hold of
this for general random variables, but here we use the following result
of Kolmogorov, which we learned from J. Bretagnolle. Let ρ(X, Y ) ≡
cov (X, Y )/(var (X)var (Y ))

1

2 be the correlation coefficient of X, Y ∈
L2.

Lemma 1.3 (Kolmogorov). Let (X, Y ) have a bivariate Gaussian dis-

tribution, and suppose that ϕ, ψ : R → R are such that ϕ(X), ψ(Y ) ∈
L2. Then

|ρ(ϕ(X), ψ(Y ))| ≤ |ρ(X, Y )|. (1.8)

Moreover, if E{ϕ(X)(X − E{X})} = 0, then

|ρ(ϕ(X), ψ(Y ))| ≤ ρ(X, Y )2. (1.9)

A proof of this pretty result appears in an appendix. It will allow
us to estimate the correlation of (the conditionally Gaussian approx-
imations to) ∆hXs and ∆hXt. This final part of the proof occupies
§4.

To conclude the introduction, we record a few simple results
which we shall use repeatedly. Firstly, for p ≥ 1, and positive a and b,

| bp − ap| ≤ p |b− a| (bp−1 ∨ ap−1) , (1.10)

|
√
b−

√
a| ≤

√

|b− a| ,

and secondly for any p > 0, there exists cp such that for all x ∈ R, and
t > 0,

‖L(t, x) − L(t, 0)‖p ≤ cp(|x| ∧ t
1

2 + (x2t)
1

4 ). (1.11)
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The inequalities in (1.10) are elementary, and (1.11) is proved in Rogers
and Walsh [6]. From (1.11), it follows easily that for x, y ∈ R, t ≥ 0

‖L(t, x) − L(t, y)‖p ≤ cp(|x− y| ∧ t
1

2 + ((x− y)2t)
1

4 ).
(1.12)

Finally, let us note that the processes {Bt, t ≥ 0} and {cBt/c2 , t ≥
0} have the same distribution, since they are both standard Brownian
motions. Since A and L are both functions of the Brownian motion, we
can compute them for both of these Brownian motions and compare to
get the following scaling lemma, which we shall use repeatedly below.

Lemma 1.4. The vector-valued processes {(Bt, A(t, x), L(t, x)), t ≥
0, x ∈ R} and {(cBt/c2 , c

2A(t/c2, x/c), cL(t/c2, x/c)), t ≥ 0, x ∈ R}
have the same distribution.

2. Integral representation of increments of X

Recall the decomposition (1.3) of the increment ∆hXs ≡ Xs+h −
Xs :

∆hXs =
∫ Bs+h

Bs

L(s, y) dy −
∫ s+h

s
L(s, Bu) dBu + X̂h ,

so that

∆hXs − X̂h = lim
ε↓0

[

∫ Bs+h

Bs

(ϕε ∗ L(s, ·))(y) dy −
∫ s+h

s
(ϕε ∗ L(s, ·))(Bu) dBu

]

,
(2.1)

where ϕε(x) = ε−1ϕ(x/ǫ) for some C∞ function ϕ which is non-negative,
supported in [−1, 1], and satisfies

∫

ϕ(x)dx = 1. The convergence of
the first integral is almost sure. The second converges in L2, as we see
using (1.12). Hence by Itô’s formula

∆hXs − X̂h = lim
ε↓0

1

2

∫ s+h

s
(ϕε ∗ L(s, ·))′(Bu) du

= lim
ε↓0

1

2

∫ ∞

−∞
L̂(h, y − Bs)(ϕε ∗ L(s, ·))′(y)dy

= lim
ε↓0

1

2

∫ ∞

−∞
L̂(h, y − Bs)

(∫ ∞

−∞
ϕ′

ε(y − x)L(s, x) dx
)

dy .

By splitting the x-integral at Bs, we get two terms, one of which is

1

2

∫ ∞

−∞
L̂(h, y −Bs)

(∫ ∞

Bs

ϕ′
ε(y − x)L(s, x)dx

)

dy. (2.2)

Now abbreviate
g(y) ≡ L̂(h, y)

and notice that g is independent of {Bu : u < s}, so we may condition

on {B̂u : u ≥ 0} ≡ {Bu+s − Bs : u ≥ 0} and treat g as a deterministic
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function. As we recalled in Theorem 1.2, L(s, x) is a semimartingale
in the filtration (Es

x)x∈R (if τ s(t, x) ≡ inf{u < s : A(u, x) > t} ∧ s, then
Es

x is the σ-field generated by (B(τ s(t, x)))t≥0—see Perkins [5], Jeulin
[2]). Thus we may integrate by parts in (2.2) to give

1

2

∫ ∞

−∞
g(y − Bs)

(

ϕε(y − Bs)L(s, Bs) +
∫ ∞

Bs

ϕε(y − x)L(s, dx)
)

dy

= 1

2L(s, Bs)
∫ ∞

−∞
ϕε(y −Bs)g(y −Bs) dy (2.3)

+ 1

2

∫ ∞

Bs

(∫ ∞

−∞
g(y −Bs)ϕε(y − x) dy

)

L(s, dx).

The interchange of orders of integration is achieved by taking Riemann-
sum approximations in (2.2) – which will be finite sums since g and
ϕε are of compact support – then interchanging sum and integral and
finally letting the mesh go to zero, so that the integrands converge
almost surely uniformly to

∫

g(y − Bs)ϕε(y − x) dy, again by compact
support. The representation (1.4)–(1.5) ensures the conclusion. Finally
we let ε ↓ 0 in (2.3) to get

1

2L(s, Bs) g(0) + 1

2

∫ ∞

Bs

g(x− Bs)L(s, dx). (2.4)

The term coming from the x-integral over (−∞, Bs) is handled simi-
larly, except that now we work in the filtration (Ěs

x)x∈R, where we define
Ěs

x to be the σ-field generated by (B(τ̌ s(t,−x)))t≥0, with

τ̌ s(t, x) ≡ inf{u : u−A(u, x) > t} ∧ s.
Thus (Ěs

x) is simply the filtration (Es
x) for the Brownian motion −B.

