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Abstract

The stochastic heat equation is the heat equation driven by white
noise. We consider its numerical solutions using the finite difference
method. Its true solutions are Hölder continuous with parameter
(1

2
− ǫ) in the space variable, and (1

4
− ǫ) in the time variable.

We show that the numerical solutions share this property in the
sense that they have non-trivial limiting quadratic variation in x
and quartic variation in t. These variations are discontinuous func-
tionals on the space of continuous functions, so it is not automatic
that the limiting values exist, and not surprising that they depend
on the exact numerical schemes that are used; it requires a very
careful choice of scheme to get the correct limiting values. In par-
ticular, part of the folklore of the subject says that a numerical
scheme with excessively long time-steps makes the solution much
smoother. We make this precise by showing exactly how the length
of the time-steps affects the quadratic and quartic variations.
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1 Introduction

In its simplest form—which is all we shall consider here—the stochastic heat equation is
just the heat equation driven by additive1 white noise:

∂u

∂t
=
∂2u

∂x2
+ Ẇ ,

where Ẇ is a standard space-time white noise. White noise is a distribution, not a
function, so this has to be interpreted in the distribution sense. With proper intial and
boundary conditions, the associated initial-boundary-value problem has a unique solution.
This solution is continuous, but very rough, in fact nowhere differentiable.

There are various representations of the solution, but as no closed form solution exists,
one is tempted to solve it numerically.

One general fact has emerged: the simplest numerical schemes do about as well as
any: indeed, the optimal rate of convergence is known [1], and the very first scheme one
might think of, the forward Euler, already attains it. It suffers from a serious defect: it is
unstable unless the time step is less than half the space-step squared. One can get around
this by using implicit methods which are stable for any choice of the time step, such as, for
instance, some of the “one-step theta” schemes. This family includes the forward Euler
(θ = 0), and the backward Euler (θ = 1), both of which are first-order schemes, and the
Crank-Nicholson scheme (θ = 1/2), which is second-order. If θ ≥ 1/2, these methods are
stable with no restriction on the time-step.

Let h = ∆x be the space step and let k = ∆t be the time step. Davie and Gaines
have shown that for any scheme whatsoever, the size of the error is on the order of—
at least—the maximum of h1/2 and k1/4. The one-step-theta schemes attain that error
[1, 2, 9].

This suggests that k should be somewhere on the order of h2. If k is fixed, decreasing
h may not help—and may even hurt—the accuracy.

But the temptation is still there: since the method is stable, why not take a longer
time-step and speed up the calculations? Instead of taking k = O(h2), why not be greedy
and take k = O(h), for example?

One of the aims of this paper is to show why not.

It is well-known that a greedy time-step smooths the numerical solution. However,
there does not seem to be a large literature on this. See [3]. In the case of the stochastic

1This is additive noise in contrast to multiplicative noise, in which there would be a term f(u) mul-
riplying Ẇ , where f is a sufficiently nice function. We would expect similar results for multiplicative
noise: the quadratic and quartic variation of both the solution and its discrete approximations should
still exist and be locally-determined, but they would no longer be deterministic in the limit, since the
value of u would intervene [4].
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heat equation, we can see this effect quite precisely in the sense that the quadratic vari-
ations of the sequence of numerical approximations actually determine the “greediness”
of the time-stepping scheme (Theorem 5.1); and the effect is visible to the naked eye
in simulations: some of the simulations in Section 5.3, for instance, make the numerical
solution appear impossibly smooth.

This last point is important: one often uses numerics to simulate the solutions, hoping
to discover new and interesting properties. So the relevant questions in the study of
numerical SPDEs do not stop with “Does the scheme converge, and, if so, how fast?”
(Although that is certainly the first question to ask.) One also wants to know if the
numerical approximation actually reflects the properties of the true solution. Does it
“look like” the true solution?

The numerical scheme converges uniformly on compacts to the true solution, which
implies quite a lot, but it says little about the smoothness or roughness properties of the
approximations: that usually requires control of the derivatives. But the solutions are
nowhere-differentiable.

For instance, do the simulations have the same smoothness properties as the true
solutions? (Given that the solutions have no derivatives, “roughness” might be a better
term here.)

In fact, the solution u to the stochastic heat equation is a.s. Hölder continuous: for
fixed t, x → u(x, t) is Hölder continuous with parameter 1/2 − ε for any ε > 0, and for
fixed x, t→ u(x, t) is Hölder continuous with parameter 1/4 − ε. [7, 8].

Hölder continuity is one way to measure roughness, and we might ask if the simulations
have about the same Hölder continuity properties as the true solutions. (We hasten to say
that we are not proposing this as the best measure of the roughness of arbitrary functions,
but the Hölder continuity properties of the solutions of the stochastic heat equation are
so remarkably regular that it seems appropriate in this case.)

The numerical approximations are discrete, so we cannot measure their Hölder conti-
nuity directly, but we can measure their higher-order variations. These give us a handle
on the smoothness/roughness question, and provide a good measure of the Hölder pa-
rameters. Indeed, the true solutions have non-trivial higher order variations: x 7→ u(x, t)
has non-trivial quadratic variation, and t 7→ u(x, t) has non-trivial quartic variation. (See
Theorem 8.22.) We can measure the same variations of the discrete approximations: if

Q
(2)
n (t) is the quadratic variation of the nth approximation at time t, and if Q

(4)
n (x; t) is

its quartic variation on (0, t) for fixed x, then both have deterministic limits as n → ∞
and the limits depend on the parameters θ, and c = ∆t/(∆x)2.

2The fact that they have quadratic variation in x and quartic variation in t is another instance of the
rule of thumb that solutions of the heat equation are roughly twice as smooth in x as in t, or, inversely,
twice as rough in t as in x
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We show the following:

• The limiting quadratic variationQ(2)(t) is deterministic, and its value is independent
of t for t > 0;

• If c is held constant, Q(2)(t) decreases as θ increases;

• if θ = 1/2, then Q(2)(t) is independent of c;

• if θ > 1/2 is held constant, then Q(2)(t) decreases in c, and tends to zero as c tends
to infinity;

• This decrease in quadratic variation corresponds to a smoothing in the space coor-
dinate; c can increase without bound, and this smoothing can be quite evident, as
is shown by Figures 2–5.

• The limiting quartic variation Q(4)(x, t) is deterministic, and is independent of x for
rational 0 < x < 1. It depends on both θ and c. It tends to zero as c tends to zero,
but otherwise its behavior is not as simple as that of the quadratic variation.

• If 0 ≤ θ ≤ 1/2, Q(4)(x, t) increases with c;

• if θ > 1/2, Q(4)(x, t) increases to a maximum, then decreases to a strictly positive
limit as c increases.

• This behavior is independent of the initial conditions.

The last point is shown in §8
The quadratic and quartic variations converge to a function of θ and c, but, as the true

values are unique, evidently most schemes do not produce the correct limit. This is not
surprising: the higher-order variations are highly discontinuous functionals on the space
of continuous functions. There is no a priori reason to expect that they even converge,
much less that they converge to the correct values. We might ask if there is any scheme
which does give the correct limiting values. There is exactly one. Interestingly enough, it
is a second-order method, one of the Crank-Nicholson schemes. (See §5.2.)

2 The stochastic heat equation

A standard white noise on RRR2 is a random L2-valued measure W on the Borel sets B of
RRR2 such that for each A ∈ B of finite Lebesgue measure, W (A) is a Gaussian random
variable of mean zero and variance equal to the Lebesgue measure of A, and such that if
A ∩ B = ∅, W (A) and W (B) are independent.
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We can also think of it as a random Schwartz distribution, which we shall denote
Ẇ : {Ẇ (ϕ), ϕ is a test function} is a Gaussian process with mean zero and covariance
function E{Ẇ (ϕ) Ẇ (ψ)} =

∫

ϕ(z)ψ(z) dz. The connection between the two is that

Ẇ (φ) =
∫

φ(z)W (dz).

Consider the initial-boundary-value problem on (0, 1) × [0,∞):

(1)











ut(x, t) = uxx(x, t) + Ẇ (x, t)

u(x, 0) = u0(x) if 0 < x < 1

u(0, t) = u(1, t) = 0 if t ≥ 0 .

