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1 Introduction

This paper was motivated by questions regarding changes of variables in stochastic partial
differential equations (s.p.d.e.’s). To illustrate the issues, consider first the analogous
question for a stochastic differential equation of the form

(1) dXt = b(t, Xt) dt+ σ(t, Xt) dWt, X0 = x0.

Given a smooth increasing function ϕ : RI + → RI + with ϕ(0) = 0 and ϕ′(u) > 0, for all
u ≥ 0, set Yu = Xϕ(u). Then (Yu) is a (weak) solution of the following equation:

dYu = b(ϕ−1(u), Yu)ϕ
′(u) du+ σ(ϕ−1(u), Yu)

√
ϕ′(u) dB̃(u),

for some Brownian motion B̃. That is, the change of variables t = ϕ(u) affects equation
(1) much as though it were an ordinary differential equation.

On the other hand, consider the change of variables t = 1−u, namely, time-reversal. It
is well known [7] that the process (X̂u = X1−u, 0 ≤ u ≤ 1) is a solution of the stochastic
differential equation

dX̂u = b̂(u, X̂u)du+ σ̂(u, X̂u)dB̂u, X̂0 = X1,

where B̂ is a Brownian motion independent of X1, and b̂ and σ̂ are given by the formulas

(2) σ̂(u, x) = σ(1 − u, x), b̂(u, x) = −b(1 − u, x) +
∂
∂x

(ρ1−u(x)σ(1 − u, x))

ρ1−u(x)
,

where ρt(·) is the density function of Xt. In the simplest case in which b ≡ 0, σ ≡ 1, X
is a standard Brownian motion and these formulas give the following equation for X̂:

dX̂u = − X̂u

1 − u
du+ dB̂u.

As expected, the reversal of Brownian motion is a Brownian bridge.
These considerations have been considerably extended [5, 10], to include infinite sys-

tems of stochastic differential equations. Of course, the presence of the density ofX1−u and
the derivative in x makes the extensions highly non-trivial, but under certains conditions,
the formulas above (suitably reinterpreted) give an equation for the reversed process.

With s.p.d.e.’s, there is a much wider choice of changes of variables than with s.d.e.’s.
However, the fundamental issue is similar to that of s.d.e.’s: if the change of variables
respects the filtration, then the s.p.d.e. in the new variables is easily obtained from the
s.p.d.e. in the old variables, almost as for deterministic p.d.e.’s (see Section 3). However,
if the change of variables implies a change of filtration, then the situation is much more
delicate. The aim of this paper is to examine this issue in the context of hyperbolic
s.p.d.e.’s in two variables, driven by two-parameter white noise.
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If one considers a change of variables such as time reversal in an s.p.d.e., one might
be tempted to make use of the results of [5, 10]. Indeed, in an abstract sense, an s.p.d.e.
can be interpreted as an infinite system of s.d.e’s. However, the class of s.p.d.e.’s is only
a small subset of the class of infinite systems of s.d.e.’s, and there is no reason to expect,
given an infinite system of s.d.e.’s for the reversed process, that it will correspond to an
s.p.d.e.

The outline of this paper is as follows. ...

2 Existence Theory for Hyperbolic SPDE’s in the

plane

Consider the (reduced) hyperbolic SPDE

(3)
∂2X

∂s∂t
+ a1(s, t)

∂X

∂s
+ a2(s, t)

∂X

∂t
+ a3(s, t, X) = a4(s, t)Ẇ ,

with initial data
X(s, 0) = X0 +M1

s , X(0, t) = X0 +M2
t .

Here, Ẇ is a space-time white noise. The coefficients a1, . . . , a4 are deterministic functions:
a1 a2 and a3 are continuously differentiable and have bounded first partials, a4 is bounded
and continuous, and a3(s, t, X) = a3(s, t, X(s, t)). The boundary conditions X0, M

1

and M2 are (possibly) random, independent of the white noise Ẇ , and M1 and M2 are
continuous processes, with M1

0 = M2
0 = 0.

Equation (3) was studied in [4] using the theory of two-parameter processes. It was
also studied in [11, 12], where it was formulated in mild form, using the Green’s function,
and it was shown that the two-parameter form, the mild form, and the weak form (see
below) are equivalent, and have a unique solution.

To get the weak form of (3), multiply both sides by a test function φ ∈ C(2)(RI 2), and

integrate over the rectangle Rst
def
= [0, s] × [0, t] to get

(4)

∫∫

Rst

φ(u, v)

(
∂2X

∂u∂v
+ a1(u, v)

∂X

∂u
+ a2(u, v)

∂X

∂v

)
du dv

=

∫∫

Rst

φ(u, v)
[
a4(u, v)W (du dv)− a3(u, v,X) du dv

]
.
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We use the integration by parts formula

∫ b

a

dx

∫ d

c

dyf(x, y)
∂2g

∂x∂y
(5)

= f(b, d)g(b, d) − f(a, d)g(a, d)− f(b, c)g(b, c) + f(a, c)g(a, c)

−
∫ b

a

[
∂f

∂x
(x, d)g(x, d) − ∂f

∂x
(x, c)g(x, c)

]
dx

−
∫ d

c

[
∂f

∂x
(b, y)g(b, y)− ∂f

∂x
(a, y)g(a, y)

]
dy

+

∫ b

a

dx

∫ d

c

dy
∂2f

∂x∂y
g(x, y),

with f = φ, g = X, to get all the derivatives onto φ:

(6) X(s, t)φ(s, t) −X(s, 0)φ(s, 0) −X(0, t)φ(0, t) +X(0, 0)φ(0, 0)

−
∫ s

0

(
X(u, t)

[∂φ
∂u

(u, t) − a2(u, t)φ(u, t)
]
−X(u, 0)

[∂φ
∂u

(u, 0) − a2(u, 0)φ(u, 0)
])
du

−
∫ t

0

(
X(s, v)

[∂φ
∂v

(s, v) − a1(s, v)φ(s, v)
]
−X(0, v)

[∂φ
∂v

(0, v) − a1(0, v)φ(0, v)
])
dv

+

∫∫

Rst

X(u, v)
[ ∂2φ

∂u∂v
(u, v) − ∂

∂u

(
a1(u, v)φ(u, v)

)
− ∂

∂v

(
a2(u, v)φ(u, v)

)]
du dv

=

∫∫

Rst

φ(u, v)
[
a4(u, v)W (du dv)− a3(u, v,X) du dv

]
.

We say that a jointly measurable and locally integrable process (X(s, t), (s, t) ∈ RI 2
+)

is a solution of (3) if (6) holds a.s. for each (s, t) ∈ RI 2
+ and each function φ ∈ C(2)(RI 2

+).
A slight extension of [12, Theorem 1] (which only considers more restrictive initial condi-
tions) shows that if E(X2

0 ) < ∞, E(supu≤s(M
1
u)2) < ∞ and E(supv≤t(M

2
v )2) < ∞, then

there exists a unique solution of (3) which has continuous sample paths, and which has
the property that sup(u,v)∈RI st

E(X(u, v)2) <∞.
The solution of (3) has an integral representation using the Green’s function for the

problem. The Green’s function and its properties are studied in [12] (Propositions 10
and 11): it is a function γ(s, t; u, v) defined for (s, t) ∈ RI 2

+, (u, v) ∈ RI st, which has the
following properties.

(a) For fixed (S, T ), for all s ≤ S and t ≤ T , γ(s, t; ·, ·) has continuous and uniformly
bounded first derivatives and a continuous and uniformly bounded second order mixed
derivative in Rst. For u ≤ S and v ≤ T , γ(·, · ; u, v) has uniformly bounded first deriva-
tives and a uniformly bounded second order mixed derivative in RST \ Ruv. (Note. The
continuity statements are not made in [11, 12] because in those papers, a1 and a2 are not
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assumed to be C1. However, under this assumption, they follow easily from the proof in
[11, Proposition 3.2].

(b) For (u, v) ∈ Rst,

γ(s, t; u, v) = 1 −
∫ t

v

a1(u, w)γ(s, t; u, w) dw−
∫ s

u

a2(r, v)γ(s, t; r, v) dr ;

(c) For (u, v) ∈ Rst,

∂2γ

∂u∂v
(s, t; u, v)− ∂

∂u

(
a1(u, v)γ(s, t; u, v)

)
− ∂

∂v

(
a2(u, v)γ(s, t; u, v)

)
= 0 , ;

(d)
∂γ

∂u
(s, t; u, t) − a2(u, t)γ(s, t; u, t) = 0 , u ≤ s;

(e)
∂γ

∂v
(s, t; s, v) − a1(s, v)γ(s, t; s, v) = 0 , v ≤ t;

(f) γ(s, t; s, t) = 1 .

Moreover, there exists a universal constant C > 0 such that

(g) sup
(s,t)∈RI 2

+

sup
(u,v)∈Rst

|γ(s, t; u, v)| ≤ C ;

(h) sup
s≥u∨r,
t≥v∨w

|γ(s, t; u, v) − γ(s, t; r, w)| ≤ C
(
|u− r| + |v − w|

)
;

(i) sup
s∧r≥u,
t∧w≥v

|γ(s, t; u, v)− γ(r, w; u, v)| ≤ C(|s− r| + |t− w|) .

If we replace φ(u, v) by γ(s, t; u, v) in (6) and use (c), (d) and (e), we get

(7) X(s, t) = γ(s, t; s, 0)X(s, 0) + γ(s, t; 0, t)X(0, t) − γ(s, t, 0, 0)X(0, 0)

−
∫ s

0

X(u, 0)
[∂γ
∂u

(s, t; u, 0) − a2(u, 0)γ(s, t; u, 0)
]
du

−
∫ t

0

X(0, v)
[∂γ
∂v

(s, t; 0, v)− a1(0, v)γ(s, t; 0, v)
]
dv

+

∫∫

Rst

γ(s, t; u, v)
[
a4(u, v)W (du dv)− a3(u, v,X) du dv

]
.