If we write Ľ(s, x) ≡ L(s,−x), then Ľ(s, x) is a semimartingale in the
filtration (Ěs

x), and

1

2

∫ ∞

−∞
g(y − Bs)

(

∫ Bs

−∞
dxϕ′

ε(y − x)L(s, x)

)

dy

= 1

2

∫ ∞

−∞
g(y − Bs)

{

−ϕε(y − Bs)L(s, Bs) −
∫ ∞

−Bs

ϕε(y + x)Ľ(s, dx)
}

dy

→ − 1

2L(s, Bs) g(0) − 1

2

∫ ∞

−Bs

g(−x−Bs) Ľ(s, dx)

as ε ↓ 0. Combining with (2.4), we have then that

∆hXs − X̂h = 1

2

∫ ∞

Bs

g(x− Bs)L(s, dx) − 1

2

∫ ∞

−Bs

g(−x− Bs)Ľ(s, dx)

≡ 1

2−
∫ ∞

−∞
g(x− Bs)L(s, dx) (2.5)

as a piece of shorthand notation.
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The aim now is to express (2.5) in terms of the semimartingale
decomposition of L. From Theorem 1.1, we have that

Mx ≡ L(s, x) −
∫ x

−∞
α(y) dy

M̌x ≡ Ľ(s, x) −
∫ x

−∞
α̌(y) dy

are martingales in the filtrations (Es
x), (Ěs

x) respectively, where α̌ is
defined exactly as α, but in terms of −B:

α̌(y) = I{y≥−B̄s}

[

2I{y≤0} + 2I{y≤−Bs}

+ I{y≤−Bs}L(s,−y)
(

4I{y≥−Bs}

L(s,−y) + 2y−
− L(s,−y) + 2y−

s− ∫∞
−y L(s, v) dv

)]

.

We shall suppose that the probability space is enlarged if need
be, and the filtrations (Es

x)x∈R, respectively (Ěs
x)x∈R, are enlarged so

that there exist an (Es
x)-Brownian motion β+

x and an (Ěs
x)-Brownian

motion β−
x which are independent of B and of each other. This is not

essential, but simplifies the statements of results.

Proposition 2.1. There is an (Es
x)-Brownian motion W+ independent

of

As ≡ σ ({Bs, L(s, Bs), (Bs+u − Bs)u≥0}) such that

L(s, y ∨ Bs) − L(s, Bs) = 2
∫ y∨Bs

Bs

√

L(s, x) dW+
x +

∫ y∨Bs

Bs

α(x) dx.
(2.6)

Similarly, there is an (Ěs
x)-Brownian motion W− independent of As

such that

Ľ(s, (−Bs) ∨ y) − Ľ(s,−Bs) = 2
∫ (−Bs)∨y

−Bs

√

Ľ(s, x) dW−
x +

∫ (−Bs)∨y

−Bs

α̌(x) dx.
(2.7)

Moreover, W+ and W− are independent.

Proof. We begin by defining

dW+
x = I{x≤Bs} dβ

+
x + (2

√

L(s, x))−1I{Bs≤x<B̄s} dMx + I{x≥B̄s} dβ
+
x ,

dW−
x = I{x≤−Bs} dβ

−
x + (2

√

L(s,−x))−1I{−Bs<x≤−Bs} dM̌x + I{x≥−Bs} dβ
−
x ,

W+
0 = W−

0 = 0.

It is clear that W+ (respectively, W−) is a Brownian motion in (Es
x)

(respectively, (Ěs
x)), and that (2.6), (2.7) hold by construction. To
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prove the independence properties, take f+, f− ∈ C∞
K , ξ ∈ bAs, and

compute

E
{

exp
(

iξ
∫

f+(x) dW+
x + iξ

∫

f−(x) dW−
x

)}

= E

{

exp

(

iξ
∫ ∞

−∞
f+(x) dW+

x + iξ
∫ ∞

−Bs

f−(x) dW−
x − ξ2

2

∫ −Bs

−∞
f−(x)2dx

)}

,

since β− is independent of β+ and B;

= E

{

exp

(

−ξ
2

2

∫ ∞

Bs

f+(x)2 dx+ iξ
∫ Bs

−∞
f+(x) dW+

x

+iξ
∫ ∞

−Bs

f−(x) dW−
x − ξ2

2

∫ −Bs

−∞
f−(x)2dx

)}

,

by conditioning on Es
Bs

∨σ(β−), since
∫∞
−Bs

f−(x) dW−
x is measurable on

this σ-field and W+ is a Brownian motion in the filtration (Es
x∨σ(β−));

= E

{

exp

(

−ξ
2

2

∫

f+(x)2 dx+ iξ
∫ ∞

−Bs

f−(x) dW−
x − ξ2

2

∫ −Bs

−∞
f−(x)2dx

)}

,

since β+ is independent of B, β−;

= E

{

exp

(

−ξ
2

2

∫

f+(x)2 dx− ξ2

2

∫

f−(x)2dx

)}

,

by conditioning on Ěs
−Bs

⊇ As. This proves that W± are independent
Brownian motions, independent of As. z

In view of this, then, we can re-express (2.5) as

∆hXs−X̂h = −
∫ ∞

−∞
g(x−Bs)

√

L(s, x) dWx+
1

2−
∫ ∞

−∞
g(x−Bs)α(x) dx ,

(2.8)

where the two split integrals are defined by

−
∫ ∞

−∞
g(x−Bs)

√

L(s, x) dWx

=
∫ ∞

Bs

g(x− Bs)
√

L(s, x) dW+
x −

∫ ∞

−Bs

g(−x− Bs)
√

L(s,−x) dW−
x

(2.9)

and

−
∫ ∞

−∞
g(x−Bs)α(x) dx =

∫ ∞

Bs

g(x−Bs)α(x) dx−
∫ ∞

−Bs

g(−x−Bs) α̌(x) dx .
(2.10)
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Note that the splitting point of the split integral depends on the
value of Bs. We suppress this from the notation since in most cases
the splitting point will be clear from the context.

Let f(x) = g(x−Bs)
√

L(s, x) and apply Burkholder’s inequality

to each stochastic integral in (2.9) to see that the Lp norm of the split
integral in (2.8) satisfies

∥

∥

∥

∥

−
∫ ∞

−∞
f(y) dWy

∥

∥

∥

∥

p
≤ Cp

∥

∥

∥

∥

∫ ∞

−∞
f(y + Bs)

2dy
∥

∥

∥

∥

1/2

p/2
.

(2.11)

3. The main estimates

We now take 0 < s < t ≤ 1 and estimate ∆hXs and ∆hXt in
turn. We decompose ∆hXs (using (2.8), (2.9)) as

∆hXs = −
∫ ∞

−∞
g(x− Bs)

√

L(s, Bs) dWx (3.1)

+ −
∫ ∞

−∞
g(x− Bs)

(

√

L(s, x) −
√

L(s, Bs)
)

dWx

+ 1

2−
∫ ∞

−∞
g(x−Bs)α(x) dx+ X̂h

≡ I1 + I2 + I3 + X̂h ,

say. Firstly we take I2. By (2.11)

‖I2‖p ≤ Cp

∥

∥

∥

∥

∫ ∞

0
g(y)2|L(s, Bs + y) − L(s, Bs)| dy

∥

∥

∥

∥

1

2

p/2
.

