
Of Astronauts and Toy Trains

as told to J. B. Walsh

Even the grandeurs of space can pall. Pity the poor space farer, blasé from
too much exposure to the milky way and too much condensed milk, bored
by the sublime music of the spheres and the Texas twang of ground control.
I heard a tale once of such an astronaut, who, at wits end for entertainment
after months in a space station, decided to pass time by building and running
a model train. This is his story.

It is not easy to run a model train in a space station. Aside from the
space-wide shortage of HO gauge track, there is the problem of keeping the
train on the rails in the absence of gravity. How he obtained the track and
the Lionel engine must remain his secret, but we can reveal how he solved
the problem of running a model train in free fall.

Let R(t) be the position vector of the train at time t. The tracks will
be set in some curve in space, (there is no reason to confine them to the
floor) and the train will follow that curve, so that R(t) will describe a curve
that winds its way through the space station. Let T, N, and B be its
unit tangent, principal normal, and binormal vectors respectively. These are
mutually orthogonal unit vectors, and the acceleration of the train is easily
calculated in terms of them:

V =
dR

dt
=

dR

ds

ds

dt
= vT; (1)

A =
dV

dt
=

d(vT)

dt
=

dv

dt
T + v2

dT

ds
. (2)

By the Frenet formulas, this is

A = aT + κv2
N. (3)

where v = ds/dt and a = d2s/dt2 are the tangential component of the velocity
and acceleration of the train and κ is the curvature of the path. By Newton’s
law (F = mA), if v > 0 there will always be a component of force holding
the train to the tracks as long as the curvature κ is greater than zero and N

points upward. (This is from the toy engineer’s point of view. The force F

here is the force on the train, for it is this which causes it to accelerate. The
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force that the train exerts on the tracks is of course equal and opposite, so
that as long as A points upward, the train will press down on the tracks.)
Thus the astronaut’s solution was this:

(a) arrange the tracks into a curve whose curvature is never zero, and
(b) bank them so that the principal normal always points straight up from

the rails.
Consider the toy engineer, standing straight up in the cab and facing

forward. If he extends his right arm horizontally and waves to the toy farmers
in the toy fields as he passes, it will be pointing in the direction of the
binormal vector B. (You can verify this by the right hand rule; there is only
a moderate danger of spraining your wrist.) The Frenet frame T, N, and B

will be a fixed set of coordinates as far as he is concerned: T points straight
ahead, N points up, and B points to his right.

The astronaut was content to let the train run in simple plane curves for
the first few days, circles and ellipses and such, and he found it amusing
to see it loop-the-loop with so little effort. As time went on, he moved the
tracks into more interesting curves, figure eights and spirals; he even tried a
granny knot with some success, though he admitted later that a square knot
was better.

Notice that as soon as the track moves out of a plane, it has to bank, which
means it will twist, and the curve will have torsion. In fact the astronaut
tried for some time to get the train to make a figure eight and to keep the
tracks in the same plane. After a week’s efforts, trying all possible radii and
shapes of the eights, he finally gave up. He could have saved himself a lot
of trouble had he stopped tinkering long enough to do a little mathematics.
It turns out to be impossible for the tracks to form a figure eight and stay
in the same plane, and this is not just because they must jog to miss each
other when they cross. (Exercise: prove it. Remember that the curvature
can never vanish.)

From the toy engineer’s point of view, if the train follows a non-plane
curve, it will bank and roll—even barrel-roll—as it travels along, rotating
about its long axis. Suppose the train travels at unit speed. It is then easy
to show that the rate of rotation about its long axis is exactly equal to the
torsion of the curve. (Exercise: convince yourself that this is true. Was it
easy? Sometimes mathematicians lie about things like that.)

Even toy trains can pall. The astronaut eventually became bored with the
whole affair. (If he could get bored seeing the whole galaxy just outside of his
window, he probably had a short attention span, so this isn’t surprising.) In
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particular, he tired of watching the train going thru even the most intricate
of four-in-hand knots in the corridors, and he decided to turn over the work
of watching it to someone else. As the only other entity on board was the
station’s computer, it isn’t hard to guess who got the job.