Definition 2.1 If ∆ = ]a, b]× ]c, d] ⊂ RI 2
+ is a rectangle, the planar increment of X over

∆ is
X(∆)

def
= X(b, d) −X(a, d) −X(b, c) +X(b, d) .
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It is shown in [12] (Propositions 2.1 and 2.2) that the solution of (6) also satisfies (7).
One can extend (6) to certain non-smooth φ, and in particular to indicator functions, as
follows.

Lemma 2.1 Let 0 < ui < vi, i = 1, 2, and set ∆ = ]u1, v1]× ]u2, v2]. Then

(8) X(∆) −
∫∫

∆

X(u, v)
[∂a1

∂u
(u, v) +

∂a2

∂v
(u, v)

]
du dv

+

∫ v1

u1

[
X(u, v2)a2(u, v2) −X(u, u2)a2(u, u2)

]
du

+

∫ v2

u2

[
X(v1, v)a1(v1, v) −X(u1, v)a1(u1, v)

]
dv

=

∫∫

∆

[
a4(u, v)W (du dv)− a3(u, v,X) du dv

]
.

Proof. Fix s > v1, t > v2. Let ψ(x) be a non-negative smooth function with compact
support, such that ψ(0) > 0 and

∫
ψ(x) dx = 1. Define

φiε(x) =
1

ε

∫ x

0

(
ψ

(y − ui

ε

)
− ψ

(y − vi

ε

))
dy,

and let φε(u, v) = φ1ε(u)φ2ε(v). If we put φε into (6), the first three lines vanish if ε is
small, and we get

(9)

∫∫

Rst

X(u, v)
[
φ′

1ε(u)φ
′
2ε(v) − a1(u, v)φ

′
1ε(u)φ2ε(v) − a2(u, v)φ1ε(u)φ

′
2ε(v)

− φ1ε(u)φ2ε(v)
(∂a1

∂u
(u, v) +

∂a2

∂v
(u, v)

)]
du dv

=

∫∫

Rst

φ1ε(u)φ2ε(v)
[
a4(u, v)W (du dv)− a3(u, v,X) du dv

]
.

Notice that as ε ↓ 0, φiε converges boundedly and pointwise to I[ui,vi] while φ′
iε converges

weakly to δui
− δvi

. Since X, the ai, and their first partials are continuous, the left-hand
side of (9) converges to the left-hand side of (8). At the same time, the ai are bounded and
φε converges pointwise and boundedly to the indicator function of ∆, so the right-hand
side of (9) converges in L2 to the right-hand side of (8), proving the lemma. ♣

2.1 Semimartingale Initial Data

We want to consider solutions with fairly regular initial values. In this context, “initial
values” refers to the values of X on the boundary of RI 2

+, and “fairly regular” means that
the boundary values should be well-behaved semimartingales.
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Let Y = (Yt, t ≥ 0) be a semimartingale with the decomposition Yt = Mt + Vt, where
Mt is a martingale (in some given filtration), and Vt is a process of locally finite variation.
Let 〈Y 〉t = 〈M〉t be the predictable increasing process associated to Y .

Definition 2.2 We say that a semimartingale Y is smooth if
(i) M and V are continuous;
(ii) t 7→ 〈Y 〉t and t 7→ Vt are continuously differentiable;

(iii) d〈Y 〉
dt

is L1-bounded in compact t-sets, and dV
dt

is L2-bounded in compact t-sets.

Notice that a smooth semimartingale need not have smooth sample paths (quite the
opposite, it will only have smooth sample paths if its martingale part is constant). It
is the characteristics of the semimartingales, not the semimartingales themselves, which
are smooth. One can think of a smooth semimartingale as the solution of a stochastic
differential equation dY = σ dWt+µ dt, where σ(x, t) and µ(x, t) are Lipschitz continuous.

Remark 2.2 It is straightforward to show that if f is a bounded, continuous, adapted

process and Y is a smooth semimartingale, then Zt
def
=

∫ t

0
f(s) dYs is also a smooth semi-

martingale.

Assumption A Let Y 1
u = X(u, 0) and Y 2

v = X(0, v). (Y 1
u , u ≥ 0) and (Y 2

v , v ≥ 0) are
smooth semimartingales (in their respective natural filtrations) which are independent of
Ẇ , with semimartingale decomposition Y i

u = M i
u + V i

u , i = 1, 2.

Under this assumption, denote

σ2
i (u)

def
=

d〈Y i〉u
du

, i = 1, 2,

µi(u)
def
=

dV i
u

du
, i = 1, 2,

and for (s, t) ∈ RI 2
+, set

F s,t = σ(Y 1
u , Y

2
v , Ẇu,v, u ≤ s, v ≤ t).

Lemma 2.3 Under Assumption A, for any (s, t) ∈ RI 2
+ the processes (X(u, t), 0 ≤ u ≤

s) and (X(s, v), 0 ≤ v ≤ t) are smooth semimartingales (in the respective filtrations
(Fu,t, 0 ≤ u ≤ s) and (F s,v, 0 ≤ v ≤ t)). Then the Lp-bounds on their characteristics
are uniform for (s, t) in compact sets.

Moreover, if ∆ = (u1, v1] × (u2, v2], (8) can be written

(10) X(∆) +

∫ v2

u2

dv

∫ v1

u1

a1(u, v)X(du, v) +

∫ v1

u1

du

∫ v2

u2

a2(u, v)X(u, dv)

=

∫∫

∆

[
a4(u, v)W (du dv)− a3(u, v,X) du dv

]
.

7



Proof. Since X(u, 0) = Y 1
u and X(0, v) = Y 2

v are semimartingales, we can integrate by
parts in the first two integrals on the left-hand side of (7) to get

X(s, t) = γ(s, t; 0, 0)X(0, 0) +

∫ s

0

γ(s, t; u, 0) dY 1
u +

∫ t

0

γ(s, t; 0, v) dY 2
v(11)

+

∫ s

0

Y 1
u a2(u, 0)γ(s, t; u, 0) du+

∫ t

0

Y 2
v a1(0, v)γ(s, t; 0, v) dv

+

∫∫

Rst

γ(s, t; u, v)
[
a4(u, v)W (du dv)− a3(u, v,X) du dv

]

def
= I1(s, t) + · · ·+ I6(s, t) .

The integrals with respect to dY 1
u and dY 2

v are stochastic integrals relative to semi-
martingales. One can show that each of them has a version which is continuous in (s, t),
and we will always take that version.

We will show that if we fix s or t, I1, . . . , I6 are smooth semimartingales in the remaining
variable. By symmetry, it is enough to fix t. Let us decompose I1, . . . , I6 into their
martingale and bounded variation parts in s.

Note that I1, I3, I4, and I5 are each C(1) and have no martingale part, so 〈I1〉 =
〈I3〉 = 〈I4〉 = 〈I5〉 ≡ 0. Indeed, this is clear for I1 and I5 thanks to the differentiability of
s 7→ γ(s, t; u, v) (property (a) above). In I3, one can differentiate (with care!) inside the
stochastic integral to see that

(12)
∂

∂s
I3(s, t) =

∫ t

0

∂

∂s
γ(s, t; 0, v) dY 2

v ,

which is continuous in s by (a). For I4, write

γ(s, t; u, v) = γ(u, t; u, v) +

∫ s

u

∂

∂r
γ(r, t; u, v) dr

and use Fubini’s theorem:

I4(s, t) =

∫ s

0

Y 1
u a2(u, 0)γ(u, t; u, 0) du+

∫ s

0

dr

∫ r

0

Y 1
u a2(u, 0)

∂

∂r
γ(r, t; u, 0) du ,

which is clearly differentiable in s. The same idea can be used in I2 and I6, although one
has to use Fubini’s Theorem for mixed stochastic/Riemann integrals [13]:

I2(s, t) =

∫ s

0

γ(u, t; u, 0) dY 1
u +

∫ s

0

dr

∫ r

0

∂

∂r
γ(r, t; u, 0) dY 1

u

=

∫ s

0

γ(u, t; u, 0) dM1
u+

∫ s

0

γ(u, t; u, 0)µ1(u) du+

∫ s

0

dr

∫ r

0

∂

∂r
γ(r, t; u, 0) dY 1

u
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and

I6(s, t) =

∫∫

Rst

γ(u, t; u, v)a4(u, v)W (du dv)

+

∫ s

0

dr

∫∫

Rrt

∂

∂r
γ(r, t; u, v)a4(u, v)W (du dv) .

This gives us the semimartingale decomposition of I2 and I6—so that we have the
decomposition of all the Ij—and we see that

∂

∂s
〈I2〉st = γ2(s, t; s, 0)σ2

1(s) ,

∂

∂s
〈I6〉st =

∫ t

0

γ2(s, t; s, v)a2
4(s, v) dv .

Now, a4 is bounded by hypothesis and γ is bounded by property (g), and both are
continuous and deterministic. Further, σ2

1(s) is continuous and locally L1-bounded by the
smoothness of Y 1. So we conclude that the derivatives of the 〈Ij〉 are all continuous and
L1-bounded, and the bound is uniform for (s, t) in bounded sets.

We must also check that the ∂
∂s

(V j
s ) are continuous and L2-bounded, and that the

bound is uniform for (s, t) in bounded sets. Since we have explicit formulas for V 1, . . . , V 6,
this is straightforward. We will just check I3, which contains a stochastic integral, and
leave the rest to the reader. Fix Rs0t0 .

Since I3 is C(1), V3 = I3 and from (12) we must bound

A(s, t)
def
= E

{( ∂

∂s
I3

)2}
= E

{(∫ t

0

∂

∂s
γ(s, t; 0, v) dY 2

v

)2}
, (s, t) ∈ Rs0t0 .

