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PDE model in a bounded 3-D domain in the near
well-mixed limit. The effect of spatial inhomo-
geneities in the cell population is incorporated by
the Neumann Green’s matrix, and there is a diffu-
sion parameter.

Hopf bifurcations in the ODE system trigger intra-
cellular oscillations as predicted by global bifur-
cation diagrams computed with MATCONT. Syn-
chronization is studied via the Kuramoto order pa-
rameter.

Quorum-sensing collective dynamics are illus-
trated as the number of cells exceeds a threshold,
or as the spatial configuration of cells is varied.
Through numerical experiments it is shown that a
single additional cell can trigger intracellular os-
cillations in the entire cell population, which oth-
erwise would not occur without this added cell.

In the non well-mixed limit, where spatial effects
are important, a novel integro-differential system
is derived to characterize intracellular oscillations.
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Abstract

For a coupled cell-bulk ODE-PDE model in a 3-D spherical domain, we analyze oscillatory dynamics in spatially
segregated dynamically active signalling compartments that are coupled through a passive extracellular bulk diffusion
field. Within the confining spherical domain, the signalling compartments are a collection of small spheres of a
common radius O(¢) < 1. In our cell-bulk model, each cell secretes a signalling chemical into the extracellular bulk
region, while also receiving a chemical feedback that is produced by all the other cells. This secretion and global
feedback of chemical into the cells is regulated by permeability parameters on the cell membrane. In the near well-
mixed limit corresponding to a large bulk diffusivity D = Dy/e > 1, where Dy = O(1), the method of matched
asymptotic expansions is used to reduce the cell-bulk model to a novel nonlinear ODE system for the intracellular
concentrations and the spatially averaged bulk diffusion field. The novelty in this ODE system, as compared to the
type of ODE system that typically is studied in the well-mixed limit, is that it involves Dy and an O(g) correction
term that incorporates the spatial configuration of the signalling compartments. For the case of Sel’kov intracellular
kinetics, this new ODE system is used to study Hopf bifurcations that are triggered by the global coupling. In
addition, the Kuramoto order parameter is used to study phase synchronization for the leading-order ODE system for
a heterogeneous population of cells where some fraction of the cells have a random reaction-kinetic parameter. For a
small collection of six cells, the spatial configuration of cells is also shown to influence both quorum-sensing behavior
and diffusion-mediated communication that lead to synchronous intracellular oscillations. Moreover, we show that
a single additional pacemaker cell can trigger intracellular oscillations in the other six cells, which otherwise would
not occur. Finally, for the non well-mixed regime where D = O(1), we use asymptotic analysis in the limit & — 0 to
derive a new integro-differential ODE system for the intracellular dynamics.

Keywords: Bulk diffusion, Green’s function, synchronous oscillations, Kuramoto order parameter, Hopf bifurcation,
quorum-sensing, strong localized perturbation theory, integro-differential systems.

1. Introduction w0 lection of social amoebae Dictyostelium discoideum,
41 where the secretion of cyclic adenosine monophosphate
22 (cAMP) by the cells leads to synchronous oscillation in
s their intracellular dynamics and guides them to aggrega-
« tion (cf. [4, 5, 6]), and a colony of the marine bacterium
s Vibrio fischeri that leads to bioluminescence in certain
4« species of tropical squid (cf. [7, 8]).

Bacteria and other microorganisms communicate and
coordinate their activities in order to accomplish tasks
that cannot be achieved by a single cell. Cells that are
not in close proximity communicate via their extracel-
lular environment through both the secretion of a sig-
nalling chemical into the extracellular medium and the
absorption of the global concentration field that is pro-  This type of intracellular communication through a bulk
duced by all the other cells. This feedback enables the  diffusion field is closely associated with quorum sens-
cells to adjust their intracellular dynamics accordingly. s ing (QS), a phenomenon by which the onset of collec-
Examples of biological systems that exhibit this kind of s tive intracellular dynamics occurs when the cell den-
communication include a colony of starving yeast cells s sity increases past a threshold. Mathematical models of
in which the exchange of acetaldehyde (Ace) molecules s quorum-sensing usually focus on the well-mixed limit
leads to glycolytic oscillations (cf. [1, 2, 3]), a col- s where the bulk diffusion field is spatially uniform. In
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other non well-mixed situations where spatial effects
are important, the bulk diffusivity and bulk degrada-
tion control the onset of collective intracellular dynam-
ics through spatial gradients, a phenomenon referred to
as diffusion sensing (DS) or diffusion-mediated synchro-
nization. QS systems are categorized into two main
groups. The first group includes yeast cells and so-
cial amoeba, where a switch-like transition leads to
synchronous oscillations as the cell population density
passes a threshold (cf. [4, 9, 10, 3, 2, 1]). Physio-
chemical systems involving groups of catalyst-loaded
small particles immersed in a Belousov-Zhabotinsky
reaction mixture are also known to exhibit collective
chemical oscillations (cf. [11, 12, 13, 14]). The sec-
ond group of QS system includes a colony of the ma-
rine bacterium Vibrio fischeri and the human pathogen
Pseudomonas aeruginosa, where a sudden transition
between bistable steady-states occurs as the cell pop-
ulation density exceeds a certain threshold (cf. [15, 16,
8, 17]).

Various mathematical modeling frameworks have been
developed to study the mechanism through which com-
munication is achieved between spatially segregated ac-
tive cells [18, 19, 20, 21, 22]. In this paper, we ex-
tend the coupled 2-D cell-bulk ODE-PDE model of
[18, 23, 24] to a 3-D spherical domain, where the cells
are small spheres of a common radius within the do-
main (see Fig. 1). Our model is inspired by the 3-D
cell-bulk model formulated in [19, 20, 25] in all of R3,
where there was a single intracellular species within
each cell and where the bulk medium was purely dif-
fusive. By allowing for multi-component intracellular
species in a finite 3-D domain, and including both bulk
diffusion and bulk degradation, we will show that our
extended cell-bulk model can lead to synchronous in-
tracellular oscillations. In our model, the secretion of
a signalling molecule and the global feedback from the
bulk medium are regulated by permeability parameters
on the cell membrane, while spatio-temporal bulk dif-
fusion fields in the extracellular medium are modeled
explicitly with a PDE. This latter feature is in contrast
to the approach in [22] where heterogeneity in the ex-
tracellular medium was modeled with a discrete diffu-
sion equation, and in [21] where the signalling com-
partments were globally coupled through an ODE. Our
main goal is to use the 3-D cell-bulk model to study the
emergence and synchronization of intracellular oscilla-
tions that is mediated by the bulk diffusion field. We
also investigate mechanisms that promote either quorum
sensing or diffusion-mediated synchronization.

The formulation of our coupled ODE-PDE model is as
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Figure 1: A schematic diagram showing dynamically active signalling
compartments (in blue) in a 3-D spherical domain. Each signalling
compartment is a smaller sphere containing two chemical species rep-
resented by the green and red dots, where only the red chemical is se-
creted into the extracellular bulk region. Right panel: Zoomed-in il-
lustration of the intracellular concentration of chemicals within each
signalling compartment, the secretion of signalling molecules into the
bulk region, and the feedback of chemical into the cells.

follows. Let Q ¢ R? be a bounded spherical domain of
radius L containing m signalling compartments, denoted
by Q; for j = 1,...,m, which are smaller spheres of
radius R, centered at X; € Q for j = 1,...,m. In the
bulk region Q\ U2, Q; and for T' > 0, the concentration
UX,T) of the bulk signalling species or autoinducer
satisfies

Ur = DpAU - kgU, XeQ\UL Q;, (1.1a)
OU=0, XeoQ, (1.1b)
DpduyU = B1jU —Boju}, X€0Q;, j=1,....m,

(1.1¢)

where Dg > 0 and kg > O are the dimensional diffu-
sivity and decay rate of the bulk species, respectively,
B1j > 0 and B,; > 0 are the dimensional rate of influx
and efflux of chemical into and out of the jth cell, respec-
tively, and d,,, denotes the outer normal derivative on Q,
which points into the bulk region. We assume that there
are n interacting non-diffusing species within each cell
represented by the vector u; = (,u}, e, /,ll})T for the j
cell. Since the intracellular environment is assumed to
be well-mixed, the n species are assumed to interact ac-
cording to the local reaction-kinetics F ;(u/p1.). For each
Jj = 1,...,m, the intracellular dynamics within the jth
cell is coupled to the extracellular bulk diffusion field in
(1.1) through the integration of the diffusive flux across
the membrane of the cell as

% = kR,uch (/Jj/,uc) + e ja‘g (ﬁ]jﬂ—ﬁzjﬂ;) dSx.

’ (1.1d)
Here e; = (1,0,...,0)7, kg > 0 is the reaction rate for
the dimensionless local reaction kinetics F;, and u. > 0
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is a typical value for u;. Each cell secretes only one sig-
nalling chemical, labeled by u}, into the bulk medium as
regulated by the efflux permeability parameter ,;. The
global feedback into the j™ cell, which is produced by
the entire cell population, is regulated by the influx per-
meability parameter 5;;. A schematic illustration of the
cell-bulk coupling in (1.1) is shown in Fig. 1 form = 6
cells, each with n = 2 intracellular species.

For our asymptotic limit, we assume that the com-
mon radius R of the signalling compartments Q; for
j = 1,...,m is small relative to the radius L of the
spherical domain Q. As such, we introduce a small scal-
ing parameter € = R/L < 1. By non-dimensionalizing
the coupled ODE-PDE model (1.1) as in Appendix A,
we obtain that the dimensionless concentration U(x, t)
in the bulk region satisfies for > 0

ou
i =DAU -«kU, xeQ\UL, Q,, (1.2a)
0,U=0, x€0Q, (1.2b)
dyj | .
eDo,U = d,;U - —u;, X€0Q,, j=1,....m,
&

(1.2¢)
which is coupled to the dimensionless intracellular dy-
namics within the j‘h cell, foreach j =1,...,m, by

du; € 1
E = Fj (u_j) + ; o <8d1]’ U - dzj l/tj) dSy.
' (1.2d)
Here u; = (uj,...,u))" is a vector representing the di-

mensionless molar concentration of the n species in the
jM cell, labeled by Q.; = {x||x — x;| < &}. We as-
sume that the cells are well-separated in the sense that
dist(x;,x¢) = O(1) for j # k and dist(x;, Q) = O(1) as
& — 0. The key O(1) parameters in the dimensionless
cell-bulk model (1.2) are

Dg _k
B 5 Ba;L? (13)
d]j:&‘m, dszé‘ kR .

