
Highlights1

Oscillatory instabilities in dynamically active signalling compartments coupled via bulk diffusion in a 3-D2

spherical domain3

Sarafa Iyaniwura, Michael J. Ward4

• Derivation of an ODE system for a cell-bulk ODE-5

PDE model in a bounded 3-D domain in the near6

well-mixed limit. The effect of spatial inhomo-7

geneities in the cell population is incorporated by8

the Neumann Green’s matrix, and there is a diffu-9

sion parameter.10

• Hopf bifurcations in the ODE system trigger intra-11

cellular oscillations as predicted by global bifur-12

cation diagrams computed with MATCONT. Syn-13

chronization is studied via the Kuramoto order pa-14

rameter.15

• Quorum-sensing collective dynamics are illus-16

trated as the number of cells exceeds a threshold,17

or as the spatial configuration of cells is varied.18

Through numerical experiments it is shown that a19

single additional cell can trigger intracellular os-20

cillations in the entire cell population, which oth-21

erwise would not occur without this added cell.22

• In the non well-mixed limit, where spatial effects23

are important, a novel integro-differential system24

is derived to characterize intracellular oscillations.25



Oscillatory instabilities in dynamically active signalling compartments coupled
via bulk diffusion in a 3-D spherical domain

Sarafa Iyaniwuraa, Michael J. Wardb

aTheoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
bDept. of Mathematics, University of British Columbia, Vancouver, B.C., Canada, V6T 1Z2 (corresponding author)

Abstract

For a coupled cell-bulk ODE-PDE model in a 3-D spherical domain, we analyze oscillatory dynamics in spatially
segregated dynamically active signalling compartments that are coupled through a passive extracellular bulk diffusion
field. Within the confining spherical domain, the signalling compartments are a collection of small spheres of a
common radius O(ε) � 1. In our cell-bulk model, each cell secretes a signalling chemical into the extracellular bulk
region, while also receiving a chemical feedback that is produced by all the other cells. This secretion and global
feedback of chemical into the cells is regulated by permeability parameters on the cell membrane. In the near well-
mixed limit corresponding to a large bulk diffusivity D = D0/ε � 1, where D0 = O(1), the method of matched
asymptotic expansions is used to reduce the cell-bulk model to a novel nonlinear ODE system for the intracellular
concentrations and the spatially averaged bulk diffusion field. The novelty in this ODE system, as compared to the
type of ODE system that typically is studied in the well-mixed limit, is that it involves D0 and an O(ε) correction
term that incorporates the spatial configuration of the signalling compartments. For the case of Sel’kov intracellular
kinetics, this new ODE system is used to study Hopf bifurcations that are triggered by the global coupling. In
addition, the Kuramoto order parameter is used to study phase synchronization for the leading-order ODE system for
a heterogeneous population of cells where some fraction of the cells have a random reaction-kinetic parameter. For a
small collection of six cells, the spatial configuration of cells is also shown to influence both quorum-sensing behavior
and diffusion-mediated communication that lead to synchronous intracellular oscillations. Moreover, we show that
a single additional pacemaker cell can trigger intracellular oscillations in the other six cells, which otherwise would
not occur. Finally, for the non well-mixed regime where D = O(1), we use asymptotic analysis in the limit ε → 0 to
derive a new integro-differential ODE system for the intracellular dynamics.

Keywords: Bulk diffusion, Green’s function, synchronous oscillations, Kuramoto order parameter, Hopf bifurcation,
quorum-sensing, strong localized perturbation theory, integro-differential systems.

1. Introduction26

Bacteria and other microorganisms communicate and27

coordinate their activities in order to accomplish tasks28

that cannot be achieved by a single cell. Cells that are29

not in close proximity communicate via their extracel-30

lular environment through both the secretion of a sig-31

nalling chemical into the extracellular medium and the32

absorption of the global concentration field that is pro-33

duced by all the other cells. This feedback enables the34

cells to adjust their intracellular dynamics accordingly.35

Examples of biological systems that exhibit this kind of36

communication include a colony of starving yeast cells37

in which the exchange of acetaldehyde (Ace) molecules38

leads to glycolytic oscillations (cf. [1, 2, 3]), a col-39

lection of social amoebae Dictyostelium discoideum,40

where the secretion of cyclic adenosine monophosphate41

(cAMP) by the cells leads to synchronous oscillation in42

their intracellular dynamics and guides them to aggrega-43

tion (cf. [4, 5, 6]), and a colony of the marine bacterium44

Vibrio fischeri that leads to bioluminescence in certain45

species of tropical squid (cf. [7, 8]).46

This type of intracellular communication through a bulk47

diffusion field is closely associated with quorum sens-48

ing (QS), a phenomenon by which the onset of collec-49

tive intracellular dynamics occurs when the cell den-50

sity increases past a threshold. Mathematical models of51

quorum-sensing usually focus on the well-mixed limit52

where the bulk diffusion field is spatially uniform. In53
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other non well-mixed situations where spatial effects54

are important, the bulk diffusivity and bulk degrada-55

tion control the onset of collective intracellular dynam-56

ics through spatial gradients, a phenomenon referred to57

as diffusion sensing (DS) or diffusion-mediated synchro-58

nization. QS systems are categorized into two main59

groups. The first group includes yeast cells and so-60

cial amoeba, where a switch-like transition leads to61

synchronous oscillations as the cell population density62

passes a threshold (cf. [4, 9, 10, 3, 2, 1]). Physio-63

chemical systems involving groups of catalyst-loaded64

small particles immersed in a Belousov-Zhabotinsky65

reaction mixture are also known to exhibit collective66

chemical oscillations (cf. [11, 12, 13, 14]). The sec-67

ond group of QS system includes a colony of the ma-68

rine bacterium Vibrio fischeri and the human pathogen69

Pseudomonas aeruginosa, where a sudden transition70

between bistable steady-states occurs as the cell pop-71

ulation density exceeds a certain threshold (cf. [15, 16,72

8, 17]).73

Various mathematical modeling frameworks have been74

developed to study the mechanism through which com-75

munication is achieved between spatially segregated ac-76

tive cells [18, 19, 20, 21, 22]. In this paper, we ex-77

tend the coupled 2-D cell-bulk ODE-PDE model of78

[18, 23, 24] to a 3-D spherical domain, where the cells79

are small spheres of a common radius within the do-80

main (see Fig. 1). Our model is inspired by the 3-D81

cell-bulk model formulated in [19, 20, 25] in all of R3,82

where there was a single intracellular species within83

each cell and where the bulk medium was purely dif-84

fusive. By allowing for multi-component intracellular85

species in a finite 3-D domain, and including both bulk86

diffusion and bulk degradation, we will show that our87

extended cell-bulk model can lead to synchronous in-88

tracellular oscillations. In our model, the secretion of89

a signalling molecule and the global feedback from the90

bulk medium are regulated by permeability parameters91

on the cell membrane, while spatio-temporal bulk dif-92

fusion fields in the extracellular medium are modeled93

explicitly with a PDE. This latter feature is in contrast94

to the approach in [22] where heterogeneity in the ex-95

tracellular medium was modeled with a discrete diffu-96

sion equation, and in [21] where the signalling com-97

partments were globally coupled through an ODE. Our98

main goal is to use the 3-D cell-bulk model to study the99

emergence and synchronization of intracellular oscilla-100

tions that is mediated by the bulk diffusion field. We101

also investigate mechanisms that promote either quorum102

sensing or diffusion-mediated synchronization.103

The formulation of our coupled ODE-PDE model is as

Figure 1: A schematic diagram showing dynamically active signalling
compartments (in blue) in a 3-D spherical domain. Each signalling
compartment is a smaller sphere containing two chemical species rep-
resented by the green and red dots, where only the red chemical is se-
creted into the extracellular bulk region. Right panel: Zoomed-in il-
lustration of the intracellular concentration of chemicals within each
signalling compartment, the secretion of signalling molecules into the
bulk region, and the feedback of chemical into the cells.

follows. Let Ω ⊂ R3 be a bounded spherical domain of
radius L containing m signalling compartments, denoted
by Ω j for j = 1, . . . ,m, which are smaller spheres of
radius R, centered at X j ∈ Ω for j = 1, . . . ,m. In the
bulk region Ω \∪m

j=1Ω j and for T > 0, the concentration
U(X,T ) of the bulk signalling species or autoinducer
satisfies

UT = DB∆U − kBU , X ∈ Ω \ ∪m
j=1 Ω j , (1.1a)

∂nXU = 0 , X ∈ ∂Ω , (1.1b)

DB∂nXU = β1 jU − β2 j µ
1
j , X ∈ ∂Ω j , j = 1, . . . ,m ,

(1.1c)

where DB > 0 and kB > 0 are the dimensional diffu-
sivity and decay rate of the bulk species, respectively,
β1 j > 0 and β2 j > 0 are the dimensional rate of influx
and efflux of chemical into and out of the jth cell, respec-
tively, and ∂nX denotes the outer normal derivative on Ω,
which points into the bulk region. We assume that there
are n interacting non-diffusing species within each cell
represented by the vector µ j ≡ (µ1

j , . . . , µ
n
j )

T for the jth

cell. Since the intracellular environment is assumed to
be well-mixed, the n species are assumed to interact ac-
cording to the local reaction-kinetics F j(µ/µc). For each
j = 1, . . . ,m, the intracellular dynamics within the jth

cell is coupled to the extracellular bulk diffusion field in
(1.1) through the integration of the diffusive flux across
the membrane of the cell as

dµ j

dT
= kRµc F j

(
µ j/µc

)
+ e1

∫
∂Ω j

(
β1 jU − β2 jµ

1
j

)
dS X .

(1.1d)
Here e1 ≡ (1, 0, . . . , 0)T , kR > 0 is the reaction rate for104

the dimensionless local reaction kinetics F j, and µc > 0105
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is a typical value for µ j. Each cell secretes only one sig-106

nalling chemical, labeled by µ1
j , into the bulk medium as107

regulated by the efflux permeability parameter β2 j. The108

global feedback into the jth cell, which is produced by109

the entire cell population, is regulated by the influx per-110

meability parameter β1 j. A schematic illustration of the111

cell-bulk coupling in (1.1) is shown in Fig. 1 for m = 6112

cells, each with n = 2 intracellular species.113

For our asymptotic limit, we assume that the com-
mon radius R of the signalling compartments Ω j for
j = 1, . . . ,m is small relative to the radius L of the
spherical domain Ω. As such, we introduce a small scal-
ing parameter ε ≡ R/L � 1. By non-dimensionalizing
the coupled ODE-PDE model (1.1) as in Appendix A,
we obtain that the dimensionless concentration U(x, t)
in the bulk region satisfies for t > 0

∂U
∂t

=D∆U − κU , x ∈ Ω \ ∪m
j=1 Ωε j , (1.2a)

∂nU = 0 , x ∈ ∂Ω , (1.2b)

εD∂nU = d1 jU −
d2 j

ε
u1

j , x ∈ ∂Ωε j , j = 1, . . . ,m ,

(1.2c)

which is coupled to the dimensionless intracellular dy-
namics within the jth cell, for each j = 1, . . . ,m, by

du j

dt
= F j

(
u j

)
+

e1

ε2

∫
∂Ωε j

(
ε d1 j U − d2 j u1

j

)
dS x .

(1.2d)
Here u j ≡ (u1

j , . . . , u
n
j )

T is a vector representing the di-
mensionless molar concentration of the n species in the
jth cell, labeled by Ωε j ≡ {x | |x − x j| ≤ ε}. We as-
sume that the cells are well-separated in the sense that
dist(x j, xk) = O(1) for j , k and dist(x j, ∂Ω) = O(1) as
ε → 0. The key O(1) parameters in the dimensionless
cell-bulk model (1.2) are

D ≡
DB

kRL2 , κ ≡
kB

kR
,

d1 j ≡ ε
β1 j

kRL
, d2 j ≡ ε

2 β2 jL2

kR
.