(3.2)

Write the norm in terms of expectations and use Hölder’s inequality
with p/2 and p/(p− 2); this is

≤ Cp

(

E

{

∫ ∞

0
g(y)2|L(s, Bs + y) − L(s, Bs)|p/2 dy

(∫ ∞

0
g(x)2dx

)p/2−1
})1/p

;

change order and use the fact that g is independent of L(s, ·) :

≤ Cp

(

∫ ∞

0
E
{

|L(s, y) − L(s, 0)|p/2
}

E

{

g(y)2
(∫ ∞

0
g(x)2dx

)p/2−1
}

dy

)1/p

;

now use (1.11) on the first expectation and the Schwartz inequality on
the second:

≤ Cp





∫ ∞

0
(y ∧

√
s+ y

1

2 s
1

4 )p/2E
{

g(y)4
}

1

2

(

E

{

(∫ ∞

0
g(x)2dx

)p−2
})

1

2

dy





1/p

,
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using (1.11) on the first term. Now recall that g(y) = L̂(h, y)
D
=√

hL̂(1, y/
√
h) so that

E
{

g(y)4
}

= h2E
{

L̂(1, y/
√
h)4

}

≤ h2P
{

Hy/
√

h < 1
}

E
{

L̂(1, 0)4
}

,

where Hx = inf{u : Bu = x}

≤ ch2Φ̄(y/
√
h)

where Φ̄ is the tail of the standard normal distribution. Moreover,

E

{

(∫ ∞

0
g(x)2dx

)p−2
}

= hp−2E

{

(∫ ∞

0
L̂(1, y/

√
h)2 dy

)p−2
}

= h3(p−2)/2E

{

(∫ ∞

0
L̂(1, y)2 dy

)p−2
}

≤ Ch3(p−2)/2 ,

since by the results of Barlow and Yor [1], L∗(1) ∈ ⋂p L
p, where L∗(s) ≡

supy L(s, y). Thus

‖I2‖p ≤ Cph
3

4

(∫ ∞

0
(y ∧

√
s+ y

1

2 s
1

4 )p/2Φ̄(y/
√
h)

1

2 h−
1

2 dy
)1/p

≤ Cph
7

8 (3.3)

since s is bounded.
Next we estimate I3, a more delicate task. Write it as the sum

of two integrals,
∫∞
Bs

+
∫Bs
−∞ = I+

3 + I−3 , say. By symmetry we only have

to treat the first one. By (1.5) we have

2I+
3 =

∫ ∞

Bs

g(y −Bs)

(

2I{y≤0} + I(y≤B̄s)L(s, y)
L(s, y) + 2y−

s− A(s, y)

)

dy .

The integral
∫

g(y − Bs)I{y≤0} dy is at most h, so that will cause no
trouble. What remains is the sum of two terms,
∫ B̄s

Bs

g(y − Bs)
L(s, y)2

s−A(s, y)
dy + 2I{Bs<0}

∫ 0

Bs

g(y − Bs)
|y|L(s, y)

s− A(s, y)
dy .

If we make the replacements Bu 7→ −Bs−u + Bs in the first term and
Bu 7→ −Bu in the second, we see that they are equal in distribution to

J1 ≡
∫ 0

Bs

g(y)L(s, y)2 dy

A(s, y)
,
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and

J2 ≡ I{Bs>0}

∫ Bs

0
g(y −Bs)

2yL(s, y)

A(s, y)
dy

respectively. Now by Jensen’s inequality for p ≥ 1

|J1|p ≤ hp−1
∫ 0

Bs

g(y)

∣

∣

∣

∣

∣

L(s, y)2

A(s, y)

∣

∣

∣

∣

∣

p

dy. (3.4)

For y ∈ (B s, 0), L(s, y)2/A(s, y)
D
= L(s−Hy, 0)2/A(s−Hy, 0), and, by

scaling, L(t, 0)2/ A(t, 0)
D
= L(1, 0)2/A(1, 0). Thus we have the estimate

E {|J1|p} ≤ hpE
{

L(1, 0)2p/A(1, 0)p
}

≡ hpγp, (3.5)

say, and according to Karatzas and Shreve [3] who compute the joint
distribution of (Bt, L(t, 0), A(t, 0)),

P {L(1, 0) ∈ db, A(1, 0) ∈ ds} =
b

π(s(1 − s))
3

2

exp(−b2/2s(1−s)) db ds,

hence

γp =
∫ ∞

0
db
∫ 1

s
ds
b2p

sp

b

π(s(1 − s))
3

2

exp(−b2/2s(1 − s))

=
∫ ∞

0
dv
∫ 1

0
ds(2v(1 − s))p e−v

π
√

s(1 − s)

= Γ(p+ 1)2p
∫ 1

0
ds(1 − s)p/

√

s(1 − s)

<∞.

To summarize, then,

‖J1‖p ≤ Cph. (3.6)

The estimation of J2 proceeds along similar lines: for p ≥ 1

|J2|p ≤ hp−1
∫ ∞

0
g(y − Bs)

∣

∣

∣

∣

∣

2yL(s, y)

A(s, y)

∣

∣

∣

∣

∣

p

I{y<Bs} dy ; (3.7)

E

{∣

∣

∣

∣

∣

L(s, y)

A(s, y)

∣

∣

∣

∣

∣

p

; y < Bs

}

=
∫ s

0

ye−y2/2(s−u)

√

2π(s− u)3
E

{ ∣

∣

∣

∣

∣

L(u, 0)

s− u+ A(u, 0)

∣

∣

∣

∣

∣

p

;Bu > 0

}

du .
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Using once again the result of Karatzas and Shreve,

E

{ ∣

∣

∣

∣

∣

L(u, 0)

s− u+ A(u, 0)

∣

∣

∣

∣

∣

p

;Bu > 0

}

=
∫ ∞

0
db
∫ u

0
dv

b

π(v3(u− v))
1

2

exp

(

−b
2

2

u

v(u− v)

) ∣

∣

∣

∣

∣

b

s− u+ v

∣

∣

∣

∣

∣

p

= Cp

∫ u

0
dv v(p−1)/2(u− v)(p+1)/2u−(p+2)/2(s− u+ v)−p

= Cp

∫ 1

0
dt up/2t(p−1)/2(1 − t)(p+1)/2(s− u+ ut)−p.