The initial condition u0(x) may be random. We assume that it is independent of the
white noise, that x 7→ u0(x) is continuous, and that E{u0(x)

2} is bounded on 0 ≤ x ≤ 1.

The problem (1) is defined rigorously in [8], and it is shown that there is a unique
Hölder-continuous solution u, such that x 7→ u(x, t) is Hölder (1/2−ε) a.s. for each t > 0,
and t 7→ u(x, t) is a.s Hölder (1/4 − ε) for each 0 < x < 1.

3 Finite difference schemes

Let 0 ≤ θ ≤ 1, and take h = ∆x = 1/(n + 1), k = ∆t. Let xj = jh, tm = mk. Let Rj,m

be the rectangle (xj , xj+1) × (tm, tm+1), and put Wj,m = W (Rj,m). Notice that the Wj,m

are i.i.d. N(0, hk) random variables.

The one-step-theta finite difference scheme is:

(2)



















um+1
j − um

j

k
= θ

um+1
j+1 − 2um+1

j + um+1
j−1

h2
+ (1 − θ)

um
j+1 − 2um

j + um
j−1

h2
+
Wj,m

hk
um

0 = um
n+1 = 0, m = 0, 1, 2, . . .

u0
j = u0(xj) j = 1, 2, . . . , n− 1.

where j = 1, 2, . . . , n, m = 1, 2, . . . . Note that the Wj,m are i.i.d. N(0, hk) random
variables.

If θ = 0, this is the forward Euler scheme, if θ = 1, it is the backward Euler, both
of which are first-order schemes, and if θ = 1/2 it is the Crank-Nicholson scheme, which
is second order. The scheme is stable if θ ≥ 1/2; for θ < 1/2, it is conditionally stable,
requiring a condition on the length of the time step. Given the proper relations between
the space and time steps, the scheme converges in probability to the true solution as
n→ ∞, and there are subsequences nr along which it converges a.s. uniformly on compact
sets [1, 2, 5, 9].
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4 Higher-order Variations

Let u(x, t) be the solution of (1) and let (um
j ) be the numerical approximation (2). It is

known [7] [8] that x 7→ u(x, t) is Hölder continuous of order 1/2 − ε for any ε > 0, and
t 7→ u(x, t) is Hölder continuous of order 1/4 − ε for any ε > 0. Moreover, if t > 0 is
fixed, x 7→ u(x, t) has a non-trivial quadratic variation Q̂(2)(t), and if 0 < x < 1 is fixed,
t 7→ u(x, t) has a non-trivial quartic variation Q̂(4)(x, t). Put xi = ih and tj = jk. Then
set

Q̂(2)
n (t) =

n
∑

i=0

(

u(xi+1, t) − u(xi, t)
)2

(3)

Q̂(4)
n (x, t) =

[t/k]−1
∑

j=0

(

u(x, tj+1) − u(x, tj)
)4
.(4)

Then the quadratic and quartic variations of u are given respectively by

Q̂(2)(t) = lim
n→∞

Q̂(2)
n (t)(5)

Q̂(4)(x, t) = lim
n→∞

Q̂(4)
n (x, t) .(6)

Both limits are in probability; if we take the subsequence nk = 2k, the limits exist a.s.
(See Section 7.)

Both Q̂(2)(t) and Q̂(4)(x, t) turn out to be deterministic. We can define both variations
for the discrete numerical approximation um

j . For a fixed n, h, and k, and t > 0, and
xi = i/(n+ 1), let [t] be the greatest integer in t, and define

Q(2)
n (t) =

n
∑

i=0

(

u
[t/k]
i+1 − u

[t/k]
i

)2
(7)

Q(4)
n (xi, t) =

[t/k]−1
∑

m=0

(

um+1
i − um

i

)4
.(8)

Then define the limiting quadratic and quartic variations (if they exist) by, respectively,

Q(2)(t) = lim
n→∞

Q(2)
n (t)(9)

Q(4)(x, t; δ) = lim
n→∞

(

Q(4)
n (x, t) −Q(4)

n (x, δ)
)

(10)

Q(4)(x, t) = lim
δ→0

Q(4)
n (x, t, δ) .(11)
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The reason for the two-stage definition of the quartic variation is that in certain
schemes, the numerical approximations fluctuate excessively near t = 0. This side-steps
that problem.

Some remarks are in order. The PDE is linear, so the solution can be written as u+ v,
where u is a solution of the inhomogeneous PDE with zero initial conditions, and v solves
the homogeneous equation with the given, non-zero initial condition. That is, u solves

(12)











ut = uxx + Ẇ

u(·, 0) = 0

u(0, ·) = u(1, ·) = 0 ,

while v solves

(13)











vt = vxx

v(·, 0) = u0(·)
v(0, ·) = v(1, ·) = 0 .

We can do exactly the same for the numerical solution, writing it um
j + vm

j , where u
solves the inhomogeneous difference equation with zero initial conditions, and v solves the
homogeneous difference equation with the given initial conditions.

The solution v of the homogeneous boundary-value problem is infinitely differentiable,
so it has zero quadratic and quartic variations. Thus, it does not change the quadratic
and quartic variations of the solution. Consequently, the quadratic and quartic variations
of the solution of (1) do not depend on the initial conditions: u and u+ v have the same
quadratic and quartic variations. The same is also true of the limiting variations of the
numerical solutions: they do not depend on the initial values.

Indeed, if we let Qp
n(u) be defined by either (7) (if p = 2) or (8) (if p = 4) then by

Minkowski’s inequality,

∣

∣Q(p)
n (u+ v)1/p −Q(p)

n (u)1/p
∣

∣

p ≤ Q(p)
n (v).

But by Theorem 8.2, this goes to zero, so the limiting p-variation is indeed independent
of the initial condition.

This means that we can choose the initial values as we please, and in particular, we
can choose them to make the solutions of both (1) and (2) into stationary processes. This
significantly simplifies the calculations.
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5 The Basic Results

We know that for the most efficient computation, k should be more-or-less comparable to
h2, so let

c =
k

h2
.

The ratio c may vary as n→ ∞. However, it cannot vary arbitrarily: some restrictions
are necessary to guarantee stability: if θ < 1/2, c can be at most 1/(2 − 4θ). Even if
θ ≥ 1/2, further restrictions may be necessary to guarantee that the scheme converges
to the true solution of the stochastic heat equation. Shardlow [5] proves convergence for
the finite difference scheme when c(1 − θ) < 1/4.For the finite element method, it was
shown in [9] Theorem 2.1 that if θ = 1/2, the scheme converges if k2/h3 −→ 0, and if
1/2 < θ < 1, it converges if k/h −→ 0. Counter-examples in §6 of the same paper show
that these conditions are close to necessary. It is an open question whether or not similar
conditions are necessary in the finite difference method we use here, but we conjecture
that they are.

The following conditions on c are sufficient to guarantee that the scheme is stable and
that the quadratic and quartic variations converge3.

Hypothesis4 (C)

(i) c > 0;

(ii) if 0 ≤ θ < 1/2, there is an ǫθ > 0 such that if cθ
def
= 1

2−4θ
− εθ, then c ≤ cθ;

(iii) if θ = 1/2, c ≤ √
n;

(iv) if 1/2 < θ ≤ 1, c ≤ n.

Hypothesis (C) will be in force for the remainder of the paper.

We are interested in the limiting values of the variations in a one-step theta scheme as
the number n of space steps goes to infinity. Let hn = 1/(n+ 1) be the space step, kn be

the time step, and let cn = kn/h
2
n. Let Q

(2)
n (t) and Q

(4)
n (y, t) be the quadratic variation in

x and their quartic variation in t respectively.

Theorem 5.1 Fix 0 ≤ θ ≤ 1 and t > 0. Let (cn) be a sequence satisfying Hypothesis (C).
Suppose that cn → c∞ for an extended real c∞ ∈ [0,∞]. Then the following limit exists in
probability, and exists almost surely along the subsequence ni = 2i:

(14) lim
n→∞

Q(2)
n (t) =

1

2
√

1 + 2c∞(2θ − 1)
.

3The question of whether these conditions also assure that the numerical approximations themselves
converge to the true solution is, as we said, open

4There are no hypotheses A and B; this is just named for the coefficient.
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Remark 5.2 1. The right-hand side of (14) should be interpreted as the limit as c in-
creases to c∞. In particular, if c∞ = ∞, it equals 1/2 if θ = 1/2, and zero if θ > 1/2.