(1.3)

Here D and κ are the effective diffusion coefficient and114

bulk decay rate of the bulk species, respectively. The115

scaling limit chosen for the permeability parameters is116

necessary to compensate for the small size of the cells117

relative to the volume of the domain, and the rapid de-118

cay of the 3-D free-space Green’s function (see Ap-119

pendix A). Since the bulk decay rate κ is the ratio of the120

dimensional bulk decay rate to the reaction rate of the121

intracellular kinetics, an increase in κ corresponds to an122

increase in the rate of degradation of the bulk species123

relative to the rate they are produced within the cells.124

In particular for large κ, the chemical signal secreted by125

the cells decays on a short length-scale, resulting in a126

rather weak coupling between the cells. In terms of the127

effective bulk diffusivity D, when D is large relative to128

κ, the spatial gradients in the bulk medium are weak and129

there is effectively a global coupling between the cells.130

The outline of the paper is as follows. In the near131

well-mixed limit corresponding to a large bulk diffusiv-132

ity D = D0/ε � 1, with D0 = O(1), in §2 the method133

of matched asymptotic expansions is used to derive a134

novel ODE system from the cell-bulk ODE-PDE model135

(1.2). The novelty in this ODE system is that it involves136

D0 and includes an O(ε) correction term involving the137

Neumann Green’s matrix that accounts for the spatial138

configuration of the small dynamically reactive cells. In139

this “near well-mixed limit”, the resulting ODE system140

is similar in form to that for the 2-D case derived in §3141

of [23], but without the additional scaling in the efflux142

permeability d2 j as in (1.2c).143

For the special case of Sel’kov intracellular reaction ki-144

netics, in §3 the leading-order dynamics for this ODE145

system, which sets ε = 0 and thereby neglects the spa-146

tial configuration of cells, is analyzed to predict Hopf147

bifurcations that initiate intracellular oscillations for a148

collection of identical cells. In particular, we show that149

as the cell density parameter is increased it first trig-150

gers and then quenches intracellular oscillations in the151

population of cells. Moreover, for this leading-order152

system, quorum-sensing and phase synchronization of153

large amplitude intracellular oscillations, as monitored154

by a Kuramoto order parameter, are also studied nu-155

merically for a heterogeneous population of 1000 cells.156

In this total population, some fraction of the cells are157

taken to have a random reaction-kinetic parameter that158

modifies the local frequency of oscillation within each159

cell. As the fraction of such “defective cells” in the160

population increases, it is shown numerically that the161

range of the cell density parameter where in-phase syn-162

chronous oscillations occur decreases. In this sense, for163

our leading-order system, we conclude that “cell hetero-164

geneity” does not promote the in-phase syncronization165

of intracellular oscillations. Our findings conform to the166

widely held assumption for coupled non-identical oscil-167

lators that disorder is undesirable for synchronization168

(cf. [26], [27]). However, we remark that it has recently169

been established that a time-delay in the coupling func-170

tion actually enhances synchronization for non-identical171

coupled Stuart-Landau oscillators (cf. [28]).172
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In §4, we study the O(ε) effect of the spatial config-173

uration of cells on intracellular dynamics by consider-174

ing three distinct configurations of six cells in the unit175

sphere. For this small cell population, where we assume176

that the reaction-kinetic parameters and membrane per-177

meabilites are identical for each cell, “cell heterogene-178

ity” only arises from choosing different spatial config-179

urations of the cells. We consider three cell configu-180

rations: cells whose centers are symmetrically located181

on a concentric spherical ring within the sphere, cells182

whose centers are arbitrarily located on the concentric183

ring within the sphere, and cells that are arbitrarily lo-184

cated within the sphere. For the first two patterns, where185

the cells are centered on a concentric ring within the186

sphere, the effect of the nearest image or “ghost” cell187

across the reflecting domain boundary is the same for188

each cell. For these two ring configurations of cells, it189

is shown numerically that the range of the bulk degrada-190

tion κ where intracellular oscillations occur is larger for191

the disordered arrangement than when cells are equally-192

spaced on the concentric ring. With disorder, since193

at least two cells will be in closer proximity than for194

the equally-spaced arrangement, the communication be-195

tween these two cells through the bulk medium will be196

relatively strong even when the bulk decay rate κ in-197

creases. These two cells can then trigger intracellular198

oscillations for the entire cell population. In this sense,199

this type of cell heterogeneity promotes intracellular os-200

cillations. Moreover, for a fixed κ, the Kuramoto order201

parameter is computed to show that diffusion-mediated202

synchronization can be achieved as D0 is increased,203

even when the cells are arbitrarily located within the204

sphere with no two cells in close proximity. For each205

of the three spatial configurations of cells considered206

in §4, in §5 we illustrate QS behavior by showing that207

a single pacemaker cell can trigger synchronous intra-208

cellular dynamics in the entire population of six cells,209

which otherwise would be in a quiescent state without210

this additional cell.211

In §6 we derive a new integro-differential ODE system212

for intracellular dynamics for the non-well mixed case213

where D = O(1). This new result shows that the inter-214

action between the cells and the bulk is only O(ε) � 1215

in this D = O(1) regime. This is in direct contrast to the216

2-D case analyzed in [29] in all of R2 where the interac-217

tion is much stronger at O
(
−1/ log ε

)
. However, when218

D � 1, and under a re-scaling of the efflux permeabil-219

ity, we show in §6.1 that this integro-differential system220

reduces to leading order to our ODE system derived in221

§2, where cell-bulk interactions are O(1).222

Finally, in §7 we briefly summarize our results and223

discuss some open directions, including extending our224

approach to allow for biologically realistic models of225

quorum-sensing in bacteria.226

2. Asymptotics of the cell-bulk model for large D227

In the limit ε→ 0, we use strong localized perturbation228

theory [30] to analyze (1.2) in the regime of a fast dif-229

fusing bulk species and a large rate of global feedback230

into the cells. Our goal is to derive an ODE system that231

has a diffusion parameter and also a weak perturbation232

term that incorporates the spatial configuration of cells.233

We begin our analysis by rescaling the effective bulk
diffusivity D and the influx permeability d1 j as

D =
D0

ε
and d1 j =

d̃1 j

ε
, j = 1, . . . ,m , (2.1)

where D0 ≡ O(1) and d̃1 j ≡ O(1). With this scaling,
dimensionless bulk concentration for t > 0 satisfies

∂U
∂t

=
D0

ε
∆U − κU , x ∈ Ω \ ∪m

j=1 Ωε j , (2.2a)

∂nU = 0 , x ∈ ∂Ω , (2.2b)

εD0∂nU = d̃1 jU − d2 ju1
j , x ∈ ∂Ωε j , j = 1, . . . ,m ,

(2.2c)

which is coupled to the dynamics within the jth cell by

du j

dt
= F j

(
u j

)
+

e1

ε2

∫
∂Ωε j

(
d̃1 jU − d2 ju1

j

)
dS x , (2.2d)

for j = 1, . . . ,m.234

For D = D0/ε � O(1), we expand U(x, t) in the outer
region at O(1) distances from the cells as

U(x, t) = U0(x, t) +
ε

D0
U1(x, t) + . . . . (2.3)

Upon substituting (2.3) into (2.2) and collecting terms
in powers of ε, we obtain the leading-order problem

∆U0 = 0 , x ∈ Ω ; ∂nU0 = 0 , x ∈ ∂Ω , (2.4)

for which U0 ≡ U0(t) is the solution. The next-order
problem for U1 in the outer region is

∆U1 = U′0 + κU0 , x ∈ Ω \ {x1, . . . , xm} ,

∂nU1 = 0 , x ∈ ∂Ω ,
(2.5)

where we must determine the appropriate singularity235

behavior of U1 as x→ x j for each j = 1, . . . ,m.236
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In the inner region, defined at an O(ε) neighborhood of
the jth cell, we introduce the inner variables y = ε−1(x−
x j) and U(x, t) = V j(x j + εy, t), with r = |y|. Upon
writing (2.2a) and (2.2c) in terms of the inner variables,
we obtain for each j = 1, . . . ,m that as ε→ 0,

∆rV j = 0 , r > 1 ; V j → v j∞ as r → ∞ ,

D0 ∂rV j = d̃1 jV j − d2 ju1
j , on r = 1 ,

(2.6)

where ∆r ≡ ∂rr + 2r−1∂r, and v j∞ is the constant far-
field behaviour, which may depend on ε. The solution
to (2.6) is

V j =
c j

r
+ v j∞ where c j =

d2 ju1
j − d̃1 jv j∞

d̃1 j + D0
. (2.7)

Upon matching the inner solution (2.7) to the outer ex-
pansion in (2.3), we obtain a singularity behavior for U1
as x→ x j. In terms of a delta distribution, the singular-
ity behavior for U1 is combined with (2.5) to derive the
complete outer problem for U1 given by

∆U1 = U′0 + κU0 − 4πD0

m∑
i=1

ciδ(x − xi) , x ∈ Ω ,

∂nU1 = 0 , x ∈ ∂Ω ;
∫

Ω

U1 dx = 0 ,

(2.8)

where ci is as defined in (2.7) and δ(x − xi) is the Dirac
delta function localized at the center of the ith cell. With-
out loss of generality, we impose

∫
Ω

U1 dx = 0, so that
the spatial average of U in the bulk region is U0, i.e.
U0 = (1/|Ω|)

∫
Ω

U dx. By using the divergence theorem,
the solvability condition for (2.8) yields the ODE

U′0 + κU0 =
4πD0

|Ω|

m∑
i=1

ci , (2.9)

where |Ω| is the domain volume. When this solvability
condition holds, we write the solution to (2.8) in terms
of the Neumann Green’s function G(x; x j) satisfying

∆G =
1
|Ω|
− δ(x − x j) x ∈ Ω , (2.10a)

G(x; x j) ∼
1

4π|x − x j|
+ R j , as x→ x j , (2.10b)

∂nG = 0 , x ∈ ∂Ω ;
∫

Ω

G dx = 0 , (2.10c)

where R j ≡ R(x j) is its regular part at x = x j. The
solution to the outer problem (2.8) is simply

U1 = 4πD0

m∑
i=1

ciG(x; xi) . (2.11)

Expanding (2.11) as x → x j and using the singularity
behaviour of the Neumann Green’s function given in
(2.10b), we obtain for each j = 1, . . . ,m that

U1 ∼
D0 c j

|x − xi|
+ 4πD0

(
Gc

)
j + o(1) , as x→ x j ,

(2.12)

where c = (c1, . . . , cm)T and G is the symmetric Neu-
mann Green’s matrix whose entries are defined by

(G)i j = (G) ji = G(xi, x j), i , j ; (G) j j = R j ≡ R(x j) .
(2.13)

Upon substituting (2.12) into the outer expansion in
(2.3) and matching the resulting expansion to the far-
field behavior of the inner solution (2.7), we obtain as
x→ x j that

v j∞ +
εc j

|x − xi|
∼ U0 +

εc j

|x − xi|
+ 4πε

(
Gc

)
j + o(1) .

(2.14)

From (2.14), we derive the matching condition

v j∞ = U0 + 4πε
(
Gc

)
j where c j =

d2 j u1
j − d̃1 j v j∞

d̃1 j + D0
,

(2.15)

for each j = 1, . . . ,m. Observe that the two equations
in (2.15) are coupled, since c j also depends on v j∞. We
solve these equations recursively for ε→ 0 to obtain

v j∞ = U0 + 4πε
(
Gc̃

)
j + O(ε2) , (2.16a)

c j = c̃ j −
4πε

(
Gc̃

)
jd̃1 j

d̃1 j + D0
+ O(ε2) , (2.16b)

where

c̃ j ≡
d2 ju1

j − d̃1 jU0

d̃1 j + D0
, j = 1, . . . ,m . (2.16c)

Next, we return to the intracellular dynamics of the cells
given in (2.2d). Upon evaluating the integral in (2.2d)
over the boundary of the jth cell, we obtain

du j

dt
= F j

(
u j

)
− 4πD0e1c j , j = 1, . . . ,m . (2.17)

In deriving (2.17), we used ∂nU |∂Ωε j = −D0∂rV j|r=1 =

−c j on the boundary of the jth cell. Upon substituting
c j as given in (2.16) into (2.9) and (2.17), we obtain an
ODE for the spatially averaged bulk species U0, which

5



is coupled to an ODE system for the intracellular dy-
namics. In this way, we obtain the nm + 1 dimensional
coupled ODE system

U′0 = −κU0 +
1
|Ω|

m∑
j=1

(
k2 ju1

j − k1 jU0

)
−

4πε
|Ω|

m∑
j=1

k1 j
(
Gc̃

)
j , (2.18a)

du j

dt
= F j

(
u j

)
− e1

(
k2 ju1

j − k1 jU0

)
+ 4πe1εk1 j

(
Gc̃

)
j , j = 1, . . . ,m , (2.18b)

where

.

k1 j ≡
4πD0d̃1 j

d̃1 j + D0
, k2 j ≡

4πD0d2 j

d̃1 j + D0
,

c̃ j ≡
d2 ju1

j − d̃1 jU0

d̃1 j + D0
, c̃ ≡ (c̃1, . . . , c̃m)T .

(2.18c)

Here G is the Neumann Green’s matrix, which depends237

on the shape of the domain Ω and the cell locations238

x1, . . . , xm. Since the novel ODE system (2.18) contains239

D0 and a correction term that incorporates the spatial240

configuration of the cells through the G matrix, it can241

be used to study both quorum and diffusion sensing.242

Moreover, since the coefficients of the correction terms243

in (2.18a) and (2.18b) are rather significant for moder-244

ately small values of ε, we expect that the spatial con-245

figuration x1, . . . , xm of the cells can influence whether246

or not intracellular oscillations are triggered.247

3. Analysis of the leading-order dynamics248

In this section, we first perform a Hopf bifurcation anal-249

ysis on the leading-order dynamics of the ODE system250

(2.18) (when ε = 0) for identical cells in order to inves-251

tigate the onset of intracellular oscillations that is trig-252

gered by the global coupling. This analysis is done for253

the two-component kinetics used in [31] to model chem-254

ical oscillations, which is a modification of the Sel’kov255

kinetics [32] used to model glycolysis oscillations. In256

addition, for this choice of kinetics, quorum sensing257

and phase synchronization in the intracellular dynam-258

ics for the leading-order dynamics is studied using the259

Kuramoto order parameter (cf. [22, 21, 24]).260

3.1. Hopf bifurcation analysis for identical cells261

We consider (2.18) in a spherical domain when ε = 0. In
terms of a cell density parameter defined by ρ ≡ m/|Ω|,

which measures the number of cells per unit volume, the
leading-order ODE system in (2.18) becomes

U′0 = −κU0 −
ρ

m

m∑
j=1

(k1 jU0 − k2 ju1
j ) ,

du j

dt
= F j

(
u j

)
+ e1(k1 jU − k2 ju1

j ) , j = 1, . . . ,m ,

(3.1a)

where k1 j and k2 j are defined in (2.18c).262

For identical cells, where the permeabilities and the
reaction-kinetics are the same we have k1 j = k1, k2 j =

k2, and F(u) ≡ F j(u j), with u ≡ u j, for j = 1, . . . ,m.
For this identical cell case, (3.1) reduces to

U′0 = −κU0 − ρ(k1U0 − k2u1) ,
du
dt

= F (u) + e1(k1U − k2u1) .
(3.2)

For the reaction kinetics in [31], which we refer to as
Sel’kov kinetics, we have F ≡ ( f (v,w), g(v,w))T , with
u = (u1, u2)T ≡ (v,w)T , where

f = αw + wv2 − v , g = ε0

[
µ − (αw + wv2)

]
. (3.3)