Now dY 2
v = dM2

v + µ2(v) dv so

A(s, t) ≤ 2E
{(∫ t

0

∂

∂s
γ(s, t; 0, v) dM2

v

)2}
+ 2E

{(∫ t

0

∂

∂s
γ(s, t; 0, v)µ2(v) dv

)2}
.

The first expectation equals 2E{
∫ t

0
( ∂

∂s
γ(s, t; 0, v))2σ2

2(v) dv}. If (u, v) ≺ (s, t) ∈ Rs0t0 ,
there is a constant K = Ks0t0 such that | ∂

∂s
γ(s, t; 0, v)| ≤ K by (a). The second ex-

pectation is bounded by 2K2E{
(∫ t0

0
|µ2(v)| dv

)2}. Thus by the Schwartz inequality, if
(s, t) ∈ Rs0t0 ,

A(s, t) ≤ 2K2t0

(
sup
v≤t0

E{σ2
2(v)} + sup

v≤t0

E{µ2
2(v)}

)
.

Now Y is a smooth semimartingale, so this is bounded independently of (s, t), hence
A(s, t) is uniformly bounded for (s, t) ∈ Rs0t0 , as claimed.
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To get (10), integrate by parts in the first double integral on the left-hand side of (8).
♣

The following is a direct consequence of Lemma 2.3.

Corollary 2.4 Let ∆ = (s−h, s]× (t−k, t]. Under Assumption A, for any (s0, t0) ∈ RI 2
+

there exists a constant C = Cs0t0 such that if (s, t) ∈ Rs0t0,

E
{
X

(
∆)

)2
}
≤ Chk ,(13)

E
{(
X(s, t) −X(s− h, t− k)

)2
}
≤ C(h+ k) .(14)

2.2 Planar Quadratic Variation

We recall some basic notions. Let ∆ij = ( i−1
2n ,

i
2n ] × ( j−1

2n ,
j
2n ]. Define the planar quadratic

variation Q of X by

Qn(s, t) =
∑

i≤[2ns], j≤[2nt]

|X(∆ij)|2,

and
Q(s, t) = lim sup

n→∞
Qn(s, t) .

At the same time, we can define the linear quadratic variation in one variable s or t:
set

Q1
n(s, t) =

∑

i≤[2ns]

(
X

( i
2n
, t

)
−X

( i− 1

2n
, t

))2

,

Q2
n(s, t) =

∑

j≤[2nt]

(
X

(
s,
j

2n

)
−X

(
s,
j − 1

2n

))2

,

and let
Q1(s, t) = lim sup

n→∞
Q1

n(s, t), Q2(s, t) = lim sup
n→∞

Qn(s, t)

be the quadratic 1-variation and the quadratic 2-variation respectively. Imkeller [8] has
shown CHECK that

Lemma 2.5 (i) If the quadratic variations of X satisfy Qi(s, t) < ∞, i = 1, 2, for all
(s, t), and if Qi(s, t) ≡ 0 for all (s, t) for either i = 1 or i = 2, then the planar quadratic
variation Q(s, t) vanishes identically. NOT QUITE PROVED in [8].

(ii) If X has finite planar quadratic variation and if Y has zero planar quadratic vari-
ation, then the planar quadratic variation of X + Y equals the planar quadratic variation
of X.
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Proposition 2.6 Under Assumption A, the planar quadratic variation of the solution X
of (6) is

(15) 〈X〉st =

∫∫

Rst

a2
4(u, v) du dv .

Proof. From Lemma 2.3,

(16) X(∆ij) =

∫∫

∆ij

a4(u, v)W (du dv)−
∫∫

∆ij

a3(u, v,X) du dv

−
∫ j

2n

j−1

2n

dv

∫ i
2n

i−1

2n

a1(u, v)X(du, v)−
∫ j

2n

j−1

2n

du

∫ v2

u2

a2(u, v)X(u, dv) .

Let us define Z1(s, t) =
∫∫

Rst
a4(u, v)W (du dv), Z2(s, t) =

∫∫
Rst

a3(u, v,X) du dv,

Z3(s, t) =
∫∫

Rst
a1(u, v)X(du, v) dv, and Z4(s, t) =

∫∫
Rst

a2(u, v) duX(u, dv). Then (16)
is equivalent to

X(∆ij) = Z1(∆ij) − Z2(∆ij) − Z3(∆ij) − Z4(∆ij) .

Notice that Z2 is a differentiable function of both s and t, so it has finite variation
in s and also in t, hence it has zero planar quadratic variation by Lemma 2.5 (i). Next,
t 7→ Z3(s, t) is C(1), so Z3 has finite 1-variation, and hence zero quadratic 1-variation. At
the same time, s 7→ Z3(s, t) is a semimartingale, as one can see by reversing the order of
integration, and thus has finite quadratic 2-variation. Thus Z3 has zero planar quadratic
variation, again by Lemma 2.5 (i). The same is true for Z4. Thus, the quadratic variation
of X is equal to the quadratic variation of Z1 by Lemma 2.5 (ii). But Z1 is a stochastic
integral with respect to white noise, and (15) follows from [?]. ♣

Remark 2.7 Proposition 2.6 implies that |a4(s, t)| can be determined from the sample
paths of (X(s, t)). In fact, as long as a4 is never zero, one can determine the sign of a4

as well, since Ẇ is then X-measurable and 〈X,W 〉st =
∫∫

Rst
a4(u, v) du dv.

3 Naive Changes of Variables

Ito integrals depend in a fundamental way on the underlying filtration. In a one parameter
setting the filtration is usually obvious, and can be fixed once and for all. However, there
may be many reasonable filtrations related to a given s.p.d.e., and the one chosen may
depend on the particular coordinate system. A change of variables can involve an implicit
change of filtration. For instance, the usual filtration for the Brownian sheet is a two-
parameter filtration which depends strongly on the coordinates: the “past” at point (s, t)
is generally taken to be Ps,t = Rs,t, and one sets F s,t = σ{Ẇu,v, (u, v) ∈ Ps,t}. However,
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a rotation by 45◦ changes the Brownian sheet into a solution of the stochastic wave
equation [13], and the most natural filtration for such an evolution equation may be a
one-parameter filtration (F̂ t) ordered by time: the “past” at time t and position x is
P t,x = {(s, y) : s ≤ t, y ∈ RI }, and the sigma-field F̂ t is generated by the white noise in
P t,x. So a change of variables which includes a change of filtration may involve a delicate
transformation of stochastic integrals. However, if the integrand of a stochastic integral
is deterministic, it is adapted to any filtration, and its stochastic integral is independent
of the filtration, so to a certain extent at least, one may ignore the question of filtrations.

When we speak of a naive change of variables in an SPDE’s, we mean that the
new filtration is the image of the old one: if F t = σ(Ẇu,v, (u, v) ∈ Pt), then F̂ t =

σ(
˙̂
Wu,v, (u, v) ∈ ζ−1(P t)). We will see that naive changes of variables of SPDE’s work as

expected. It is only when the filtrations change that we find new phenomena.

3.1 Changing variables in stochastic integrals

Let O be an open set and let ζ be a one-to-one C(∞) map of O onto an open set D ⊂ RI 2.
Suppose the Jacobian J of ζ never vanishes. Then for a Borel subset A ⊂ D and an
integrable f on A,

(17)

∫

A

f(z) dz =

∫

ζ−1(A)

f(ζ(ξ))J(ξ) dξ

If W is a white noise on D, define a set function Ŵ on O by

(18) Ŵ (B) =

∫

ζ(B)

1√
J(ζ−1(z))

W (dz) .

Lemma 3.1 Ŵ (B) is a standard white noise on O, and if A is a Borel subset of D and
if f is a deterministic square-integrable function on A,

(19)

∫

A

f(z)W (dz) =

∫

ζ−1(A)

f(ζ(ξ))
√
J(ξ) Ŵ (dξ) .

Proof. Ŵ (B) is clearly a mean zero Gaussian random variable (if finite) and from (18)
and (17)

E{Ŵ (B)2} =

∫

ζ(B)

J(ζ−1(z))−1 dz

=

∫

B

J(ξ)−1J(ξ) dξ

= |B|

12



which shows that Ŵ is defined and has the correct variance on sets of finite Lebesgue
measure. Moreover, if A and B are disjoint subsets of O, ζ(A) and ζ(B) are disjoint in D,
so Ŵ (A) and Ŵ (B) are independent, being stochastic integrals of W over disjoint sets.

Equation (19) holds by (18) if f is of the form f(z) = 1B(z), hence it holds for simple
f by linearity, and for square-integrable f by the usual functional completion argument.
♣

3.2 Changing variables in SPDE’s

Let X be a solution of (3). Let D1 = ∂/∂s, D2 = ∂/∂t, and set

L = D1D2 + a1D1 + a2D2 ,

so that the formal adjoint of L is

L∗φ = D1D2φ−D1(a1φ) −D2(a2φ) .

Then for φ ∈ C(2)(RI 2
+), X will satisfy (6), which we write in the form:

(20) (Xφ)(Rst) +

∮

∂Rst

X(z)
[
∇φ(z) − φ(z)(a2(z)̂i − a1(z)̂j)

]
· T ds

+

∫

Rst

(
X(z)L∗φ(z) + a3(z,X)φ(z)

)
dz =

∫

Rst

φ(z)a4(z)W (dz) ,

where T is the unit tangent vector, î = (1, 0), ĵ = (0, 1), ds is the element of arc length,

and X = X0 on the boundary of RI 2
+, where X0(s, 0)

def
= X0 +M1

s , X0(0, t) = X0 +M2
t ,

as in (3).
Let ζ be a C(∞) homeomorphism of an open set O onto an open set D ⊃ RI 2

+. We

suppose that D ⊃ RI 2
+, and let D̂ = ζ−1(RI 2

+). Let Ŵ be the white noise on O which is

related to W by (18). If φ̂(ξ)
def
= φ(ζ(ξ)), then a straightforward calculation gives us a

differential operator L̂∗ on D̂ for which

(L∗φ)(ζ(ξ)) = L̂∗φ̂(ξ) .