2. The limit is deterministic and, as long as t is strictly positive, independent of t.
This is perhaps not surprising once one realizes that the limit is independent of the initial
values, and that it is possible to choose the initial values to make the solution a stationary
process.

3. In the special cases where θ is 0, 1/2, and 1, we have

lim
n→∞

Q(2)
n (t) =































1

2
√

1 − 2c∞
if θ = 0

1

2
if θ =

1

2
1

2
√

1 + 2c∞
if θ = 1 .

In particular, for the Crank-Nicholson scheme, the limiting quadratic variation is inde-
pendent of c.

4. If θ < 1/2, c∞ is bounded. If θ ≥ 1/2, c∞ can take any value in [0,∞] inclusive,
and the limiting quadratic variation is a decreasing function of c∞. It is also decreasing
in θ, which illustrates the fact that larger values of θ tend to smooth the solution.

5. One can see from the simulations (see Figures 2–5 below) that decreasing the
quadratic variation does actually indicate a smoothing of the solution.

Let us consider the quartic variation in t for a fixed y. Notice that to measure the
quartic variation at y, y must be a lattice point, that is, it must be one of the points h,
2h, 3h, . . . , nh, where h = 1/(n + 1). For any rational y, there will be infinitely many
n for which this is true, and we can only take the limit along those n. So the limit of
the Q

(4)
n (y) is necessarily along a subsequence of n. One could interpolate, or use a finite

element scheme as in [9]5, but we will only consider limits for fixed rational y.

Theorem 5.3 Fix 0 ≤ θ ≤ 1 and a rational y ∈ (0, 1). Let (cn) be a sequence satisfying
Hypothesis (C), and suppose cn → c∞ for some extended real c∞ ∈ [0,∞]. We also
suppose that cn/

√
n→ 0 if θ = 1/2, and that cn/n

3/2 → 0 if θ > 1/2. Then the following
limits exist in probability, and exist almost surely along any subsequence (ni) for which
ni ≥ 2i for all i and y is a lattice point for each ni:

(15) lim
N→∞

lim
n→∞

(

Q(4)
n (y, t) −Q(4)

n (y, 1/N)
)

= 3c∞t
( 1 − 2θ
√

1 + 2c∞(2θ − 1)
+

2θ√
1 + 4c∞θ

)2

.

5Given the unusual form of the error term in Theorem 7.5 this might be interesting
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Note: 1. If θ ≥ 1/2, c∞ can be infinite. In that case, the right-hand side of (15) should

be interpreted as the limit as c→ ∞, namely 3t
(
√
θ −

√

θ − 1/2
)2

.

2. We repeat: y is fixed and the above limits are over n for which y is a lattice point,
i.e. for which there is an integer m such that y = m/(n+ 1).

Remark 5.4 1. The value of the limiting quartic variation is deterministic, and inde-
pendent of y as long as y is rational and 0 < y < 1. (The solution is identically zero on
the boundaries, so that Q(4)(y, t) ≡ 0 if y = 0 or 1.)

2. In the special cases θ = 0, 1/2, and 1,

Q(4)(y, t) =































3tc∞
1 − 2c∞

if θ = 0

3tc∞
1 + 2c∞

if θ =
1

2

3tc∞

( 2√
1 + 4c∞

− 1√
1 + 2c∞

)2

if θ = 1 .

3. The behavior of the limiting quartic variation is not as simple as it is for the
quadratic variation. It is not necessarily monotone in c, and it is bounded away from
zero. If θ = 0 or 1/2, it is increasing in c, while if θ > 1/2, Q(4)(y, t) first increases to a
maximum value, and then decreases to a strictly positive limit. So long time steps smooth
the solution in x, but they may not smooth it very much in t.

5.1 Proofs of Theorems 5.1 and 5.3

The proofs of both theorems are straightforward moment arguments: they show that the
expectation of the variation converges, and that its variance goes to zero. It is a simple
exercise to show that if Xn is a sequence of random variables whose expectations tend
to a limit L and whose variances tend to zero, that Xn → L in the mean square and
therefore in probability. The real work is done in Theorems 7.1 and 7.5 below. All we
need to do here is to use those results to check that the expectations tend to the correct
limiting values and that the variances tend to zero.

The constant cθ is defined in Hypothesis (C) for θ < 1/2. For θ ≥ 1/2, define cθ = ∞.

Proof. (Of Theorem 5.1) Define L(θ, c) by L(θ,∞) = 0 and, for c < c∞, let

L(θ, c) =
1

2
√

1 + 2c(2θ − 1)
.

Then L is bounded and continuous in c for 0 ≤ c ≤ cθ. By Proposition 7.1 |E{Q(2)(t)} −
L(θ, cn)| ≤ 1/2n, so |E{Q(2)(t)} −L(θ, c∞)| ≤ 1/2n+ |L(θ, cn)−L(θ, c∞)|. But this goes
to zero as n→ ∞ by the continuity of L.
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Next, by (33), Var
(

Q(2)(t)
)

≤ K(θ)/n for some constant K(θ). So the variance tends

to zero, the expectation tends to L(θ, c∞), and therefore Q(2)(t) → L(θ, c∞) in probability.
If we take the limit along the subsequences n = 2k, the variances are summable, and an
application of the Borel-Cantelli lemma shows that the quadratic variation converges
almost surely. ♣

Proof. (Of Theorem 5.3.) Define L(θ, c, t) for 0 ≤ c < cθ by

L(θ, c, t)
def
= 3ct

( 1 − 2θ
√

1 + 2c(2θ − 1)
+

2θ√
1 + 4cθ

)2

,

and let L(θ, cθ, t) = limc↑cθ
L(θ, c, t). Then L is a bounded continuous function of c in

0 ≤ c ≤ cθ.

Let y = q/p in lowest terms, i.e. q and p are relatively prime. Note that the quartic

variation Q
(4)
n (y, t) is only defined when y is a lattice point, i.e. a multiple of 1/(n + 1),

which means in turn that n+ 1 is a multiple of p, say n+ 1 = kp. Thus the limit is over
n = kp− 1 as k → ∞. By Theorem 7.5 (37), for fixed y and t, |E{Q(4)(y, t)−L(θ, cn, t)}|
is bounded by Kp/n for some constant K. (K depends only on θ, not on c, t, or n.)
In terms of k, the bound is K(n + 1)/kn ∼ K/k. Thus as n = np − 1 and k → ∞,

E{Q(4)
n (y, t)} → L(θ, c∞, t) as n→ ∞.

By Theorem 7.5 (38), the variance of Q
(4)
n is bounded either by Kc3n/n

2 (if θ 6= 1/2)
or by Kc3n/n

3/2 (if θ = 1/2.) Thus the variance goes to zero, and we conclude that
Q(4)(y, t) → L(θ, c∞, t) in the mean square, and hence in probability. ♣

Remark 5.5 1. Notice that the limiting quartic variation in (15) vanishes at y = 0 and
y = 1 (because the solution does) and is a non-zero constant in between, so that it is
discontinuous in y. Evidently the convergence is not uniform in y. Thus, any extension
of Theorem 5.3 which allows y to vary with n would be delicate.

To see why it is delicate, even away from y = 0 and y = 1, suppose again that y = q/p
in lowest terms. We showed in the above proof that the variance of the quartic variation
tends to zero and its expectation differs from the function L by at most Kp/n. For a
fixed y, Kp/n→ 0 as n tends to infinity, and this implies the desired convergence. If y is
allowed to vary with n, however, something else can happen. Take, for example, y = 1/2,
and yn = 1/2+1/(n+1). These are lattice points for odd n. If yn = q/p in lowest terms,
then p = n + 1, so for yn, Kp/n ∼ K. Thus the error term does not go to zero, and

we cannot conclude that E{Q(4)
n (yn, c, t)} → L(θ, c, t). Consequently, it is no longer clear

that Q
(4)
n (yn, c, t) converges to L(θ, c, t), and, in fact, it is not even clear that it converges.