The reaction-kinetic parameters α, µ, and ε0 are all pos-
itive. Upon substituting (3.3) into (3.2), the steady-state
solution for (3.2) is

u1
e =

µ(κ + k1ρ)(
κ + κk2 + ρk1

) , u2
e =

µ(
α + (u1

e)2) ,
U0e =

µρk2(
κ + κk2 + ρk1

) , (3.4)

where U0e is the steady-state average concentration in263

the bulk region and ue ≡ (u1
e , u

2
e)T is the steady-state264

intracellular concentration.265

We perturb the steady-state solution (U0e, u1
e , u

2
e) as

U = U0e + eλtη , u = ue + eλtφ , (3.5)

where η � 1 and φ ≡ (φ1, φ2)T � 1. Upon substituting
(3.5) into (3.2), we obtain the linearized system

λη = −κη − ρ(k1η − k2φ1) , λφ = Jeφ + e1(k1η − k2φ1) ,
(3.6)

where Je is the Jacobian matrix of the reaction kinetics
F(u) ≡

(
f (u1, u2), g(u1, u2)

)T evaluated at the steady-
state ue = (u1

e , u
2
e)T . Labeling (u1

e , u
2
e) ≡ (ve,we) and

F = ( f (v,w), g(v,w))T , we write (3.6) in matrix form as

H(λ)Ψ = 0 . (3.7)
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where Ψ ≡ (η, φ1, φ2)T andH(λ) is the 3 × 3 matrix

H(λ) ≡


− (κ + ρk1) − λ ρk2 0

k1 ( f e
v − k2 − λ) f e

w

0 ge
v (ge

w − λ)

 .
(3.8)

Here, f e
v , f e

w, g
e
v and ge

w are the partials of f and g evalu-
ated at ue. The characteristic polynomial for (3.7) is

λ3 + q1λ
2 + q2λ + q3 = 0 , (3.9)

with coefficients given by

q1 ≡ (κ + k2 + ρk1) − tr(Je) ,
q2 ≡ det(Je) − (κ + ρk1) tr(Je) + k2

(
κ − ge

w
)
,

q3 ≡ (κ + ρk1) det(Je) − κk2ge
w ,

(3.10)

where det(Je) = f e
v ge

w − f e
wge

v and tr(Je) = f e
v + ge

w
are the determinant and trace of the Jacobian Je. For
Sel’kov kinetics we readily calculate that det(Je) =

ε0(α + v2
e) > 0 and tr(Je) = 2weve − 1 − ε0(α + v2

e).
By the Routh-Hurwitz criterion for cubic polynomials,
we have Re(λ) < 0 if and only if the following three
conditions hold:

q1 > 0 , q3 > 0 , and q1q2 > q3 . (3.11)

To determine Hopf bifurcation (HB) points, for which
λ1 = a < 0, λ2,3 = ±iω, we must have (λ − a)(λ −
iω)(λ + iω) = λ3 − aλ2 + ω2λ − aω2 = 0 so that the
coefficients in (3.9) must satisfy

q1 > 0 , q3 > 0 , and q1q2 = q3 , (3.12)

at the HB points. This criterion is used below to com-266

pute HB points with respect to bifurcation parameters.267

In the results below, the Sel’kov parameters in (3.3) and
the influx and efflux permeabiliites are fixed at

α = 0.9 , ε0 = 0.15 , µ = 2 , d̃1 = 0.8 , d2 = 0.2 .
(3.13)

The kinetics parameters α, ε0 and µ have been selected268

so that the local dynamics of each cell is linearly stable269

when it is isolated from the bulk (i.e. tr(Je) < 0). Our270

goal is to seek an oscillatory instability in the intracel-271

lular dynamics that is triggered by the global coupling.272

Next, we compute HB points of the leading-order ODE273

system (3.2) using the criteria in (3.12), parameters in274

(3.13), and with D0 = 0.5 for m = 6 identical cells. Fix-275

ing κ = 3.2, the HB points with respect to the cell den-276

sity are ρ1 = 0.3548 and ρ2 = 5.2035. Since ρ = m/|Ω|277

and m = 6 is fixed, varying ρ corresponds to varying278

the volume |Ω| of the domain Ω. Similarly, for a fixed279

cell density ρ = 1.4324 (corresponding to m = 6 cells in280

the unit sphere), the HB points with respect to the bulk281

decay parameter κ are κ1 = 1.5508 and κ2 = 16.7815.282

These HB points agree with the global bifurcation re-283

sults shown in Fig. 2, as computed using the numerical284

bifurcation software MATCONT [33]. On the range of285

parameters where the steady-state is linearly unstable,286

we observe from Fig. 2 the existence of a linearly stable287

periodic solution.288

We remark that when the intracellular kinetics is uncou-289

pled from the bulk, it is well-known for the Sel’kov dy-290

namics (3.3) that Hopf bifurcations are always super-291

critical (cf. [34]). By coupling the intracellular kinetics292

linearly via the global mode U0, we observe from Fig. 2293

that supercritical Hopf bifurcations still occur.294
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Figure 2: Global bifurcation diagrams for the ODE system (3.2)
showing steady-states and branches of periodic solutions for m = 6
identical cells, as computed using MATCONT [33], for the Sel’kov ki-
netics (3.3) with parameters in (3.13) and with D0 = 0.5. Top panel:
For κ = 3.2, the HB points occur at ρ1 = 0.3548 and ρ2 = 5.2035.
Right panel: For the unit sphere where ρ = 1.4324, the HB points
occur at κ1 = 1.5508 and κ2 = 16.7814. The red-solid and black-
dashed lines represent linearly stable and unstable branches, respec-
tively. The green loop represents linearly stable branches of periodic
solutions.

From Fig. 2 we observe that there are no intracellular295
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oscillations when either κ is sufficiently small or large.296

Since κ is the dimensionless ratio of the decay rate kB of297

the bulk species to the reaction rate kR of the local ki-298

netics of the cells (see (1.3)), a small value of κ implies299

that the rate of intracellular reactions is relatively high300

compared to the decay rate of the bulk species. As a re-301

sult, the intracellular dynamics tend quickly to the qui-302

escent state since the Sel’kov parameters are chosen so303

that the steady-state for each cell is linearly stable when304

isolated. Alternatively, a large value of κ implies that the305

secreted intracellular species has a short length-scale for306

decay in the bulk region, making it difficult to have the307

strong inter-cellular communication that is needed for308

collective oscillations or quorum-sensing behavior.309

In Fig. 3, we show numerical results computed from310

the ODE system (3.2) using ODE45 in MATLAB [35]311

for m = 6 identical cells in the unit sphere where ρ =312

1.4324, with parameters in (3.13), and with D0 = 0.5.313

In the top panel of Fig. 3, where κ = 1, we observe314

damped intracellular oscillations leading to a linearly315

stable steady-state as predicted by the bifurcation di-316

agram in the bottom panel of Fig. 2. In contrast, for317

κ = 3.2, in the middle and bottom panels of Fig. 3 we318

observe sustained oscillations that are triggered by the319

global coupling. This is consistent with the prediction320

in Fig. 2 of a stable periodic solution for κ = 3.2.321

3.2. Quorum sensing and phase synchronization322

To numerically study phase synchronization and dy-
namical quorum-sensing transitions, we will compute
solutions to the ODE system (3.1) and monitor a time-
averaged Kuramoto order type parameter in the form in-
troduced originally in [36] given by

R =

〈∣∣∣∣∣∣∣∣N−1
N∑

j=1

exp[iθ j(t)] −
〈
N−1

N∑
j=1

exp[iθ j(t)]
〉∣∣∣∣∣∣∣∣
〉
,

(3.14)

where N is the number of oscillators, θ j(t) is the instan-323

taneous phase of the jth oscillator, and 〈. . .〉 represents324

average over time. In this form, this order parameter325

has been used previously in [37] to study phase syn-326

chronization for glycolytic oscillations in suspensions327

of yeast cells and in [14] to quantify the degree of syn-328

chronization of chemical oscillations of porous catalytic329

particles suspended in a Belousov-Zhabotinsky (BZ) re-330

action mixture. This order parameter has also been used331

to measure the degree of phase synchrony of coupled332

non-linear chaotic oscillators [22, 21]. The value of R333

ranges from 0 to 1, and measures the level of phase syn-334

chronization of the oscillators. When R = 1, the oscilla-335
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Figure 3: Numerical results for the ODE system (3.2) showing the
intracellular dynamics for m = 6 identical cells in the unit sphere,
where ρ = 1.43239, for Sel’kov kinetics (3.3), with parameters in
(3.13) and with D0 = 0.5. Top panel: For κ = 1, damped oscillations
occur. Middle panel: For κ = 3.2, there are sustained oscillations.
Bottom panel: 3-D plot for (U0, u1, u2) showing sustained oscillations
when κ = 3.2. Results are consistent with the bifurcation diagram in
the bottom panel of Fig. 2.

tors are perfectly in phase, and they are perfectly out of336

phase when R = 0.337

To compute R we first solve the ODEs (3.1) with ran-338

dom initial conditions numerically using ODE45 in339

MATLAB [35]. After discarding the solution over the340

transient period, we fit a single-mode Fourier series ex-341

pansion to one of the solution components for each cell342

and compute the instantaneous phase θ j(t) from the co-343

efficients of the series, from which we calculate the344

phase average z = N−1 ∑N
j=1 eiθ j . Next, we compute an345

average of the instantaneous averages 〈z〉 over a speci-346

fied time interval (after the system has reached a quasi347

steady-state). The modulus of the difference between348
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the instantaneous averages z and the time-average 〈z〉 is349

computed for each time point, and the corresponding re-350

sult averaged over time to obtain the order parameter R,351

as given in (3.14). In our computations, we set R = 0352

when the cells are in a quiescent state or when the am-353

plitude of the oscillations is less than 1 × 10−4.354

In our examples below, the cell population m = 1000355

is fixed and will be taken to be a mixture of identical356

and defective cells, where the heterogeneous cells have357

a different Sel’kov kinetic parameter α in (3.3). Since358

ρ ≡ m/|Ω| and m is fixed, a change in ρ represents a359

change in the domain volume |Ω|. In Fig. 4 we plot the360

order parameter R and the amplitude of oscillation for361

1000 identical cells versus ρ. We observe that there are362

no oscillations when ρ is small and that there is a sudden363

switch-like transition to perfect phase synchronization364

when ρ ≈ 0.36. This phase synchrony is maintained365

until ρ ≈ 5.28 where there is a further switch-like tran-366

sition that leads to oscillator death and a quiescent state.367
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Figure 4: The degree of phase synchronization and amplitude of os-
cillation for 1000 identical cells, computed from the ODEs (3.1) with
Sel’kov kinetics (3.3), parameters in (3.13), and with D0 = 0.5 and
κ = 3.2. Top panel: The Kuramoto order parameter R in (3.14) versus
the cell density parameter ρ. Synchronous oscillations are triggered
at ρ1 = 0.36 and extinguished at ρ2 = 5.28. Bottom panel: The aver-
age amplitude of oscillation in the cells (black) and in the bulk region
(red) versus ρ.

To qualitatively interpret this behavior, there are no syn-368

chronous intracellular oscillations when ρ is small since369

the domain is too large for them to communicate effec-370

tively through the diffusing bulk signal. As ρ increases,371

the domain volume shrinks, thereby bringing the cells372

closer together and ultimately leading to synchronous373

oscillations and quorum-sensing behavior. However, as374

ρ continues to increase, the synchronous oscillations375

are quenched because the cells become more tightly376

packed, with a smaller bulk region, and so effectively377

behave like a single giant cell. Since the Sel’kov pa-378

rameters (3.13) are chosen so that the steady-state of an379

individual cell is linearly stable when isolated from the380

bulk, the steady-state for the giant cell is also stable.381

To further elucidate the mechanism for the quenching of
oscillations shown in Fig. 4 when ρ exceeds a threshold,
we first observe from (3.4) that u1

e ≡ ve → µ, u2
e ≡ we →

µ/(α + µ2) and U0e → µk2/k1 as ρ → ∞. As a result,
for ρ � 1, we have that tr(Je) = 2weve − 1 − ε0(α +

v2
e) < 0 since the reaction-kinetic parameters are chosen

so that an isolated cell, which is uncoupled from the
bulk, has a linearly stable steady-state. Therefore, for
the polynomial (3.9) we have from (3.10) that for ρ � 1

q1 ∼ ρk1 = O(ρ) , q1q2 ∼ ρ
2k2

1 |tr(Je)| = O(ρ2) ,
q3 ∼ ρk1 det(Je) = O(ρ) , → q1q2 � q3 ,

(3.15)

which shows that the Routh-Hurwitz linear stability cri-382

terion (3.11) is satisfied for ρ � 1. Therefore, for ρ383

sufficiently large the steady-state is linearly stable. This384

analysis suggests that there is a critical value ρm of the385

cell density parameter ρ, with ρm sufficiently large, for386

which the steady-state of (3.2) is linearly stable when387

ρ > ρm (see the upper threshold in Fig. 4).388

In Fig. 5, we present similar results for 500 identical389

and 500 defective cells. The identical cells have param-390

eters in (3.13), while for the defective cells the Sel’kov391

kinetic parameter α is selected uniformly from the in-392

terval 0.92 < α < 0.95. From Fig. 5, we observe that393

synchronous oscillations are triggered at ρ = 0.44 and394

quenched at ρ = 4.49, which provides (as expected)395

a smaller range of ρ where phase synchrony occurs as396

compared to the case of 1000 identical cells. For 200397

identical and 800 defective cells, in Fig. 6 we show that398

the range in ρ where perfect phase synchrony occurs is399

further decreased as compared to that in Fig. 5.400

In summary, we conclude from Figs. 4–6 that the cell401

population density plays a dual role of both triggering402

and quenching synchronous intracellular oscillations.403

When it triggers oscillations, it does so through quo-404

rum sensing. This is similar to the result obtained in405

Section 4.2 of [24]. Moreover, as the percentage of de-406

fective cells in the population increases, the range of407

ρ for which synchronous oscillations are predicted de-408

creases, as does the amplitude of intracellular and bulk409
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Figure 5: The degree of phase synchronization and amplitude of os-
cillation for 500 identical and 500 defective cells, computed from the
ODEs (3.1) for Sel’kov kinetics (3.3) with D0 = 0.5 and κ = 3.2.
The identical cells have parameters in (3.13). The kinetic parame-
ter α for the defective cells are selected uniformly from the interval
0.92 < α < 0.95, with α = 0.9 for the identical cells. Top panel:
The Kuramoto order parameter (3.14) with respect to ρ. Phase syn-
chronization is triggered at ρ1 = 0.44 and extinguished at ρ2 = 4.49.
Middle panel: The average amplitude of oscillation in the cells (black)
and in the bulk region (red) with respect to ρ. Bottom panel: Values
of α for the 1000 cells.

oscillations. Overall, Figs. 4–6 indicate for our leading-410

order system (3.1) that effective communication leading411

to synchronous intracellular oscillations is more difficult412

to achieve among a population of non-identical cells.413

4. Effect of location on intracellular dynamics414

Within the unit sphere, we now examine the effect on415

the intracellular dynamics of including the O(ε) correc-416

tion terms in the ODEs (2.18) that incorporates the spa-417

tial configuration of the cells. In order to clearly illus-418

trate quorum-sensing and diffusion-mediated communi-419

cation through the aid of global bifurcation diagrams we420

will focus our case study below to a small population of421

m = 6 cells.422
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Figure 6: Same caption as in Fig. 5 except that there are now 200
identical and 800 defective coupled cells. Synchronous oscillations
are now triggered at ρ1 = 0.5 and extinguished at ρ2 = 4.04.