We let L̂ be the formal adjoint of L̂∗, define

X̂(ξ)
def
= X(ζ(ξ)),

and for i = 3, 4, we set âi(ξ, x) = ai(ζ(ξ), x).

Theorem 3.2 The process X̂ is a solution of the stochastic partial differential equation

(21) L̂(JX̂) + â3J = â4

√
J

˙̂
W ,

with boundary values X̂(ξ) = X0(ζ(ξ)) on ζ−1(∂ RI 2
+). (Note. Formally, equation (21) is

interpreted as equation (23).)
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Proof. The map ζ is a smooth homeomorphism on a neighborhood of RI 2
+, so its

restriction is a smooth homeomorphism of D̂ onto the closed set RI 2
+, which takes the

boundary of RI 2
+ onto a (possibly proper) subset of the boundary of D̂. Clearly X̂ has the

correct boundary values, so we need only check that the (21) holds in the interior. For

this, we check the weak form of the equation for φ ∈ C
(∞)
K (RI 2

+) whose support is in the
interior of RI 2

+. If we choose (s, t) large enough so that the support of φ is in the interior
of Rst, the boundary terms of (20) drop out and we are left with

(22)

∫

Rst

(
X(z)L∗φ(z) + a3(z,X)φ(z)

)
dz =

∫∫

Rst

φ(z)a4(z)W (dz) .

The left-hand side is a Riemann integral and transforms under the mapping ζ in the
usual way, while the right-hand side is a stochastic integral which transforms according
to Lemma 11. Since the homeomorphism induces a one-to-one map of X to X̂, there
is a function â3 such that â3(ξ, X̂) = a3(ζ(ξ), X). So, setting ξ = ζ−1(z), we have
X(z) = X̂(ξ), L∗φ(z) = L̂∗φ̂(ξ), and (22) becomes:

(23)

∫

D̂

(
X̂(ξ)L̂∗φ̂(ξ) + â3(ξ, X̂)φ̂(z)

)
J(ξ) dξ =

∫

D̂

φ̂(ξ)â4(ξ)
√
J(ξ)

˙ˆ (dξ)W,

which is the weak form of (21). ♣

Example 3.1 Assume that ai = ai(s, t), i = 1, . . . , 4, and O = D = RI 2
+. Let ζ(x, y) =

(s(x), t(y)), where

s(x) =
e2a − e2a(1−x)

2a
, t(y) =

e2b − e2b(1−y)

2b
.

Suppose that X(s, t) satisfies

(24)
∂2X

∂s∂t
+ a1

∂X

∂s
+ a2

∂X

∂t
+ a3X = a4Ẇ ,

with initial conditions X(s, 0) ≡ X(0, t) ≡ 0. Set âi(x, y) = ai(s(x), t(y)). With the
notations above, J(x, y) = s′(x)t′(y),

(L∗φ)(s(x), t(y)) =
∂2φ

∂s∂t
(s(x), t(y)) − ∂(a1φ)

∂s
(s(x), t(y)) − ∂(a2φ)

∂t
(s(x), t(y))

and

L̂∗φ̂(x, y) =
1

s′(x)t′(y)

∂2φ̂

∂x∂y
(x, y) − 1

s′(x)

∂(â1φ̂)

∂x
(x, y) − 1

t′(y)

∂(â2φ̂)

∂y
(x, y).
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Therefore,

L̂φ̂ =
∂2

∂x∂y

(
1

s′(x)t′(y)
φ̂

)
+ â1

∂

∂x

(
1

s′(x)
φ̂

)
+ â2

∂

∂y

(
1

t′(y)
φ̂

)
.

Let X̂(x, y) = X(s(x, y), t(x, y)). Then X̂ satisfies

∂2X̂

∂x∂y
+ â1e

2b(1−y) ∂X̂

∂x
+ â2e

2a(1−x) ∂X̂

∂y
+ â3X̂e

2a(1−x)+2b(1−y) = â4e
a(1−x)+b(1−y) ˙̂

W ,

with initial conditions X̂(s, 0) ≡ X̂(0, t) ≡ 0.

Example 3.2 Assume a1 and a2 are constants, a3 = a3(s, t, x) and a4 = a4(s, t, x).
Suppose O = (−∞, 1]2 and ζ(u, v) = (1 − u, 1 − v). Suppose that X(s, t) satisfies

∂2X

∂s∂t
+ a1

∂X

∂s
+ a2

∂X

∂t
+ a3X = a4Ẇ ,

with initial conditions X(s, 0) ≡ X(0, t) ≡ 0. With the notations above, J(u, v) ≡ 1, and

L∗φ(1 − u, 1 − v) =
∂2φ

∂s∂t
(1 − u, 1 − v) − a1

∂φ

∂s
(1 − u, 1 − v) − a2

∂φ

∂t
(1 − u, 1 − v),

so

L̂φ̂ =
∂2φ̂

∂u∂v
− a1

∂φ̂

∂u
− a2

∂φ̂

∂v
.

Therefore, X̂(u, v) = X(1 − u, 1 − v) satisfies

L̂X̂(u, v) + â3(u, v, X̂) = â4(u, v, X̂)
˙̂
W,

with boundary conditions X̂(u, 1) ≡ X̂(1, v) ≡ 0. This statement should be compared with
the very different conclusion of Theorem 6.3, in which the change of variables is the same
but the underlying filtration is different.

4 SPDEs as Distributional PDE’s

Let us specialize to the linear case, where a3(s, t, X) = a3(s, t)X(s, t). There is a meta-
theorem which states that linear SPDE’s are simply random PDE’s with distribution
values. We will illustrate this.

Let L =
∑

i,j aijDiDj +
∑

i biDi + c be a partial differential operator on a domain

D ⊂ RI 2
+, whose coefficients aij , bi, and c are deterministic Lipschitz functions, with
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aij ∈ C(2)(D), bi ∈ C(1)(D) and c ∈ C(D). Let F ∈ L1(D), G ∈ L2(D) be deterministic
functions, and consider the SPDE in D

(25) LX = F +GẆ .

We say that X is a weak solution of (25) in D if for each φ ∈ C
(∞)
K (D)

(26)

∫

D

X(z)(L∗φ)(x) dz =

∫

D

φ(x)[
[
G(z)W (dz) + F (x) dz

]

with probability one.

Proposition 4.1 If X = {X(z), z ∈ D} is a weak solution of (26) with continuous
sample paths, and if D̂ is an open, relatively compact subdomain of D, then X defines a
random distribution on D̂. With probability one it is a distributional solution of (25) on
D̂.

Proof. To say X is a distribution is to say it is a continuous linear functional on a
nuclear space. Let us choose the nuclear space to be the completion of C

(∞)
K (D̂) in the

vector space topology generated by the seminorms

Fn(φ) = ‖φ‖2
2 +

n∑

i=1

n∑

j=1

‖Di
1D

j
2φ‖2

2 ,

where ‖φ‖ is the norm of φ in L2(D̂).

Let L∗φ =
∑

ij DiDj(aijφ) −
∑

iDi(biφ) + cφ be the formal adjoint of L. If ω is such

that z 7→ X(z, ω) is continuous on D, X(·, ω) defines a distribution on D̂ by

X(φ, ω) =

∫

D̂

φ(z)X(z, ω) dz ,

and LX is also a distribution: LX(φ) = X(L∗φ).
On the right hand side of (26), F + GẆ also defines a distribution: (F + GẆ )(φ) =∫

D̂
φ(z)[F (x) dz + G(z)W (dz)] a.s. for each φ (see [13], chapter 4). Then (26) says that

for a fixed φ ∈ C
(∞)
K ,

(27) (LX)(φ, ω) = (F +GẆ )(φ, ω)

for a.e. ω. This is true simultaneously for a countable dense set of φ, hence for all φ by
continuity, since both sides are distributions. ♣

We chose a particularly simple space of distributions to avoid having to discuss the
boundary behavior ofX. It should be clear that one can extend this to include boundaries.
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In other words, equation (26), and even equation (3), is an equation in distribution
space which holds for a.e. ω. Consequently, all operations which are legal on such equa-
tions are legal on this one—as long as they do not change the definition of the stochastic
integral in (6). It is interesting to consider the previous section from this point of view.
In particular, if we multiply X by a deterministic C(∞) function, we can just use the usual
calculus to see what SPDE it satisfies.

Corollary 4.2 Suppose that A = (aij) and f ∈ C(2)(D), f > 0. Let L1 = L − c. If X
satisfies (25) and if fX̃ = X, then X̃ satisfies

(28) L1X̃ +
1

f
∇f · (A + AT )∇T X̃ +

Lf

f
X̃ =

1

f
(F + f−1GẆ ) .

Example 4.1 Suppose X satisfies (24). Let Y (s, t) = eas+btX(s, t). Then Y (s, t) satisfies

(29)
∂2Y

∂s∂t
+ (a1 − b)

∂Y

∂s
+ (a2 − a)

∂Y

∂t
+ (a3 − ab− a1a− a2b)Y = eas+bta4 Ẇ .

5 Changing filtrations: final values as initial condi-

tions

We now want to consider some changes of variables which involve changes of filtration,
namely time-reversal.

Consider the linear form of (3):

(30)
∂2X

∂s∂t
+ a1(s, t)

∂X

∂s
+ a2(s, t)

∂X

∂t
+ a3(s, t)X(s, t) = a4(s, t)Ẇ

where the initial values X(s, 0) and X(0, t) are given, and satisfy Assumption A.

Remark 5.1 We’ll want some kind of discussion of the relation of time-reversal and
filtrations, either here or in the intro.

Thus, let X be a solution of (30). We will consider two fundamental types of time
reversal.