Now using the fact that g(y−Bs) ≡ L̂(h, y−Bs) ≤ L̂∗(h)
D
=

√
hL̂∗(1),

we deduce that

E{|J2|p} ≤ Cph
p− 1

2

∫ ∞

0
ypE

{∣

∣

∣

∣

∣

L(s, y)

A(s, y)

∣

∣

∣

∣

∣

p

; y < Bs

}

dy

= Cph
p− 1

2

∫ ∞

0
yp dy

∫ s

0

ye−y2/2(s−u)

√

2π(s− u)3
du

∫ 1

0
dt u

p

2 t
p−1

2 (1 − t)
p+1

2 (s− u+ ut)−p

= Cph
p− 1

2

∫ s

0
du(s− u)

p−1

2

∫ 1

0
dt u

p

2 t
p−1

2 (s− u+ ut)−p

= Cph
p− 1

2

√
s
∫ 1

0

∫ 1

0
dw dt (1 − w)

p−1

2 w
p

2 t
p−1

2 (1 − t)
p+1

2 (1 − w + wt)−p

= Cph
p− 1

2

√
s
∫ 1

0

∫ 1

0
dw dt

∣

∣

∣

∣

∣

(1 − w)wt

(1 − w + wt)2

∣

∣

∣

∣

∣

p

2

(1 − w)−
1

2 t−
1

2 (1 − t)
p+1

2

= Cph
p− 1

2

√
s .

Hence we have

‖J2‖p ≤ Cph
7

8 . (3.8)

Assembling the bounds on J1 and J2, we see that for small h,

‖I3‖p ≤ Cph
7

8 .

Finally, we estimate

X̂h =
∫ h

0
I{B̂u≤B̂h} du−

∫ h

0
L̂(u, B̂u) dB̂u.
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The first term is at most h. For the second, taking p ≥ 2 we see that

E

{∣

∣

∣

∣

∣

∫ h

0
L̂(u, B̂u) dB̂u

∣

∣

∣

∣

∣

p}

≤ CpE







∣

∣

∣

∣

∣

∫ h

0
L(u,Bu)

2 du

∣

∣

∣

∣

∣

p/2






≤ hp/2−1CpE

{

∫ h

0
L(u,Bu)

p du

}

≤ Cph
p,

so that

‖X̂h‖p ≤ Cph.

In short, then, for every p ≥ 1

‖∆hXs − I1‖p ≤ Cph
7

8 . (3.9)

This completes the analysis of ∆hXs; we now analyse the joint
behavior of the two increments. Let t > s and let us consider ∆hXt.
The arguments for the decomposition of this increment are broadly
similar to the foregoing, but with one refinement which will be needed
at a later stage; we cut (0, t] into (0, s] ∪ (s, s + h] ∪ (s + h, t], so
that the contribution from the last interval will be independent of the
contribution from the first. If we simply cut (0, t] into (0, s]∪ (s, t], this
will not be true.

To begin, then, from (1.3)

∆hXt =
∫ Bt+h

Bt

L(t, y) dy −
∫ t+h

t
L(t, Bu) dBu + X̃h

where X̃ is defined exactly as X, (see (1.1)) but in terms of the Brow-
nian motion B̃u ≡ Bt+u −Bt. We split the first two terms as

[

∫ Bt+h

Bt

L(s, y) dy −
∫ t+h

t
L(s, Bu) dBu

]

+

[

∫ Bt+h

Bt

(L(s+ h, y) − L(s, y)) dy −
∫ t+h

t
(L(s + h,Bu) − L(s, Bu)) dBu

]

+

[

∫ Bt+h

Bt

(L(t, y) − L(s + h, y)) dy −
∫ t+h

t
(L(t, Bu) − L(s+ h,Bu)) dBu

]

≡ K(0,s] +K(s,s+h] +K(s+h,t] ,
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say. Taking the terms one by one, the analysis of K(0,s] is very similar
to the analysis of ∆hXs. Following the steps (2.2)—(2.5) we see

K(0,s] = lim
ε↓0

1

2

∫ t+h

t
(φε ∗ L(s, ·))′(Bu) du

= lim
ε↓0

1

2

∫ ∞

−∞
L̃(h, y − Bt)(φε ∗ L(s, ·))′(y) dy

= lim
ε↓0

1

2

∫ ∞

−∞
g̃(y − Bs)

(∫ ∞

−∞
dxφ′

ε(y − x)L(s, x)
}

dy ,

where g̃(x) ≡ L̃(h, x−Bt+Bs) ≡ L̂(t−s+h, x)−L̂(t−s, x) is measurable

with respect to σ({B̂u : u ≥ 0}) and therefore is independent of {Bu :
u ≤ s}. The analysis of ∆hXs in (2.1)—(2.5) goes through mutatis

mutandis to give the analogue of (2.5):

K(0,s] = 1

2

∫ ∞

−∞
g̃(x− Bs)L(s, dx) .

We apply Proposition 2.1 again to obtain the analogue of (2.8):

K(0,s] = −
∫ ∞

−∞
g̃(x− Bs)

√

L(s, x) dWs + 1

2−
∫ ∞

−∞
g̃(x−Bs)αx dx

(3.10)

≡ K1 +K2

say, where the second split integral is defined by

−
∫ ∞

−∞
g̃(x−Bs)αx dx =

∫ ∞

Bs

g̃(x−Bs)αx dx− 1

2

∫ ∞

−Bs

g̃(−x−Bs) α̌x dx .

Recall that g̃ has its support in a small neighborhood of 0, so that we
can (almost) factor out the square root from K1. In fact

K1 −
√

L(s, Bs)−
∫ ∞

−∞
g̃(x− Bs) dWx

=
[

√

L(s, Bt) −
√

L(s, Bs)
]

−
∫ ∞

−∞
g̃(x− Bs) dWx

+ −
∫ ∞

−∞
g̃(x−Bs)

(

√

L(s, x) −
√

L(s, Bt)
)

dWx ,

≡M1 +M2 . (3.11)

We will see that M1 and M2 are small. Now

‖M1‖p ≤
∥

∥

∥

∥

√

L(s, Bt) −
√

L(s, Bs)
∥

∥

∥

∥

2p

∥

∥

∥

∥

−
∫ ∞

−∞
g̃(x− Bs) dWx

∥

∥

∥

∥

2p
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and by (1.10)
∥

∥

∥

∥

√

L(s, Bt) −
√

L(s, Bs)
∥

∥

∥

∥

2p
≤ ‖L(s, Bt) − L(s, Bs)‖

1

2

p

= (E{|L(s, Z) − L(s, 0)|p})1/2p ,

where Z ∼ N(0, t− s) is independent of B; let pt(·) be the N(0, t) density:

=
(∫

pt−s(x)E{|L(s, x) − L(s, 0)|p}dx
)1/2p

,

≤ Cp

(∫

pt−s(x) (|x| ∧
√
s+ (x2s)

1

4 )p dx
)1/2p

,

using the estimate (1.11). This is

= Cp

(∫

p1(x)
(

|x
√
t− s| ∧

√
s+ (t− s)

1

4 (x2s)
1

4

)p
dx
) 1

2p

,

≤ Cp(t− s)
1

8

for all 0 ≤ s ≤ t ≤ 1. Next we estimate

∥

∥

∥

∥

∫ ∞

−∞
g̃(x− Bs) dWx

∥

∥

∥

∥

p
≤ Cp





∥

∥

∥

∥

∫ ∞

Bs

g̃(x− Bs)
2 dx

∥

∥

∥

∥

1

2

p/2

+

∥

∥

∥

∥

∥

∫ Bs

−∞
g̃(x− Bs)