The effect of cell location is encoded by the Neumann
Green’s function satisfying (2.10), which is given for
the unit sphere by (cf. [38])

G(x; x j) =
1

4π|x − x j|
+

1
4π|x||x′ − x j|

+
(|x|2 + |x j|

2)
6|Ω|

+
1

4π
log

(
2

1 − x · x j + |x||x′ − x j|

)
−

7
10π

,

(4.1a)

where the regular part of G is given by

R j ≡ R(x j) =
1

4π
(
1 − |x j|

2
) +

1
4π

log
(

1
1 − |x j|

2

)
,

+
|x j|

2

4π
−

7
10π

,

(4.1b)

In (4.1), |Ω| = 4π/3 and x′ = x/|x|2 is the image point to423

x outside the sphere. With this explicit result, the Neu-424
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mann Green’s matrix G in (2.13) can be readily evalu-425

ated. Below we will consider three specific cell config-426

urations within the unit sphere: symmetrically located427

cells on the surface of a concentric sphere, arbitrarily428

located cells on the surface of a concentric sphere, and429

arbitrarily located cells within the unit sphere.430

4.1. Symmetrically located cells on a concentric sphere431

We consider m = 6 identical cells of a common radius432

ε, symmetrically located on the surface of a concentric433

sphere of radius r0 with 0 < r0 < 1, such as illustrated434

in Fig. 7 when r0 = 0.5.435

Figure 7: A configuration of six symmetrically located cells (in blue)
on the surface of a concentric sphere of radius r0 = 0.5 within the
unit sphere. The cell locations are: (r0, 0, 0), (−r0, 0, 0), (0, r0, 0),
(0,−r0, 0), (0, 0, r0) and (0, 0,−r0).

For this cell configuration, the Neumann Green’s matrix
G is symmetric and cyclic, so that it has the eigenpair

Ge = σe ; e ≡ (1, . . . , 1)T , σ = R1 +

m∑
j=2

G(x1; x j) .

(4.2)
Here, σ ≡ σ(r0), where r0 is the distance from the origin436

to the radius of the sphere on which the cells are located.437

As a result, for identical cells with this configuration
we seek a solution to (2.18) where u j = u = (u1, u2)T

for j = 1, . . . ,m. Upon using eTG e = mσ, we readily
derive that (2.18) reduces to

U′0 = −κU0 − ρ
(
k1U0 − k2u1

)
− 4περ̃ck1σ ,

du
dt

= F (u) + e1

(
k1U0 − k2u1

)
+ 4πε̃ck1σe1 ,

(4.3)

where e1 ≡ (1, 0)T . Here ρ = m/|Ω| is the cell density
parameter while k1, k2, and c̃ are given by

k1 ≡
4πD0d̃1

d̃1 + D0
, k2 ≡

4πD0d2

d̃1 + D0
,

c̃ ≡
1

4πD0

(
k2u1 − k1U0

)
.

(4.4)

By substituting c̃ from (4.4) into (4.3), we obtain a
three-component ODE system for (U0, u1, u2) given by

U′0 = − (κ + ρχ) U0 + ρξu1 ,

du
dt

= F (u) +
(
χU0 − ξu1

)
e1 ,

(4.5)

where the newly introduced parameters χ ≡ χ(r0) and
ξ ≡ ξ(r0) are defined in terms of εσ(r0)/D by

χ ≡ k1 −
εσ

D0
k2

1 , ξ ≡ k2 −
εσ

D0
k1k2 . (4.6)

The ODEs (4.5) have a similar structure to the ODE sys-
tem in (3.2). As such we now perform a HB analysis on
(4.5) following the approach used in §3.1. With Sel’kov
kinetics (3.3), the steady-state of (4.5) is

u1
e =

µ (κ + χρ)(
κ(1 + ξ) + ρχ

) , u2
e =

µ(
α + (u1

e)2) ,
U0e =

µρξ(
κ(1 + ξ) + ρχ

) . (4.7)

Next, we introduce a perturbation of the steady-state as

U = U0e + eλtη , u = ue + eλtφ , (4.8)

where η � 1 and φ ≡ (φ1, φ2)T � 1. Upon substituting
(4.8) into (4.5), we write the linearized system in matrix
form as

M(λ)Ψ = 0 , (4.9)

where Ψ ≡ (η, φ1, φ2)T andM(λ) is the 3 × 3 matrix

M(λ) ≡


− (κ + ρ χ) − λ ρ ξ 0

χ ( f e
v − ξ − λ) f e

w

0 ge
v (ge

w − λ)

 .
(4.10)

Here, (v,w)T ≡ (u1, u2)T , f e
v , f e

w, g
e
v and ge

w are the par-
tials of f (v,w) or g(v,w) evaluated at the steady-state
ue = (ve,we)T . The characteristic polynomial for λ is

λ3 + γ1λ
2 + γ2λ + γ3 = 0 , (4.11)

with coefficients given by

γ1 = (κ + ξ + ρχ) − tr(Je) ,
γ2 = det(Je) − (κ + ρχ) tr(Je) + ξ

(
κ − ge

w
)
,

γ3 = (κ + ρχ) det(Je) − κξge
w ,

(4.12)
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where det(Je) = ε0(α + v2
e) > 0 and tr(Je) = 2weve − 1 −

ε0(α + v2
e) are the determinant and trace of the Jacobian

matrix Je of the Sel’kov kinetics evaluated at the steady-
state ue. Similar to the analysis in §3.1, we conclude
by the Routh-Hurwitz criterion that a HB point for the
linearization must satisfy

γ1 > 0 , γ3 > 0 , and γ1γ2 = γ3 . (4.13)

This HB criterion is used below to determine how the438

triggering of oscillatory instabilities depends on D0 and439

r0. Global branches of steady-state and periodic solu-440

tions for (4.5) are computed using MATCONT [33].441
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Figure 8: Global bifurcation diagrams for the ODE system (4.5) ver-
sus the bulk decay rate κ showing branches of steady-states and pe-
riodic solutions computed using MATCONT [33] for m = 6 identical
cells, with parameters in (3.13) and with ρ = 1.43239 and D0 = 0.5.
The outer loop is for cells of radius ε = 0.05, symmetrically-spaced
on a concentric sphere of radius r0 = 0.25 within the unit sphere, with
locations given in the caption of Fig. 7. The HB bifurcation points are
κ1 = 1.5518 and κ2 = 24.5774. The inner loop is for the leading-order
dynamics (3.2) when ε = 0 (same as bottom panel of Fig. 2), where
HB bifurcations occur at κ1 = 1.551 and κ2 = 16.7814. The red-solid
and black-dashed lines represent linearly stable and unstable steady-
state branches, respectively. The green loops represent linearly stable
branches of periodic solutions.

In Fig. 8 we plot a global bifurcation diagram for the442

ODE system (4.5) versus the bulk decay rate κ for443

D0 = 0.5, ρ = 1.4324, and for m = 6 symmetrically-444

spaced identical cells on a ring of radius r0 = 0.25445

with a cell radius ε = 0.05. The Sel’kov parameters446

and permeabilities are as in (3.13). In this figure, we447

have overlayed the corresponding bifurcation diagram448

shown in the bottom panel of Fig. 2 that was based on449

the leading-order dynamics (3.2) when ε = 0. From450

Fig. 8 we observe that there are values of κ for which451

linearly stable periodic solutions exist for the symmetric452

cells but not for the leading-order dynamics. The exis-453

tence of this significantly larger upper range of κ where454

periodic solutions can occur is attributed to the fact that455

r0 = 0.25 is rather small, and so the cells are still able456

to readily communicate through the bulk diffusion field457

even when there is a stronger decay of the bulk signal.458

Overall, Fig. 8 shows clearly that the inclusion of the459

O(ε) terms in the ODEs (4.5), incorporating the effect460

of weak spatial heterogeneity, can be a significant factor461

in determining whether or not intracellular oscillations462

can occur.463
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Figure 9: Numerical simulation of ODE dynamics using ODE45 in
MATLAB for the parameters in the caption of Fig. 8 with κ = 18.5.
Top panel: For the leading-order dynamics (3.2) there is a slow de-
cay to the linearly stable steady-state. Middle panel: For (4.5) with
symmetrically-spaced cells with ring radius r0 = 0.25 and cell radius
ε = 0.05, there are sustained intracellular oscillations. Bottom panel:
3-D plot showing the sustained oscillatory dynamics in the middle
panel with respect to the three variables.

In Fig. 9 we confirm the predictions of the global bifur-464

cation diagram in Fig. 8. For κ = 18.5, the intracellular465

dynamics are predicted to have a linearly stable steady-466

state for the leading-order dynamics (3.2). In contrast,467

for this same value of κ, synchronous intracellular oscil-468

lations are predicted for (4.5) when the O(ε) spatial ef-469

fects are included. These two predictions are confirmed470

from the ODE dynamics shown in the top and middle471

panels of Fig. 9. In the bottom panel of Fig. 9 we show472

a 3-D plot of the sustained oscillation for (4.5), which473

shows that the amplitude of bulk oscillations is rather474

12



small as compared to those in the cells.475

In the top panel of Fig. 10 we study the effect on the476

global bifurcation diagrams for (4.5) of varying the ring477

radius r0 for m = 6 symmetrically-spaced cells. The478

remaining parameters are as in the caption of Fig. 8.479

From this figure, we observe that the smallest range of480

the bulk decay parameter κ for which intracellular os-481

cillations are predicted is for r0 = 0.5, followed by482

r0 = 0.85, and then r0 = 0.25. When r0 = 0.5, the cells483

are far from each other and from the domain boundary,484

so that it is more difficult to trigger synchronous oscil-485

lations through the bulk medium than for r0 = 0.25. For486

r0 = 0.85, although the cells are far from each other,487

each cell is relatively close to an “image” cell through488

the reflecting boundary of the domain, resulting in a489

pairwise intracellular communication. In the bottom490

panel of Fig. 10, we plot the two HB points in κ ver-491

sus r0, as computed using two-parameter continuation492

in MATCONT [33] (solid black curves) and from the493

HB criteria in (4.13) (blue dots). In this figure, linearly494

stable periodic solutions exist in the region between the495

two black curves. For ε = 0.05, we observe that the496

smaller HB value of κ is rather insensitive to r0 provided497

that 2ε = 0.1 < r0 < 1 − 2ε = 0.9. Since the asymp-498

totic theory leading to the ODEs (4.5) is valid only for499

well-separated cells, we require O(ε) � r0 � 1 − O(ε).500

From the bottom panel of Fig. 10, the smallest range of501

κ where periodic solutions occur is when r0 = 0.6, with502

HB points at κ1 ≈ 1.55 and κ2 ≈ 13.7.503

Fig. 11 shows the time-dynamics of the ODEs (4.5) for504

three pairs of (r0, κ) and with remaining parameter val-505

ues as in the caption of Fig. 10. The dynamics shown506

agree with the results predicted from the global bifurca-507

tion diagrams in Fig. 10.508

Next, we investigate the effect of the bulk diffusivity509

D0 on the dynamics. In the top panel Fig. 12 we plot510

the global bifurcation diagram for (4.5) versus D0 for511

two values of ε when r0 = 0.25 and κ = 18.5. When512

accounting for a finite cell radius, we observe that the513

range of D0 where oscillations are predicted is larger514

than for the leading-order ODE system (3.2) where515

ε = 0. In the bottom panel of Fig. 12 we plot the two516

HB points in D0 for each r0 in 0 < r0 < 1 as computed517

from MATCONT from (4.5) or from our HB criteria518

(4.13). Linearly stable periodic solutions exist in the re-519

gion bounded by the black curves. Since our asymptotic520

theory is valid only when O(ε) � r0 � 1−O(ε), we ne-521

glect the horizontal line near r0 = 1 in the bottom panel522

of Fig. 12. From this figure, we observe that in the com-523

pletely well-mixed limit, for which D0 → ∞, no intra-524
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Figure 10: Top panel: Global bifurcation diagrams for the ODE sys-
tem (4.5) versus κ for three values of ring radii r0, as computed using
MATCONT [33] for m = 6 symmetrically-spaced identical cells of
radii ε = 0.05, with parameters in (3.13) and with ρ = 1.43239 and
D0 = 0.5. The HB points are: κ1 = 1.5518, κ2 = 24.577375 for
r0 = 0.25; κ1 = 1.5504, κ2 = 13.5721 for r0 = 0.5; κ1 = 1.5506,
κ2 = 15.5074 for r0 = 0.85. Bottom panel: Two-parameter HB con-
tinuation for κ versus r0. The black curves are the HB boundaries
computed from MATCONT. The blue dots are based on the HB crite-
ria in (4.13). Linearly stable periodic solutions exist in the region be-
tween the two black curves. The asymptotic theory is valid only when
O(ε) � r0 � 1 − O(ε), and so the vertical lines are not relevant.