Here D and « are the effective diffusion coefficient and
bulk decay rate of the bulk species, respectively. The
scaling limit chosen for the permeability parameters is
necessary to compensate for the small size of the cells
relative to the volume of the domain, and the rapid de-
cay of the 3-D free-space Green’s function (see Ap-
pendix A). Since the bulk decay rate « is the ratio of the
dimensional bulk decay rate to the reaction rate of the
intracellular kinetics, an increase in x corresponds to an

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

increase in the rate of degradation of the bulk species
relative to the rate they are produced within the cells.
In particular for large «, the chemical signal secreted by
the cells decays on a short length-scale, resulting in a
rather weak coupling between the cells. In terms of the
effective bulk diffusivity D, when D is large relative to
K, the spatial gradients in the bulk medium are weak and
there is effectively a global coupling between the cells.

The outline of the paper is as follows. In the near
well-mixed limit corresponding to a large bulk diffusiv-
ity D = Dg/e > 1, with Dy = O(1), in §2 the method
of matched asymptotic expansions is used to derive a
novel ODE system from the cell-bulk ODE-PDE model
(1.2). The novelty in this ODE system is that it involves
Dy and includes an O(g) correction term involving the
Neumann Green’s matrix that accounts for the spatial
configuration of the small dynamically reactive cells. In
this “near well-mixed limit”, the resulting ODE system
is similar in form to that for the 2-D case derived in §3
of [23], but without the additional scaling in the efflux
permeability d5; as in (1.2¢).

For the special case of Sel’kov intracellular reaction ki-
netics, in §3 the leading-order dynamics for this ODE
system, which sets € = 0 and thereby neglects the spa-
tial configuration of cells, is analyzed to predict Hopf
bifurcations that initiate intracellular oscillations for a
collection of identical cells. In particular, we show that
as the cell density parameter is increased it first trig-
gers and then quenches intracellular oscillations in the
population of cells. Moreover, for this leading-order
system, quorum-sensing and phase synchronization of
large amplitude intracellular oscillations, as monitored
by a Kuramoto order parameter, are also studied nu-
merically for a heterogeneous population of 1000 cells.
In this total population, some fraction of the cells are
taken to have a random reaction-kinetic parameter that
modifies the local frequency of oscillation within each
cell. As the fraction of such “defective cells” in the
population increases, it is shown numerically that the
range of the cell density parameter where in-phase syn-
chronous oscillations occur decreases. In this sense, for
our leading-order system, we conclude that “cell hetero-
geneity” does not promote the in-phase syncronization
of intracellular oscillations. Our findings conform to the
widely held assumption for coupled non-identical oscil-
lators that disorder is undesirable for synchronization
(cf. [26], [27]). However, we remark that it has recently
been established that a time-delay in the coupling func-
tion actually enhances synchronization for non-identical
coupled Stuart-Landau oscillators (cf. [28]).
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In §4, we study the O(e) effect of the spatial config-
uration of cells on intracellular dynamics by consider-
ing three distinct configurations of six cells in the unit
sphere. For this small cell population, where we assume
that the reaction-kinetic parameters and membrane per-
meabilites are identical for each cell, “cell heterogene-
ity” only arises from choosing different spatial config-
urations of the cells. We consider three cell configu-
rations: cells whose centers are symmetrically located

on a concentric spherical ring within the sphere, cells

whose centers are arbitrarily located on the concentric
ring within the sphere, and cells that are arbitrarily lo-
cated within the sphere. For the first two patterns, where
the cells are centered on a concentric ring within the
sphere, the effect of the nearest image or “ghost” cell
across the reflecting domain boundary is the same for
each cell. For these two ring configurations of cells, it
is shown numerically that the range of the bulk degrada-
tion k where intracellular oscillations occur is larger for
the disordered arrangement than when cells are equally-
spaced on the concentric ring. With disorder, since
at least two cells will be in closer proximity than for
the equally-spaced arrangement, the communication be-
tween these two cells through the bulk medium will be
relatively strong even when the bulk decay rate « in-
creases. These two cells can then trigger intracellular
oscillations for the entire cell population. In this sense,
this type of cell heterogeneity promotes intracellular os-
cillations. Moreover, for a fixed «, the Kuramoto order
parameter is computed to show that diffusion-mediated
synchronization can be achieved as Dy is increased,
even when the cells are arbitrarily located within the
sphere with no two cells in close proximity. For each
of the three spatial configurations of cells considered
in §4, in §5 we illustrate QS behavior by showing that
a single pacemaker cell can trigger synchronous intra-
cellular dynamics in the entire population of six cells,
which otherwise would be in a quiescent state without
this additional cell.

In §6 we derive a new integro-differential ODE system
for intracellular dynamics for the non-well mixed case
where D = O(1). This new result shows that the inter-
action between the cells and the bulk is only O(e) < 1
in this D = O(1) regime. This is in direct contrast to the
2-D case analyzed in [29] in all of R? where the interac-
tion is much stronger at O (—1/log &). However, when
D > 1, and under a re-scaling of the efflux permeabil-
ity, we show in §6.1 that this integro-differential system
reduces to leading order to our ODE system derived in
§2, where cell-bulk interactions are O(1).

Finally, in §7 we briefly summarize our results and
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4

discuss some open directions, including extending our
approach to allow for biologically realistic models of
quorum-sensing in bacteria.

2. Asymptotics of the cell-bulk model for large D

In the limit &€ — 0, we use strong localized perturbation
theory [30] to analyze (1.2) in the regime of a fast dif-
fusing bulk species and a large rate of global feedback
into the cells. Our goal is to derive an ODE system that
has a diffusion parameter and also a weak perturbation
term that incorporates the spatial configuration of cells.

We begin our analysis by rescaling the effective bulk
diffusivity D and the influx permeability d; as

D .
D=2 and dy;=—2, j=1,...m, (.1
&

&

where Dy = O(1) and d; j = O(1). With this scaling,
dimensionless bulk concentration for ¢ > 0 satisfies

6U D m
E:?OAU—KU, XGQ\szl 93/7 (2'23)
U =0, xedQ, (2.2b)
SDoanU:EjU—dzju}, XE&QSI., j:l,...,m,
(2.2¢)

which is coupled to the dynamics within the j* cell by

% =F; <llj) + % fm (671_,-U - dzju}) dSy, (2.2d)

°j
forj=1,...,m.
For D = Dy/e > O(1), we expand U(x, t) in the outer
region at O(1) distances from the cells as
£
U(x,t):Uo(x,t)+D—U1(x,t)+... . (2.3)
o

Upon substituting (2.3) into (2.2) and collecting terms
in powers of &, we obtain the leading-order problem

AUy=0, xe€Q; 0,Uy=0, xe€dQ, 24
for which Uy = Uy() is the solution. The next-order

problem for U in the outer region is

AU1:U6+KUO, xeQ\{xg,...
BnU] =0, xeﬁQ,

Xk g

where we must determine the appropriate singularity
behavior of Uy as x — x; foreach j=1,...,m.



In the inner region, defined at an O(g) neighborhood of
the j" cell, we introduce the inner variables y = ™' (x —
x;) and U(x,1) = Vi(x; + &y, 1), with r = |y|. Upon
writing (2.2a) and (2.2c) in terms of the inner variables,
we obtain for each j=1,...,mthatas ¢ — 0,

Aer = 0,
DoaerZCZjVj—dgju}, on I"Zl,

r>1; V;—>vj as r-— oo,

(2.6)

where A, = 8, + 2r~'0,, and v joo 18 the constant far-
field behaviour, which may depend on &. The solution
to (2.6) is

dgju} — dlejoo
d; jt Dy
Upon matching the inner solution (2.7) to the outer ex-
pansion in (2.3), we obtain a singularity behavior for U
as X — X;. In terms of a delta distribution, the singular-

ity behavior for U, is combined with (2.5) to derive the
complete outer problem for U; given by

c:
Vi=-2+vj where c;= 2.7
j=t

AUy = Uj+kUg = 4rDg ) cid(x =x)), X €Q,
i=1

0,U =0, x€dQ; fUldsz,
Q
(2.8)

where ¢; is as defined in (2.7) and 6(x — X;) is the Dirac
delta function localized at the center of the i cell. With-
out loss of generality, we impose fQ U, dx = 0, so that
the spatial average of U in the bulk region is Uy, i.e.
Uy = (1/19)) fg U dx. By using the divergence theorem,
the solvability condition for (2.8) yields the ODE

m

4D,
Ul + Uy = T;'O >e (2.9)
i=1

where |Q)| is the domain volume. When this solvability

condition holds, we write the solution to (2.8) in terms

of the Neumann Green’s function G(x; x;) satisfying
AG -o0(x —x;)

xeQ, (2.10a)

il

G(x;x;) ~ R as X —Xx;, (2.10b)

j7

desz,
Q

where R; = R(X;) is its regular part at x = x;. The
solution to the outer problem (2.8) is simply

—+
4rlx — x|

0,G=0, xe0Q; (2.10¢)

U, = 4rD, Z ciG(X:X;) . @2.11)

i=1

Expanding (2.11) as x — Xx; and using the singularity
behaviour of the Neumann Green’s function given in
(2.10b), we obtain for each j = 1,...,m that

D() Cj
U ~ — +47Dy (Ge); +o(1), as X —Xj,
Ix — x| / ‘
2.12)
where ¢ = (cy,...,cn)T and G is the symmetric Neu-

mann Green’s matrix whose entries are defined by

(D)ij = (@i =GXx.x)), i #j; (G =R;=RX)).

(2.13)

Upon substituting (2.12) into the outer expansion in

(2.3) and matching the resulting expansion to the far-

field behavior of the inner solution (2.7), we obtain as
X — X; that

EC; Ei

~ Uy +

Voo + < _C’X +dre(Ge), + o(1).