2 ds

∥

∥

∥

∥

∥

1

2

p/2





≤ Cp

∥

∥

∥

∥

∫ ∞

−∞
L(h, y)2 dy

∥

∥

∥

∥

1

2

p/2

≤ Cph
3

4 ,

since L(t, x) ≡ cL(t/c2, x/c) by Lemma 1.4. Thus

‖M1‖p ≤ Cp|t− s| 18h 3

4 . (3.12)

The second term on the right of (3.11), M2, is handled exactly
as was I2 : following (3.2)—(3.3) for p ≥ 2, we get

∥

∥

∥

∥

−
∫ ∞

−∞
g̃(x− Bs)

(

√

L(s, x) −
√

L(s, Bt)
)

dWx

∥

∥

∥

∥

p

≤
∥

∥

∥

∥

∫ ∞

−∞
g̃(x−Bs)

2 |L(s, x) − L(s, Bt)| dx
∥

∥

∥

∥

1

2

p/2
≤ Cph

7/8 . (3.13)

We combine (3.12) and (3.13) into the estimate

∥

∥

∥

∥

K1 −
√

L(s, Bs)−
∫ ∞

−∞
g̃(x−Bs) dWx

∥

∥

∥

∥

p
≤ Cp

(

|t− s| 18h 3

4 + h
7

8

)

.
(3.14)
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Next we turn to K2. This term is analogous to I3, and we can follow
that analysis. We break it into the sum of two similar integrals, K+

2 +
K−

2 , and consider K+
2 , which satisfies (see (3.4))

2K2 =
∫ ∞

Bs

g̃(y −Bs)

[

2I{y≤0} + I{y≤B̄s}
L(s, y)(L(s, y) + 2y−)

s− ∫ y
−∞ L(s, v) dv

]

dy.

As with the estimation of I3, the integral involving I(y≤0) is at most h,
so causes no trouble. What remains is the sum of two terms, the first
equal in distribution to

J̃1 ≡
∫ 0

B s

g̃(−y)L(s, y)2 dy

A(s, y)
,

the second equal in distribution to

J̃2 ≡ I{Bs>0}

∫ Bs

0
L̃(h,Bt − y)

2yL(s, y)

A(s, y)
dy.

We handle the estimation of J̃1 as before, in (3.5)—(3.6): for p ≥ 1,

|J̃1|p ≤ hp−1
∫ 0

B s

g̃(−y)
∣

∣

∣

∣

∣

L(s, y)2

A(s, y)

∣

∣

∣

∣

∣

p

dy

≡ hp−1
∫ 0

B s

L̃(h,−y − Bt +Bs)

∣

∣

∣

∣

∣

L(s, y)2

A(s, y)

∣

∣

∣

∣

∣

p

dy

from which, as before,

‖J̃1‖p ≤ Cph.

The estimation of J̃2 is exactly like the estimation of J2 in (3.7)—(3.8),

except that L̂(h, y − Bs) is replaced by L̃(h,Bt − x). The estimation

of J2 involved the bound L̂(h, y − Bs) ≤ L̂∗(h)
D
=

√
hL̂∗(1), and the

analogous bound is good for L̃(h,Bt − x). We thus obtain

‖J̃2‖p ≤ Cph
7

8 .

Assembling the last two equations gives

‖K2‖p ≤ Cph
7

8 . (3.15)

Putting (3.10), (3.14), and (3.15) together, we get
∥

∥

∥

∥

K(0,s] −
√

L(s, Bs)−
∫ ∞

−∞
g̃(x− Bs) dWx

∥

∥

∥

∥

p
≤ Cp

{

|t− s| 18h 3

4 + h
7

8

}

.
(3.16)

Next we must estimate K(s,s+h], an easier task. We leave the reader to
confirm that

‖K(s,s+h]‖p ≤ Cph. (3.17)
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Finally, we deal with K(s+h,t]. If we define v ≡ t − s − h, and B′
u ≡

Bu+s+h − Bs+h, we have then that

K(s+h,t] =
∫ B′

v+h

B′

v

L′(v, x) dx−
∫ v+h

v
L′(v, B′

u) dB
′
u

so that the analysis of this term is exactly the same as the analysis

of ∆hXs − X̂h! Thus, following the steps (2.1)–(2.8) we obtain the
analogue of (2.8):

K(s+h,t] = −
∫ ∞

−∞
g′(x− B′

v)
√

L′(v, x) dW ′
x + 1

2−
∫ ∞

−∞
g′(x−B′

v)α
′
x dx

(3.18)

where L′, α′, α̌′, W ′+, W ′− are defined in terms of B′ exactly as L,
α, α̌, W+, W− were defined in terms of B, and g′(x) = L̃(h, x). The
stochastic integral splits at B′

v, of course.
It is important to realise that everything which appears in (3.18)

is determined by B′, and so is independent of {Bu : u ≤ s + h}, and
hence of W+ and W− . The point of this is that if we mimic the esti-
mation of ∆hXs which led to (3.9) we obtain

∥

∥

∥

∥

K(s+h,t] −−
∫ ∞

−∞
g′(x− B′

v)
√

L′(v, B′
v) dW

′+
x

∥

∥

∥

∥

p
≤ Cph

7

8 ,
(3.19)

which says that K(s+h,t] is very nearly equal to a random variable whose
law, given B′

v, L
′(v, B′

v) and (B′
v+u −B′

v)u≥0 , is Gaussian, and which is
independent of {Bu : u ≤ s+ h}, and therefore independent of ∆hXs.

Assembling (3.16), (3.17), and (3.19), we have that
∥

∥

∥

∥

∆hXt −
√

L(s, Bs)−
∫ ∞

−∞
g̃(x− Bs) dWx −

√

L′(v, B′
v)−
∫ ∞

−∞
g′(x−B′

v) dW
′
x

∥

∥

∥

∥

p

≤ Cp

(

|t− s| 18h 3

4 + h
7

8

)

. (3.20)

4. The L2 convergence

Let us summarize the main point of the estimation so far, with a
view to clarifying the steps still to come. Our strategy is to approximate
the increments ∆hXs by stochastic integrals, and then to use the fact
that these integrals are conditionally Gaussian to bound their moments.
At this point we have developed the estimates to justify this approxi-
mation. The central results are (3.9) and (3.20). In order to unify our
notation, let us define ∆Lu(x) = L(u+h, x+Bu)−L(u, x+Bu). Note

that, in the notation of the previous section, L̂(h, x) = g(x) = ∆Ls(x),
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g̃(x) = ∆Lt(x+Bs−Bt), and g′(x) = ∆Lt(x). We proved in (3.9) that
∥