cellular oscillations will occur when 0.2 < r0 < 0.8, as525

the bulk signal is washed out. However, for a finite D0 in526

some range, intracellular oscillations do occur. We sug-527

gest that this can be interpreted as diffusion-sensing be-528

havior. For r0 = 0.25 and κ = 18.5, the time-dynamics529

computed from (4.5) shown in Fig. 13 confirm the pre-530

dictions of our bifurcation diagram in the top panel of531

Fig. 12 for three pairs of (ε,D0).532

4.2. Arbitrarily located cells on a concentric sphere533

We now consider m = 6 identical, but non-equally
spaced cells on a concentric ring of radius r0 within the
unit disk. For identical cells, for which k1 j = k1 and
k2 j = k2 for j = 1, . . . ,m, the ODE system (2.18) re-
duces to

U′0 = −κU0 +
ρ

m

m∑
j=1

(
k2u1

j − k1U0

)
(4.14a)

−
4πρk1ε

m

m∑
j=1

(
G̃c

)
j , (4.14b)
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Figure 11: Numerical simulations of ODE dynamics for (4.5) for the
parameters in the caption of Fig. 10. Top panels: r0 = 0.5 and κ = 23
(decaying oscillations). Middle panels: r0 = 0.5 and κ = 7.5 (sus-
tained oscillations). Bottom panel: r0 = 0.25 and κ = 20 (sustained
oscillations). The results agree with our predictions in the bifurcation
diagrams of Fig. 10.

which is coupled to the intracellular dynamics by

du j

dt
= F j

(
u j

)
− e1

(
k2u1

j − k1U0

)
+ 4πk1εe1

(
G c̃

)
j ,

(4.14c)
for j = 1, . . . ,m, where e1 = (1, 0)T , ρ = m/|Ω| is the
cell density parameter, ε is the common radius of the
cells, and G is the Neumann Green’s matrix of (2.13),
which depends the spatial configuration of the cells. In
(4.14), k1 and k2 are defined in (4.4), and c̃ j is given by

c̃ j =
1

4πD0

(
k2u1

j − k1U0
)
, c̃ ≡ (̃c1, . . . , c̃m)T .

(4.14d)

For m = 6, (4.14) is an ODE system of dimension 13.534

For all the results and figures in the subsection, we use535

Sel’kov kinetics (3.3) with parameters and permeabili-536

ties as in (3.13). The cell centers are given in Table 1537

0 0.2 0.4 0.6 0.8
0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 12: Top panel: Global bifurcation diagrams when κ = 18.5
and r0 = 0.25 for the ODE system (4.5) versus D0 for ε = 0.05 and
for the leading-order dynamics (3.2) where ε = 0, as computed using
MATCONT [33]. The remaining parameters are in (3.13) with ρ =

1.43239. The range in D0 where oscillations occur is larger when
ε = 0.05. Bottom panel: Two-parameter HB continuation for D0
versus r0 when ε = 0.05. The black curves are the HB boundaries
computed with MATCONT, while the blue dots were obtained using
the HB criteria in (4.13). Linearly stable periodic solutions exist in the
region enclosed by the black curves. The horizontal line near r0 = 1
is not relevant as it signifies the breakdown of the well-separated cell
assumption that is required for the derivation of the ODE system.

of Appendix B.1. A schematic illustration of the cell538

configurations for r0 = 0.5 and r0 = 0.85 is shown in539

Fig. 14. Our goal is to determine the effect on intracel-540

lular oscillations of the new arrangement of cells.541

In Fig. 15 we compare the global bifurcation dia-542

grams versus κ for the leading-order dynamics, com-543

puted using (3.2), with those for either symmetrically-544

or arbitrarily-spaced cells on a concentric sphere of ra-545

dius r0 = 0.25 and cell radius ε = 0.05, as com-546

puted from either (4.5) or (4.14), respectively. For these547

three scenarios, we observe that the largest range of κ548

for which linearly stable periodic solutions exist is for549

arbitrarily-located cells. This increased range is likely550

due to the fact that for arbitrarily-spaced cells, there551

is at least one pair of cells on the surface of the con-552

centric sphere that are closer than when the cells have553

maximum inter-cell distance, such as is the case for554

the symmetrically-spaced configuration. Cells that are555

in closer proximity can trigger intracellular oscillations556
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Figure 13: Numerical simulations of ODE dynamics for (4.5) for the
parameters in the caption of Fig. 12 with r0 = 0.25 and κ = 18.5.
Top panel: ε = 0 and D0 = 0.52 (decaying oscillations). Middle
panel: ε = 0.05 and D0 = 0.52 (sustained oscillations). Bottom
panel: ε = 0.05 and D0 = 0.7 (sustained oscillations). The results
agree with our predictions in the bifurcation diagrams of Fig. 12.

even when the bulk decay rate κ is rather large. We em-557

phasize that when cells are located on a concentric ring,558

the effect of the nearest “ghost” cell across the reflecting559

outer boundary of the sphere is the same for each cell.560

In Fig. 16, we show the time-dynamics for the ODE sys-561

tems (4.5) and (4.14) for a few values of κ that confirm562

predictions from the bifurcation diagrams of Fig. 15. In563

this figure, the colors of the curves correspond to the564

color codes for the cells in Fig. 14 and Table 1. In the565

top two panels, where κ = 28, we observe a slow syn-566

chronous oscillatory decay to the linearly stable steady-567

state for the symmetrically-spaced cell configuration.568

However, when κ = 28, from the middle two panels569

in Fig. 16 we observe roughly synchronous intracellular570

oscillations for the arbitrarily-spaced pattern, Finally, in571

the bottom two panels, for κ = 36 and arbitrarily-spaced572

Figure 14: Schematic plot for m = 6 identical, but non-equally
spaced, cells centered on a concentric sphere of radius r0 = 0.5 (top
panel) and r0 = 0.85 (bottom panel) within the unit sphere. The cell
centers can be generated from Table 1 of Appendix B.1 for a given r0.
The color codes are for easy referencing.

cells, we observe a slow decay of intracellular oscilla-573

tions to the linearly stable steady-state.574
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Figure 15: Global bifurcation diagrams versus κ comparing the range
where intracellular oscillations occur for either the leading-order dy-
namics, symmetrically-spaced cells, or arbitrarily-spaced cells, as
computed from (3.2), (4.5) and (4.14), respectively, using MATCONT
[33]. Parameters as in (3.13) with ρ = 1.4324 and D0 = 0.5. The
concentric ring has radius r0 = 0.25 and ε = 0.05. The green loops
representing periodic solutions for the leading-order dynamics and
for symmetrically-spaced cells are as in Fig. 8. For arbitrarily-spaced
cells, with cell locations generated from Table 1, the HB points are at
κ1 = 1.5525 and κ2 = 29.9604.

Next, for arbitrarily-spaced cells, we study the effect of575

the radius r0 of the concentric sphere on which the cells576
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Figure 16: Numerical simulations of ODE dynamics for (4.5) and
(4.14) computed using MATLAB for the parameters in the caption of
Fig. 15. Top two rows: symmetrically-spaced cells with κ = 28, show-
ing decaying oscillations. Middle two rows: arbitrarily-spaced cells
with κ = 28, showing sustained and nearly synchronous oscillations.
Bottom two rows: The oscillations for arbitrarily-spaced cells now
undergo a slow decay to the steady-state when κ = 36. Colors corre-
spond to the color codes for the cells in Fig. 14 and Table 1.

are located. The global bifurcation diagrams are shown577

in the top panel of Fig. 17, while in the bottom panel578

of Fig. 17 we plot the HB bifurcation points κ versus579

r0 using two-parameter continuation. These bifurcation580

diagrams have a very similar qualitative dependence on581

r0 as for the bifurcation plots shown in Fig. 10 for the582

case where the cells are symmetrically-spaced.583
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Figure 17: Top panel: Global bifurcation diagrams for the ODE sys-
tem (4.14) versus κ for three values of ring radii r0, as computed us-
ing MATCONT [33] for m = 6 arbitrarily-spaced identical cells on
a ring, with locations as generated from Table 1, with ρ = 1.43239
and D0 = 0.5. For these values of r0, the largest range of κ where
intracellular oscillations occur is for r0 = 0.25. Bottom panel: Two-
parameter HB continuation for κ versus r0 computed from MATCONT.
Linearly stable periodic solutions exist in the region between the two
black curves. The vertical lines are not relevant as they signify the
breakdown of the well-separated cell assumption.

In the global bifurcation diagrams of Fig. 18, we il-584

lustrate a qualitatively new behavior that occurs for585

r0 = 0.85 when we further extend the range of κ. In586

particular, we observe that there is an additional HB587

point at κ3 = 35.0067. As shown in Fig. 18, linearly588

stable periodic solutions are predicted when 1.5509 ≤589

κ ≤ 16.6489 and for κ ≥ 35.0067. We emphasize that590

periodic solutions do not exist for such large values of κ591

when either r0 = 0.25 and r0 = 0.5.592

As a qualitative explanation of the additional HB thresh-593

old in Fig. 18, we first observe that when the ring radius594

is r0 = 0.85 (which is rather close to unity), for each cell595

on the ring the nearest neighbour is the “ghost” cell that596

exists on the other side of the domain boundary owing to597

the reflecting boundary condition. For large κ the bulk598

signal U0 is strongly degraded and so effectively only599

those cells that are spatially close to each other can com-600

municate and trigger oscillations. This pairwise interac-601

tion of the ring cells with their “ghost” cells is likely the602

mechanism underlying the additional branch of periodic603

solutions shown in Fig. 18 when κ is large.604

In Fig. 19 we show results from numerical simulations605
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Figure 18: Global bifurcation diagrams for the ODE system (4.14)
versus κ, as computed using MATCONT [33] for m = 6 arbitrarily-
spaced identical cells located on a ring of radius r0 = 0.85, with cell
locations generated from Table 1. The remaining parameters are the
same as in Fig. 17. There are now three HB bifurcation points at
κ1 = 1.5509, κ2 = 16.6489 and κ3 = 35.0067

of the ODE system (4.14) that support the predictions606

from the global bifurcation diagram in Fig. 18. In par-607

ticular, in the top two rows where κ = 5, synchronous608

oscillations are observed in the entire cell population. In609

the middle two rows where κ = 25, damped oscillations610

occur. However, in the bottom two rows where κ = 45,611

we observe that asynchronous intracellular oscillations612

occur. In particular, the green, cyan, and blue cells syn-613

chronize their dynamics, while the red, black and ma-614

genta cells also synchronize. However, the dynamics615

of these two groups of cells are out of phase. We be-616

lieve that the grouping and synchronization of the cells617

is based on their spatial proximity, although it is unclear618

why there only two sub-groups. From Table 2, we ob-619

serve that the red, black, and magenta cells are closest620

to each other, while the green, cyan, and blue are also621

closest to each other. As κ is increased, corresponding622

to a stronger decay of the bulk signal, the cell-cell dis-623

tances become an increasingly important factor in de-624

termining which cells will synchronize. We remark that625

for r0 = 0.25 and r0 = 0.5, where all the cells are much626

more closely spaced, asynchronous oscillations do not627

occur when κ = 45.628

Lastly, we present global bifurcation diagrams versus629

D0 in the top panel of Fig. 20 that compares results for630

the leading-order dynamics, for symmetrically-spaced631

cells on a ring of radius r0 = 0.25, and for arbitrarily632

located cells on a ring of radius r0 = 0.25, as computed633

from (3.2), (4.5) and (4.14), respectively. We observe634

that the range of D0 for which linearly stable periodic635

solutions exist when the cells are arbitrarily located on636

the ring is only slightly larger than that of symmetric637

cells. This is likely due to the closer spatial proximity638

of some cells in this configuration relative to the sym-639

metric cell pattern. For both configurations, when D0 is640

large, the bulk species diffuses away from the cells mak-641

ing it difficult for the cells to communicate. In the bot-642

tom panel of Fig. 20, we plot the HB bifurcation curves643

for r0 versus D0 for the arbitrarily-spaced configuration.644

4.3. Arbitrarily located cells within the unit sphere645

In this subsection we consider m = 6 identical cells that646

are arbitrarily located within the unit sphere, such as647

shown Fig. 21. The centers of the cells are chosen as648

in Table 3, and the common cell radius is ε = 0.05. For649

this cell configuration, we use the ODE system (4.14) to650

compute global bifurcation diagrams and we will cal-651

culate the Kuramoto order parameter (3.14) to study652

diffusion-mediated synchronization in the cells as D0 is653

increased.654

For this cell configuration, in Fig. 22 we plot global bi-655

furcation diagrams versus κ (top panel) and versus D0656

(bottom panel) as computed from (4.14) using MAT-657

CONT [33]. In the top panel of Fig. 22 where D0 = 0.5,658

the HB points are κ1 = 1.5521 and κ2 = 15.2509, while659

for the bottom panel where κ = 3.2 the HB occurs when660

D0 = 0.0310. In this case, we observe that linearly sta-661

ble periodic solutions exist for all D0 ≥ 0.0310.662

To further investigate the effect of diffusion on the in-663

tracelluar dynamics, in the top panel of Fig. 23 we show664

numerical results for the Kuramoto order parameter R665

(3.14) that measures the degree of phase synchroniza-666

tion of intracellular dynamics as D0 increases. In the667

bottom panel of Fig. 23 we also show the amplitude of668

oscillations in the cells and in the bulk region versus669

D0. From the top panel of Fig. 23 we observe that there670

are no intracellular oscillations when D0 ≤ 0.0301, but671

that phase synchronization becomes more evident as D0672

increases past D0 = 0.0301, with almost perfect phase673

synchronization achieved when D0 ≈ 0.1.674

These results illustrate diffusion-mediated synchroniza-675

tion, where an increase in the diffusion rate of the bulk676

species increases synchronization in the dynamics of the677

cells. We now verify our prediction from numerical sim-678

ulations of the ODE system (4.14) for the cell configu-679

ration shown in Fig. 21. The results for u j1 are shown in680

Fig. 24 for D0 = 0.02 (top row), D0 = 0.0320 (second681

row), D0 = 0.0654 (third row), and D0 = 0.1348 (fourth682

row). As predicted by the Kuramoto order parameter in683

Fig. 23, there are no sustained oscillations in the cells684

for D0 = 0.02. For D0 = 0.0320 (second row), the cells685
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Figure 19: Numerical simulations of ODE dynamics for (4.14) com-
puted using MATLAB for the parameters in the caption of Fig. 18
for arbitrarily-spaced cells on a concentric ring of radius r0 = 0.85
within the unit disk. Top rows: For κ = 5, sustained synchronous os-
cillations occur for the entire population. Middle rows: For κ = 25,
decaying oscillations occur. Bottom rows: For κ = 45, asynchronous
oscillations for two groups of cells that are the most closely spaced.
The color codes of the trajectories correspond to the color codes for
the cells in Fig. 14. The cell-cell distances are given in Table 2.