(2.14)

Ix — x|

From (2.14), we derive the matching condition

dzj M} - J]jVjoo
Vi = Ug +4ne(Ge); where ¢;j= —=——,
dlj + Dy
(2.15)

for each j = 1,...,m. Observe that the two equations
in (2.15) are coupled, since c; also depends on v;.,. We
solve these equations recursively for £ — 0 to obtain

Vieo = Up + 41&(GE); + O(£7), (2.16a)
4ne(GT) dy
cj=t - ——22 10, (2.16b)
dlj + Dy
where
dz I/l1 - E ‘Uo

g=———1— j=1,...m. (2160

‘ dlj + Dy

Next, we return to the intracellular dynamics of the cells
given in (2.2d). Upon evaluating the integral in (2.2d)
over the boundary of the jth cell, we obtain

dll_,'

E:Fj(uj)—%Doelcj, j=1,...,m. (217)

In deriving (2.17), we used 8,Ulsq,; = —Do0,Vjl=1 =
—c; on the boundary of the j™ cell. Upon substituting
¢;j as given in (2.16) into (2.9) and (2.17), we obtain an
ODE for the spatially averaged bulk species Uy, which
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is coupled to an ODE system for the intracellular dy-
namics. In this way, we obtain the nm + 1 dimensional
coupled ODE system

m

-l ;ku(gé),, (2.18a)
dllj
E = Fj (llj) - el(ijM} - k]jU())
+47re18k1j(gé)j, j=1,...,m, (2.18b)
where
_ 471'D()(71j _ 47TDOd2j
j=E=—""), 2j = =,
dy; + D, dyi + D,
v A (2.18¢)
B dzjuj—dlon B 5 T
j= ————— ¢=(C1,...,Cn) .

071j+Do

Here G is the Neumann Green’s matrix, which depends
on the shape of the domain Q and the cell locations
X1, ..., X,. Since the novel ODE system (2.18) contains
Dy and a correction term that incorporates the spatial
configuration of the cells through the G matrix, it can
be used to study both quorum and diffusion sensing.
Moreover, since the coeflicients of the correction terms
in (2.18a) and (2.18b) are rather significant for moder-
ately small values of &, we expect that the spatial con-
figuration xj, ..., X,, of the cells can influence whether
or not intracellular oscillations are triggered.

3. Analysis of the leading-order dynamics

In this section, we first perform a Hopf bifurcation anal-
ysis on the leading-order dynamics of the ODE system
(2.18) (when & = 0) for identical cells in order to inves-
tigate the onset of intracellular oscillations that is trig-
gered by the global coupling. This analysis is done for
the two-component kinetics used in [31] to model chem-
ical oscillations, which is a modification of the Sel’kov
kinetics [32] used to model glycolysis oscillations. In
addition, for this choice of kinetics, quorum sensing
and phase synchronization in the intracellular dynam-
ics for the leading-order dynamics is studied using the
Kuramoto order parameter (cf. [22, 21, 24]).

3.1. Hopf bifurcation analysis for identical cells

We consider (2.18) in a spherical domain when &€ = 0. In
terms of a cell density parameter defined by p = m/|Q)|,

262

263

264

which measures the number of cells per unit volume, the
leading-order ODE system in (2.18) becomes

’ _ P S 1
Uy=-«Uy - - Zl(klon —koju;),
=
dllj
dt

,m,

(3.1a)

:Fj(llj)'f—e](k]jU—iju}), j:l’“.

where k;; and k,; are defined in (2.18c).

For identical cells, where the permeabilities and the
reaction-kinetics are the same we have k;; = ki, kyj =

kr, and F(u) = F;(u;), withu = u;, for j = 1,...,m.
For this identical cell case, (3.1) reduces to
Uj = —kUo — p(k Uy — kou') ,
d (3.2)
7‘; = F(u)+ e (kU - kout)).

For the reaction kinetics in [31], which we refer to as
Sel’kov kinetics, we have F = (f(v, w), g(v, w))T, with
u= ' u?)’ = @w,w?, where

f=aw+w? —v, g:eo[u—(aw+wv2)]. 3.3)

The reaction-kinetic parameters a, u, and € are all pos-
itive. Upon substituting (3.3) into (3.2), the steady-state
solution for (3.2) is

4 = HE*kip) P2 H
¢ (k+kky+pk)” ¢ (a+ @)?)’

_ Hpka
(K + kk; +pk1) ’

34
Oe

where Uy, is the steady-state average concentration in
the bulk region and u, = (u!l,u?)" is the steady-state
intracellular concentration.

We perturb the steady-state solution (Uy,, u;, ug) as

U=Up+e'n, u=u,+e"p, (3.5)
where 7 < 1 and ¢ = (¢1,¢)7 < 1. Upon substituting

(3.5) into (3.2), we obtain the linearized system

An = —kn — plkin —kagd1), A = J.¢ +e(kin— k1),
(3.6)

where J, is the Jacobian matrix of the reaction kinetics
Fu) = (f@',u?), g(ul,uz))T evaluated at the steady-
state u, = (ui,u?)T. Labeling (ui,u?) = (Ve,w.) and
F = (f(v,w), g(v,w))T, we write (3.6) in matrix form as

H)Y =0. (3.7)
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where ¥ = (17, ¢1, #2)7 and H(Q) is the 3 x 3 matrix

—(k+pky)— A pka 0
H) = ky fy —ka =) W
0 & (g, -
(3.8)

Here, fy, f, g7 and g, are the partials of f and g evalu-
ated at u,. The characteristic polynomial for (3.7) is

B+q P +@pl+q;=0, (3.9)
with coefficients given by
q1 = (k+ ky + pky) — tr(Je),
q» = det(J,) — (x + pk) tr(J.) + k2 (k — g) ,  (3.10)

g3 = (k + pky) det(J,) — kkag;,

where det(J,) = f/gi, — fog) and tr(J,) = f5 + g5,
are the determinant and trace of the Jacobian J,. For
Sel’kov kinetics we readily calculate that det(J,) =
e +v?) > 0 and tr(J,) = 2wy, — 1 — gla + V?).
By the Routh-Hurwitz criterion for cubic polynomials,
we have Re(1) < O if and only if the following three
conditions hold:

qg1>0, ¢g3>0, and qq2>gqs. (3.11)
To determine Hopf bifurcation (HB) points, for which
A1 = a < 0, 3 = +iw, we must have (1 — a)(1 -
W)+ iw) = 2 —al> + W?A — aw® = 0 so that the
coefficients in (3.9) must satisfy

g1>0, ¢3>0, and qiq2=g3, (3.12)
at the HB points. This criterion is used below to com-
pute HB points with respect to bifurcation parameters.

In the results below, the Sel’kov parameters in (3.3) and
the influx and efflux permeabiliites are fixed at

=09, =015, u=2, d, =08, d, =02.
(3.13)
The kinetics parameters «, € and u have been selected
so that the local dynamics of each cell is linearly stable
when it is isolated from the bulk (i.e. tr(J,) < 0). Our
goal is to seek an oscillatory instability in the intracel-
lular dynamics that is triggered by the global coupling.

Next, we compute HB points of the leading-order ODE
system (3.2) using the criteria in (3.12), parameters in
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(3.13), and with Dy = 0.5 for m = 6 identical cells. Fix-
ing « = 3.2, the HB points with respect to the cell den-
sity are p; = 0.3548 and p, = 5.2035. Since p = m/|Q|
and m = 6 is fixed, varying p corresponds to varying
the volume |Q| of the domain Q. Similarly, for a fixed
cell density p = 1.4324 (corresponding to m = 6 cells in
the unit sphere), the HB points with respect to the bulk
decay parameter « are x; = 1.5508 and x, = 16.7815.
These HB points agree with the global bifurcation re-
sults shown in Fig. 2, as computed using the numerical
bifurcation software MATCONT [33]. On the range of
parameters where the steady-state is linearly unstable,
we observe from Fig. 2 the existence of a linearly stable
periodic solution.

We remark that when the intracellular kinetics is uncou-
pled from the bulk, it is well-known for the Sel’kov dy-
namics (3.3) that Hopf bifurcations are always super-
critical (cf. [34]). By coupling the intracellular kinetics
linearly via the global mode Uj, we observe from Fig. 2
that supercritical Hopf bifurcations still occur.

25

Figure 2: Global bifurcation diagrams for the ODE system (3.2)
showing steady-states and branches of periodic solutions for m = 6
identical cells, as computed using MATCONT [33], for the Sel’kov ki-
netics (3.3) with parameters in (3.13) and with Dy = 0.5. Top panel:
For k = 3.2, the HB points occur at py = 0.3548 and p, = 5.2035.
Right panel: For the unit sphere where p = 1.4324, the HB points
occur at k1 = 1.5508 and ky = 16.7814. The red-solid and black-
dashed lines represent linearly stable and unstable branches, respec-
tively. The green loop represents linearly stable branches of periodic
solutions.

From Fig. 2 we observe that there are no intracellular
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oscillations when either « is sufficiently small or large.
Since « is the dimensionless ratio of the decay rate kp of
the bulk species to the reaction rate kg of the local ki-
netics of the cells (see (1.3)), a small value of « implies
that the rate of intracellular reactions is relatively high
compared to the decay rate of the bulk species. As a re-
sult, the intracellular dynamics tend quickly to the qui-
escent state since the Sel’kov parameters are chosen so
that the steady-state for each cell is linearly stable when
isolated. Alternatively, a large value of x implies that the
secreted intracellular species has a short length-scale for
decay in the bulk region, making it difficult to have the
strong inter-cellular communication that is needed for
collective oscillations or quorum-sensing behavior.

In Fig. 3, we show numerical results computed from
the ODE system (3.2) using ODE45 in MATLAB [35]
for m = 6 identical cells in the unit sphere where p =
1.4324, with parameters in (3.13), and with Dy = 0.5.
In the top panel of Fig. 3, where k = 1, we observe
damped intracellular oscillations leading to a linearly
stable steady-state as predicted by the bifurcation di-
agram in the bottom panel of Fig. 2. In contrast, for
kx = 3.2, in the middle and bottom panels of Fig. 3 we
observe sustained oscillations that are triggered by the
global coupling. This is consistent with the prediction
in Fig. 2 of a stable periodic solution for x = 3.2.