2. One can also give an almost-everywhere convergence theorem, but it requires further
restrictions on the convergence of the cn. However, if c∞ is finite, there is no problem:
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the quartic variation actually converges a.e. This follows since the variance of the nth
term is then bounded by K/n3/2, which is summable.

5.2 The True Values

It was shown in [7] that parabolic equations driven by white noise have non-trivial
quadratic variation in space and non-trivial quartic variation in time6. That paper looked
at the stochastic cable equation with reflecting boundary conditions, which differs from
the heat equation by the addition of a non-zero drift term. Pospisil and Tribe [4] have
computed the values of the variations for more general parabolic spde’s, and for the initial-
boundary-value problem (1) they get values of Q(2)(t) = 1/2 for the quadratic variation
at any t > 0, and Q(4)(x; t) = 3t/π for the quartic variation on (0, t) for any t > 0 and
0 < x < 1. These agree with the values computed in [7]. Indeed, the higher-order vari-
ations are purely local phenomena, and are unaffected by either drift terms, boundary
conditions, or initial conditions.

The proof in [7] of the existence of the quadratic variation is rather different from that
in [4], and one of its auxiliary results, when applied to the stochastic heat equation (1),
leads to an interesting consequence: if u(x, 0) is given the stationary distribution (so that
u(· , t), t ≥ 0} is a stationary process) then for each t0 > 0, if we set Bs =

√
2u(s, t0),

then {Bs, s ≥ 0} is a standard Brownian bridge. Since the Brownian bridge has the same
quadratic variation as Brownian motion, this immediately confirms that the quadratic
variation is 1/2.

This leads to the question, “Do the one-step-theta numerical schemes give the correct
limiting quadratic and quartic variations? This is answered by Theorems 5.1 and 5.3:
there is exactly one which does. It is, perhaps surprisingly7, a Crank-Nicholson scheme:
θ = 1/2 and c = 1/(π − 2).

In fact, the Crank-Nicholson is the only scheme to get even the quadratic variation
right. However, if we let c → 0 in the schemes for θ 6= 1/2, then the limiting quadratic
variation will be correct, but the limiting quartic variation will be zero. There are other
schemes which get the quartic variation right, such as, for example, θ = 0 and c =
1/(π + 2).

One final point is worth repeating: the quadratic and quartic variations of the lim-
iting process have well-defined, deterministic values. The numerical schemes also have
well-defined deterministic quadratic and quartic variations, and these variations con-
verge. . . but, with the exception of the critical Crank-Nicholson scheme, they converge
to the wrong values!

6Though the existence of a quadratic variation was surely known earlier.
7At least, it surprised us. We expected the Crank-Nicholson scheme to misbehave, for it is reputed to

exaggerate any singular behavior of the solutions. . . and we are dealing with very rough solutions indeed.
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5.3 Numerical Simulations

The following are pictures of simulations of numerical solutions to the stochastic heat
equation. All simulations have 1000 space steps (n = 999) and 100 time steps. They were
made using Matlab.

Remark 5.6 The number of space steps and the number of time steps in these simulations
are both fixed, but the length of the time steps changes. Thus t0, the length of time covered
by the simulation, changes from simulation to simulation. This is not a problem. The
underlying process is stationary, so that the behavior of x 7→ u(t, x) is statistically the same
at each time t, and in particular, its quadratic variation is the same at each time. So one
time will do as well as another for comparing the smoothness of the underlying process and
its numerical approximations. However, it does make a difference to the actual values:
x 7→ u(t, x) is not the same at different values of t. Now the simulations were all made
with the same seed, so the initial values and, up to rescaling, the noise increments wi,j

are also the same in each. There is an interesting consequence: the different simulations
of x 7→ u(x, t0) involve different times t0. Yet the graphs look as if they all describe the
same time. We leave it to the reader to explain why.

Figures 1 and 2 show the critical Crank-Nicholson scheme (θ = .5, c = 1/(π − 2))
Figures 3 to 7 are for θ = .51 and the backward Euler (θ = 1) scheme; they show the
smoothing effect as the ratio c = ∆x/(∆t)2 is increased. The solution starts with the
stationary initial distribution, so the solutions themselves are stationary in time.

The critical Crank-Nicholson scheme, with c = 1/(π − 2), has the correct limiting
quadratic and quartic variation, so that the first two figures should give a fairly accurate
picture of a typical sample path in time (Figure 1) and in space (Figure 2). (See §5.2.)

The sample paths are Hölder (1/4) as a function of time, and Hölder (1/2) as a function
of space. One can see that the first is noticeably rougher than the second, as it should be.
Figure 1 is the graph of a simulation of t 7→ u(.5, t). The simulation has quartic variation
.9546t0, while the quartic variation of the true solution is .9549t0. Figure 2 is the graph
of a simulation of x 7→ u(x, t0). It has quadratic variation Q

(2)
n (t0) = .4732, while the

quadratic variation of the true solution is Q̂(2)(t0) = .50
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Figure 1: The solution as a function of time: t 7→ u(.5, t) for 0 ≤ t ≤ t0, as seen by the
critical Crank-Nicholson scheme with c = 1

π−2
. The observed quartic variation is .9546t0,

and the expected quartic variation and true quartic variation are both .9549 t0.
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Figure 2: The solution as a function of space: x 7→ u(x, t0) for 0 ≤ x ≤ 1, as seen by the
critical Crank-Nicholson scheme with c = 1

π−2
. The observed quadratic variation is .4732,

while the expected quadratic variation and true quadratic variation are both .50.
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Figures 3 – 7 show the smoothing effects of increasingly long time steps on x 7→ u(x, t0).
The number of space steps is fixed at n = 999, and there are 100 time steps. The initial
values and the “noise” are the same for each graph. The ratio c = ∆t/(∆x)2 increases:
c = 1/(π − 2) ∼ .876, c = 10, c = 100, c = 1000, and c = 10, 000 in Figures 3–7,
respectively8. This is illustrated for θ = .51 and the backward Euler (θ = 1) schemes.
Since the number of time steps is fixed, t0 varies with c. However, it is the same for both
graphs in each figure, so that they are different approximations to the same sample path.
Notice that as c increases, the change from θ = .51 to θ = 1 smooths over ever-larger-scale
features.

The observed quadratic variation Q
(2)
n (t0) decreases when c increases and when θ in-

creases, going from .5107 (θ = .51, c = 1/(π − 2) to .0039 (θ = 1, c = 10, 000.) (The
“true” value is .50.) The progressive smoothing is evident to the naked eye.
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Figure 3: u(x, t0), for 0 ≤ x ≤ 1, as seen by the θ = .51 (top) and θ = 1 (bottom) schemes
with 1000 space steps, t0 = 8.7597 × 10−5, and c = 1

π−2
. The observed and expected

quadratic variations for θ = .51 are .5107 and .4915 respectively, and the observed and
expected quadratic variations for θ = 1 are .3093 and .3014 respectively, while the true
quadratic variation is .50.

8The reader will notice that the simulation with θ = .51 and c = 10, 000 does not satisfy Hypothesis
(C); however, it does show that the smoothing effect continues, even when the size of the time step is
increased beyond reasonable limits.
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theta=0.51,c=10
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Figure 4: Same as Figure 3, but with c = 10 and t0 = .001, for θ = .51 (top) and θ = 1
(bottom). The observed and expected quadratic variations for θ = .51 are .4565 and .4226
resp. and for θ = 1 they are .1109 and .1091 resp. The true quadratic variation is .50.
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Figure 5: Same as Figure 3, but with c = 100 and t0 = .01. For θ = .51 (top) the observed
and expected quadratic variations are .2198 and .2236 resp., and for θ = 1 they are .0290
and .0353 resp. The true quadratic variation is .50.
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Figure 6: Same as Figure 3, but with c = 1000 and t0 = .1. For θ = .51 (top) the observed
and expected quadratic variations are .0819 and .07809 resp., and for θ = 1 they are .0136
and .0112 resp. The true quadratic variation is .50.
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Figure 7: Same as Figure 3, but with c = 10, 000 and t0 = 1. For θ = .51 (top) the
observed and expected quadratic variations are .0259 and .02497 resp., and for θ = 1 they
are .0039 and .0035 resp. The true quadratic variation is .50.
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6 Eigenfunction Representations

Let (um
j ) be the solution of (2), and let Um be the vector

Um = (um
1 , u

m
2 , . . . , u

m
n ) .