begin to oscillate with only those that are in close spa-686

tial proximity beginning to synchronizing their dynam-687

ics, but with small amplitudes. As D0 increases further,688

phase synchronization becomes evident as shown in the689

third row where D0 = 0.0654. The last row of Fig. 24690

where D0 = 0.1348 shows perfect phase synchroniza-691
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Figure 20: Top panel: Global bifurcation diagrams for the ODE
system (4.14) versus D0 for κ = 18.5, comparing results for the
leading-order dynamics, for symmetrically-spaced cells on a ring, and
for arbitrarily-spaced cells on a ring, as computed using MATCONT
[33]. The ring radius is r0 = 0.25, and the cell radius is ε = 0.05.
Bottom panel: Two-parameter HB continuation for r0 versus D0 for
arbitrarily-spaced cells on a ring. The horizontal line near r0 = 1 is
beyond the range where the well-separated cell assumption is valid.

Figure 21: A schematic illustration for m = 6 identical cells arbitrar-
ily located within the unit sphere. The centers of the cells are given in
Table 3. The color codes are for easy referencing.

tion in the intracellular dynamics.692

5. Instability triggered by a single cell693

In this section, we study quorum-sensing (QS) behavior694

where a single additional cell is able to trigger intra-695

cellular oscillations for an entire collection of cells that696
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Figure 22: Global bifurcation diagrams versus κ (top panel) or versus
D0 (bottom panel) for the ODE system (4.14) computed using MAT-
CONT for m = 6 identical cells arbitrarily located inside the unit
sphere, with cell centers given in Table 3 (see Fig. 21) and with cell
radius ε = 0.05. Top panel: For D0 = 0.5, the HB points are at
κ1 = 1.5521 and κ2 = 15.2509. Bottom panel: For κ = 3.2, the unique
HB point is D0 = 0.0320. We predict that intracellular oscillations
now occur for all D0 > 0.03, and so will exist in the completely well-
mixed regime where D0 → ∞.

would otherwise be in a quiescent state. For the three697

configurations of m = 6 identical cells in the unit sphere698

considered in § 4, we introduce an additional cell cen-699

tered at (0.75, 0, 0) and compare the global bifurcation700

diagrams for m = 6 and m = 7 identical cells. To es-701

tablish QS behavior, we seek parameter regimes where702

linearly stable periodic solutions exist for m = 7 cells,703

but not for m = 6 cells. In contrast to the typical study of704

QS behavior from ODEs in the well-mixed limit where705

spatial effects are neglected, our results below shows706

that the range of κ where QS occurs is dependent on707

the specific cell configuration used in § 4. The bifur-708

cation results below are computed from the ODE sys-709

tem (2.18) using MATCONT [33] for the Sel’kov pa-710

rameters in (3.13) and with ρ = 1.4324, D0 = 0.5, and711

ε = 0.05.712

We first consider the symmetrically-spaced cell config-713

uration with ring radius r0 = 0.5, where the updated714
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Figure 23: The degree of phase synchronization for m = 6 identical
cells of radius ε = 0.05 arbitrarily located inside the unit sphere as
shown in Fig. 21, computed using the ODEs (4.14) with κ = 3.2. Top
panel: The Kuramoto order parameter R (3.14) versus D0. Oscilla-
tions are triggered at D0 ≈ 0.0301 and perfect phase synchronization
is achieved at D0 ≈ 0.1. Bottom panel: Average amplitude of oscilla-
tion in the cells (black) and in the bulk region (red) versus D0.

configuration that includes the seventh cell (in orange)715

is shown in the top row of Fig. 25. In the second row of716

Fig. 25 we show the global bifurcation diagrams versus717

the bulk decay rate κ for either m = 6 or m = 7 identi-718

cal cells. From this figure, we observe that on the range719

13.5721 < κ < 16.9869 collective intracellular oscilla-720

tions will occur only when the seventh cell is added. To721

further illustrate this QS behavior, we compute the time-722

dependent dynamics of u j1(t) from the ODEs (2.18) for723

m = 6 and m = 7 cells with κ = 16, as shown in the third724

and fourth rows of Fig. 25, respectively. For m = 6, we725

observe, as expected, a slow synchronous decay of the726

intracellular oscillations to their common steady-state727

limit. However, by introducing the additional cell, we728

observe from the fourth row of Fig. 25 sustained, nearly729

synchronous, intracellular oscillations of different am-730

plitudes. In particular, the cell closest to the seventh731

(orange) cell is the black cell centered at (0.5, 0, 0). We732

observe that among all the cells, these two cells have the733

largest amplitude of oscillations.734

A similar result is shown in Fig. 26 for m = 7 identi-735

cal cells, where six of the cells are arbitrarily located736
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Figure 24: Numerical simulations of the ODE system (4.14) showing
the intracellular species u j1 as computed using MATLAB for m = 6
identical cells of radius ε = 0.05, arbitrarily located inside the unit
sphere as shown in Fig. 21 with κ = 3.2. Row 1: D0 = 0.02, Row
2: D0 = 0.0320, Row 3: D0 = 0.0654, and Row 4: D0 = 0.1348
where almost perfect phase synchrony occurs. Colors correspond to
the color codes for the cells in Fig. 21.

on a ring of radius r0 = 0.5, where the coordinates of737

the cell centers are in Table 1. The cell configuration is738

shown in the top row of Fig. 26. From the global bifur-739

cation diagrams shown in the second row of Fig. 26, for740

the range 14.0392 < κ < 17.4189 collective intracel-741

lular oscillations will occur only when the seventh cell742

is added. For κ = 17, the trajectories for u j1(t) com-743

puted from the ODEs (2.18) for m = 6 and m = 7 cells744

are shown in the third and fourth rows of Fig. 26, re-745

spectively. For this cell configuration, we observe that746

it is now the green cell that is closest to the seventh (or-747

ange) cell. From the fourth row of Fig. 26, we observe748

that these two cells oscillate in near synchrony and they749

have the largest amplitudes of oscillation.750

Finally, we assume that the six cells are arbitrarily lo-751

cated inside the unit sphere as shown in the top row752

of Fig. 27. The centers of the first six cells, their dis-753

tances from the origin, and their center-to-center dis-754

tances are as in Tables 3 and 4, respectively. Based on755

the global bifurcation diagrams shown in the second row756

of Fig. 27, on the range 15.2509 < κ < 17.41885 collec-757

tive intracellular oscillations will occur only when the758

seventh cell is added. The numerical results for the tra-759

jectories u j1(t) computed from the ODEs (2.18) when760

κ = 17, as shown in the third and fourth rows of Fig. 27,761

confirm this predicted QS behavior. From calculating762

the sum of the inter-cellular distances in each row of763

Table 4, we observe that the magenta-colored cell is the764

one that is on average closest to the other cells. As a re-765

sult, ignoring the effect of the domain boundary and the766

image cells outside the domain, which is different for767

each cell, qualitatively one might expect that this cell768

will have larger amplitude oscillations than the other769

cells (see the fourth row of Fig. 27).770

Overall, these results show that the inclusion of one sin-771

gle additional cell can, in some parameter range of κ,772

trigger intracellular oscillations in the entire collection773

of cells that otherwise would not occur. Moreover, we774

emphasize that the ranges of κ where this QS behavior775

will occur depends on the particular spatial configura-776

tion of cells. This additional qualitative feature that ac-777

counts for the effect of spatial heterogeneity results from778

the Neumann Green’s matrix in (2.18).779

6. An integro-differential system for D = O(1)780

In the limit ε→ 0, we asymptotically reduce (1.2) to de-781

rive an integro-differential ODE system for the intracel-782

lular dynamics u j(t), which is valid when D = O(1). For783

D = O(1), the limiting bulk diffusion field is no longer784

approximately spatially homogeneous, and so the previ-785

ous analysis in §2 is no longer valid. For simplicity, in786

the analysis below we will assume that the initial condi-787

tions are u j(0) = 0 and that U(x, 0) = 0.788

Since there is no initial transient near the cells, we can
use the quasi-steady approximation near the cells for all
t > 0. In this way, for t = O(1), in the jth inner region
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Figure 25: Global bifurcation diagram and numerical results for u j1
from the ODE system (2.18) computed using MATLAB for m = 6 and
m = 7 identical cells of radius ε = 0.05 and with D0 = 0.5. Top row:
Schematic diagram showing the locations of the cells, where the first
six cells are symmetrically placed on a concentric sphere of radius
r0 = 0.5 (see Fig. 7 for the centers of the cells) and the seventh cell
is located at (0.75, 0, 0). Second row: Global bifurcation diagram for
the first six cells only (inner loop) with HB points at κ1 = 1.5504 and
κ2 = 13.5721, and for all the seven cells (outer loop) with HB points at
κ1 = 1.6465 and κ2 = 16.9869. Third Row: Numerical simulations for
u j1 from the ODE system (2.18) for the first six cells only for κ = 16,
showing decaying oscillations. Bottom row: For κ = 16, by including
the seventh cell, sustained nearly synchronous oscillations will occur.
The colors of the trajectories correspond to the color codes for the
cells in the top row.
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Figure 26: Same caption in Fig. 25 except that the first six cells are
arbitrarily-spaced on a concentric sphere of radius r0 = 0.5 (see
Table 1 for the centers of the cells), with the seventh cell located at
(0.75, 0, 0). Top row: Schematic diagram showing the locations of the
cells. Second row: Global bifurcation diagram for the first six cells
only (inner loop) with HB points at κ1 = 1.5504 and κ2 = 14.0392,
and for all the seven cells (outer loop) with HB points at κ1 = 1.6460
and κ2 = 17.4189. Numerical results for u j1(t) from the ODE system
(2.18) when κ = 17 for the first six cells (third row) only and by in-
cluding the seventh cell (bottom row). We observe that the inclusion
of the seventh cell triggers sustained, and nearly synchronous, oscil-
lations in all of the cells. The colors of the trajectories coincide with
the color codes of the cells in the top row.

we introduce the local variables y = ε−1(x − x j), r = |y|,
and V j(y, t) = U(x j + εy, t). From (1.2a) and (1.2c), we
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Figure 27: Same caption in Fig. 25 except that the first six cells are
arbitrarily spaced within the unit sphere (see Table 3 for the centers
of the cells), with the seventh cell located at (0.75, 0, 0). Top row:
Schematic diagram showing the cell locations. Second row: Global
bifurcation diagram for the first six cells only (inner loop) with HB
points at κ1 = 1.5521 and κ2 = 15.2509, and for all the seven cells
(outer loop) with HB points at κ1 = 1.6453 and κ2 = 17.4885. Nu-
merical results for u j1(t) from the ODE system (2.18) when κ = 17
for the first six cells (third row) only and by including the seventh cell
(bottom row). Once again, the seventh cell triggers sustained, and
nearly synchronous, oscillations in all of the cells. The colors of the
trajectories coincide with the color codes of the cells in the top row.

get the leading-order quasi-steady problem

∆rV j = 0 , for r > 1 ,

D∂rV j = d1 jV −
d2 j

ε
u j1 , on r = 1 ,

(6.1)

which has the radially symmetric solution

V(y, t) =
A j

r
+ B j , A j =

γ j

4πεD

(
u j1 −

εd1 j

d2 j
B j

)
,

(6.2)
where A j ≡ A j(t, ε), B j ≡ B j(t, ε) and u j1 ≡ u j1(t), with
initial values A j = B j = u j1 = 0 when t = 0. Here γ j is

γ j ≡
4πDd2 j

d1 j + D
. (6.3)

By substituting (6.2) into the intracellular dynamics
(1.2d) we obtain the following ODE that is coupled to
B j for each j = 1, . . . ,m:

du j

dt
= F j

(
u j

)
− γ ju j1e1 +

εd1 j

d2 j
γ jB j(t)e1 . (6.4)

To determine B j(t) we must match the inner solution
near the cells to an outer bulk solution. Upon writing
(6.2) in outer variables by using εr = |x− x j|, we obtain
that the outer bulk solution U(x, t) satisfies

Ut = D∆U − κU , x ∈ Ω\{x1, . . . , xm} ; U(x; 0) = 0 ,

U ∼
b j

4πD
1

|x − x j|
+ B j + o(1) , as x→ x j , j = 1, . . . ,m ,

∂nU = 0 , x ∈ ∂Ω ,

(6.5a)

where we have defined

b j(t) ≡ γ ju j1(t) −
εγ jd1 j

d2 j
B j(t) . (6.5b)

To solve (6.5), we first take the Laplace transform to
derive that Û(x, s) = L [U(x, t] satisfies

∆Û −
(κ + s)

D
Û = −

m∑
k=1

b̂k

D
δ(x − xk) , x ∈ Ω ,

Û ∼
b̂ j

4πD
1

|x − x j|
+ B̂ j , as x→ x j , j = 1, . . . ,m ,

∂nÛ = 0 , x ∈ ∂Ω ,

(6.6)

where b̂ j = L
[
b j(t)

]
and B̂ j = L

[
B j(t)

]
.789

Next, we decompose (6.6) by writing

Û(x, s) =

m∑
k=1

b̂k

D
Ĝ(x, s; xk) , (6.7)
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where Ĝ(x, s; xk) is the Green’s function satisfying

∆Ĝ −
(κ + s)

D
Ĝ = −δ(x − xk) , x ∈ Ω ,

Ĝ ∼
1

4π|x − xk |
+ R̂k + o(1) , as x→ xk ,

∂nĜ = 0 , x ∈ ∂Ω ,

(6.8)

where R̂k(s) is the regular part of Ĝ, which depends on
xk. It readily follows that the inverse Laplace transform
is

Gh(x, t; xk) = D−1L−1
[
Ĝ(x, s; xk)

]
, (6.9)

where Gh(x, t; xk) is the heat kernel for Ω defined by the
solution to

∂tGh = D∆Gh − κGh , x ∈ Ω ,

Gh(x, 0; xk) = δ(x − xk) ; ∂nGh = 0 , x ∈ ∂Ω .