3.2. Quorum sensing and phase synchronization

To numerically study phase synchronization and dy-
namical quorum-sensing transitions, we will compute
solutions to the ODE system (3.1) and monitor a time-
averaged Kuramoto order type parameter in the form in-
troduced originally in [36] given by

R:<N‘1ZN:

J=1

N
explif;(H)] - <N_l Z eXp[iHj(t)]> > )
=

(3.14)

where N is the number of oscillators, 6;(¢) is the instan-
taneous phase of the j oscillator, and (. ..) represents
average over time. In this form, this order parameter
has been used previously in [37] to study phase syn-
chronization for glycolytic oscillations in suspensions
of yeast cells and in [14] to quantify the degree of syn-
chronization of chemical oscillations of porous catalytic
particles suspended in a Belousov-Zhabotinsky (BZ) re-
action mixture. This order parameter has also been used
to measure the degree of phase synchrony of coupled
non-linear chaotic oscillators [22, 21]. The value of R
ranges from O to 1, and measures the level of phase syn-
chronization of the oscillators. When R = 1, the oscilla-
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Figure 3: Numerical results for the ODE system (3.2) showing the
intracellular dynamics for m = 6 identical cells in the unit sphere,
where p = 1.43239, for Sel’kov kinetics (3.3), with parameters in
(3.13) and with Dy = 0.5. Top panel: For k = 1, damped oscillations
occur. Middle panel: For k = 3.2, there are sustained oscillations.
Bottom panel: 3-D plot for (Ug, u', u?) showing sustained oscillations
when k = 3.2. Results are consistent with the bifurcation diagram in
the bottom panel of Fig. 2.

tors are perfectly in phase, and they are perfectly out of
phase when R = 0.

To compute R we first solve the ODEs (3.1) with ran-
dom initial conditions numerically using ODE45 in
MATLAB [35]. After discarding the solution over the
transient period, we fit a single-mode Fourier series ex-
pansion to one of the solution components for each cell
and compute the instantaneous phase 6;(f) from the co-
efficients of the series, from which we calculate the
phase average z = N™' 3%, ¢, Next, we compute an
average of the instantaneous averages (z) over a speci-
fied time interval (after the system has reached a quasi
steady-state). The modulus of the difference between
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the instantaneous averages z and the time-average (z) is
computed for each time point, and the corresponding re-
sult averaged over time to obtain the order parameter R,
as given in (3.14). In our computations, we set R = 0
when the cells are in a quiescent state or when the am-
plitude of the oscillations is less than 1 x 107*.

In our examples below, the cell population m = 1000
is fixed and will be taken to be a mixture of identical
and defective cells, where the heterogeneous cells have
a different Sel’kov kinetic parameter « in (3.3). Since
p = m/|Q| and m is fixed, a change in p represents a
change in the domain volume |Q)|. In Fig. 4 we plot the
order parameter R and the amplitude of oscillation for
1000 identical cells versus p. We observe that there are
no oscillations when p is small and that there is a sudden
switch-like transition to perfect phase synchronization
when p =~ 0.36. This phase synchrony is maintained
until p ~ 5.28 where there is a further switch-like tran-
sition that leads to oscillator death and a quiescent state.

AN

p1 = 0.36

0.8

0.6

0.4

0.2

0.8
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0 1 2 3 4 5 6
p

Figure 4: The degree of phase synchronization and amplitude of os-
cillation for 1000 identical cells, computed from the ODEs (3.1) with
Sel’kov kinetics (3.3), parameters in (3.13), and with Dy = 0.5 and
k = 3.2. Top panel: The Kuramoto order parameter R in (3.14) versus
the cell density parameter p. Synchronous oscillations are triggered
at p1 = 0.36 and extinguished at py = 5.28. Bottom panel: The aver-
age amplitude of oscillation in the cells (black) and in the bulk region
(red) versus p.

To qualitatively interpret this behavior, there are no syn-
chronous intracellular oscillations when p is small since
the domain is too large for them to communicate effec-
tively through the diffusing bulk signal. As p increases,
the domain volume shrinks, thereby bringing the cells
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closer together and ultimately leading to synchronous
oscillations and quorum-sensing behavior. However, as
p continues to increase, the synchronous oscillations
are quenched because the cells become more tightly
packed, with a smaller bulk region, and so effectively
behave like a single giant cell. Since the Sel’kov pa-
rameters (3.13) are chosen so that the steady-state of an
individual cell is linearly stable when isolated from the
bulk, the steady-state for the giant cell is also stable.

To further elucidate the mechanism for the quenching of
oscillations shown in Fig. 4 when p exceeds a threshold,
we first observe from (3.4) that ul, =V, > U, u? =w, —
u/(a +p?) and Uy, — pka/ky as p — oo. As a result,
for p > 1, we have that tr(J,) = 2w,v, — 1 — (a +
v2) < 0 since the reaction-kinetic parameters are chosen
so that an isolated cell, which is uncoupled from the
bulk, has a linearly stable steady-state. Therefore, for
the polynomial (3.9) we have from (3.10) that for p > 1

g1 ~pki =0(p), qiq2 ~ p Kl (Jo)| = O(p?),

g3 ~ pkydet(J,) =0@), — qq2>q3,
(3.15)

which shows that the Routh-Hurwitz linear stability cri-
terion (3.11) is satisfied for p > 1. Therefore, for p
sufficiently large the steady-state is linearly stable. This
analysis suggests that there is a critical value p,, of the
cell density parameter p, with p,, sufficiently large, for
which the steady-state of (3.2) is linearly stable when
p > pp (see the upper threshold in Fig. 4).

In Fig. 5, we present similar results for 500 identical
and 500 defective cells. The identical cells have param-
eters in (3.13), while for the defective cells the Sel’kov
kinetic parameter « is selected uniformly from the in-
terval 0.92 < @ < 0.95. From Fig. 5, we observe that
synchronous oscillations are triggered at p = 0.44 and
quenched at p = 4.49, which provides (as expected)
a smaller range of p where phase synchrony occurs as
compared to the case of 1000 identical cells. For 200
identical and 800 defective cells, in Fig. 6 we show that
the range in p where perfect phase synchrony occurs is
further decreased as compared to that in Fig. 5.

In summary, we conclude from Figs. 4-6 that the cell
population density plays a dual role of both triggering
and quenching synchronous intracellular oscillations.
When it triggers oscillations, it does so through quo-
rum sensing. This is similar to the result obtained in
Section 4.2 of [24]. Moreover, as the percentage of de-
fective cells in the population increases, the range of
p for which synchronous oscillations are predicted de-
creases, as does the amplitude of intracellular and bulk
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Figure 5: The degree of phase synchronization and amplitude of os-
cillation for 500 identical and 500 defective cells, computed from the
ODEs (3.1) for Sel’kov kinetics (3.3) with Dy = 0.5 and k = 3.2.
The identical cells have parameters in (3.13). The kinetic parame-
ter « for the defective cells are selected uniformly from the interval
0.92 < a < 0.95, with @ = 0.9 for the identical cells. Top panel:
The Kuramoto order parameter (3.14) with respect to p. Phase syn-
chronization is triggered at py = 0.44 and extinguished at py = 4.49.
Middle panel: The average amplitude of oscillation in the cells (black)
and in the bulk region (red) with respect to p. Bottom panel: Values
of a for the 1000 cells.

oscillations. Overall, Figs. 4-6 indicate for our leading-
order system (3.1) that effective communication leading
to synchronous intracellular oscillations is more difficult
to achieve among a population of non-identical cells.

4. Effect of location on intracellular dynamics

Within the unit sphere, we now examine the effect on
the intracellular dynamics of including the O(g) correc-
tion terms in the ODEs (2.18) that incorporates the spa-
tial configuration of the cells. In order to clearly illus-
trate quorum-sensing and diffusion-mediated communi-
cation through the aid of global bifurcation diagrams we
will focus our case study below to a small population of
m = 6 cells.
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Figure 6: Same caption as in Fig. 5 except that there are now 200
identical and 800 defective coupled cells. Synchronous oscillations
are now triggered at p; = 0.5 and extinguished at py = 4.04.

The effect of cell location is encoded by the Neumann
Green’s function satisfying (2.10), which is given for
the unit sphere by (cf. [38])

L, 1 (X + x,%)
Anx|[x’ — xj| 6/Q

G(x;x;j) =
(%) = o —x)

+—1o 2 T
ar B\T-x-x, + WX -x,1) 107

(4.1a)
where the regular part of G is given by
R;=R(x)) = _ + —log(;)
S 471(1 - |Xj|2> an L=Ix;?)”
WP T
4r 10’
(4.1b)

w2 In(4.1),|Q| = 47/3 and X’ = x/|x|? is the image point to

x outside the sphere. With this explicit result, the Neu-
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mann Green’s matrix G in (2.13) can be readily evalu-
ated. Below we will consider three specific cell config-
urations within the unit sphere: symmetrically located
cells on the surface of a concentric sphere, arbitrarily
located cells on the surface of a concentric sphere, and
arbitrarily located cells within the unit sphere.

4.1. Symmetrically located cells on a concentric sphere

We consider m = 6 identical cells of a common radius
g, symmetrically located on the surface of a concentric
sphere of radius ry with 0 < ry < 1, such as illustrated
in Fig. 7 when ry = 0.5.

L
°
N0 o Y
°
-0.5

A
T 1

1 e T oo

. 0 -0.5 1-1

Y X

Figure 7: A configuration of six symmetrically located cells (in blue)
on the surface of a concentric sphere of radius ro = 0.5 within the
unit sphere. The cell locations are: (ry,0,0), (-r9,0,0), (0,rp,0),
(0, —r9p,0), (0,0, ro) and (0,0, —rop).

For this cell configuration, the Neumann Green’s matrix
G is symmetric and cyclic, so that it has the eigenpair

Ge=ce; e=(l,....,D)T, o=R +ZG(X1;Xj).
=2

4.2)

Here, o = o(ry), where ry is the distance from the origin

to the radius of the sphere on which the cells are located.