∥

∥

∥

∆hXs −
√

L(s, Bs)−
∫ ∞

−∞
∆Ls(x− Bs) dWx

∥

∥

∥

∥

p
≤ Cph

7

8 ,
(4.1)

and we also proved (3.20) that if 0 < s < t and v = t− s− h, that
∥

∥

∥

∥

∆hXt −
√

L(s, Bs)−
∫ ∞

−∞
∆Lt(x− Bs) dWx

−
√

L′(v, B′
v)−
∫ ∞

−∞
∆Lt(x+Bs+h −Bt) dW

′
x

∥

∥

∥

∥

p
≤ Cp

(

|t− s| 18h 3

4 + h
7

8

)

.
(4.2)

Now we aim to prove Theorem 1: for 0 ≤ t ≤ 1, if h = 1
n





[nt]−1
∑

k=0

|∆hXkh|
4

3 − γ
∫ t

0
L(s, Bs)

2

3 ds





L2

−→ 0

as n→ ∞. This follows once we can prove that

[nt]−1
∑

k=0

(

|∆hXkh|
4

3 − γhL(kh,Bkh)
2

3

)

L2

−→ 0. (4.3)

Let us transform this slightly. Recall that γ = βE
{

∣

∣

∣

∫∞
−∞ L(1, x)2dx

∣

∣

∣

2

3

}

,

with β ≡ 2
2

3π− 1

2 Γ(7/6) = E{|B1|
4

3 . Hold n fixed. The process

Sj ≡
j
∑

k=0

L(kh,Bkh)
2

3

(

γh− β

∣

∣

∣

∣

∫ ∞

−∞
∆Lkh(y)

2 dy

∣

∣

∣

∣

2

3

)

, j = 1, 2 . . .

is a martingale relative to the filtration (F(j+1)h); this is because ∆Lkh(·)
is independent of Fkh and because

E

{

∣

∣

∣

∣

∫ ∞

−∞
∆Lkh(x)

2dx
∣

∣

∣

∣

2

3

}

= E

{

∣

∣

∣

∣

∫ ∞

−∞
L(h, x)2 dx

∣

∣

∣

∣

2

3

}

= hE

{

∣

∣

∣

∣

∫ ∞

−∞
L(1, x)2 dx

∣

∣

∣

∣

2

3

}

, using Lemma 1.4

= γh/β (4.4)

by definition of γ and β. Moreover

E{S2
j } =

j
∑

k=0

E
{

L(kh,Bkh)
4

3

}

E







(

γh− β
∣

∣

∣

∣

∫ ∞

−∞
∆Lkh(y)

2 dy
∣

∣

∣

∣

2

3

)2






≤ Cjh2.
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Accordingly, E{S2
[nt]} ≤ Cth. This reduces the proof of Theorem

1 to the proof that

[nt]−1
∑

k=0

{

|∆hXkh|
4

3 − βL(kh,Bkh)
2

3

∣

∣

∣

∣

∫ ∞

−∞
∆Lkh(y)

2 dy
∣

∣

∣

∣

2

3

}

L2

−→ 0 .
(4.5)

Let us abbreviate

αkn ≡ βL(kh,Bkh)
2

3

∣

∣

∣

∣

∫ ∞

−∞
∆Lkh(y)

2 dy

∣

∣

∣

∣

2

3

,

and define

Un(t) ≡
[nt]−1
∑

k=0

(

|∆hXkh|
4

3 − αkn

)

.

We claim that Un(t) −→ 0 in L2. This will prove (4.5), and hence
the theorem. Let s < t, and write

‖Un(t) − Un(s)‖2
2 = E















[nt]−1
∑

j=[ns]

(

|∆hXjh|
4

3 − αjn

)





2










=
[nt]−1
∑

j=[ns]

E
{

(

|∆hXjh|
4

3 − αjn

)2
}

(4.6)

+ 2
[nt]−2
∑

j=[ns]

[nt]−1
∑

k=j+1

E
{(

|∆hXjh|
4

3 − αjn

) (

|∆hXkh|
4

3 − αkn

)}

≡ V1 + V2 .

The steps remaining in the proof are now the following:

(i) approximate the ∆hXjh in the diagonal terms V1 (4.6) by sto-
chastic integrals with respect to L, using (4.1);

(ii) approximate both ∆hXjh and ∆hXkh by stochastic integrals in
V2, using (4.2) for the latter;

(iii) show that the stochastic integrals are conditionally Gaussian,
so that we can apply Kolmogorov’s Lemma;

(iv) assemble the estimates to give (4.3).

Step (i). Let

ξj ≡ ∆hXjh ,

Ij =
√

L(jh, Bjh)−
∫ ∞

−∞
∆Ljh(x− Bjh) dWx ,

ηj = Ij − ξj .
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We claim that the first term on the right-hand side of (4.6) is

V1 =
[nt]−1
∑

j=[ns]

E
{

(

|Ij|
4

3 − αjn

)2
}

+O
(

(t− s)h
9

8

)

. (4.7)

We know from (4.1) that ‖ηj‖p ≤ Cph
7

8 . Exploiting the fact

(Proposition 2.1) that W is independent of both L̂(h, x − Bjh) and
L(jh, Bjh), we have by Burkholder’s inequality that

‖Ij‖p ≤ Cp

∥

∥

∥

∥

∥

∥

(

L(jh, Bjh)
∫

L̂(h, x)2 dx
)

1

2

∥

∥

∥

∥

∥

∥

p

(4.8)

≤ Cph
3

4 ,

by Lemma 1.4, at least for all s ≤ 1, which is all that concerns us here.
Hence for small h, ‖ξj‖p ≤ Cph

3

4 . Now using the elementary bound
(1.10) and Hölder’s inequality, we estimate

‖ |Ij|p − |ξj|p ‖2 ≤ Cp

∥

∥

∥ηj

(

|ξj|p−1 + |Ij|p−1
)∥

∥

∥

2
(4.9)

≤ Cp‖ηj‖2α

∥

∥

∥ |ξj|p−1 + |Ij|p−1
∥

∥

∥

2α′

where 1
α

+ 1
α′

= 1. Now take p = 4/3, the case of interest to us:

≤ Cph
7

8h3(p−1)/4

= Cph
9

8 (4.10)

Consider the jth term of V1 (4.6), which we write E
{

(|ξj|
4

3 − α)2
}

.