Similarly, let

Wm = (W1,m,W2,m, . . . ,Wn,m) ,

where Wj,m = W
(

(jh, (j + 1)h) × (mk, (m + 1)k)
)

. The Wj,m are independent N(0, hk)
random variables.

Let A be the tridiagonal n×n matrix with twos in the main diagonal, and minus ones
in the diagonals above and below:

A =















2 −1 . . . 0
−1 2 −1

. . .
. . .

. . .

−1 2 −1
0 . . . −1 2















n×n.

Multiply (2) on both sides by k and write it in vector form:

Um+1 − Um = (θ − 1)cAUm − cθAUm+1 +
1

h
Wm .

Solve for Um+1:

(16) Um+1 =
(

I + cθA
)−1(

I + c(θ − 1)A
)

Um +
1

h

(

I + cθA)−1Wm .

The eigenvalues λj and eigenvectors ξj of A are [10], [11]:

λj = 4 sin2 jπ

2(n+ 1)
;(17)

ξj =

√

2

n+ 1

(

sin
jπ

n+ 1
, sin

2jπ

n+ 1
, . . . , sin

njπ

n+ 1

)

.(18)

The eigenvectors form a complete orthonormal system, so that, putting tm = mk, Um

and Wm can be expressed in the form
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Um =
n
∑

j=1

Aj(tm)ξj(19)

Wm =

n
∑

j=1

wj,mξj ,(20)

where wj,m = 〈Wm, ξj〉 def
=
∑n

i=1Wi,mξj(i), and Aj(tm) = 〈Um, ξj〉. It is easily seen from
the ortho-normality of the ξj that the wj,m are independent N(0, hk) random variables.

Plug (19) into (16) to get a recurrence relation for the Aj :

n
∑

j=1

Aj(tm+1)ξj =
n
∑

j=1

Aj(tm)
(

I + cθA
)−1(

I + (θ − 1)cA
)

ξj +
1

h

n
∑

j=1

wj,m

(

I + cθA
)−1

ξj .

The ξj are eigenvectors of A, and also of I, and therefore they are eigenvectors of all the
matrices in the above equation, so that in terms of the λj:

n
∑

j=1

Aj(tm+1)ξj =
n
∑

j=1

1 + (θ − 1)cλj

1 + cθλj
Aj(tm)ξj +

1

h

n
∑

j=1

wj,m

1 + cθλj
ξj .

The ξj are linearly independent, so the equation must hold for each j = 1, 2, . . . and
m = 0, 1, 2, . . . :

(21) Aj(tm+1) =
1 + (θ − 1)cλj

1 + cθλj
Aj(tm) +

wj,m

h(1 + cθλj)
.

Let

αj
def
=

1 + (θ − 1)cλj

1 + cθλj
= 1 − cλj

1 + cθλj
,

βj
def
=

1

h(1 + cθλj)
.

Then (21) becomes

(22) Aj(tm+1) = αjAj(tm) + βjwj,m , m = 0, 1, 2, . . .

The processes {Aj(tm), m = 0, 1, 2, . . .} are discrete versions of the Ornstein-Uhlenbeck
process.
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Note that we must have |αj | ≤ 1 for all j in order that the scheme be stable. This is
equivalent to asking that cλj/(1 + cθλj) ≤ 2. This increases in λ and 0 < λj < 4 for all
j, so it holds if 4c/(1 + 4θc) ≤ 2 or (2 − 4θ)c ≤ 1. This is true for θ ≥ 1/2, and it is also
true for θ < 1/2 by Hypothesis (C). In fact |αj| < 1 for all j.

We can write the Aj explicitly in terms of the white noise. Indeed, Aj(t1) = αjAj(0)+
βjwj,0, Aj(t2) = αjAj(t1) + βjwj,1 = α2

jAj(t0) + βj

(

αjwj,0 + wj,1

)

and, by induction,

(23) Aj(tm) = αm
j Aj(0) + βj

m−1
∑

i=0

αm−i−1
j wj,i .

From this we see that if the Aj(0) are independent and independent of the white noise,
then the processes {Aj(tm), m = 0, 1, 2 . . .} are independent, and, for each Aj :

E{Aj(tm)} = αm
j E{Aj(0)}(24)

Var {Aj(tm)} = α2m
j Var {Aj(0)} + β2

j

m−1
∑

i=0

α2m−2i−2
j Var {wj,i}(25)

= α2m
j Var {Aj(0)} + β2

jhk
1 − α2m

j

1 − α2
j

,

since the wj,k are independent N(0, hk) random variables, independent of Aj(0). The
same logic leads to the covariance of the Aj :

(26) Cov
(

Aj(tm), Aj(tm+p)
)

= α2m+p
j Var {Aj(0)} + hkβ2

jα
p
j

1 − α2m
j

1 − α2
j

.

Notice that the expectation, variance and covariance all tend to limits as m −→ ∞.
Since the Aj are Gaussian processes, this implies that they tend to stationarity, and,
moreover, if the initial values Aj(0) have the stationary distribution, the {Aj(tm), m =
0, 1, 2, . . .} are stationary independent Gaussian processes. Thus we have:

Proposition 6.1 If the Aj(0), j = 1, . . . , n are independent N(0, σ2
j ) random variables,

independent of Ẇ , then the processes {Aj(tm), m = 0, 1, 2, . . .} are independent station-
ary Gaussian processes with mean zero, variance σ2

j = E{A2
j(t0)} and covariance function

Γj(p) = E{Aj(tm)Aj(tm+p)}, where

σ2
j =

h

(2 + (2θ − 1)cλj)λj
(27)

Γj(p) = σ2
jα

p
j , p = 0, 1, 2, . . . .(28)
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We will need some bounds on the absolute values of the αj. Now αj depends on n, c,
and θ, so consider the function

α(θ, c, x)
def
=

1 − (1 − θ)cx

1 + θcx
.

When there is no danger of ambiguity, we will write α(x) instead of α(θ, c, x) below.
Note that αj = α(λj). Moreover, α(0) = 1 and for x ≥ 0 and c ≥ 0, α is strictly decreasing
and convex in both x and c. To see this, just compute the derivatives of α. For x ≥ 0
the first derivative of α is negative—so it is decreasing—and the second positive—so it is
convex. This is true for both x and c because they appear symmetrically.

Let us also define a strictly positive function δ(θ, n) by

(29) δ(θ, n) =



























2(1 − 2θ)εθ if 0 ≤ θ <
1

2
2

1 + 2
√
n

if θ =
1

2

2θ − 1

2θ
if

1

2
< θ ≤ 1 .

Here is a bound on the function |α(x)|.

Lemma 6.2 Assume Hypothesis (C), with the given εθ. Then

|α(x)| ≤ e−γ(x) on 0 ≤ x ≤ 4 ,

where

γ(x) = min
(cx

2
, δ(θ, n)

)

.

Proof. We know that −1 < αj < 1. To bound |α|, we will bound α away from both 1
and −1. Write 1 − α(x) = cx

1+θcx
. This is greater than cx/2 for small x. Indeed, since α

is convex, the inequality is true until the first time that α(x) = cx/2, that is, on 0 ≤ x ≤
1/cθ. (If θ = 0, it is true for all x.) Since α is decreasing, x > 1/cθ =⇒ 1 − α(x) ≥ 1/2θ.
Thus

(30) 1 − α(x) ≥ min
(cx

2
,

1

2θ

)

for x ≥ 0 .

In order to bound α away from -1, note that 1 + α(x) = 2+(2θ−1)cx
1+θcx

. If θ = 1/2, then

Hypothesis (C) requires that c ≤ √
n. As α is decreasing in both c and x, 1 + α(x, c) ≥

1 + α(4,
√
n) = 2/(1 + 2

√
n). If θ 6= 1/2, 1 + α is bounded away from zero. Indeed, if
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0 ≤ θ < 1/2, then c must be less than cθ ≡ (1/(2 − 4θ)) − εθ. Therefore 1 + α(x, c) ≥
1 + α(4, cθ) ≥ 2(1− 2θ)εθ. And if θ > 1/2, 1 + α(x, c) ≥ 1 + limc→∞ α(4, c) = (2θ− 1)/θ.
To summarize:

(31) 1 + α(x) ≥



























2(1 − 2θ)εθ if 0 ≤ θ <
1

2
2

1 + 2
√
n

if θ =
1

2

2 − 1

θ
if

1

2
< θ ≤ 1 .