As a result, for identical cells with this configuration
we seek a solution to (2.18) where u; = u = W', u®)’
for j = 1,...,m. Upon using e’'Ge = mo, we readily
derive that (2.18) reduces to

Uj = —«Uy —p(k, Uy — kzul) — drepck o,
d 4.3)
d_ltl =F(u) + el(kl Uy — kzul) + 4dneck oey ,

where e; = (1,0)". Here p = m/|Q] is the cell density
parameter while &y, k», and ¢ are given by

_ 4nDod, 1 = 4mDod>
1= = , KE=E =TT,
dl + Dy dl + Dy (44)
— 1
= kou' — kU
¢ 471'D0( 2 1Uo)

11

By substituting ¢ from (4.4) into (4.3), we obtain a
three-component ODE system for (U, u', u?) given by

Uj = — (k + px) Uo + péu’

B =R+ (1o - '),

4.5)

where the newly introduced parameters y = y(rp) and
& = &(rp) are defined in terms of e07(rp)/D by

ET ET
=k - —k2, =ky — —kiky . 4.6
X =k Dy N =k D, \ik2 (4.6)

The ODE:s (4.5) have a similar structure to the ODE sys-
tem in (3.2). As such we now perform a HB analysis on
(4.5) following the approach used in §3.1. With Sel’kov
kinetics (3.3), the steady-state of (4.5) is

4 = H&*XP) 2 _ K
C WA +H+px) O (a+ @)
Uo = — M5
© k(1 + ) +px)

Next, we introduce a perturbation of the steady-state as

A.7)

U = U +e'y, u=u,+e'p, (4.8)
where 7 < 1 and ¢ = (¢, )7 < 1. Upon substituting
(4.8) into (4.5), we write the linearized system in matrix
form as

MY =0, (4.9)

where ¥ = (17, 1, #>)7 and M(Q) is the 3 x 3 matrix

—(k+px)—41 pé 0
M) = X (fy == I
0 oo g -
(4.10)

Here, (v, w)" = (u',u?)7, v, fi, 85 and g, are the par-
tials of f(v,w) or g(v,w) evaluated at the steady-state

u, = (v.,w.)". The characteristic polynomial for A is

L +y 2 +yA+y;=0, 4.11)
with coefficients given by
Y1 =&+E+px)—te(Je),
Y2 = det(Jo) = (k + py)tr(J) +E(k = gy,) »  (4.12)

v3 = (k + px) det(J,) — k&g, ,
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where det(J,) = €(a +v?) > 0 and tr(J,) = 2w,v, — 1 —
ela + v?) are the determinant and trace of the Jacobian
matrix J, of the Sel’kov kinetics evaluated at the steady-
state u,. Similar to the analysis in §3.1, we conclude
by the Routh-Hurwitz criterion that a HB point for the
linearization must satisfy

y1>0, y3>0, and y1y2=7y;. (4.13)
This HB criterion is used below to determine how the
triggering of oscillatory instabilities depends on Dy and
ro. Global branches of steady-state and periodic solu-
tions for (4.5) are computed using MATCONT [33].

25

0.5

Figure 8: Global bifurcation diagrams for the ODE system (4.5) ver-
sus the bulk decay rate k showing branches of steady-states and pe-
riodic solutions computed using MATCONT [33] for m = 6 identical
cells, with parameters in (3.13) and with p = 1.43239 and Dy = 0.5.
The outer loop is for cells of radius € = 0.05, symmetrically-spaced
on a concentric sphere of radius ro = 0.25 within the unit sphere, with
locations given in the caption of Fig. 7. The HB bifurcation points are
k1 = 1.5518 and ky = 24.5774. The inner loop is for the leading-order
dynamics (3.2) when € = 0 (same as bottom panel of Fig. 2), where
HB bifurcations occur at k1 = 1.551 and ko = 16.7814. The red-solid
and black-dashed lines represent linearly stable and unstable steady-
state branches, respectively. The green loops represent linearly stable
branches of periodic solutions.

In Fig. 8 we plot a global bifurcation diagram for the
ODE system (4.5) versus the bulk decay rate « for
Dy = 0.5, p = 1.4324, and for m = 6 symmetrically-
spaced identical cells on a ring of radius ry = 0.25
with a cell radius € = 0.05. The Sel’kov parameters
and permeabilities are as in (3.13). In this figure, we
have overlayed the corresponding bifurcation diagram
shown in the bottom panel of Fig. 2 that was based on
the leading-order dynamics (3.2) when £ = 0. From
Fig. 8 we observe that there are values of « for which
linearly stable periodic solutions exist for the symmetric
cells but not for the leading-order dynamics. The exis-
tence of this significantly larger upper range of x where
periodic solutions can occur is attributed to the fact that
ro = 0.25 is rather small, and so the cells are still able
to readily communicate through the bulk diffusion field
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12

even when there is a stronger decay of the bulk signal.
Overall, Fig. 8 shows clearly that the inclusion of the
O(e) terms in the ODEs (4.5), incorporating the effect
of weak spatial heterogeneity, can be a significant factor
in determining whether or not intracellular oscillations
can occur.
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Figure 9: Numerical simulation of ODE dynamics using ODE45 in
MATLAB for the parameters in the caption of Fig. 8 with k = 18.5.
Top panel: For the leading-order dynamics (3.2) there is a slow de-
cay to the linearly stable steady-state. Middle panel: For (4.5) with
symmetrically-spaced cells with ring radius ry = 0.25 and cell radius
& = 0.05, there are sustained intracellular oscillations. Bottom panel:
3-D plot showing the sustained oscillatory dynamics in the middle
panel with respect to the three variables.

In Fig. 9 we confirm the predictions of the global bifur-
cation diagram in Fig. 8. For k = 18.5, the intracellular
dynamics are predicted to have a linearly stable steady-
state for the leading-order dynamics (3.2). In contrast,
for this same value of «, synchronous intracellular oscil-
lations are predicted for (4.5) when the O(¢) spatial ef-
fects are included. These two predictions are confirmed
from the ODE dynamics shown in the top and middle
panels of Fig. 9. In the bottom panel of Fig. 9 we show
a 3-D plot of the sustained oscillation for (4.5), which
shows that the amplitude of bulk oscillations is rather
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small as compared to those in the cells.

In the top panel of Fig. 10 we study the effect on the
global bifurcation diagrams for (4.5) of varying the ring
radius rg for m = 6 symmetrically-spaced cells. The
remaining parameters are as in the caption of Fig. 8.
From this figure, we observe that the smallest range of
the bulk decay parameter x for which intracellular os-
cillations are predicted is for ry = 0.5, followed by
ro = 0.85, and then ry = 0.25. When ry = 0.5, the cells
are far from each other and from the domain boundary,
so that it is more difficult to trigger synchronous oscil-
lations through the bulk medium than for y = 0.25. For
ro = 0.85, although the cells are far from each other,
each cell is relatively close to an “image” cell through
the reflecting boundary of the domain, resulting in a
pairwise intracellular communication. In the bottom
panel of Fig. 10, we plot the two HB points in « ver-
sus rp, as computed using two-parameter continuation
in MATCONT [33] (solid black curves) and from the
HB criteria in (4.13) (blue dots). In this figure, linearly
stable periodic solutions exist in the region between the
two black curves. For ¢ = 0.05, we observe that the
smaller HB value of « is rather insensitive to r( provided
that 2¢ = 0.1 < rp < 1 —2¢ = 0.9. Since the asymp-
totic theory leading to the ODEs (4.5) is valid only for
well-separated cells, we require O(e) < ry < 1 — O(e).
From the bottom panel of Fig. 10, the smallest range of
« where periodic solutions occur is when ry = 0.6, with
HB points at «; =~ 1.55 and «, = 13.7.

Fig. 11 shows the time-dynamics of the ODEs (4.5) for
three pairs of (g, x) and with remaining parameter val-
ues as in the caption of Fig. 10. The dynamics shown
agree with the results predicted from the global bifurca-
tion diagrams in Fig. 10.

Next, we investigate the effect of the bulk diffusivity
Dy on the dynamics. In the top panel Fig. 12 we plot
the global bifurcation diagram for (4.5) versus Dy for
two values of &€ when ry = 0.25 and xk = 18.5. When
accounting for a finite cell radius, we observe that the
range of Dy where oscillations are predicted is larger
than for the leading-order ODE system (3.2) where
g = 0. In the bottom panel of Fig. 12 we plot the two
HB points in Dy for each 7y in 0 < ry < 1 as computed
from MATCONT from (4.5) or from our HB criteria
(4.13). Linearly stable periodic solutions exist in the re-
gion bounded by the black curves. Since our asymptotic
theory is valid only when O(¢) < ryg < 1-0(¢), we ne-
glect the horizontal line near ry = 1 in the bottom panel
of Fig. 12. From this figure, we observe that in the com-
pletely well-mixed limit, for which Dy — oo, no intra-
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Figure 10: Top panel: Global bifurcation diagrams for the ODE sys-
tem (4.5) versus k for three values of ring radii ro, as computed using
MATCONT [33] for m = 6 symmetrically-spaced identical cells of
radii € = 0.05, with parameters in (3.13) and with p = 1.43239 and
Do = 0.5. The HB points are: k1 = 1.5518, ko = 24.577375 for
ro = 0.25; k1 = 1.5504, ko = 13.5721 for ry = 0.5; k1 = 1.5506,
k2 = 15.5074 for ro = 0.85. Bottom panel: Two-parameter HB con-
tinuation for k versus ro. The black curves are the HB boundaries
computed from MATCONT. The blue dots are based on the HB crite-
ria in (4.13). Linearly stable periodic solutions exist in the region be-
tween the two black curves. The asymptotic theory is valid only when
O(e) < ry < 1 =0(¢), and so the vertical lines are not relevant.

cellular oscillations will occur when 0.2 < ry < 0.8, as
the bulk signal is washed out. However, for a finite Dy in
some range, intracellular oscillations do occur. We sug-
gest that this can be interpreted as diffusion-sensing be-
havior. For ry = 0.25 and « = 18.5, the time-dynamics
computed from (4.5) shown in Fig. 13 confirm the pre-
dictions of our bifurcation diagram in the top panel of
Fig. 12 for three pairs of (g, Dy).