The difference between this and what we want is

∣

∣

∣

∣

E
{

(

|ξj|
4

3 − α
)2
}

−E
{

(

|Ij|
4

3 − α
)2
}∣

∣

∣

∣

=
∣

∣

∣E
{(

|ξj|
4

3 − |Ij|
4

3

) (

|ξj|
4

3 + |Ij|
4

3 − 2α
)}∣

∣

∣

≤
∥

∥

∥|ξj|
4

3 − |Ij |
4

3

∥

∥

∥

2

∥

∥

∥|ξj|
4

3 + |Ij|
4

3 − 2α
∥

∥

∥

2

≤ Cph
17

8 ,

where we have used (4.8), (4.4) and (4.10) to bound the norms of the
various terms. The sum contains at most (t− s)/h terms, so the total

contribution is at most Cp(t− s)h
9

8 .
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Step (ii). The argument is similar to that of Step (i). Let j < k and
define

Jjk =
√

L(jh, Bjh)−
∫ ∞

−∞
∆Lkh(x−Bkh) dWx

Kjk =
√

L′((k − j − 1)h,B′
(k−j−1)h)−

∫ ∞

−∞
∆L′

(k−j−1)h(x−B′
(k−j−1)h) dW

′
x ,

where B′
u ≡ Bu+jh+h−Bjh+h is the Brownian motion from (j+1)h on-

ward, and L′ is its local time. (These definitions allow us to abbreviate

(4.1) and (4.2) to ‖ηj‖p ≤ Cph
7

8 , ‖ξk−Jjk−Kjk‖p ≤ Cp[|t−s|
1

8h
3

4 +h
7

8 ]

respectively.) We have ‖ξj‖p + ‖Ij‖p + ‖ξk‖p + ‖Jjk +Kjk‖p ≤ Cph
3

4 .
We claim that the double sum in (4.6) is

V2 = 2
[nt]−2
∑

j=[ns]

[nt]−1
∑

k=j+1

E
{(

|Ij |
4

3 − αjn

) (

|Jjk +Kjk|
4

3 − αkn

)}

+O
(

(t− s)2(h
1

8 + |t− s| 18 )
)

. (4.11)

Indeed, let us estimate the difference between V2 and what we
would have if we replaced each ξj by the stochastic integrals. Set

Y = |ξj|
4

3 − αjn, Y ′ = |Ij|
4

3 − αjn

Z = |ξk|
4

3 − αkn, Z ′ = |Jjk +Kjk|
4

3 − αkn .

Then the difference is

|E{Y Z − Y ′Z ′}| ≤ E{|Y (Z − Z ′)|} + E{|Z ′(Y − Y ′)|}
≤ ‖Z − Z ′‖2‖Y ‖2 + ‖Y − Y ′‖2‖Z ′‖2

≤ ch
∥

∥

∥|ξk|
4

3 − |Jjk +Kjk|
4

3

∥

∥

∥

2
+ ch

∥

∥

∥|ξj|
4

3 − |Ij|
4

3

∥

∥

∥

2
,

since ‖αjn‖p ≤ cph. Now we estimate the other terms as we did in
(4.9); we obtain

∥

∥

∥|ξj|
4

3 − |Ij|
4

3

∥

∥

∥

2
≤ ch

9

8 ,
∥

∥

∥|ξk|
4

3 − |Jjk +Kjk|
4

3

∥

∥

∥

2
≤ ch

1

4

(

|t− s| 18h 3

4 + h
7

8

)

.

Thus

|E{Y Z − Y ′Z ′}| ≤ ch2
(

|t− s| 18 + h
1

8

)

,

There are at most (t− s)2/h2 terms in the double sum, so the error in-

troduced in (4.6) by replacing the |∆X| 43 throughout by the stochastic
integrals is at worst

c
[

(t− s)h
9

8 + (t− s)2(h
1

8 + |t− s| 18 )
]

. (4.12)
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Evidently, ‖Un(t) − Un(s)‖2 = 0 if 0 ≤ s ≤ t ≤ s + h, so we assume
that (t− s) ≥ h, which implies that (t− s)h ≤ (t− s)2 and we see that
the upper bound (4.12) translates into

c(t− s)2
(

h
1

8 + |t− s| 18
)

. (4.13)

Thus we have proved that

‖Un(t) − Un(s)‖2
2 =

[nt]−1
∑

j=[ns]

E
{

(|Ij|
4

3 − αjn)
2
}

+ 2
[nt]−2
∑

j=[ns]

[nt]−1
∑

k=j+1

E
{

(|Ij|
4

3 − αjn)(|Jjk +Kjk|
4

3 − αkn)
}

(4.14)

+O
(

(t− s)2(h
1

8 + |t− s| 18 )
)

.

The proof is completed by analysing the two sums on the right of this
equation, which is the work of the final step.

Step (iv). By Prop. 2.1,W is independent of Aj ≡ σ{ (Bjh, L(jh, Bjh), ∆Ljh(·)) },
so that if we condition on Aj, the integrand in Ij is effectively deter-
ministic; so is the square root multiplying the stochastic integral. The
stochastic integral of a deterministic function with respect to a Brow-
nian motion is Gaussian, so we conclude that, given Aj, the random
variable Ij is conditionally Gaussian, with mean zero and variance

σ2
j ≡ L(jh, Bjh)

∫ ∞

−∞
∆Ljh(x)

2dx ≡ (β−1αjn)
3

2 . (4.15)

Thus

E
{

|Ij |
4

3

∣

∣

∣ Aj

}

= αjn

by definition of β, and

E
{

(|Ij|
4

3 − αjn)
2
∣

∣

∣ Aj

}

= const (σ2
j )

4

3 ,

where the constant is unimportant. We now take expectations of the
first sum on the right-hand side of (4.14) by conditioning firstly on the
Aj, to obtain the upper bound

V1 ≤ c(t− s)h−1 · h2 = c(t− s)h. (4.16)

The second sum is more subtle, and needs Kolmogorov’s Lemma. If
we fix j and k in (4.14) and look at the joint representation of Ij , Jjk,
and Kjk as stochastic integrals, we see that W and W ′ are independent
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Brownian motions, independent of Bjh, L(jh, Bjh), (Bjh+u−Bjh)0≤u≤h,
B′

v, L
′(v, B′

v), and (Bkh+u −Bkh)u≥0. Thus, if we condition by

Ajk ≡ σ({Bjk, L(jh, Bjh), (Bu+jh − Bjh)0≤u≤h, B
′
(k−j−1)h,

L′((k − j − 1)h,B′
(k−j−1)h), (Bu+kh −Bkh)u≥0}) ,

the integrands and the square roots in Ij , Jjk, and Kjk are effectively
deterministic; stochastic integrals of deterministic functions with re-
spect to independent Brownian motions are jointly Gaussian, so that
these random variables are (conditionally) jointly Gaussian, with mean
zero and covariance matrix







σ2
j θjk 0

θjk σ2
jk 0

0 0 σ′2
jk







where σ2
j is as at (4.15), and

σ2
jk ≡ L(jh, Bjh)

∫

∆Lkh(x)
2dx,

θjk ≡ L(jh, Bjh)
∫

∆Lkh(x)∆Ljh(x) dx,

σ′2
jk ≡ L′((k − j − 1)h,B(k−j−1)h)

∫

∆L′
(k−j−1)h(x)

2 dx.