But now, since |α(x)| < 1, 1−|α(x)| ≥ min
(

1−α(x), 1+α(x)
)

. We claim this is exactly
γ(x). Indeed, according to (30) and (31), 1− |α| is the minimum of three quantities, one
of which is 1/2θ. But 1/2θ can never be the minimum, for it is greater than or equal to
one if θ ≤ 1/2, while 1 − |α| is less than one; and if 1/2 < θ ≤ 1, 1/2θ ≥ (2θ − 1)/2θ.
Thus 1−|α(x)| ≥ γ(x). But this implies that |α(x)| ≤ e−γ(x), as claimed. Indeed, for any
x, 1 − x ≤ e−x, so, if y = 1 − x, y ≤ e−(1−y). ♣

Now αj = α(λj), sin x ≥ 2x/π on 0 ≤ x ≤ π/2, and x 7→ γ(x) is increasing, so Lemma
6.2 immediately implies

Corollary 6.3 |αj| ≤ e
−γ
(

4j2

(n+1)2

)

.

7 The Variations of the Numerical Approximations

Theorem 7.1 Suppose Hypothesis (C) holds. There are η1 and η2 (which depend on c,
n, and θ) with |ηi| ≤ 1 such that with probability one, for each t > 0

(32) E
{

Q(2)
n (t, c, θ)

}

=
1

2
√

1 + 2c(2θ − 1)
+

η1

2(n+ 1)
,

and

(33) Var
(

Q(2)
n (t, c, θ)

)

=
3

2(n+ 1)

1 + (2θ − 1)c
(

1 + 2c(2θ − 1)
)

3
2

+
η2

2(n+ 1)2
.

Before proving this, we need three lemmas. The first just records some information
about the moments of Gaussian random variables. It follows from the usual calculations
with the joint characteristic function. The second lists some trigonometric identities
needed for the third lemma, which gives orthogonality relations for the increments of the
eigenvectors of A.
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Lemma 7.2 Let X and Y be N(0, σ2) random variables with correlation coefficient ρ.
Then Var (X2) = 2σ4, E{X4} = 3σ4, Var (X4) = 96σ8, and Cov (X4, Y 4) = (72ρ2 +
24ρ4)σ8 ≤ 96ρ2σ8 = 96σ4Cov (X, Y )2 ≤ 96σ6Cov (X, Y ).

Lemma 7.3 Let n and r be integers, −n ≤ r ≤ n. Then

(34)

n
∑

p=0

cos
(2p+ 1)rπ

2(n+ 1)
=

{

n+ 1 if r = 0

0 if r 6= 0

(35)
n
∑

p=0

cos2 (2p+ 1)rπ

2(n+ 1)
=







n + 1 if r = 0

n + 1

2
if r 6= 0 .

Proof. If r = 0, every summand in (34) equals 1, so the sum is n+ 1. If r 6= 0, write it
as the real part of

e
rπi

2(n+1)

n
∑

p=0

e
prπi
n+1 = e

rπi
2(n+1)

1 − erπi

1 − e
rπi
n+1

,

for, as r < n+ 1, erπi 6= 1, we can sum the geometric series explicitly. But this is

=
1 − (−1)r

e
−rπi

2(n+1) − e
rπi

2(n+1)

=
i

2

1 − (−1)r

sin rπ
2(n+1)

,

which is purely imaginary, so its real part is zero.

To see (35), just note that cos2 (2p+1)rπ
2(n+1)

= (1/2)(1+cos( (2p+1)2rπ
2(n+1)

)). If 2r = 0, then each

term equals 1, and the sum is n + 1, while if 2r 6= 0, then by (34) the sum of the cosines
vanishes, leaving

∑

p(1/2) = (n+ 1)/2. ♣

Lemma 7.4 Let ∆ξj(i) = ξj(i+ 1) − ξj(i), i = 0, . . . , n, where we define ξj(0) = ξj(n +
1) = 0. Let j and k be integers, 1 ≤ j, k ≤ n. Then

(36)

n
∑

i=0

∆ξj(i)∆ξk(i) =

{

λj if j = k

0 if j 6= k .

Proof. Use the identity sin x− sin y = 2 cos((x+ y)/2) sin((x− y)/2) to see that

23



∆ξj(i) =

√

2

n+ 1

(

sin
(i+ 1)jπ

n+ 1
− sin

ijπ

n+ 1)

)

= 2

√

2

n + 1
sin

jπ

2(n+ 1)
cos

(2i+ 1)jπ

2(n+ 1)

=

√

2

n+ 1

√

λj cos
(2i+ 1)jπ

2(n + 1)
.

Thus

n
∑

i=0

∆ξj(i)∆ξk(i) =
2

n+ 1

√

λjλk

n
∑

i=0

cos
(2i+ 1)jπ

2(n+ 1)
cos

(2i+ 1)kπ

2(n+ 1)
.

Set x = (2i + 1)j/(2(n + 1)), y = (2i + 1)k/(2(n + 1)) in the identity cosx cos y =
(1/2)(cos(x+ y) + cos(x− y)) to see that this is

=
1

n+ 1

√

λjλk

n
∑

i=0

(

cos
(2i+ 1)(j + k)π

2(n+ 1)
+ cos

(2i+ 1)(j − k)π

2(n+ 1)

)

.

By Lemma 7.3, both sums vanish if j 6= k. If j = k, the first sum vanishes and the
second equals n+ 1, proving the lemma. ♣

Proof. (Of Theorem 7.1) Let t = tm and write um
i+1 − um

i =
∑n

j=1Aj(t)∆ξj .

Q(2)
n (x, c, θ) =

n
∑

i=0

(

n
∑

j=1

Aj(t) ∆ξj(i)

)2

=
n
∑

i=0

n
∑

j=1

n
∑

p=1

Aj(t)Ap(t)∆ξj(i) ∆ξp(i)

=

n
∑

j=1

n
∑

p=1

Aj(t)Ap(t)

n
∑

i=0

∆ξj(i) ∆ξp(i)

=
n
∑

j=1

Aj(t)
2λj ,

since by Lemma 7.4, the sum over i equals zero if j 6= p and equals λj if j = p. The Aj

are independent N(0, σ2
j ) r.v. so
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E{Q(2)
n } =

n
∑

j=1

σ2
jλj

=
n
∑

j=1

h

2 + (2θ − 1)cλj

=

n
∑

j=1

h

2 + 4(2θ − 1)c sin2
(

jπ
2(n+1)

) .

Now let f(x) = 1
2+4(2θ−1)c sin2 πx

2

. Note that f is positive, decreasing and the above sum

equals
∑n

j=1 f(j/(n+ 1))h. This can be approximated by the integral
∫ 1

0
f(x) dx with an

error bounded by the first term, f(0)h = h/2 = 1/(2(n+1)). We will need the integral of
f and of f 2. Both can be calculated in closed form, either (the hard way) by substituting
t = tan(x/2) to turn them into integrals of rational functions of t which can be calculated
by the usual methods, or (the easy way) by using Maple, Matlab, or Mathematica. Now

∫ 1

0

f(x) dx =
1

2
√

1 + 2c(2θ − 1)
,

and (32) follows from:

∣

∣

∣
E{Q(2)(x, c, θ)} − 1

2
√

1 + 2c(2θ − 1)

∣

∣

∣
≤ 1

2(n+ 1)
.

Note that the term under the square root is strictly positive. This is clear if θ ≥ 1/2, and
it follows from Hypothesis (C) if θ < 1/2.

To prove (33), note that

Var
(

Q(2)
n (t)

)

= Var
(

n
∑

j=1

Aj(t)
2λj

)

=

n
∑

j=1

Var (Aj(t)
2)λ2

j

= 2
n
∑

j=1

σ4λ2
j ,

since the Aj are independent and (see Lemma 7.2) the variance of the square of a N(0, σ2)
r.v. is 2σ4. This is
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= 2h
n
∑

j=1

h
[

2 + 4(2θ − 1)c sin2
(

jπ
2(n+1)

)]2 = 2h
n
∑

j=1

f 2
( j

n+ 1

)

h .