4.2. Arbitrarily located cells on a concentric sphere
We now consider m = 6 identical, but non-equally
spaced cells on a concentric ring of radius ry within the
unit disk. For identical cells, for which k;; = k; and
kyj = ko for j = 1,...,m, the ODE system (2.18) re-
duces to

Up= U + = i (bl —kiUs)  (414a)
=1

4rpk, e &

(69);. (4.14b)

J=1



534

535

536

537

—1WN
3
0
0 100 200 300 400 500
time
1 R
%05
0 100 200 300 400 500
time
2
51.5
1
450 460 470 480 490 500
time
1
0.6
450 460 470 480 490 500
time
15
3
1
450 460 470 480 490 500
time
1
0.6
450 460 470 480 490 500
time

Figure 11: Numerical simulations of ODE dynamics for (4.5) for the
parameters in the caption of Fig. 10. Top panels: ry = 0.5 and k = 23
(decaying oscillations). Middle panels: ro = 0.5 and « = 7.5 (sus-
tained oscillations). Bottom panel: ro = 0.25 and k = 20 (sustained
oscillations). The results agree with our predictions in the bifurcation
diagrams of Fig. 10.

which is coupled to the intracellular dynamics by
du j

i = Fj (llj) - el(kgu} -k U()) + 47Tk18€1(gﬂ6)j ,

(4.14c¢)
for j = 1,...,m, where e; = (1,0)7, p = m/|Q] is the
cell density parameter, € is the common radius of the
cells, and G is the Neumann Green’s matrix of (2.13),

which depends the spatial configuration of the cells. In
(4.14), k; and k, are defined in (4.4), and ¢; is given by

~ 1 1 = _ ~\T
Cj:4nD0(k2uj—k1U0), c:(El,...,cm) .
(4.144)
For m = 6, (4.14) is an ODE system of dimension 13.

For all the results and figures in the subsection, we use
Sel’kov kinetics (3.3) with parameters and permeabili-
ties as in (3.13). The cell centers are given in Table 1
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Figure 12: Top panel: Global bifurcation diagrams when k = 18.5
and ro = 0.25 for the ODE system (4.5) versus Dy for € = 0.05 and
for the leading-order dynamics (3.2) where € = 0, as computed using
MATCONT [33]. The remaining parameters are in (3.13) with p =
1.43239. The range in Dy where oscillations occur is larger when
e = 0.05. Bottom panel: Two-parameter HB continuation for Dy
versus ro when € = 0.05. The black curves are the HB boundaries
computed with MATCONT, while the blue dots were obtained using
the HB criteria in (4.13). Linearly stable periodic solutions exist in the
region enclosed by the black curves. The horizontal line near ro = 1
is not relevant as it signifies the breakdown of the well-separated cell
assumption that is required for the derivation of the ODE system.

of Appendix B.1. A schematic illustration of the cell
configurations for ro = 0.5 and ry = 0.85 is shown in
Fig. 14. Our goal is to determine the effect on intracel-
lular oscillations of the new arrangement of cells.

In Fig. 15 we compare the global bifurcation dia-
grams versus « for the leading-order dynamics, com-
puted using (3.2), with those for either symmetrically-
or arbitrarily-spaced cells on a concentric sphere of ra-
dius rp = 0.25 and cell radius € = 0.05, as com-
puted from either (4.5) or (4.14), respectively. For these
three scenarios, we observe that the largest range of «
for which linearly stable periodic solutions exist is for
arbitrarily-located cells. This increased range is likely
due to the fact that for arbitrarily-spaced cells, there
is at least one pair of cells on the surface of the con-
centric sphere that are closer than when the cells have
maximum inter-cell distance, such as is the case for
the symmetrically-spaced configuration. Cells that are
in closer proximity can trigger intracellular oscillations
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Figure 13: Numerical simulations of ODE dynamics for (4.5) for the
parameters in the caption of Fig. 12 with ro = 0.25 and k = 18.5.
Top panel: € = 0 and Dy = 0.52 (decaying oscillations). Middle
panel: & = 0.05 and Dy = 0.52 (sustained oscillations). Bottom
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agree with our predictions in the bifurcation diagrams of Fig. 12.

even when the bulk decay rate « is rather large. We em-
phasize that when cells are located on a concentric ring,
the effect of the nearest “ghost” cell across the reflecting
outer boundary of the sphere is the same for each cell.

In Fig. 16, we show the time-dynamics for the ODE sys-
tems (4.5) and (4.14) for a few values of « that confirm
predictions from the bifurcation diagrams of Fig. 15. In
this figure, the colors of the curves correspond to the
color codes for the cells in Fig. 14 and Table 1. In the
top two panels, where k = 28, we observe a slow syn-
chronous oscillatory decay to the linearly stable steady-
state for the symmetrically-spaced cell configuration.
However, when « = 28, from the middle two panels
in Fig. 16 we observe roughly synchronous intracellular
oscillations for the arbitrarily-spaced pattern, Finally, in
the bottom two panels, for k = 36 and arbitrarily-spaced
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Figure 14: Schematic plot for m = 6 identical, but non-equally
spaced, cells centered on a concentric sphere of radius ro = 0.5 (top
panel) and ry = 0.85 (bottom panel) within the unit sphere. The cell
centers can be generated from Table 1 of Appendix B.1 for a given ry.
The color codes are for easy referencing.

cells, we observe a slow decay of intracellular oscilla-
tions to the linearly stable steady-state.
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Figure 15: Global bifurcation diagrams versus k comparing the range
where intracellular oscillations occur for either the leading-order dy-
namics, symmetrically-spaced cells, or arbitrarily-spaced cells, as
computed from (3.2), (4.5) and (4.14), respectively, using MATCONT
[33]. Parameters as in (3.13) with p = 1.4324 and Dy = 0.5. The
concentric ring has radius ro = 0.25 and € = 0.05. The green loops
representing periodic solutions for the leading-order dynamics and
for symmetrically-spaced cells are as in Fig. 8. For arbitrarily-spaced
cells, with cell locations generated from Table 1, the HB points are at
k1 = 1.5525 and kp = 29.9604.

Next, for arbitrarily-spaced cells, we study the effect of
the radius ry of the concentric sphere on which the cells
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Figure 16: Numerical simulations of ODE dynamics for (4.5) and
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with k = 28, showing sustained and nearly synchronous oscillations.
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undergo a slow decay to the steady-state when k = 36. Colors corre-
spond to the color codes for the cells in Fig. 14 and Table 1.

are located. The global bifurcation diagrams are shown
in the top panel of Fig. 17, while in the bottom panel
of Fig. 17 we plot the HB bifurcation points k versus
ro using two-parameter continuation. These bifurcation
diagrams have a very similar qualitative dependence on
ro as for the bifurcation plots shown in Fig. 10 for the
case where the cells are symmetrically-spaced.
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Figure 17: Top panel: Global bifurcation diagrams for the ODE sys-
tem (4.14) versus « for three values of ring radii ro, as computed us-
ing MATCONT [33] for m = 6 arbitrarily-spaced identical cells on
a ring, with locations as generated from Table 1, with p = 1.43239
and Dy = 0.5. For these values of ry, the largest range of k where
intracellular oscillations occur is for ro = 0.25. Bottom panel: Two-
parameter HB continuation for k versus ro computed from MATCONT.
Linearly stable periodic solutions exist in the region between the two
black curves. The vertical lines are not relevant as they signify the
breakdown of the well-separated cell assumption.

In the global bifurcation diagrams of Fig. 18, we il-
lustrate a qualitatively new behavior that occurs for
ro = 0.85 when we further extend the range of «. In
particular, we observe that there is an additional HB
point at k3 = 35.0067. As shown in Fig. 18, linearly
stable periodic solutions are predicted when 1.5509 <
k < 16.6489 and for k > 35.0067. We emphasize that
periodic solutions do not exist for such large values of «
when either ryp = 0.25 and ry = 0.5.

As a qualitative explanation of the additional HB thresh-
old in Fig. 18, we first observe that when the ring radius
is ro = 0.85 (which is rather close to unity), for each cell
on the ring the nearest neighbour is the “ghost” cell that
exists on the other side of the domain boundary owing to
the reflecting boundary condition. For large « the bulk
signal Uj is strongly degraded and so effectively only
those cells that are spatially close to each other can com-
municate and trigger oscillations. This pairwise interac-
tion of the ring cells with their “ghost” cells is likely the
mechanism underlying the additional branch of periodic
solutions shown in Fig. 18 when « is large.

In Fig. 19 we show results from numerical simulations
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Figure 18: Global bifurcation diagrams for the ODE system (4.14)
versus k, as computed using MATCONT [33] for m = 6 arbitrarily-
spaced identical cells located on a ring of radius ro = 0.85, with cell
locations generated from Table 1. The remaining parameters are the
same as in Fig. 17. There are now three HB bifurcation points at
k1 = 1.5509, k; = 16.6489 and k3 = 35.0067

of the ODE system (4.14) that support the predictions
from the global bifurcation diagram in Fig. 18. In par-
ticular, in the top two rows where k = 5, synchronous
oscillations are observed in the entire cell population. In
the middle two rows where k = 25, damped oscillations
occur. However, in the bottom two rows where « = 45,
we observe that asynchronous intracellular oscillations
occur. In particular, the green, cyan, and blue cells syn-
chronize their dynamics, while the red, black and ma-
genta cells also synchronize. However, the dynamics
of these two groups of cells are out of phase. We be-
lieve that the grouping and synchronization of the cells
is based on their spatial proximity, although it is unclear
why there only two sub-groups. From Table 2, we ob-
serve that the red, black, and magenta cells are closest
to each other, while the green, cyan, and blue are also
closest to each other. As « is increased, corresponding
to a stronger decay of the bulk signal, the cell-cell dis-
tances become an increasingly important factor in de-
termining which cells will synchronize. We remark that
for ro = 0.25 and ry = 0.5, where all the cells are much
more closely spaced, asynchronous oscillations do not
occur when k = 45.