Using equation (1.9) from Kolmogorov’s Lemma we obtain
∣

∣

∣

∣

E
{

(

|Ij |
4

3 − αjn

)2 (|Jjk +Kjk|
4

3 − αkn

)2 ∣
∣

∣ Ajk

}∣

∣

∣

∣

≤ E
{

(

|Ij|
4

3 − αjn

)2 ∣
∣

∣ Ajk

}

1

2

E
{

(

|Jjk +Kjk|
4

3 − αkn

)2 ∣
∣

∣ Ajk

}

1

2

ρ(Ij, Jjk +Kjk)
2

≤ cσ
4

3

j

(

σ2
jk + σ′2

jk

) 2

3 · θ2
jk/σ

2
j

(

σ2
jk + σ′2

jk

)

≤ c
θ2

jk

σ
2

3

j σ
2

3

jk

≤ cθ
4

3

jk .

Now we estimate

E
{

θ
4

3

jk

}

= E
{

L(jh, Bjh)
4

3

}

E

{

(∫

∆Lkh(x)∆Ljh(x) dx
) 4

3

}

(4.17)

≤ cE
{∫

∆Ljh(x)
4

3 ∆Lkh(x) dx
}

h
1

3 ,
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using Jensen’s inequality. If m = k − j − 1, we have
∫

E
{

∆Ljh(x)
4

3 ∆Lkh(x)
}

dx =
∫

E
{

L̄(h, x)
4

3 [L((m+ 1)h, x) − L(mh, x)]
}

dx,

where L̄ and L are the local time processes of independent Brownian motions;

=
∫

E
{

L̄(h, x)
4

3

}

E{L((m+ 1)h, x) − L(mh, x)} dx .

Thus

[nt]−2
∑

j=[ns]

[nt]−1
∑

k=j+1

∫

E
{

∆Ljh(x)
4

3 ∆Lkh(x)
}

dx

=
∫

E
{

L̄(h, x)
4

3

}

[nt]−2
∑

j=[ns]

E{L(([nt] − j − 1)h, x)} dx

≤
∫

dxE
{

L̄(h, x)
4

3

} 1

h

∫ t−s

0
E{L(u, x)} du

≤ t− s

h

∫

E
{

L̄(h, x)
4

3

}

E{L(1, x)} dx

≤ c
t− s

h

(∫

E
{

L̄(h, x)
8

3

}

dx
)

1

2

≤ c(t− s)h−
1

12

by the scaling (Lemma 1.4) of local time. Returning to (4.17) gives

V2 ≤ c
[nt]−2
∑

j=[ns]

[nt]−1
∑

k=j+1

E
{

θ
4

3

jk

}

≤ c(t− s)h
1

4 . (4.18)

Combining (4.16) and (4.18) with (4.14), we see that there exists
a constant C such that

‖Un(t) − Un(s)‖2 ≤ C
(

(t− s)(h+ h1/4) + (t− s)2h1/8 + (t− s)17/8
)

.

Now h = 1/n; if we let ∆ = t/m for some integer m, and note that
Un(0) ≡ 0, we see

‖Un(t)‖2 ≤
m−1
∑

k=0

‖Un((k + 1)∆) − Un(k∆)‖2

≤ c

∆

(

∆/n+ ∆/n1/4 + ∆2/n1/8 + ∆17/8
)

1

2

,

so that

lim sup
n→∞

‖Un(t)‖ ≤ c∆1/16 .
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Since ∆ is arbitrary, we must have lim ‖Un(t)‖2 = 0. This shows that
V n

4/3(t) converges in L2 and in probability. To see that the L2 con-

vergence is uniform in t, just note that t 7→ V n
4/3(t) is an increasing

function, and that the limit is a continuous increasing function of t. It
then follows immediately that the L2 convergence is uniform in t for t
in bounded intervals. This completes the proof. z

Appendix A. Proof of Kolmogorov’s Lemma

Here is a proof of Lemma 1.3 in the spirit of this paper. Let
(Xt)0≤t≤1 and (Yt)0≤t≤1 be a pair of standard Brownian motions on the
same filtration, having correlation ρ, so that d[X, Y ]t = ρdt. Assume
without loss of generality that E{φ(X1)} = E{ψ(Y1)} = 0, and let

pt(x, y) = (2πt)−
1

2 exp((y−x)2/2t) be the Brownian transition density.
Write Ptφ(x) =

∫

pt(x, y)φ(y) dt. Consider

Mt = P1−tφ(Xt), 0 ≤ t ≤ 1,

and note that M0 = E{φ(X1)} = 0 and M1 = φ(X1). By Itô’s Lemma
for t < 1,

dMt =
∂

∂x
P1−tφ(Xt) dXt + 1

2

∂2

∂x2
P1−tφ(Xt) dt+

∂

∂t
P1−tφ(Xt) dt .

(A.1)

The last two terms cancel since pt satisfies the heat equation, so that
M is a stochastic integral—we could also have seen this by noticing
from the Markov property that M is a martingale—hence

φ(X1) =
∫ 1

0

∂

∂x
P1−tφ(Xt) dXt . (A.2)

Thus, as d[X, Y ] = ρ dt,

|E {φ(X1)ψ(Y1)}| = |ρ|
∣

∣

∣

∣

E
{
∫ 1

0
(P1−tφ)′(Xt)(P1−tψ)′(Yt) dt

}∣

∣

∣

∣

≤ |ρ|E
{
∫ 1

0
(P1−tφ)′(Xt)

2 dt
}

1

2

E
{
∫ 1

0
(P1−tψ)′(Yt)

2 dt
}

1

2

(A.3)

= |ρ|E{φ(X1)}
1

2E{ψ(Y1)}
1

2 ,

which implies the first statement of Kolmogorov’s Lemma.
To prove the second statement, suppose E{X1φ(X1)} = 0. Using

(A.2),

0 = E{X1φ(X1)} = E
{∫ 1

0
(P1−tφ)′(Xt) dt

}

. (A.4)
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But the Brownian semigroup commutes with differentiation with re-
spect to x, so that E{(P1−tφ)′(Xt)} = Pt{(P1−tφ)′} = (PtP1−tφ)′ =
(P1φ)′, independent of t. Its common value must be zero by (A.4).
Thus we can apply (A.3)—on the interval [0, t] rather than [0, 1]—to
(P1−tφ)′ and (P1−tψ)′:

E {(P1−tφ)′(Xt)(P1−tψ)′(Yt)} ≤ |ρ|E
{

(P1−tφ)′(Xt)
2
}

1

2

E
{

(P1−tψ)′(Yt)
2
}

1

2

.

Putting this back into (A.3) gives us the factor of ρ2 in (1.8) and
completes the proof.
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