As above, the sum can be approximated to within its first term, hf(0)2 = h/4, by an
integral. Let the actual error be η2h/4 for some |η2| ≤ 1. Then it is

= 2h
(

∫ 1

0

f 2(x) dx+ η2
h

4

)

=
1

2(n+ 1)

1 + (2θ − 1)c
(

1 + 2(2θ − 1)c
)

3
2

+
η2

2(n+ 1)2
.

This proves the theorem. ♣

Theorem 7.5 Let n ≥ 1, 0 ≤ θ ≤ 1 and let c satisfy Hypothesis (C). Let y = ih be one of
the lattice points xi, with y = q/p in lowest terms. Let t be an integer multiple of k, and

let Q
(4)
n (y, t) be the quartic variation up to time t at the point y. Then there is a constant

K = K(θ) and an η = η(θ, c, i, n), with |η| ≤ 1, such that

(37) E{Q(4)
n (y, t)} = 3ct

( 1 − 2θ
√

1 + 2c(2θ − 1)
+

2θ
√

1 + 4cθ)

)2

+ ηKph ;

(38) Var
(

Q(4)
n (y, t)

)

≤















K(θ)
c3

n2

(

1 + ηph
)

if θ 6= 1

2

K(θ)
c3

n
3
2

(

1 + ηph
)

if θ =
1

2
.

Proof. Let Ym = um+1
i − um

i =
∑n

j=1 ∆Aj(tm)ξj(i). Then Q
(4)
n (y, t) =

∑t/k−1
m=0 Y 4

m. The
Aj are stationary, so the distribution of Ym is independent of m. It is Gaussian with mean
zero, so by Lemma 7.2

E{Q(4)
n (y, t)} =

t/k−1
∑

m=0

E{Y 4
m}

= 3
t

k

(

Var (Ym)
)2
.

Now Var (∆Aj(tm)) = 2Γj(0) − 2Γj(1) and if r ≥ 1, Cov (∆Aj(tm), Aj(tm+r)) = 2Γj(r) −
Γj(r + 1) − Γj(r − 1), so that, by Proposition 6.1, for j = 1, 2, . . .
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Var
(

∆Aj(tm)
)

= 2σ2
j (1 − αj)(39)

Cov
(

∆Aj(tm),∆Aj(tm+r)
)

= −σ2
j (1 − αj)

2αr−1
j , if r ≥ 1 .(40)

Var (Ym) =
n
∑

j=1

Var
(

∆Aj(tm)
)

ξ2
j (i)

= 2

n
∑

j=1

σ2
j (1 − αj)ξ

2
j (i)

= 2ch
n
∑

j=1

ξ2
j (i)

1
(

1 + 4cθ sin2 jπ
2(n+1)

)(

2 + 4c(2θ − 1) sin2 jπ
2(n+1)

) .

If we define a function g by

g(x)
def
=

1
(

1 + 4cθ sin2 πx
2

)(

2 + 4c(2θ − 1) sin2 πx
2

) ,

then

Var (Ym) = 2ch
n
∑

j=1

ξ2
j (i)g

(

j

n+ 1

)

.(41)

Now y is rational, and y = q/p in lowest terms. Since y also equals i/(n + 1), p must
divide n + 1. By taking a larger n if necessary, we will assume that p divides (n + 1)/2,
say (n + 1)/2p = N for some integer N . (This is not necessary for the proof. It merely
simplifies the notation.)

Recall that ξ2
j (i) = 2h sin2 ijπ

n+1
= 2h sin2 jqπ

p
, so j 7→ ξj(i) is periodic with period p:

ξp+ℓ(i) = ξℓ(i). Let us write j = mp + ℓ, where 0 ≤ m ≤ N − 1 and 1 ≤ ℓ ≤ q. The sum
in (41) becomes a double sum over m and ℓ. Since ξmp+ℓ(i) = ξℓ(i), we can factor it out
of the sum over m to see that this is

= 2ch

p
∑

ℓ=0

ξ2
ℓ (i)

N−1
∑

m=0

g

(

mp+ ℓ

n+ 1

)

.

Consider the sum over m. Under Hypothesis (C), the denominator of g does not vanish.
Moreover, the denominator is a quadratic function of sin2(πx/2), which itself is increasing

27



on [0, 1]. Thus g can have at most one local maximum or minimum. We can break up the
sum into two parts, such that g is monotone on each. We can approximate the sum by
an integral on each interval, and the error in each will be at most the largest term. Let
µ = µ(θ, c) be the maximum of |g| on [0, 1]. Then error in the integral approximation is
bounded by 2µ, so we can write

N−1
∑

m=0

g

(

mp + ℓ

n+ 1

)

=

∫ N−1

0

g

(

xp + ℓ

n + 1

)

dx+ 2ηµ

=
n + 1

p

∫ 1− 1
N

0

g

(

z +
ℓ

n+ 1

)

dz + 2ηµ .

where |η| ≤ 1. Now ℓ/(n + 1) ≤ p/(n + 1) = 1/2N , so the integrals of g from 0 to 1/N
and from 1− 1/N to 1 contribute at most (n+ 1)/p× µ/N = 2µ, so this is, with perhaps
a different η,

=
n + 1

p

∫ 1

0

g (z) dz + 4ηµ .

Putting this together,

Var (Ym) = 2ch

p
∑

ℓ=1

ξ2
ℓ (i)

(

n+ 1

p

∫ 1

0

g(z) dz + 4η(µ+ 1)

)

.

But ξ2
ℓ (i) = 2h sin2 iℓπ

2p
so
∑p

ℓ=1 ξ
2
ℓ (i) = 2h

∑p
ℓ=1 sin2 iℓπ

2p
. The sum is either p/2 or

(p+ 1)/2, depending on whether i is even or odd. Just to be concrete, suppose it equals
p/2. Then this is

(42) = ch
(

2

∫ 1

0

g(z) dz + 8ph(µ+ 1)
)

.

Now t/k = t/(ch2) so

E
{

Q(4)
n (y, t)

}

= 3
t

ch2
Var (Ym)2 = 3ct

(

2

∫ 1

0

g(z) dz + 8p(µ+ 1)h
)2

.

The integral over g can be done explicitly: the substitution t = tan(x/2) reduces it to an
integral of a rational function of t, readily checked by Maple. Then (37) follows from the
fact that

∫ 1

0

g(z) dz =
1

2

( 1 − 2θ
√

1 + 2c(2θ − 1)
+

1√
1 + 4cθ

)

,
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coupled with the bound on µ: µ = 1/2 if θ ≥ 1/2, and µ ≤ max(1/2, 1/8εθ) if θ < 1/2.
(This can be seen by noting that if θ ≥ 1/2, g is decreasing in x and θ, so that its
maximum occurs when these are at their minimum: θ = 1/2 and x = 0, giving 1/2. If
0 ≤ θ ≤ 1/4, g is increasing in both x and c. As c is bounded by some cθ, the maximum
must occur when x = 1, c = cθ. If 1/4 < θ < 1/2, g decreases in x and c for a time and
then (possibly) increases, so its maximum value occurs either at x = 0 or when x = 1 and
c = cθ. But g(θ, 1, cθ) ≤ 1/8εθ, which verifies the claimed error term.)

Now let us consider the variance of Q
(4)
n .

Var
(

Q(4)
n (t, xi)

)

= Var
(

t/k−1
∑

m=0

Y 4
m

)

=

t/k−1
∑

m=0

t/k−1
∑

r=0

Cov
(

Y 4
m, Y

4
r

)

≤ 96

t/k−1
∑

m=0

t/k−1
∑

r=0

Var
(

Ym

)3
Cov

(

Ym, Yr

)

= 96
(

t/k−1
∑

m=0

Var
(

Ym)4 + 2

t/k−1
∑

m=0

Var (Ym)3

t/k−m−1
∑

r=1

Cov
(

Ym, Ym+r

)

)

by Lemma 7.2. Consider the sum over r and sum the geometric series:

t/k−m−1
∑

r=1

∣

∣Cov
(

Ym, Ym+r

)∣

∣ =

t/k−m−1
∑

r=1

n
∑

j=1

ξ2
j (i)σ

2
j (1 − αj)

2|αj|r−1

≤
n
∑

j=1

ξ2
j (i)σ

2
j (1 − αj)

2 1

1 − |αj|
.