Lastly, we present global bifurcation diagrams versus
Dy in the top panel of Fig. 20 that compares results for
the leading-order dynamics, for symmetrically-spaced
cells on a ring of radius ry = 0.25, and for arbitrarily
located cells on a ring of radius ry = 0.25, as computed
from (3.2), (4.5) and (4.14), respectively. We observe
that the range of Dy for which linearly stable periodic
solutions exist when the cells are arbitrarily located on
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the ring is only slightly larger than that of symmetric
cells. This is likely due to the closer spatial proximity
of some cells in this configuration relative to the sym-
metric cell pattern. For both configurations, when Dy is
large, the bulk species diffuses away from the cells mak-
ing it difficult for the cells to communicate. In the bot-
tom panel of Fig. 20, we plot the HB bifurcation curves
for ry versus D for the arbitrarily-spaced configuration.

4.3. Arbitrarily located cells within the unit sphere

In this subsection we consider m = 6 identical cells that
are arbitrarily located within the unit sphere, such as
shown Fig. 21. The centers of the cells are chosen as
in Table 3, and the common cell radius is € = 0.05. For
this cell configuration, we use the ODE system (4.14) to
compute global bifurcation diagrams and we will cal-
culate the Kuramoto order parameter (3.14) to study
diffusion-mediated synchronization in the cells as Dy is
increased.

For this cell configuration, in Fig. 22 we plot global bi-
furcation diagrams versus « (top panel) and versus D
(bottom panel) as computed from (4.14) using MAT-
CONT [33]. In the top panel of Fig. 22 where Dy = 0.5,
the HB points are «; = 1.5521 and x, = 15.2509, while
for the bottom panel where k = 3.2 the HB occurs when
Dy = 0.0310. In this case, we observe that linearly sta-
ble periodic solutions exist for all Dy > 0.0310.

To further investigate the effect of diffusion on the in-
tracelluar dynamics, in the top panel of Fig. 23 we show
numerical results for the Kuramoto order parameter R
(3.14) that measures the degree of phase synchroniza-
tion of intracellular dynamics as Dy increases. In the
bottom panel of Fig. 23 we also show the amplitude of
oscillations in the cells and in the bulk region versus
Dy. From the top panel of Fig. 23 we observe that there
are no intracellular oscillations when Dy < 0.0301, but
that phase synchronization becomes more evident as D
increases past Dy = 0.0301, with almost perfect phase
synchronization achieved when Dy =~ 0.1.

These results illustrate diffusion-mediated synchroniza-
tion, where an increase in the diffusion rate of the bulk
species increases synchronization in the dynamics of the
cells. We now verify our prediction from numerical sim-
ulations of the ODE system (4.14) for the cell configu-
ration shown in Fig. 21. The results for u; are shown in
Fig. 24 for Dy = 0.02 (top row), Dy = 0.0320 (second
row), Dy = 0.0654 (third row), and Dy = 0.1348 (fourth
row). As predicted by the Kuramoto order parameter in
Fig. 23, there are no sustained oscillations in the cells
for Dy = 0.02. For Dy = 0.0320 (second row), the cells
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Figure 19: Numerical simulations of ODE dynamics for (4.14) com-
puted using MATLAB for the parameters in the caption of Fig. 18
for arbitrarily-spaced cells on a concentric ring of radius ry = 0.85
within the unit disk. Top rows: For k = 5, sustained synchronous os-
cillations occur for the entire population. Middle rows: For k = 25,
decaying oscillations occur. Bottom rows: For k = 45, asynchronous
oscillations for two groups of cells that are the most closely spaced.
The color codes of the trajectories correspond to the color codes for
the cells in Fig. 14. The cell-cell distances are given in Table 2.

begin to oscillate with only those that are in close spa-
tial proximity beginning to synchronizing their dynam-
ics, but with small amplitudes. As Dy increases further,
phase synchronization becomes evident as shown in the
third row where Dy = 0.0654. The last row of Fig. 24
where Dy = 0.1348 shows perfect phase synchroniza-
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Figure 20: Top panel: Global bifurcation diagrams for the ODE
system (4.14) versus Dy for k = 18.5, comparing results for the
leading-order dynamics, for symmetrically-spaced cells on a ring, and
for arbitrarily-spaced cells on a ring, as computed using MATCONT
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Bottom panel: Two-parameter HB continuation for ro versus Dq for
arbitrarily-spaced cells on a ring. The horizontal line near ro = 1 is
beyond the range where the well-separated cell assumption is valid.
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Figure 21: A schematic illustration for m = 6 identical cells arbitrar-
ily located within the unit sphere. The centers of the cells are given in
Table 3. The color codes are for easy referencing.

tion in the intracellular dynamics.

5. Instability triggered by a single cell

In this section, we study quorum-sensing (QS) behavior
where a single additional cell is able to trigger intra-
cellular oscillations for an entire collection of cells that
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Figure 22: Global bifurcation diagrams versus « (top panel) or versus
Dy (bottom panel) for the ODE system (4.14) computed using MAT-
CONT for m = 6 identical cells arbitrarily located inside the unit
sphere, with cell centers given in Table 3 (see Fig. 21) and with cell
radius € = 0.05. Top panel: For Dy = 0.5, the HB points are at
k1 = 1.5521 and « = 15.2509. Bottom panel: For k = 3.2, the unique
HB point is Dy = 0.0320. We predict that intracellular oscillations
now occur for all Dy > 0.03, and so will exist in the completely well-
mixed regime where Dy — co.

would otherwise be in a quiescent state. For the three
configurations of m = 6 identical cells in the unit sphere
considered in § 4, we introduce an additional cell cen-
tered at (0.75,0,0) and compare the global bifurcation
diagrams for m = 6 and m = 7 identical cells. To es-
tablish QS behavior, we seek parameter regimes where
linearly stable periodic solutions exist for m = 7 cells,
but not for m = 6 cells. In contrast to the typical study of
QS behavior from ODE:s in the well-mixed limit where
spatial effects are neglected, our results below shows
that the range of x where QS occurs is dependent on
the specific cell configuration used in § 4. The bifur-
cation results below are computed from the ODE sys-
tem (2.18) using MATCONT [33] for the Sel’kov pa-
rameters in (3.13) and with p = 1.4324, Dy = 0.5, and
e =0.05.

We first consider the symmetrically-spaced cell config-
uration with ring radius ro = 0.5, where the updated
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Figure 23: The degree of phase synchronization for m = 6 identical
cells of radius € = 0.05 arbitrarily located inside the unit sphere as
shown in Fig. 21, computed using the ODEs (4.14) with k = 3.2. Top
panel: The Kuramoto order parameter R (3.14) versus Dy. Oscilla-
tions are triggered at Doy ~ 0.0301 and perfect phase synchronization
is achieved at Dy = 0.1. Bottom panel: Average amplitude of oscilla-
tion in the cells (black) and in the bulk region (red) versus Dy.

configuration that includes the seventh cell (in orange)
is shown in the top row of Fig. 25. In the second row of
Fig. 25 we show the global bifurcation diagrams versus
the bulk decay rate « for either m = 6 or m = 7 identi-
cal cells. From this figure, we observe that on the range
13.5721 < k < 16.9869 collective intracellular oscilla-
tions will occur only when the seventh cell is added. To
further illustrate this QS behavior, we compute the time-
dependent dynamics of u;(¢) from the ODEs (2.18) for
m = 6 and m = 7 cells with k = 16, as shown in the third
and fourth rows of Fig. 25, respectively. For m = 6, we
observe, as expected, a slow synchronous decay of the
intracellular oscillations to their common steady-state
limit. However, by introducing the additional cell, we
observe from the fourth row of Fig. 25 sustained, nearly
synchronous, intracellular oscillations of different am-
plitudes. In particular, the cell closest to the seventh
(orange) cell is the black cell centered at (0.5, 0,0). We
observe that among all the cells, these two cells have the
largest amplitude of oscillations.

A similar result is shown in Fig. 26 for m = 7 identi-
cal cells, where six of the cells are arbitrarily located
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Figure 24: Numerical simulations of the ODE system (4.14) showing
the intracellular species uj; as computed using MATLAB for m = 6
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2: Dy = 0.0320, Row 3: Dy = 0.0654, and Row 4: Dy = 0.1348
where almost perfect phase synchrony occurs. Colors correspond to
the color codes for the cells in Fig. 21.

on a ring of radius ryp = 0.5, where the coordinates of
the cell centers are in Table 1. The cell configuration is
shown in the top row of Fig. 26. From the global bifur-
cation diagrams shown in the second row of Fig. 26, for
the range 14.0392 < « < 17.4189 collective intracel-
lular oscillations will occur only when the seventh cell
is added. For « = 17, the trajectories for u;(¢) com-
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puted from the ODEs (2.18) for m = 6 and m = 7 cells
are shown in the third and fourth rows of Fig. 26, re-
spectively. For this cell configuration, we observe that
it is now the green cell that is closest to the seventh (or-
ange) cell. From the fourth row of Fig. 26, we observe
that these two cells oscillate in near synchrony and they
have the largest amplitudes of oscillation.

Finally, we assume that the six cells are arbitrarily lo-
cated inside the unit sphere as shown in the top row
of Fig. 27. The centers of the first six cells, their dis-
tances from the origin, and their center-to-center dis-
tances are as in Tables 3 and 4, respectively. Based on
the global bifurcation diagrams shown in the second row
of Fig. 27, on the range 15.2509 < « < 17.41885 collec-
tive intracellular oscillations will occur only when the
seventh cell is added. The numerical results for the tra-
jectories u(t) computed from the ODEs (2.18) when
k = 17, as shown in the third and fourth rows of Fig. 27,
confirm this predicted QS behavior. From calculating
the sum of the inter-cellular distances in each row of
Table 4, we observe that the magenta-colored cell is the
one that is on average closest to the other cells. As a re-
sult, ignoring the effect of the domain boundary and the
image cells outside the domain, which is different for
each cell, qualitatively one might expect that this cell
will have larger amplitude oscillations than the other
cells (see the fourth row of Fig. 27).

Opverall, these results show that the inclusion of one sin-
gle additional cell can, in some parameter range of «,
trigger intracellular oscillations in the entire collection
of cells that otherwise would not occur. Moreover, we
emphasize that the ranges of k where this QS behavior
will occur depends on the particular spatial configura-
tion of cells. This additional qualitative feature that ac-
counts for the effect of spatial heterogeneity results from
the Neumann Green’s matrix in (2.18).