• Reversal in one coordinate: (s, t) 7→ (1 − s, t).
Let X̂(s, t) = X(1 − s, t), 0 ≤ s ≤ 1, and let F̂ s be the one-parameter filtration

F̂s = σ{X̂(u, v) : u ≤ s} = σ{X(u, v) : u ≥ 1 − s}.

By symmetry, results for this will translate directly to the reversal (s, t) 7→ (s, 1 − t).

• Reversal in two coordinates: (s, t) 7→ (1 − s, 1 − t).
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Let X̂(s, t) = X(1 − s, 1 − t), 0 ≤ s ≤ 1, 0 ≤ t ≤ 1, and give this the one-parameter
filtration F̂ s = σ{X̂(u, v) : u+ v ≤ s

√
2} = σ{X(u, v) : u ≥ 1 − s, v ≥ 1 − t}.

Let us suppose that Y = X̂ is the solution of an SPDE of the form

(31)
∂2Y

∂s∂t
+ â1(s, t)

∂Y

∂s
+ â2(s, t)

∂Y

∂t
+ â3(s, t)Y = â4(s, t)

˙̂
W, s ≥ 0, t ≥ 0 .

where the initial values for Y are specified on the axes of RI 2
+: in the case of one param-

eter reversal, Y (0, t) = X(1, t), Y (s, 0) = X(1 − s, 0), and in the case of two-parameter
reversal, Y (0, t) = X(1, 1 − t), Y (s, 0) = X(1 − s, 1); and â1, . . . , â4 satisfy the smooth-

ness conditions of Section 2 and
˙̂
W is a white noise relative to the new filtration (F̂t)

(IMPLICITELY, independent of the boundary values of Y ).
The first question we shall ask is this: “If the reversed process actually is the solution

of (31), what can we say about the coefficients â1, . . . , â4?”
Let us first establish a property of the original solution, which clarifies the independence

of the solution and the white noise. Let

Gst = σ{X(u, v) : u ≤ s or v ≤ t} ;

Hst = σ{W (A) : Borel A ⊂ (s,∞) × (t,∞)} .

Note that Hst represents information in the strict future of (s, t), while Gst represents
information in the wide-sense past, which is roughly everything not in the strict future.

Proposition 5.2 Let X be a solution of (30). Then for each s ≥ 0, t ≥ 0, Gst and Hst

are independent.

Proof. From (7), X(s, t) is measurable with respect to F0
st

def
= σ{Y 1

u , u ≤ s}∨σ{Y 2
v , v ≤

t} ∨ σ{W ([0, u]× [0, v]), u ≤ s v ≤ t}.
If A ⊂ (s,∞) × (t,∞), and either u ≤ s or v ≤ t, then W (A) is independent of

W ([0, u]× [0, v]). White noise is a Gaussian process, so it follows that Hst is independent
of σ{W ([0, u] × [0, v]), u ≤ s v ≤ t}. Since the Y i are independent of the white noise, it
follows that Hst is independent of ∨u≤s, v≤t F0

uv ⊃ Gst. ♣

Set ∆ = [s− h, s]× [t−h, t] and ∆̂ = [1− s, 1− s+ h]× [1− t, 1− t+ h], and consider

a two-parameter reversal. If X̂ is a solution of (31), Proposition 5.2 implies that
˙̂
W |∆̂ is

independent of

(32) Ĝ1−s,1−t
def
= σ{Y (u, v), u ≤ 1 − s or v ≤ 1 − t} = σ{X(u, v), u ≥ s or v ≥ t} .

Proposition 5.3 Consider reversal in two coordinates, and set ŝ = 1 − s, t̂ = 1 − t.
Suppose that the reversed process Y = X̂ is a solution of (31) in the above sense. Then
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the ai and âi are related as follows:

â4(ŝ, t̂ ) = a4(s, t);(33)

E
{∫

∆

a4(s, t)W (ds dt) | Ĝ ŝt̂

}
(34)

=
(
a1(s, t) + â1(ŝ, t̂ )

) (
X(s, t) −X(s− h, t)

)
h

+
(
a2(s, t) + â2(ŝ, t̂ )

) (
X(s, t) −X(s, t− h)

)
h

+
(
a3(s, t) − â3(ŝ, t̂ )

)
X(s, t)h2

+ E(s, t; h),

where

E{E(s, t; h)2} ≤ Ch4 .(35)

Remark 5.4 If we consider reversal in one coordinate , then we would set Y (s, t) =
X̂(s, t) = X(1 − s, t), ŝ = 1 − s, t̂ = t, and

Ĝ1−s,t
def
= σ{Y (u, v), u ≤ 1 − s or v ≤ t} = σ{X(u, v), u ≥ s or v ≤ t} .

Then ∆̂ = [1 − s, 1 − s + h] × [t − h, t] and Prop 5.2 implies that
˙̂
W |∆̂ is independent of

Ĝ ŝt̂. So with these definitions, formula (34) remains valid.

Proof. Equality (33) follows from Proposition 2.6. ¿From (10),

(36) X̂(∆) +

∫∫

∆̂

â1(u, v) X̂(du, v) dv +

∫∫

∆̂

â2(u, v) du X̂(u, dv)

+

∫∫

∆̂

a3(u, v)X̂(u, v) du dv =

∫∫

∆̂

â4(u, v) Ŵ (du dv) .

On the other hand,

(37) X(∆) +

∫∫

∆

a1(u, v)X(du, v) dv+

∫∫

∆

a2(u, v) duX(u, dv)

+

∫∫

∆

a3(u, v)X(u, v) du dv =

∫∫

∆

a4(u, v)W (du dv) .

By definition, X̂(∆̂) = X(∆), and X̂(ŝ, t̂ ) = X(s, t). Subtract these equations to see
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that:

(38)

∫∫

∆

a4(u, v)W (du dv)−
∫∫

∆̂

â4(u, v) Ŵ (du dv)

=

∫∫

∆

a1(u, v)X(du, v) dv−
∫∫

∆̂

â1(u, v) X̂(du, v) dv

+

∫∫

∆

a2(u, v) duX(u, dv)−
∫∫

∆̂

â2(u, v) du X̂(u, dv)

+

∫∫

∆

a3(u, v)X(u, v) du dv−
∫∫

∆̂

â3(u, v)X̂(u, v) du dv .

Approximate ai(u, v) and X(u, v) by ai(s, t) and X(s, t) to see that:

(39)

∫∫

∆

a4(u, v)W (du dv)−
∫∫

∆̂

â4(u, v) Ŵ (du dv)

= a1(s, t)
(
X(s, t) −X(s− h, t)

)
h− â1(ŝ, t̂)

(
X̂( ̂s− h, t̂) − X̂(ŝ, t̂ )

)
h+ E1 − Ê1

+ a2(s, t)
(
X(s, t) −X(s, t− h)

)
h− â2(ŝ, t̂ )

(
X̂(ŝ, ̂t− h) − X̂(ŝ, t̂ )

)
h+ E2 − Ê2

+
(
a3(s, t) − â3(ŝ, t̂ )

)
X(s, t)h2 + E3 − Ê3 ,

where the E i and Ê i are the errors in the respective approximations. Now condition on
Ĝ ŝt̂. Note that Ŵ is a white noise with respect to the reversed filtration and that Y = X̂
is a solution of (31), so Proposition 5.2 implies that the white noise on ∆̂ is independent
of Ĝ ŝ,t̂, and therefore

E
{∫∫

∆̂

â4(u, v) Ŵ (du dv) | Ĝ ŝ,t̂

}
= 0 .

On the other hand, all the terms on the right-hand side except the errors are Ĝ ŝ,t̂-

measurable, so that we get (34) with E(s, t; h) =
∑3

i=1E{E i − Ê i | Ĝ ŝ,t̂}.
In order to finish the proof of the proposition, we need only show that there exists

C > 0 such that E{E2
i } ≤ Ch4 and E{Ê2

i } ≤ Ch4 for i = 1, . . . , 3. Consider

(40) E1 =

∫∫

∆

(
a1(u, v) − a1(s, t)

)
X(du, v) dv

+ a1(s, t)

∫ t

t−h

(
X(s, v) −X(s− h, v) −

(
X(s, t) −X(s− h, t)

))
dv

def
= I1 + I2 .

Let X(du, v) = dMv
u + dV v

u be the semimartingale decomposition of X(·, v) and write

I1 =

∫ t

t−h

∫ s

s−h

(
a1(u, v) − a1(s, t)

)(
dMv

u + dV v
u

)
dv
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and use the Schwartz inequality:

(41) E{I2
1} ≤ 2hE

{∫ t

t−h

∫ s

s−h

(
a1(u, v) − a1(s, t)

)2(
d〈Mv〉s dv

}

+ 2hE
{∫ t

t−h

(∫ s

s−h

(
a1(u, v) − a1(s, t)

)
dV v

u

)2

dv
}
.

By Lemma 2.3, d〈Mv〉u = σ2(u, v) du and dV v
u = µ(u, v) du. Moreover, a1 has uni-

formly bounded derivatives, so |a1(u, v)−a1(s, t)| ≤ C(|s−u|+ |t−v|) ≤ 2Ch. Thus this
is

(42) ≤ 8Ch3

∫ t

t−h

∫ s

s−h

E{σ2(u, v)} du dv

+ 8Ch3

∫ t

t−h

E

{(∫ s

s−h

|µ(u, v)| du
)2

}
dv .

By Proposition 2.3, E{µ2(u, v)} and E{σ2(u, v)} are bounded for (u, v) in compact
sets, so there is a constant C ′ for which E{I2

1} is bounded by C ′h5.

Let Z(v) = X
(
(s− h, s] × (v, t]

)
and note that

I2 = a1(s, t)

∫ t

t−h

Z(v) dv ,

so that

E{I2
2} = a2

1(s, t)

∫ t

t−h

∫ t

t−h

E
{
Z(u)Z(v)

}
du dv

≤ a2
1(s, t)

∫ t

t−h

∫ t

t−h

E
{
Z2(u)

}1/2
E

{
Z2(v)

}1/2
du dv .