This raised another problem. Computers are not programmed to watch
toy trains. Not that it had to physically watch the train going thru its paces.
It had senses other than eyes, and could keep track of it in its own way.
It just had to know where the train was at all times. The problem was to
get that information to it. The astronaut first thought of putting relays on
the rail ties to signal as the train passed over them, and then realized that
that wouldn’t be enough. If he moved the tracks, he would have to tell the
computer where they were all over again. He needed something more flexible.
He finally decided that the only satisfactory solution was to build an inertial
guidance system and put it in the engine. How? Gyroscopes small enough
to fit in a Lionel cab and accurate enough to control the position to four
decimal places were expensive enough for NASA to keep them out of the
hands of bored astronauts. On the other hand, there were miniature solid
state devices in the station’s spare parts stock—strain gauges and such—
which could measure small forces with great accuracy. It would be possible
to use these to measure the train’s accelerations and then the computer could
integrate these to find its position.

But there was still a problem. The device would be fixed in the cab of the
train, so that it would see the coordinates T, N, and B rather than x, y, and
z. Any accelerations it measured would be in these coordinates, and one had
to find the x y z position from these. This meant that it had to be possible
to translate from T N B coordinates to x y z coordinates at all times. Here
is how he solved the problem. He needed two small equal masses and enough
gauges to measure the (vector) force on each of them. (Three gauges for each
mass are enough if they can read both positive and negative forces: one for
each of the T, N, and B components of the force. As it turned out, he used
fewer.)

We will neglect a couple of small effects. The first is the fact that the
center of gravity of the engine doesn’t quite coincide with the center of the
tracks. The second effect is the coriolis acceleration, due to the motion of
the station about the earth. Surprisingly enough, this is not negligeable, but
the ship’s computer, which did all the navigation for the station, could easily
take it into account. (To see why it can’t be neglected, think of a small
object placed motionless with respect to the station’s center of gravity, and a
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small distance to one side. This object is actually in its own orbit about the
earth; the orbit has the same center—the earth’s center of gravity—and the
same radius and period, but it is in a slightly different plane than the orbit of
the space-station’s center of gravity. By symmetry, one half orbit later, the
object will be in this same plane, the same distance from the station’s center
of gravity, but on the other side! After a full orbit, a matter of only several
hours, it will be back in its original position. The observer in the station will
see it oscillate back and forth slowly through the station’s center of gravity,
with a period equal to the period of the station’s orbit, even though there is
no visible force acting on it. )

The astronaut weighed the small masses carefully—their mass was m—
and placed the first at the center of mass of the train and the second a
carefully measured distance b directly to its right. The gauges were placed
so that they could measure the T, N, and B components of the forces on the
masses. A small radio transmitter sent these measurements directly to the
computer. Let the position of the first mass at time t be R(t), the position
of the center of mass. The second mass will then be at

R2(t) = R(t) + bB(t). (4)

The principal fact we will use is that the curve is determined by its cur-
vature κ and its torsion τ . This might appear to be a rather abstract and
theoretical piece of information, but it is the key. Once the computer has
these two quantities, it can get the position of the train by doing what it
does best: crunching numbers.

The gauges are set to measure the forces F1 and F2 on the first and second
masses respectively, so if A1(t) and A2(t) are the respective accelerations,
we have

Fi(t) = mAi(t), for i = 1, 2.

In order to bring the curvature and torsion into the picture, let us calculate
the time derivatives of T, N, and B with the aid of the Frenet formulas.

dR

dt
= vT

dT

dt
= vκN

dN

dt
= −vκT + vτB
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dB

dt
= −vτN.

We calculated the acceleration of the first mass back in equation (3). Let
us use the above equations on it:

F1(t) = maT + mκv2
N.