(6.10)

We remark that for the unit sphere, Ĝ and R̂k can be de-
termined analytically as (see equations (3.13) and (3.14)
of [39])

Ĝ(x, s; xk) =
e−α|x−xk |

4π|x − xk |
+ Ĝp(x, s; xk) , (6.11a)

where α ≡
√

(s + κ)/D is the principal branch of the
square root and where

Ĝp =

∞∑
n=0

(2n + 1)βn

4π
√
|x||xk |

Pn (cosω) In+1/2(α|x|) In+1/2(α|xk |) .

(6.11b)
In (6.11b), cos(ω) and the coefficients βn are defined by

cos(ω) =
x · xk

|x||xk |
, βn ≡

αKn+3/2(α) − nKn+1/2(α)
αIn+3/2(α) + nIn+1/2(α)

,

(6.11c)
Pn(z) are Legendre polynomials, and In+1/2(z) and
Kn+1/2(z) are modified Bessel functions of the first and
second kind. By letting x → xk in (6.11), we use
Pn(1) = 1 to identify the regular part in (6.8) as

R̂k(s) = −
α

4π
+

1
4π|xk |

∞∑
n=0

(2n + 1)βn
[
In+1/2(α|xk |)

]2 .

(6.12)

Next, by letting x → x j in (6.7) we enforce that the
limiting behavior agrees with that required in (6.6). This
yields for each j = 1, . . . ,m that

b̂ j(s)
D

R̂ j(s) +

m∑
k, j

b̂k(s)
D

Ĝ(x j, s; xk) = B̂ j(s) . (6.13)

Upon using the leading order term b̂ j = γ jû j1 + O(ε)
from (6.5b), we obtain that

B̂ j(s) ∼
γ j

D
û j1(s)R̂ j(s) +

m∑
k, j

γk

D
ûk1(s)Ĝ(x j, s; xk) +O(ε) .

(6.14)

Finally, we invert the Laplace transform using (6.9) and
the convolution property to obtain for j = 1, . . . ,m that

B j(t) =
γ j

D

∫ t

0
u j1(τ) R j(t − τ) dτ

+

m∑
k, j

γk

∫ t

0
uk1(τ) Gh(x j, t − τ, xk) dτ ,

(6.15)

where R j(t) = L−1
[
R̂ j(s)

]
. The integro-differential sys-790

tem for the intracellular kinetics u j(t), with initial value791

u j(0) = 0, is obtained by substituting (6.15) into (6.4).792

We emphasize that for the sphere, where analyti-793

cal formulae for the Laplace transforms of R j(t) and794

Gh(x j, t, xk) are available (see (6.11) and (6.12)), it795

should be possible to use the sum-of-exponentials796

(cf. [40], [41], [42]) approximation in the Laplace797

transform plane for the convolution kernels in (6.15) in798

order to develop a time-marching scheme for the intra-799

cellular dynamics. This is the topic of ongoing work.800

6.1. The Well-Mixed Limit801

In a bounded domain, the coupling between the cells be-802

comes stronger as the bulk diffusivity D increases since803

the signalling molecule mediating intercellular interac-804

tions cannot escape to infinity as in R3.805

In particular, when D = D0/ε � 1 and when the influx806

permeability parameter is on the range d1 j = O(ε−1),807

we now show that (6.4) and (6.5) reduces to leading-808

order to the strongly coupled well-mixed limiting sys-809

tem (3.1).810

For D = D0/ε and d̃1 j = d1 j/ε, we have to leading-order
from (6.5a) that B j = Bc for j = 1, . . . ,m. By expanding

U = U0 +
1
D

U1 + · · · , (6.16)

where U0 = Bc we obtain that U1 satisfies

∆U1 = U′0 + κU0 −

m∑
j=1

b jδ(x − x j) , x ∈ Ω ,

∂nU1 = 0 , x ∈ ∂Ω ,

(6.17)
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where b j = b j(t) from (6.5b) is given in terms of d̃1 j and
D0 by

b j = γ ju j1 − γ j
d̃1 j

d2 j
B j , where γ j =

4πd2 jD0

d̃1 j + D0
.

(6.18)
From the divergence theorem applied to (6.17) we get
that U′0 = −κU0 + |Ω|−1 ∑m

j=1 b j. Together with (6.4),
this yields the leading-order well-mixed system of (3.1)
given by

U′0 = −κU0 −
1
|Ω|

m∑
j=1

γ j
d̃1 j

d2 j
U0 − γ ju j1

 ,
du j

dt
= F j

(
u j

)
− γ ju j1e1 +

d̃1 j

d2 j
γ jU0e1 ,

(6.19)

where |Ω| denotes the volume of Ω. We emphasize811

that in this well-mixed limit where D = D0/ε and812

d1 j = d̃1 j/ε, the intercellular interactions are O(1) as813

ε → 0. This is in contrast to the D = O(1) regime814

where intercellular interactions are only O(ε) � 1.815

7. Discussion816

We have extended the coupled 2-D cell-bulk ODE-817

PDE model of [18, 23, 24] to a 3-D bounded domain,818

where the cells are small spheres of a common radius819

that are spatially segregated within the domain. Our820

model is related to the 3-D cell-bulk model formu-821

lated in [19, 20, 25] in all of R3, where there was a822

single intracellular species within each cell and where823

the bulk medium was purely diffusive. In a bounded824

3-D domain, and in the limit of large bulk diffusiv-825

ity D = D0/ε, where D0 = O(1) and ε � 1, the826

method of matched asymptotic analysis was used to re-827

duce the cell-bulk ODE-PDE model to a novel ODE828

system for the average bulk chemical concentration that829

still retains the diffusion parameter D0 and an O(ε)830

correction term that depends on the spatial configu-831

ration of the cells through the Neumann Green’s ma-832

trix. For a spherical domain, where this Green’s matrix833

can be evaluated analytically, and for two-component834

Sel’kov-type intracellular reaction-kinetics, we showed835

from our ODE system that both quorum-sensing and836

diffusion-mediated communication can occur. We em-837

phasize that our new ODE system is distinct from the838

type of ODE system with global coupling that is usu-839

ally formulated in the well-mixed limit D→ ∞ to study840

quorum-sensing behavior, where spatial heterogeneity841

is neglected and there is no diffusivity parameter.842

For the leading-order dynamics of our ODE system,843

where the spatial configuration of cells is neglected, we844

used the Kuramoto order parameter to study the degree845

of phase synchronization in the intracellular dynamics846

as a cell density parameter ρ = m/|Ω| increases for a847

fixed population of m = 1000 cells. The cell population848

was composed of two groups: identical cells and defec-849

tive cells, the latter of which have a random parameter850

in the Sel’kov reaction kinetics. For all the scenarios851

considered, and as similar to the results in section 4.2 of852

[24], the cell density parameter was shown to play a dual853

role of both triggering and quenching intracellular oscil-854

lations. Synchronous oscillations are triggered through855

quorum sensing when the cell density crosses a specific856

threshold, and are extinguished when the cell density857

parameter exceeds a further threshold. The QS behavior858

observed here leads to a roughly switch-like transition859

of the cells from a quiescent state to perfect phase syn-860

chronization. The range of ρ where nearly perfect phase861

synchronization occurs was shown to decrease as the862

heterogeneity in the cell population increases. This ob-863

servation conforms with the usual belief that it is more864

difficult to trigger intracellular oscillations for a popula-865

tion of non-identical cells (cf. [26], [27]).866

Furthermore, for a small population of six cells, we867

studied the effect of the spatial configuration of the cells868

on their intracellular dynamics by including the O(ε)869

correction terms of the novel ODE system (2.18) in our870

analysis. These correction terms incorporate the spatial871

locations of the cells into the ODE system. Their co-872

efficients can be rather significant even for moderately873

small values of ε and, as a result, we showed that they874

played an important role in studying quorum-sensing875

and diffusion-mediated intercellular communication.876

There are several possible extensions of the modeling877

framework and analysis provided in this paper. Firstly,878

for our novel ODE system, which incorporates weak879

spatial heterogeneity, it would be interesting to con-880

sider the influence of a single defective cell with dif-881

ferent reaction-kinetics or membrane permeabilities on882

a population of identical cells, similar to that studied for883

the 2-D problem in [23, 24]. In particular, can a single884

defective cell either extinguish or trigger intracellular885

oscillations in the entire group of cells? Secondly, the886

development of a viable numerical approach to numer-887

ically solve the 3-D cell-bulk model, in order to con-888

firm the asymptotic results, should be undertaken. This889

validation was done for the 2-D case in [23] using the890

commercial solver FLEXPDE, but the 3-D problem is891

more challenging owing to the need for a 3-D refined892

mesh near the localized cells combined with accurate893

long-time integrations of oscillatory solutions. Thirdly,894

it is an interesting open problem to identify chimera895
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type states in our near-well-mixed limiting ODE sys-896

tem (2.18). For a collection of identical cells, where the897

only heterogeneity arises from the cell locations atO(ε),898

we expect that chimera states should be possible when899

there are two or more distinct groups of closely spaced900

cells and when κ is rather large. When κ is large, the901

communication between the groups of cells should be902

weak, allowing for asynchronous oscillations between903

the groups. The possibility of such chimera-type states904

should be examined systematically.905

Next, for the regime of finite diffusion where D =906

O(1) it would be worthwhile to extend the time-907

marching approach developed in [29] for the integro-908

differential ODE system for the cell-bulk model in R2
909

to our 3-D setting. In particular, by using the sum-910

of-exponentials approximation together with Duhamel’s911

integral, it should be possible to develop an accurate912

time-marching scheme to numerically solve the integro-913

differential system (6.15) and (6.4). Without such an914

approach, it is computationally very inefficient to nu-915

merically solve (6.15) and (6.4) with a standard time-916

discretization since O(m2) convolution integrals with917

full memory dependence would have to be evaluated918

at time t to advance the solution one time-step to time919

t + ∆t. Moreover, the convolution integrals in (6.15) are920

improper integrals that need a careful analysis, where921

the local behavior near the integrable singularity is ap-922

proximated analytically. The approach used in [29] for923

the analogous 2-D cell-bulk model in R2 overcame both924

of these challenges.925

Finally, from the viewpoint of more realistic quorum-926

sensing modeling in biology, it would be worthwile to927

apply our analysis to some specific intracellular sig-928

nalling pathways relevant to applications such as gly-929

colytic oscillations in yeast cells [9, 43] or the Lux ki-930

netics used to model bioluminescence behavior [8] and931

[17]. Moreover, in many quorum-sensing applications932

it is known that the onset of collective intracellular dy-933

namics is a precursor to the migration or drift of lo-934

calized cells, which occurs on a longer time-scale, to935

form some cell colony. Although our asymptotic analy-936

sis requires that cells are well-separated, in principle we937

can impose a dynamical behavior for the center of each938

cell in terms of the local dipole moment near each cell939

in order to study the initial stage of cell amalgamation.940

This dipole moment can be derived from a higher-order941

asymptotic analysis near each cell. In [8] a phenomeno-942

logical rule was imposed to model the dynamics of the943

cell centers in an agent-based model of quorum-sensing.944
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Appendices950

A. Non-dimensionalization of the cell-bulk model951

In this appendix we non-dimensionalize the cell-bulk
(1.1) into its dimensionless form in (1.2). The dimen-
sions, labeled by [. . .], of the quantities in (1.1) are

[U] =
moles

length3 , [DB] =
length2

time
, [µ j] = [µc] = moles

[kR] = [kB] =
1

time
, [X] = length [T ] = time ,

[β1 j] =
length
time

, [β2 j] =
1

time × length2 .