From Corollary 2.4, E{Z2(u)} ≤ Ch(t − v) ≤ Ch2, so this is bounded by, say,
C ′′a2

1(s, t)h
4. Thus, for small h,

E{E2
1} ≤ 2E{I2

1} + 2E{I2
2} ≤ C ′h5 + C ′′h4 ≤ Ch4

for a suitable constant C which depends only on s+ t, the coefficients ai, and the smooth-
ness of the initial semimartingales Y i. The errors Ê1, E2, and Ê2 are similar.

Moving to E3, we have

E3 =

∫∫

∆

(
a3(u, v)X(u, v)− a3(s, t)X(s, t)

)
du dv

=

∫∫

∆

(
a3(u, v) − a3(s, t)

)
X(u, v) du dv+ a3(s, t)

∫∫

∆

(
X(u, v)−X(s, t)

)
du dv

def
= J1 + J2 .
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Using the same reasoning as above, we see that

E{J2
1} ≤ E

{(∫∫

∆

ChX(u, v) du dv

)2
}

= C2h2

∫

∆×∆

E{X(u, v)X(u′v′)} du dv du′ dv′ .

But E{X(u, v)X(u′v′)} ≤ sup(u,v)∈∆ E{X2(u, v)} ≤ C ′, so E{J2
1} ≤ Ch6.

E{J2
2} = a2

3(s, t)

∫

∆×∆

E
{(
X(u, v) −X(s, t)

)(
X(u′, v′) −X(s, t)

)}
du dv du′ dv′ ,

while sup(u,v)∈∆ E{
(
X(u, v) − X(s, t)

)2} ≤ 2Ch by Corollary 2.4. Thus this is bounded

by 2Ca2
3(s, t)h

5. The same bound holds for Ê3 by symmetry.
Adding the errors together, we see E{E2(s, t; h)} ≤ Ch4 for small h. ♣

Remark 5.5 The only error term above which has order as large as O(h4) is I2. The
others are all O(h5) or smaller.

6 Reversals of the Brownian sheet

6.1 Reversal in one coordinate

Theorem 6.1 Let (W (s, t)) be a standard Brownian sheet. Set Y (s, t) = W (1 − s, t).
Then there is a standard Brownian sheet (B(s, t)) independent of (W (1, t), t ≥ 0) such
that (Y (s, t)) is the solution on [0, 1[×RI + of

(43)
∂2Y

∂s∂t
+

1

1 − s

∂Y

∂t
=
∂2B

∂s∂t
,

with initial conditions Y (0, t) = W (1, t), Y (s, 0) = 0.

Remark 6.2 One easily checks (with Ĝ ŝ,t̂ as in Remark 5.4), that

E(W (∆) | Ĝ ŝ,t̂) =
h

s
(X(s, t) −X(s, t− h)),

so from (34), we guess that â1(ŝ, t̂) = 1/s, i.e. â1(s, t) = 1/(1 − s), and â2 ≡ â3 ≡ 0.
Therefore, that (43) should hold is suggested by Proposition 5.3.

Proof of Theorem 6.1. According to Lemma 2.1, with (8) written as in (10) (would
NEED (8) implies (6)), it suffices to show that the integral of the left-hand side of (43)
over [0, s] × [0, t] is a Brownian sheet. The integral equals

Y (s, t) − Y (s, 0) − Y (0, t) + Y (0, 0) +

∫ s

0

du

1 − u
(Y (u, t) − Y (u, 0)).
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Replace Y (s, t) by W (1 − s, t) and do the change of variables u 7→ 1 − u to see that this
expression equals

W (1 − s, t) −W (1, t) +

∫ 1

1−s

du

u
W (u, t).

Do the change of variables x = 1/u to get

(44) W (1 − s, t) −W (1, t) +

∫ 1

1−s

1

dx

x
W (1/x, t) .

Let ξ(s, t) = sW (1/s, t). Then (ξ(s, t)) is a standard Brownian sheet [13] and the expres-
sion above can be written

(1 − s)ξ

(
1

1 − s
, t

)
− ξ(1, t) +

∫ 1

1−s

1

dx

x2
ξ(x, t).

Integrate by parts to see that this expression is equal to

∫ 1

1−s

1

ξ(dx, t)
1

x
=

∫ 1

1−s

1

∫ t

0

ξ(dx, dy)
1

x
def
= B(s, t).

It is not difficult to check that (B(s, t)) is a Brownian sheet. For instance, if s < s′ and
t < t′, then

E(B(s, t)B(s′, t′)) =

∫ 1

1−s

1

dx

∫ t

0

dy
1

x2
= t

1

x

∣∣∣∣
1

1

1−s

= t(1 − (1 − s)) = st,

while if s < s′ and t′ < t, this covariance is st′.
We now check that (B(s, t)) is independent of (W (1, t), t ≥ 0). Fix a ≥ 1 and b ≥ 0.

If 0 ≤ s ≤ 1 and t ≤ b, then we use the fact that B(s, t) is equal to the expression in (44)
to write

E(B(s, t)W (a, b)) = E

([
W (1 − s, t) −W (1, t) +

∫ 1

1−s

du

u
W (u, t)

]
W (a, b)

)

= −st+

∫ 1

1−s

du

u
ut

= −st+ st

= 0.

If t ≥ b, then

E(B(s, t)W (a, b)) = −sb+

∫ 1

1−s

du

u
ub = −sb+ sb = 0.

This proves the desired independence and completes the proof. ♣
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6.2 Reversal in two coordinates

Theorem 6.3 Let (W (s, t)) be a standard Brownian sheet. Set

Y (s, t) = W (1 − s, 1 − t).

Then there is a standard Brownian sheet (B(s, t)) independent of (W (x, 1), W (1, x), 0 ≤
x ≤ 1) such that (Y (s, t)) is a solution on [0, 1[2 of

(45)
∂2Y

∂s∂t
+

1

1 − t

∂Y

∂s
+

1

1 − s

∂Y

∂t
+

1

(1 − s)(1 − t)
Y (s, t) =

∂2B

∂s∂t
,

with initial conditions Y (0, x) = W (1, 1 − x), Y (x, 0) = W (1 − x, 1), 0 ≤ x ≤ 1.

Remark 6.4 With ∆ and Ĝ ŝ,t̂ defined as in (32), it is not difficult to check that

E(W (∆) | Ĝ ŝ,t̂) =
h

t
(X(s, t) −X(s− h, t)) +

h

s
(X(s, t) −X(s, t− h)) +

h2

st
X(s, t)

(this formula also can be obtained from [3, Theorem 4.2]). From (34), we guess that

â1(ŝ, t̂) =
1

t
, â2(ŝ, t̂) =

1

s
, â3(ŝ, t̂) =

1

st
.

Proposition 5.3 suggests, therefore, that equation (45) should hold.

Proof of Theorem 6.3. Again according to Lemma 2.1, with (8) written as in (10)
(would NEED (8) implies (6)), it suffices to show that the integral of the left-hand side
of (45) over [0, s] × [0, t] is a Brownian sheet, with the desired independence properties.
The integral is equal to

Y (s, t) − Y (s, 0) − Y (0, t) + Y (0, 0) +

∫ t

0

dv

1 − v
(Y (s, v) − Y (0, v))

+

∫ s

0

du

1 − u
(Y (u, t) − Y (u, 0)) +

∫ s

0

du

1 − u

∫ t

0

dv

1 − v
Y (u, v).

Replace Y (s, t) by W (1 − s, 1 − t) and do the change of variables (u, v) 7→ (1 − u, 1 − v)
to get

W (1 − s, 1 − t) −W (1 − s, 1) −W (1, 1− t) +W (1, 1)(46)

+

∫ 1

1−t

dv

v
(W (1 − s, v) −W (1, v)) +

∫ 1

1−s

du

u
(W (u, 1 − t) −W (u, 1))

+

∫ 1

1−s

du

u

∫ 1

1−t

dv

v
W (u, v).
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Now do the change of variables x = 1/u, y = 1/v, to see that this equals

W (]1 − s, 1]× ]1 − t, 1]) +

∫ 1

1−t

1

dy

y
(W (1 − s, 1/y)−W (1, 1/y))

+

∫ 1

1−s

1

dx

x
(W (1/x, 1 − t) −W (1/x, 1)) +

∫ 1

1−s

1

dx

x

∫ 1

1−t

1

dy

y
W (1/x, 1/y) .

Let ξ(s, t) = stW (1/s, 1/t). Then (ξ(s, t)) is a standard Brownian sheet, and the expres-
sion above can be written

(1 − s)(1 − t)ξ

(
1

1 − s
,

1

1 − t

)
− (1 − s)ξ

(
1

1 − s
, 1

)
− (1 − t)ξ

(
1,

1

1 − t

)
+ ξ(1, 1)

−
∫ 1

1−t

1

[
(1 − s)

−1

y2
ξ(

1

1 − s
, y) − −1

y2
ξ(1, y)

]
dy

−
∫ 1

1−s

1

[
(1 − t)

−1

x2
ξ(x,

1

1 − t
) − −1

x2
ξ(x, 1)

]
dx

+

∫ 1

1−s

1

dx

∫ 1

1−t

1

dy
1

x2y2
ξ(x, y).

Using the formula for integration by parts (5), with f(x, y) = ξ(x, y) and g(x, y) = 1/(xy),
we see that this equals

∫ 1

1−s

1

dx

∫ 1

1−t

1

dy
1

xy
ξ(dx, dy)

def
= B(s, t).

It is now straightforward to check that (B(s, t)) so defined is a standard Brownian sheet.
For instance, if s < s′ and t′ < t, then

E(B(s, t)B(s′, t′)) =

∫ 1

1−s

1

dx

∫ 1

1−t′

1

dy
1

x2y2
=

−1

x

∣∣∣∣
1

1−s

1

· −1

y

∣∣∣∣
1

1−t′

1

= st′.