If F 1

T
, F 1

N
, and F 1

B
are the T, N, and B components of F1 respectively,

then the tangential component of acceleration satisfies

d2s

dt2
= a =

1

m
F 1

T
. (5)

The system can measure F 1

T
directly, so the computer, which is a genius at

numerical integration, can compute the speed by integrating:

v(t) = v(0) +
1

m

∫

t

0

F 1

T
(u)du (6)

Now that it knows v, it can get the curvature from the normal component
of the force:

κ =
1

mv2
F 1

N
(7)

Next, it must get the torsion. For this, it looks at the other mass. Its ve-
locity and acceleration can again be calculated by differerentiating equation
(4) and using the Frenet formulas. The calculation is a little more compli-
cated due to the extra term involving B in (4):

V2 =
dR2

dt
=

dR

dt
+ b

dB

ds

ds

dt
= vT + bv(−τN) ,

A2 =
dV2

dt
= aT + v2

dT

ds
− b

d(vτ)

dt
N− bv2τ

dN

ds
.

The computer uses the Frenet formulas again on the derivatives of T and N

to see that

A2 = (a + bv2κτ)T +

(

v2κ− b
d(vτ)

dt

)

N− bv2τ 2
B.

This is also equal to (1/m)F2 by Newton’s law. The expression may look
complicated, but it only has to find τ , and the T component is enough for
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this. It sets the T-components of A and 1

m
F2 equal to see that (a+bv2κτ) =

(1/m)F 2

T
. It then solves for τ and uses (6) and (7) to get everything in terms

of the forces:

τ =
F 2

T
− F 1

T

bF 1

N

(8)

It has now determined κ and τ at all times. (Note that it wasn’t neces-
sary to measure all the components of the forces on the two masses. Only
the tangential and normal components of the first mass and the tangential
component of the second were necessary, so the astronaut only needed to
filch three strain gauges from the storeroom. This turned out to be a good
thing too, for...but that’s another story.) The computer now has all the in-
formation it needs to calculate the position of the train at any time, or it
will as soon as it knows the initial conditions. All that remains to be done
is to divulge how the computer actually computes the whereabouts of the
train from this. It is simple (for a computer). The astronaut gives it the
initial position and and the initial orientation of T, N nd B and starts the
train from rest. All the computer has to do is to integrate the five following
equations numerically:

dv

dt
= a

dT

dt
= vκN

dN

dt
= −vκT + vτB

dB

dt
= −vτN

dR

dt
= vT.

It does this in discrete steps. Let ∆ be the step size. The computer is
given the values at t = 0, and then determines them successively at t = ∆,
t = 2∆,... and so forth as follows. Suppose it knows the values of v, T, N, B

and R at time t = n∆. In order to get the values at t+∆ it measures F 1

T
(t),

F 1

N
(t), and F 2

T
(t) directly from the gauges, and then uses equations (6), (7),

(8) and (9) to compute a(t), κ(t), and τ(t). Then it uses the discrete version
of the five equations above to get
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v(t + ∆) = v(t) + a(t)∆

T(t + ∆) = T(t) + v(t)κ(t)N(t)∆

N(t + ∆) = N(t)− v(t)κ(t)N(t)∆ + v(t)τ(t)B(t)∆

B(t + ∆) = B(t)− v(t)τ(t)N(t)∆.

Finally, the new position is

R(t + ∆) = R(t) + v(t)T(t)∆.

Of course, the computer would use a more sophisticated numerical inte-
gration scheme, but that is only a detail. It is interesting to note that even
tho it only wants to find R(t), it has to find T, N, and B as well. This seems
extravagant, but that’s the way of the frame.

That is just about all there is to the story. The astronaut was rotated
home shortly after, got deeply into transcendental meditation and tofu, and
forgot all about toy trains. The computer who told me the story, on the
other hand, is still delighted with its toy, and keeps an active subprogram
playing with it to this day.
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