We assume that the common radius R of the cells Ω j for
j = 1, . . . ,m is small compared to the length-scale L of
Ω, and so we introduce a small parameter ε ≡ R/L � 1.
In addition, we introduce the t, x, U and u by

U =
L3

µc
U , x =

X
L
, t = kRT , u j =

µ j

µc
, (A.1)

so that the time-scale is chosen based on the reaction
kinetics. We find that the dimensionless bulk diffusion
field satisfies (1.2a), while on the cell boundary (1.1c)
becomes

D ∂nx U =
β1 j

LkR
U −

β2 jL2

kR
u j1 , x ∈ ∂Ωε j . (A.2)

Similarly, by using dS X = L2dS x, the dimensional in-
tracellular kinetics (1.1d) transforms to

du j

dt
= F j(u j)+e1

∫
∂Ωε j

(
β1 j

LkR
−

L2β2 j

kR
u j1

)
dS x , (A.3)

where ∂Ωε j is the surface of a sphere of radius ε. Since952

|∂Ωε j | = O(ε2), in order to ensure that there is an O(1)953

efflux out of the jth cell into the bulk medium, we must954

consider the limit where β2 jL2/kR = O(ε−2). Moreover,955

the feedback into the jth cell from the bulk isO(ε) when956

the dimensionless influx parameter is on the asymptotic957

range β1 j/(LkR) = O(ε−1). Based on these observations,958

we chose the permeability scalings as in (1.3). With959

this choice, (A.2) and (A.3) become (1.2c) and (1.2d),960

respectively.961
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B. Cell locations962

Here, we give the coordinates of the centers of the cells963

for the different configurations considered in this paper.964

B.1. Arbitrarily located cells on a sphere of radius r0965

In Table 1 below, we give the coordinates of m = 6966

cells on the surface of the unit sphere (corresponding to967

r0 = 1). These coordinates can be used to generate the968

centers of cells on any sphere of radius 0 < r0 < 1 by969

scaling appropriately.

Cell i xi yi zi color code
1 −0.1639 −0.8138 0.5576 black
2 0.9691 −0.1934 −0.1531 green
3 −0.5636 −0.1124 0.8184 red
4 −0.4022 0.7875 −0.4671 blue
5 0.5681 0.4443 −0.6927 cyan
6 −0.6892 −0.5772 −0.4380 magenta

Table 1: Coordinates of the center of m = 6 cells arbitrarily located
on the surface of the unit sphere. Colors corresponds to color codes
for the cells in Fig. 14.

970

In Table 2 we give the center-to-center distances be-971

tween the cells with coordinates in Table 1.972

B.2. Arbitrarily located cells inside the unit sphere973

In Table 3 and Table 4 we give the coordinates of the974

centers of m = 6 identical cells arbitrarily located inside975

the unit sphere, their distance from the origin, and their976

center-to-center distances.977

References978

[1] S. De Monte, F. d’Ovidio, S. Danø, P. Sørensen, Dynamical979

quorum sensing: Population density encoded in cellular dynam-980

ics, PNAS 104 (2007) 18377–18381.981

[2] S. Danø, P. Sørensen, F. Hynne, Sustained oscillations in living982

cells, Nature 402 (1999) 320–322.983

[3] S. Danø, P. Sørensen, et al., Quantitative characterization of cell984

synchronization in yeast, PNAS 104 (2007) 12732–12736.985

[4] T. Gregor, K. Fujimoto, N. Masaki, S. Sawai, The onset of col-986

lective behavior in social amoebae, Science 328 (2010) 1021–987

1025.988

[5] V. Nanjundiah, Cyclic amp oscillations in dictyostelium dis-989

coideum: models and observations, Biophys. Chem. 72 (1998)990

1–8.991

[6] A. Goldbeter, Biochemical oscillations and cellular rhythms: the992

molecular bases of periodic and chaotic behaviour, Cambridge993

university press, 1997.994

[7] M. E. Taga, B. L. Bassler, Chemical communication among995

bacteria, PNAS 100 (2003) 14549–14554.996

[8] P. Melke, P. Sahlin, A. Levchenko, H. Jönsson, A cell-based997

model for quorum sensing in heterogeneous bacterial colonies,998

PLoS Comput. Biol. 6 (2010) e1000819.999

[9] P. Mina, M. di Bernardo, N. J. Savery, K. Tsaneva-Atanasova,1000

Modelling emergence of oscillations in communicating bacteria:1001

a structured approach from one to many cells, J. Royal Soc.1002

Interface 10 (2013) 20120612.1003

[10] K. Kamino, K. Fujimoto, S. Sawai, Collective oscillations in1004

developing cells: Insights from simple systems, Development,1005

growth & differentiation 53 (2011) 503–517.1006

[11] M. R. Tinsley, A. F. Taylor, Z. Huang, F. Wang, K. Showalter,1007

Dynamical quorum sensing and synchronization in collections1008

of excitable and oscillatory catalytic particles, Physica D 2391009

(2010) 785–790.1010

[12] M. R. Tinsley, A. F. Taylor, Z. Huang, K. Showalter, Emergence1011

of collective behavior in groups of excitable catalyst-loaded par-1012

ticles: spatiotemporal dynamical quorum sensing, Phys. Rev.1013

Lett. 102 (2009) 158301.1014

[13] A. F. Taylor, M. R. Tinsley, K. Showalter, Insights into collective1015

cell behaviour from populations of coupled chemical oscillators,1016

Phys. Chem. Chem. Phys. 17 (2015) 20047–20055.1017

[14] A. F. Taylor, M. R. Tinsley, F. Wang, Z. Huang, K. Showalter,1018

Dynamical quorum sensing and synchronization in large popu-1019

lations of chemical oscillators, Science 323 (2009) 614–617.1020

[15] J. D. Dockery, J. P. Keener, A mathematical model for quorum1021

sensing in pseudomonas aeruginosa, Bull. Math. Biol. 63 (2001)1022

95–116.1023

[16] J. P. Ward, J. R. King, A. J. Koerber, P. Williams, J. M. Croft,1024

R. E. Sockett, Mathematical modelling of quorum sensing in1025

bacteria, Math Medicine and Biol. 18 (2001) 263–292.1026

[17] W. Ridgway, M. J. Ward, B. T. Wetton, Quorum-sensing in-1027

duced transitions between bistable steady-states for a cell-bulk1028

ODE-PDE model with Lux intracellular kinetics, J. Math. Bio.1029

84 (2021).1030

[18] J. Gou, M. Ward, An asymptotic analysis of a 2-D model of1031

dynamically active compartments coupled by bulk diffusion, J.1032

Nonlin. Sci. 26 (2016) 979–1029.1033

[19] J. Müller, C. Kuttler, B. A. Hense, M. Rothballer, A. Hartmann,1034

Cell–cell communication by quorum sensing and dimension-1035

reduction, J. Math. Bio. 53 (2006) 672–702.1036

[20] J. Müller, H. Uecker, Approximating the dynamics of commu-1037

nicating cells in a diffusive medium by ODEs—homogenization1038

with localization, J. Math. Bio. 67 (2013) 1023–1065.1039

[21] B. W. Li, C. Fu, H. Zhang, X. Wang, Synchronization and quo-1040

rum sensing in an ensemble of indirectly coupled chaotic oscil-1041

lators, Phys. Rev. E. 86 (2012) 046207.1042

[22] B. W. Li, X. Z. Cao, C. Fu, Quorum sensing in populations1043

of spatially extended chaotic oscillators coupled indirectly via1044

a heterogeneous environment, J. Nonlin. Sci. 27 (2017) 1667–1045

1686.1046

[23] S. Iyaniwura, M. Ward, Synchrony and oscillatory dynamics for1047

a 2-D PDE-ODE model of diffusion-sensing with small signal-1048

ing compartments, SIAM J. Appl. Dyn. Sys. 20 (2021) 438–499.1049

[24] S. Iyaniwura, M. J. Ward, Localized signaling compartments1050

in 2-D coupled by a bulk diffusion field: Quorum sensing and1051

synchronous oscillations in the well-mixed limit, Europ. J. Appl.1052

Math. 32 (2021) 1001–1031.1053

[25] H. Uecker, J. Müller, B. A. Hense, Individual-based model for1054

quorum sensing with background flow, Bull. Math. Bio. 761055

(2014) 1727–1746.1056

[26] S. H. Strogatz, From Kuramoto to Crawford: exploring the onset1057

of synchronization in populations of coupled oscillators, Phys-1058

ica D 143 (2000) 1–20.1059

[27] A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, C. Zhou,1060

Synchronization in complex networks, Physics Reports 4691061

(2008) 93–153.1062

[28] Y. Zhang, J. L. Ocampo-Espindola, I. Z. Kiss, A. Motter, Ran-1063

dom heterogeneity outperforms design in network synchroniza-1064

26



Cell color Black Green Red Blue Cyan Magenta
Black 0 1.474 0.848 1.916 1.919 1.150
Green 1.474 0 1.818 1.715 0.927 1.726
Red 0.848 1.817 0 1.578 1.968 1.346
Blue 1.916 1.715 1.578 0 1.054 1.395
Cyan 1.919 0.927 1.968 1.054 0 1.634

Magenta 1.150 1.726 1.346 1.395 1.634 0

Table 2: The center-to-center distance between the cells presented in Table 1 for r0 = 0.85. Colors corresponds to color codes for the cells in
Fig. 14.

Cell i xi yi zi Distance from origin Color code
1 −0.2336 0.1684 −0.6002 0.6657 black
2 −0.4370 0.5739 0.2368 0.7592 green
3 0.5784 −0.0731 0.5103 0.7748 red
4 −0.3054 −0.1425 0.0993 0.3513 blue
5 0.4521 −0.2760 −0.6256 0.8197 cyan
6 −0.4092 0.4664 −0.1933 0.6499 magenta

Table 3: Coordinates of the center of m = 6 cells arbitrarily located inside the unit sphere, and their distances from the origin.

Cell color Black Green Red Blue Cyan Magenta
Black 0 0.9520 1.3967 0.7688 0.8175 0.5340
Green 0.9520 0 1.2347 0.7413 1.5022 0.4442
Red 1.3967 1.2347 0 0.9772 1.1608 1.3272
Blue 0.7688 0.7413 0.9772 0 1.0569 0.6835
Cyan 0.8175 1.5022 1.1608 1.0569 0 1.2165

Magenta 0.5340 0.4442 1.3272 0.6835 1.2165 0

Table 4: The center-to-center distance between the six cells given in Table 3.

tion, PNAS 118 (2021) e2024299118.1065

[29] M. Pelz, M. J. Ward, Synchronized memory-dependent intracel-1066

lular oscillations for a cell-bulk ode-pde model in R2, to appear,1067

SIAM J. Appl. Dyn. Sys. (2024) 50 pages.1068

[30] M. J. Ward, Spots, traps, and patches: Asymptotic analysis of1069

localized solutions to some linear and nonlinear diffusive sys-1070

tems, Nonlinearity 31 (2018) R189.1071

[31] J. H. Merkin, D. J. Needham, S. K. Scott, Oscillatory chemical1072

reactions in closed vessels, Proc. Roy. Soc. London. Series A,1073

Mathematical and Physical Sciences 406 (1986) 299–323.1074

[32] E. E. Sel’kov, Self-oscillations in glycolysis 1. A simple kinetic1075

model, Europ. J. Biochem. 4 (1968) 79–86.1076

[33] A. Dhooge, W. Govaerts, Y. A. Kuznetsov, MATCONT: a MAT-1077

LAB package for numerical bifurcation analysis of ODEs, ACM1078

Trans. Math. Soft. (TOMS) 29 (2003) 141–164.1079

[34] S. H. Strogatz, Nonlinear dynamics and chaos: With applica-1080

tions to Physics, Biology, Chemistry, and Engineering, West-1081

view Press, 2001.1082

[35] L. F. Shampine, M. W. Reichelt, The MATLAB ODE suite,1083

SIAM J. Sci. Comput. 18 (1997) 1–22.1084

[36] S. Shinomoto, Y. Kuramoto, Phase transitions in active rotator1085

systems, Progress of Theor. Phys. 75 (1986) 1105–1110.1086

[37] A. Weber, Y. Prokazov, W. Zuschratter, M. Hauser, Desyn-1087

chronisation of glycolytic oscillations in yeast cell populations,1088

PLoS ONE 7 (2012) e43276.1089

[38] A. Cheviakov, M. J. Ward, Optimizing the principal eigenvalue1090

of the Laplacian in a sphere with interior traps, Math. and Com-1091

put. Model. 53 (2011) 1394–1409.1092

[39] R. Straube, M. J. Ward, Intracellular signalling gradients arising1093

from multiple compartments: A matched asymptotic expansion1094

approach, SIAM J. Appl. Math. 70 (2009) 302–332.1095

[40] G. Beylkin, L. Monzón, On approximation of functions by ex-1096

ponential sums, Appl. and Comput. Harm. Anal. 19 (2005) 17–1097

48.1098

[41] G. Beylkin, L. Monzón, Approximation by exponential sums1099

revisited, Appl. and Comput. Harm. Anal. 28 (2010) 131–140.1100

[42] S. Jiang, L. Greengard, S. Wang, Efficient sum-of-exponentials1101

approximations for the heat kernel and their applications, Adv.1102

Comput. Math. 41 (2015) 529–551.1103

[43] M. A. Henson, D. Müller, M. Reuss, Cell population modelling1104

of yeast glycolytic oscillations, Biochem. J. 368 (2002) 433–1105

446.1106

27


	Introduction
	Asymptotics of the cell-bulk model for large D
	Analysis of the leading-order dynamics 
	Hopf bifurcation analysis for identical cells
	Quorum sensing and phase synchronization

	Effect of location on intracellular dynamics
	Symmetrically located cells on a concentric sphere
	Arbitrarily located cells on a concentric sphere
	Arbitrarily located cells within the unit sphere

	Instability triggered by a single cell
	An integro-differential system for D=O(1)
	The Well-Mixed Limit

	Discussion
	Appendices
	 Non-dimensionalization of the cell-bulk model
	Cell locations
	Arbitrarily located cells on a sphere of radius r0
	Arbitrarily located cells inside the unit sphere