This proves that (45) holds.
It remains to prove that (B(s, t)) is independent of (W (a, 1), W (1, a), 0 ≤ a ≤ 1).

For this, it suffices to compute the covariance between the expression in (46) and W (a, 1),
then W (1, a). We omit the second computation and do the first.

From the covariance of the Brownian sheet and elementary geometric considerations,
using the fact that B(s, t) is equal to the expression in (46), we see that for a ≤ 1 − s,

E(B(s, t)W (a, 1)) =

∫ 1

1−s

du

u
(−at) +

∫ 1

1−s

du

u

∫ 1

1−t

dv

v
(av) = 0,
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and for 1 − s ≤ a ≤ 1,

E(B(s, t)W (a, 1)) = (a− 1 + s)t+

∫ 1

1−t

dv

v
(−v(a− 1 + s))

+

∫ a

1−s

du

u
(−ut) +

∫ 1

a

du

u
(−at)

+

∫ a

1−s

du

u

∫ 1

1−t

dv

v
(uv) +

∫ 1

a

du

u

∫ 1

1−t

dv

v
(av)

= 0.

This completes the proof. ♣

Remark 6.5 Equation (45) is reminiscent of the equation for a Brownian bridge (Xs, 0 ≤
s ≤ 1):

dXs +
Xs

1 − s
= dBs,

where (Bs) is a standard Brownian motion. The law of the reversed process (B(1−s), 0 ≤
s ≤ 1), is the same as the law of (Yt), where

Yt = (1 − t)Z +Xt,

and Z is a standard Normal random variable independent of the Brownian bridge (Xt). A
similar identity in law occurs for the Brownian sheet, as is shown in the following theorem.
MENTION articles [1, 9].

Theorem 6.6 Let (W (s, t)) and (X(s, t)) be standard Brownian sheets. Set

U(s, t) = X(s, t) − sX(1, t) − tX(s, 1) + stX(1, 1),(47)

Z(s, t) = (1 − s)W (1, 1 − t) + (1 − t)W (1 − s, 1) − (1 − s)(1 − t)W (1, 1).(48)

Then U and Z are independent, and Y = U + Z has the same law as (W (1 − s, 1 −
t), (s, t) ∈ [0, 1]2). In particular, Y is a (weak) solution of (45) with initial conditions
Y (0, x) = W (1, 1 − x), Y (x, 0) = W (1 − x, 1), 0 ≤ x ≤ 1.

The proof of this theorem relies on two lemmas.

Lemma 6.7 Z is a solution of the equation

(49)
∂2Z

∂s∂t
+

1

1 − t

∂Z

∂s
+

1

1 − s

∂Z

∂t
+

1

(1 − s)(1 − t)
Z(s, t) = 0.
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Proof. Again according to Lemma 2.1, with (8) written as in (10) (would NEED
(8) implies (6)), it suffices to show that the integral of the left-hand side of (49) over
∆ = [0, s] × [0, t] vanishes. This integral is

Z(∆) +

∫ t

0

dv

1 − v
(Z(s, v) − Z(0, v))

+

∫ s

0

du

1 − u
(Z(u, t) − Z(u, 0)) +

∫ s

0

du

1 − u

∫ t

0

dv

1 − v
Z(u, v).

Using formula (48), this equals

(1 − s)X(1, 1 − t) + (1 − t)X(1 − s, 1) − (1 − s)(1 − t)X(1, 1)

−X(1, 1 − t) −X(1 − s, 1) +X(1, 1)

+

∫ t

0

dv

1 − v
((1 − s)X(1, 1 − v) + (1 − v)X(1 − s, 1)

−(1 − s)(1 − v)X(1, 1)−X(1, 1 − v))

+

∫ s

0

du

1 − u
((1 − t)X(1 − u, 1) + (1 − u)X(1, 1− t)

−(1 − u)(1 − t)X(1, 1) −X(1 − u, 1))

+

∫ s

0

du

1 − u

∫ t

0

dv

1 − v
((1 − u)X(1, 1 − v) + (1 − v)X(1 − u, 1)

−(1 − u)(1 − v)X(1, 1)).

This expression is easily seen to simplify to 0. ♣

Lemma 6.8

(50) E(Z(s, t)Z(s′, t′)) = (1 − (s ∧ s′)(t ∧ t′))(1 − s ∨ s′)(1 − t ∨ t′),

and

(51) E(U(s, t)U(s′, t′)) = (s ∧ s′)(t ∧ t′)(1 − s ∨ s′)(1 − t ∨ t′).
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Proof. Using elementary algebra, one checks that

Z(s, t) = (1 − s + 1 − t− (1 − s)(1 − t))X(1 − s, 1 − t)

+(1 − s− (1 − s)(1 − t))(X(1, 1 − t) −X(1 − s, 1 − t))

+(1 − t− (1 − s)(1 − t))(X(1 − s, 1) −X(1 − s, 1 − t))

−(1 − s)(1 − t)X([1 − s, 1] × [1 − t, 1])

= (1 − st)X(1 − s, 1 − t)

+t(1 − s)(X(1, 1 − t) −X(1 − s, 1 − t))

+s(1 − t)(X(1 − s, 1) −X(1 − s, 1 − t))

−(1 − s)(1 − t)X([1 − s, 1] × [1 − t, 1]).

The four terms in the last expression are independent. It is now a tedious but elementary
calculation, using the covariance of the Brownian sheet, to check that E(Z(s, t)Z(s′, t′))
is given by formula (50). These calculations are left to the reader. Similarly, the tedious
but elementary calculations that establish formula (51) are left to the reader. ♣

Proof of Theorem 6.6. From Lemma 6.8, we see that Y = U + Z has the same
covariance, hence the same law, as (W (1−s, 1− t)). This of course implies that there is a
white noise Ḃ such that Y is the solution of equation (45), but we prefer to give a direct
derivation. By Lemma 6.7, it suffices to check that there is a Brownian sheet (ξ(s, t))
such that (U(s, t)) is the solution of

(52)
∂2U

∂s∂t
+

1

1 − t

∂U

∂s
+

1

1 − s

∂U

∂t
+

1

(1 − s)(1 − t)
U(s, t) =

∂2ξ

∂s∂t
.

Set
W (s, t) = X([1 − s, 1] × [1 − t, 1]),

so that

(53) X(s, t) = W ([1 − s, 1] × [1 − t, 1]).

Because U vanishes on the axes, the double integral of the left-hand side of (52) over
∆ = [0, s] × [0, t] is equal to

U(s, t) +

∫ t

0

dv

1 − v
U(s, v) +

∫ s

0

du

1 − u
U(u, t) +

∫ s

0

du

1 − u

∫ t

0

dv

1 − v
U(u, v).
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Replace U(·, ·) by its expression in terms of X given in (47) to get

X(s, t) − sX(1, t) − tX(s, 1) + stX(1, 1)

+

∫ t

0

dv

1 − v
(X(s, v) − sX(1, v) − vX(s, 1) + svX(1, 1))

+

∫ s

0

du

1 − u
(X(u, t) − uX(1, t) − tX(u, 1) + utX(1, 1))

+

∫ s

0

du

1 − u

∫ t

0

dv

1 − v
(X(u, v) − uX(1, v) − vX(u, 1) + uvX(1, 1)).

Rearrange the terms and simplify to get

X(s, t) +

∫ t

0

dv

1 − v
(X(s, v) −X(s, 1))(54)

+

∫ s

0

du

1 − u
(X(u, t) −X(1, t))

+

∫ s

0

du

∫ t

0

dv

(
X(1, 1) − X(1, v)

1 − v
+
vX(1, 1)

1 − v
− X(u, 1)

1 − u
+
uX(1, 1)

1 − u

+
X(u, v)− uX(1, v)− vX(u, 1) + uvX(1, 1)

(1 − u)(1 − v)

)
.

The integrand in the double integral simplifies to

X(u, v) −X(1, v) −X(u, 1) +X(1, 1)

(1 − u)(1 − v)
.

Now replace X(·, ·) by its expression in terms of W given in (53) and do the changes of
variables u 7→ 1 − u, v 7→ 1 − v, to see that (54) is equal to

W (1 − s, 1 − t) −W (1 − s, 1) −W (1, 1− t) +W (1, 1)

+

∫ 1

1−t

dv

v
(W (1 − s, v) −W (1, v)) +

∫ 1

1−s

du

u
(W (u, 1 − t) −W (u, 1))

+

∫ 1

1−s

du

u

∫ 1

1−t

dv

v
W (u, v).

This is exactly the expression in (46), and we have shown in the lines that follow (46) that
this expression is a standard Brownian sheet, that is independent of (W (1−x, 1), W (1, 1−
x), 0 ≤ x ≤ 1). ♣
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7 Reversal in hyperbolic s.p.d.e.’s

We shall consider the reversal in two coordinates of the the solution of the hyperbolic
equation with constant coeficients

(55)
∂2X

∂s∂t
+ a1

∂X

∂s
+ a2

∂X

∂t
+ a3X(s, t) = Ẇ ,

with vanishing initial conditions X(s, 0) = 0, X(0, t) = 0. The reversal in one coordinate
could be done similarly, and in fact, more simply. In this equation, the case a3 6= a1a2

corresponds to the telegraph equation [6, Chap.IV, §43], whereas in the special case
where a3 = a1a2, equation (55) can be transformed into the wave equation by a change
of variables and parameters. We shall restrict to this special case.