Note that (1 − αj)/(1 − |αj |) = 1 if αj ≥ 0, and, if αj < 0, (1 − αj)/(1 − |αj |) =
(1 + |αj|)/(1 − |αj |) ≤ 2/(1 − |αj|). But now, if αj < 0, 1 − |αj| ≥ δ(θ, n), where δ(θ, n)
is defined in (29).

Thus, in any case,

(1 − αj)
2

1 − |αj|
≤ (1 − αj)

(

1 +
1

δ(θ, n)

)

,

and we have that
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t/k
∑

r=1

∣

∣Cov
(

Ym, Ym+r

)∣

∣ ≤
(

1 +
1

δ(θ, n)

) n
∑

j=1

ξ2
j (i)σ

2
j (1 − αj)

=
1

2

(

1 +
1

δ(θ, n)

)

Var (Ym) .

Thus

Var
(

Q(4)
n (t, xi)

)

≤ 96

t/k
∑

m=0

Var (Ym)4

(

2 +
1

δ(θ, n)

)

.

But Var (Ym) is independent of m, and there are t/k terms in the sum, so this is

= 96
t

k
Var (Ym)4

(

2 +
1

δ(θ, n)

)

.

If θ = 1/2, then 2 + 1/δ ≤ 4
√
n, and if θ 6= 1/2, 2 + 1/δ is bounded, so

θ 6= 1/2 =⇒ Var
(

Q(4)
n (t, xi)

)

≤ K
t

k
Var (Ym)4

θ = 1/2 =⇒ Var
(

Q(4)
n (t, xi)

)

≤ K
√
n
t

k
Var (Ym)4 .

Now Var (Ym) = chF (θ), where F is defined above. If θ 6= 1/2, this is KF 4 t
k
c4h4 =

O(c3/n2) . If θ = 1/2, it is KF 4 t
k

√
nc4h4 = O(c3/n3/2). ♣

8 Higher-order Variations for the Homogeneous Heat

Equation

It remains to show that the limiting variations are independent of the initial conditions. As
noted in §4, this is equivalent to showing that the limiting variations for the homogeneous
equation tend to zero.

The solutions of the homogeneous PDE—that is, with no driving white noise—are
infinitely differentiable, so that all their higher-order variations vanish. We might expect
that this would also hold for the numerical approximations. This is by-and-large true,
but we must be careful. If we take, for example, the Crank-Nicholson method with a
large value of the ratio c = k/h2, then for large j, αj is close to -1. This means that if
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the initial value u0 is proportional to the corresponding eigenvector, then at the very first
step, the value will be close to −u0, so that the quartic variation of u at the point x is
about 16u(x)4—and that is after just one step. In a few more steps, it can be quite large
indeed. But if 0 < δ < t, the limiting quartic variation from time δ to time t does indeed
tend to zero as n → ∞. And so does the quadratic variation at t. This section aims to
establish this.

Lemma 8.1 Let p ≥ 0, 0 ≤ θ ≤ 1, δ > 0, and t ≥ δ. Let (cn) be a sequence of reals
satisfying Hypothesis (C). Then

sup
t≥ε,n≥1

n
∑

j=1

jp|αj |
tn2

cn <∞ .

Proof. From Corollary 6.2,

(43) |αj| ≤ e
−γ

(

4j2

(n+1)2

)

.

Now γ(x) is the minimum of several values which depend on θ and x. Let δ be either
(2 − 4θ)εθ or 1 − 1/2θ, if θ is less or greater than 1/2, respectively, and εθ comes from
Hypothesis (C). Then δ > 0 and γ(x) = min

(

cx/2, δ, 2/(1 + 2
√
n)
)

. Since γ(x) is an
increasing function, for any q ≥ 1,

|αj|q ≤ e
− 2cj2q

(n+1)2 + e−qδ + e−2q/(1+2
√

n) .

Thus
|αj|t(n+1)2 ≤ e−2cj2t + e−(n+1)2tδ + e−2tn3/2

,

and

n
∑

j=1

jp|αj|t(n+1)2 ≤
n
∑

j=1

(

jpe−2cj2t + jpe−(n+1)2tδ + jpe−2tn3/2
)

.

All three terms are bounded in n. ♣

This brings us to the theorem:

Theorem 8.2 Let 0 ≤ θ ≤ 1 and δ > 0. Let (cn) be a sequence of reals satisfying
Hypothesis (C). Let u0(x) be a bounded function on [0, 1], say |u0(x)| ≤ K for all x. Let
(um

j ) be the solution of the homogeneous form of (2) (i.e. with Wj,m ≡ 0) with initial

value u0, hn = 1/(n+ 1), and kn = cnh
2
n. Then for all t > 0, limn→∞Q

(2)
n (t) = 0, and for

all 0 < x < 1, and t > δ, limn→∞Q
(4)
n (x; t) −Q

(4)
n (x; δ) = 0.
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Remark 8.3 (i) We will actually prove more: we show that the quadratic variation in t
tends to zero, which implies that all variations of all orders greater than two—including
the quartic variation—tend to zero.

Proof. For each n, let U0 be the vector U0 =
(

u0(h), u0(2h), . . . , u0(nh)
)

. Write U0 =
∑n

j=0 aj(0)ξj(i), where aj(0) = 〈U0, ξj〉. By (23), with wj,m ≡ 0,

(44) aj(q) = aj(0)αq
j .

The ξj are ortho-normal, so

(45)

n
∑

j=1

a2
j (0) =

n
∑

i=1

u2
0(ih) ≤ nK2 .

Then

Q(2)
n (t) =

n
∑

i=0

(

n
∑

j=1

aj(0)α
t
k
j (ξj(i+ 1) − ξj(i))

)2

(46)

≤
n
∑

i=0

n
∑

j=1

a2
j (0)

n
∑

ℓ=1

|αℓ|
2t
k (ξℓ(i+ 1) − ξℓ(i))

2 ,(47)

by Schwartz’ inequality. Sum first over i and use Lemma 7.4 to see this is

=
n
∑

j=1

a2
j (0)

n
∑

ℓ=1

|αℓ|
2t
k λℓ .

But λℓ = 4 sin2
(

πℓ/2(n+ 1)
)

≤ π2ℓ2/(n+ 1)2, and t/k = (n+ 1)2t/cn, so that

Q(2)
n (t) ≤ π2

(n + 1)2
nK2

n
∑

j=1

j2|αj|
2(n+1)2t

cn .

The sum is uniformly bounded in n by Lemma 8.1, so this tends to zero as n → ∞,
proving the first claim.

The quadratic variation at a point x = ih from time δ to time t is

Q(2)
n (x; t) −Q(2)(x; δ) =

t/k
∑

q=δ/k

(

n
∑

j=1

ξj(i)(aj(tq+1) − aj(tq))
)2

.

Since ξj(i) ≤
√

2/
√
n+ 1, and aj(q) = aj(0)αq

j , this is
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≤
t/k
∑

q=δ/k

(

n
∑

j=1

√
2√

n+ 1

(

aj(tq)(αj − 1)
)

)2

≤ 2

n + 1

t/k
∑

q=δ/k

(

n
∑

j=1

a2
j (0)

)2
n
∑

j=1

α2q
j (1 − αj)

2 ,

by Schwartz’ inequality. Now α(x) is convex with α′(0) = −cn, so α(x) ≥ 1 − cnx, or
1 − αj = 1 − α(|λj|) ≤ cn|λj| ≤ cnπ

2j2/(n + 1)2 = π2kj2. Use (45) on the sum of the α2
j

to see that the above is

≤ 2K2π4k

t/k
∑

q=δ/k

k

n
∑

j=1

j4α2q
j .

By Lemma 8.1 the sum over j is uniformly bounded for q > δ/k = δ(n + 1)2t/cn, by
M , say, and there are (t− δ)/k terms between δ/k and t/k, so that

Q(4)
n (x; t) −Q(4)

n (x; δ) ≤ 2MK2π4k .

This tends to zero, for k → 0 as n→ ∞.

Thus the quadratic variation tends to zero. Therefore every variation of order higher
than two—and this includes the quartic variation—also tends to zero.

♣
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