Theorem 7.1 Fix a1, a2, a3 ∈ RI and suppose a3 = a1a2 6= 0. Let (X(s, t)) be the solution
of (55) with vanishing initial conditions, and set X̂(s, t) = X(1−s, 1− t). Then there is a
Brownian sheet (B(s, t)) independent of (X(u, 1), X(1, u), 0 ≤ u ≤ 1) such that (X̂(s, t))
is the solution on [0, 1[2 of

(56)
∂2X̂

∂s∂t
+ â1(s, t)

∂X̂

∂s
+ â2(s, t)

∂X̂

∂t
+ â3(s, t)X̂(s, t) =

∂2B

∂s∂t
,

with initial conditions X̂(s, 0) = X(1 − s, 1), X̂(0, t) = X(1, 1 − t), where

(57) â1(s, t) =
2a1e

2a1(1−s)

e2a1(1−s) − 1
− a1, â2(s, t) =

2a2e
2a2(1−s)

e2a2(1−s) − 1
− a2,

and â3(s, t) = â1(s, t)â2(s, t).

Remark 7.2 The case a1 = a2 = 0 has been discussed in Theorem 6.3. In order to
recover this case from the theorem above, it is not possible to set ai = 0 in (57), but there
is no problem in taking the limit as ai → 0. Doing this for i = 1, 2 leads to equation (45).

Proof of Theorem 7.1. Define X̃(s, t) = ea2s+a1tX(s, t). From Example 4.1, we see
that X̃ satisfies the equation

∂2X̃

∂s∂t
= ea2s+a1tẆ .

Therefore, there is a Brownian sheet W̃ such that

X̃(s, t) = W̃

(
e2a2s − 1

2a2
,
e2a1t − 1

2a1

)
,

and therefore,

X(s, t) = e−a2s−a1t W̃

(
e2a2s − 1

2a2

,
e2a1s − 1

2a1

)
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and

X̂(s, t) = e−a2(1−s)−a1(1−t) W̃

(
e2a2(1−s) − 1

2a2

,
e2a1(1−t) − 1

2a1

)
.

Set

Z(s, t) = W̃

(
e2a2 − 1

2a2
− s,

e2a1 − 1

2a1
− t

)
.

Then

X̂(s, t) = e−a2(1−s)−a1(1−t)Z

(
e2a2 − e2a2(1−s)

2a2
,
e2a1 − e2a1(1−t)

2a1

)
.

By Theorem 6.3, (Z(s, t)) is a solution of the equation

∂2Z

∂s∂t
+ f(a1, t)

∂Z

∂s
+ f(a2, s)

∂Z

∂t
+ f(a1, s)f(a2, t)Z = Ḃ,

where B is a Brownian sheet independent of

(
Z

(
e2a2 − 1

2a2
, x

)
, Z

(
x,
e2a1 − 1

2a1

)
, 0 ≤ x ≤ 1

)
,

and

f(a, x) =

(
e2a − 1

2a
− x

)−1

.

Let

Y (s, t) = Z

(
e2a2 − e2a2(1−s)

2a2

,
e2a1 − e2a1(1−t)

2a1

)
.

¿From Example 3.1, we conclude that (Y (s, t)) is a solution of the equation

∂2Y

∂s∂t
+ g(a1, x)

∂Y

∂s
+ g(a2, x)

∂Y

∂t
+ g(a1, s)g(a2, t)Y = ea2(1−s)+a1(1−t)white noise,

where

g(a, x) =
2ae2a(1−x)

e2a(1−x) − 1
.

Again by Example 4.1, we conclude that (X̂(s, t)) solves equation (56). This proves the
theorem. ♣

8 Reversal with initial conditions

Theorem 8.1 Let X0 be a N(0, σ2) random variable, (M1
s ) and (M2

t ) be Gaussian mar-
tingales such that M1

0 = M2
0 = 0 and E((M i

u)
2) = fi(u), i = 1, 2. We assume that X0,

(M1
s ) and (M2

t ) are independent.
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Let X be the solution of the s.p.d.e.

(58)
∂2X

∂s∂t
= Ẇ ,

with the initial conditions X(s, 0) = X0 + M1
0 and X(0, t) = X0 + M2

t , s, t ≥ 0. Then
there exists a Brownian sheet (B(s, t)) such that X̂(s, t) = X(1 − s, 1 − t) satisfies an
s.p.d.e. of the form

(59)
∂2X̂

∂s∂t
+ a1(s, t)

∂X̂

∂s
+ a2(s, t)

∂X̂

∂t
+ a3(s, t)X̂ = a4(s, t)Ḃ

if and only if a4 ≡ 1 and there are real numbers T1 > 0 and T2 > 0 such that fi(u) = T3−i u
and T1T2 = σ2. In other words, X can be embedded into a Brownian sheet W̃ as follows:

(60) X(s, t) = W̃ (T1 + s, T2 + t), (s, t) ∈ RI 2
+.

Proof. We know from Theorem 6.3 that the reversal of W̃ in both coordinates does
satisfy an s.p.d.e. of the form (59). So we assume that X̂ satisfies such an s.p.d.e. and
show that X can be embedded into a Brownian sheet (the fact that a4 must be identically
1 follows immediately from Proposition 2.6).

Fix s, t such that s+ t = 2 − r, and let ∆ = [s− h, s] × [t− h, t]. According to (34),

E(W (∆) | F̂(r)) = a1(s, t)h(X(s, t) −X(s− h, t))

+ a2(s, t)h(X(s, t) −X(s, t− h)) + a3(s, t)h
2X(s, t)

+ ε(s, t; h),

or, equivalently, for u+ v ≥ s+ t,

(61) E([W (∆) − a1h(X(s, t) −X(s− h, t))

− a2h(X(s, t) −X(s, t− h)) − a3h
2X(s, t) − ε]X(u, v)) = 0.

Because X solves (58), Lemma 2.3 implies that

X(s, t) = X0 +M1
s +M2

t +W (s, t),

and therefore,

X(s, t) −X(s− h, t) = M1
s −M1

s−h +W (s, t) −W (s− h, t),

X(s, t) −X(s, t− h) = M2
t −M2

t−h +W (s, t) −W (s, t− h).
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Write (61) for u ≤ s− h to get

(62) −a2h(hf
′
2(t) + o(h) + uh) − a3h

2(σ2 + f1(u) + f2(t) + ut) −E(εX(u, v)) = 0,

for u ≥ s and v ≥ t to get

(63) h2 − a1h(hf
′
1(s) + o(h) + ht) − a2h(hf

′
2(t) + o(h) + hs)

− a3h
2(σ2 + f1(s) + f2(t) + st) −E(εX(u, v)) = 0,

and for v ≤ t− h to get

(64) −a1h(hf
′
1(s) + o(h) + hv) − a3h

2(σ2 + f1(s) + f2(v) + sv) + E(εX(u, v)) = 0.

Divide the three equations by h2, let h ↓ 0 and use the fact that Var ε(s, t; h) = o(h4) to
get the three equations

−a2(f
′
2(t) + u) − a3(σ

2 + f1(u) + f2(t) + ut) = 0,(65)

1 − a1(f
′
2(s) + t) − a2(f

′
2(t) + s) − a3(σ

2 + f1(s) + f2(t) + st) = 0,(66)

−a1(f
′
1(s) + v) − a3(σ

2 + f1(s) + f2(v) + sv) = 0(67)

(the first equation is valid for u ≤ s, the third for v ≤ t). ¿From (65), we get

(68) f1(u) = −f2(t) −
a2

a3

f ′
2(t) − σ2 − u

(
t+

a2

a3

)
,

and from (67), we get

(69) f2(v) = −f1(s) −
a1

a3
f ′

1(s) − σ2 − v

(
s+

a1

a3

)
.

Therefore, f1 and f2 are affine functions of u and v, respectively. Because f1(0) = f2(0) =
0, there are numbers T1 > 0 and T2 > 0 such that

(70) f1(u) = T2u, f2(v) = T1v.

Identifying coefficients in (68) and (69) with those in (70), we see that

T1 = −s− a1/a3, T2 = −t− a2/a3,

and these expressions cannot depend on s and/or t. In addition,

−f2(t) −
a2

a3
f ′

2(t) − σ2 = 0,

33



and from (70), the left-hand side is equal to

−T1t−
a2

a3
T1 − σ2 = 0.

Because −t− a2/a3 = T2, we conclude that

T1T2 = σ2.

This completes the proof. ♣

Remark 8.2 Non-locality of the reversal of the wave equation.

Remark 8.3 Requesting that the reversal X̂ of the solution to (58) satisfy a linear equa-
tion is natural, since X̂ is Gaussian. On the other hand, it is the fact that the terms in
(59) are local (i.e. only depend on X(s, t) and its derivatives at (s, t)) that prevents X̂
from satisfying such an equation unless X is a Brownian sheet. It is interesting to point
out that even in the setting of d-dimensional diffusions, with d decoupled equations, most
kinds of initial conditions will lead to coupled equations for the reversed process. The
simplest exampe, suggested to the first author by E. Mayer-Wolf and O. Zeitouni, is the
following. Let (B1, . . . , Bd) be a d-dimensional Brownian motion,

dX i
t = dBi

t, X i
0 = Y i, i = 1, . . . , d,

where (Y 1, . . . , Y d) is an RI d-valued and centered Gaussian random variable with covari-
ance matrix Ξ. Then the law of Xt is N(0,Ξ + uI), where I is the d × d identity ma-
trix. According to the d-dimensional version of (2), the system of diffusion equations for
X̂u = (X1

1−u, . . . , X
d
1−u) is

(71) dX̂ i
u = dB̂i

u −
d∑

j=1

ai,j(u)X̂
j
u du,

where (ai,j(u)) = (Ξ + (1−u)I)−1. Unless Ξ is diagonal (that is, Y 1, . . . , Y d are indepen-

dent), the drift in (71) is “non-local,” in that it depends on all components of X̂j
u.

This example and Theorem 8.1 suggest that the only type of equation that the reversal
of (58) may satisfy is an equation with non-local coefficients. This should motivate the
development of an existence theory for such equations.
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