6. An integro-differential system for D = O(1)

In the limit € — 0, we asymptotically reduce (1.2) to de-
rive an integro-differential ODE system for the intracel-
lular dynamics u;(), which is valid when D = O(1). For
D = O(1), the limiting bulk diffusion field is no longer
approximately spatially homogeneous, and so the previ-
ous analysis in §2 is no longer valid. For simplicity, in
the analysis below we will assume that the initial condi-
tions are u;(0) = 0 and that U(x,0) = 0.

Since there is no initial transient near the cells, we can
use the quasi-steady approximation near the cells for all

t > 0. In this way, for r = O(1), in the jth inner region
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Figure 25: Global bifurcation diagram and numerical results for uj
from the ODE system (2.18) computed using MATLAB for m = 6 and
m = 7 identical cells of radius € = 0.05 and with Dy = 0.5. Top row:
Schematic diagram showing the locations of the cells, where the first
six cells are symmetrically placed on a concentric sphere of radius
ro = 0.5 (see Fig. 7 for the centers of the cells) and the seventh cell
is located at (0.75,0,0). Second row: Global bifurcation diagram for
the first six cells only (inner loop) with HB points at k; = 1.5504 and
ko = 13.5721, and for all the seven cells (outer loop) with HB points at
k1 = 1.6465 and k = 16.9869. Third Row: Numerical simulations for
ujy from the ODE system (2.18) for the first six cells only for k = 16,
showing decaying oscillations. Bottom row: For k = 16, by including
the seventh cell, sustained nearly synchronous oscillations will occur.
The colors of the trajectories correspond to the color codes for the
cells in the top row.
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Figure 26: Same caption in Fig. 25 except that the first six cells are
arbitrarily-spaced on a concentric sphere of radius ro = 0.5 (see
Table 1 for the centers of the cells), with the seventh cell located at
(0.75,0,0). Top row: Schematic diagram showing the locations of the
cells. Second row: Global bifurcation diagram for the first six cells
only (inner loop) with HB points at ki = 1.5504 and «; = 14.0392,
and for all the seven cells (outer loop) with HB points at k; = 1.6460
and Kk = 17.4189. Numerical results for uj () from the ODE system
(2.18) when k = 17 for the first six cells (third row) only and by in-
cluding the seventh cell (bottom row). We observe that the inclusion
of the seventh cell triggers sustained, and nearly synchronous, oscil-
lations in all of the cells. The colors of the trajectories coincide with
the color codes of the cells in the top row.

we introduce the local variables y = elx-x ), =1yl,
and V;(y, 1) = U(x; + gy, t). From (1.2a) and (1.2c), we
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Figure 27: Same caption in Fig. 25 except that the first six cells are
arbitrarily spaced within the unit sphere (see Table 3 for the centers
of the cells), with the seventh cell located at (0.75,0,0). Top row:
Schematic diagram showing the cell locations. Second row: Global
bifurcation diagram for the first six cells only (inner loop) with HB
points at k1 = 1.5521 and k = 15.2509, and for all the seven cells
(outer loop) with HB points at k; = 1.6453 and k» = 17.4885. Nu-
merical results for uji(t) from the ODE system (2.18) when k = 17
for the first six cells (third row) only and by including the seventh cell
(bottom row). Once again, the seventh cell triggers sustained, and
nearly synchronous, oscillations in all of the cells. The colors of the
trajectories coincide with the color codes of the cells in the top row.

get the leading-order quasi-steady problem

AerZO, for r>1,

dy 6.)
DB,Vj:dle——ujl, on 7‘21,
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which has the radially symmetric solution

Vi

Aj
V(y,l‘)=7+Bj, Aj:m

edy;
).
J
(6.2)

where A; = Aj(t, &), B; = Bj(t,¢) and uj; = uj(¢), with
initial values A; = B; = u;; = 0 when t = 0. Here y; is

47TDd2j
d]j +D ’

)’j (63)

By substituting (6.2) into the intracellular dynamics
(1.2d) we obtain the following ODE that is coupled to
Bjforeach j=1,...,m:

du; edy;
S = Fj (llj) —vyjuje; + —j‘)/ij([)el .

— 6.4
dr dzj ©4)

To determine B;(t) we must match the inner solution
near the cells to an outer bulk solution. Upon writing
(6.2) in outer variables by using er = |x — x/|, we obtain
that the outer bulk solution U(Xx, t) satisfies

U, = DAU — kU, xe Q\{xy,...,x,}; Ux;0)=0,

b; .
~ 47T_D|X—Xj| +Bj+o0(l), as x—>x;, j=1,...,m,
0,U=0, xeidQ,
(6.5a)
where we have defined
8’)/jd1j
bj(t) = yjujl(t) - 4y Bj(l‘) . (6.5b)
J

To solve (6.5), we first take the Laplace transform to
derive that U(x, s) = L [U(x, 1] satisfies

A (K+S) A & 131(
AU - = U_—I;E(S(x—xk), xeQ,
. b 1 R ,
U~47r_D|x—x]|+Bj’ as x—>Xx;, j=1,...,m,
0,U=0, xeoQ,
(6.6)
where Bj =L [bj(t)] and 3j =L [Bj(t)].
Next, we decompose (6.6) by writing
U(x, s) = zm: @GA(X $3X5) (6.7)
9 k:] D 9 9 k 9 .



where G(x, s; Xx) is the Green’s function satisfying

A + A

AG—(KDS)G:—(S(x—xk), XeQ,

. 1 .

G~——+R+0(1), as x—oXx,
4r|x — X¢|

9,G=0, xedQ,

(6.8)

where Ri(s) is the regular part of G, which depends on
x;. It readily follows that the inverse Laplace transform
is

Gux.t:x) = D' L7 [Gx. sixp)| . (6.9)

where G (X, t; X;) is the heat kernel for Q defined by the
solution to

0,G, = DAG, — kG;,, x€eQ,
G(x,0;x) =6(x—xy); 0,G, =0, x€dQ.

(6.10)

We remark that for the unit sphere, G and ﬁk can be de-
termined analytically as (see equations (3.13) and (3.14)
of [39])

—a|xX—xg|
G(x, 5:%;) = ———— + G (X, 5;Xp), (6.11a)
An|x — X
where @ = /(s + «)/D is the principal branch of the

square root and where

(2n +1)8,
P e P (€08) Lyl i o).
VIxIIxi|

(6.11b)
In (6.11b), cos(w) and the coeflicients 3, are defined by

aK,3(a) — nKy2(a@)
alyzp(@) + nlypp(@)

(6.11¢)
P,(z) are Legendre polynomials, and [,.1,2(z) and
K,+1/2(z) are modified Bessel functions of the first and
second kind. By letting x — x; in (6.11), we use
P,(1) = 1 to identify the regular part in (6.8) as

X - Xg

’ﬁnE

Ri(s) = Z(zn + DBy [l pabe)]
" (6.12)

Next, by letting x — X; in (6.7) we enforce that the
limiting behavior agrees with that required in (6.6). This

yields for each j = 1,...,m that
b(s)A 2y br(s) A .
Ri(s) + Z it )G(xj,s;xk)sz(s). (6.13)
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Upon using the leading order term b i = vty + O(e)
from (6.5b), we obtain that

B; i(s) ~ —ujl(s)R (s)+Z —ukl(s)G(X],s x;)+0(e).
k#j

(6.14)

Finally, we invert the Laplace transform using (6.9) and
the convolution property to obtain for j = 1,...,m that

Yi ("
B,(r):B’fuﬂ(T)R,(r—r)dr
0

S f (1) Gi(xjo 1 = 7. x0)

k#j

(6.15)

where R;() = L [ﬁ j(s)]. The integro-differential sys-
tem for the intracellular kinetics u;(#), with initial value
u;(0) = 0, is obtained by substituting (6.15) into (6.4).

We emphasize that for the sphere, where analyti-
cal formulae for the Laplace transforms of R;(f) and
Gu(xj,t,x;) are available (see (6.11) and (6.12)), it
should be possible to use the sum-of-exponentials
(cf. [40], [41], [42]) approximation in the Laplace
transform plane for the convolution kernels in (6.15) in
order to develop a time-marching scheme for the intra-
cellular dynamics. This is the topic of ongoing work.

6.1. The Well-Mixed Limit

In a bounded domain, the coupling between the cells be-
comes stronger as the bulk diffusivity D increases since
the signalling molecule mediating intercellular interac-
tions cannot escape to infinity as in R>.

In particular, when D = Dy/e > 1 and when the influx
permeability parameter is on the range d;; = O(s™'),
we now show that (6.4) and (6.5) reduces to leading-
order to the strongly coupled well-mixed limiting sys-
tem (3.1).

For D = Dy/e and d, j = dij/e, we have to leading-order
from (6.5a) that B; = B. for j = 1,...,m. By expanding

1
U=U0+BU1+"', (616)
where U,y = B, we obtain that U, satisfies
AU1:U6+KUO— bjé(X—Xj), xeQ,
j:Zl (6.17)

anU]:O, xeﬁQ,
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where b; = b;(t) from (6.5b) is given in terms of d jand
Dy by

47l'd2jD0

C?lj + Dy '
(6.18)

From the divergence theorem applied to (6.17) we get

that Uy = —«Up + Q! Z;f'zl b;. Together with (6.4),

this yields the leading-order well-mixed system of (3.1)

given by

di;
bj:yjujl—’yjd—;Bj, where y; =
j

1 &( dy
Uy = —«Up - — (y-—Uo—y-uvl),
0 |Q|j_zl ]de J7

dllj

dr

(6.19)

=F 4y u
=X (llj) —vjujier + d_zjyj 0€1»

where |Q)| denotes the volume of Q. We emphasize
that in this well-mixed limit where D = Dgy/e and
dyj = d; j/€, the intercellular interactions are O(1) as
& — 0. This is in contrast to the D = O(1) regime
where intercellular interactions are only O(e) < 1.

7. Discussion

We have extended the coupled 2-D cell-bulk ODE-
PDE model of [18, 23, 24] to a 3-D bounded domain,
where the cells are small spheres of a common radius
that are spatially segregated within the domain. Our
model is related to the 3-D cell-bulk model formu-
lated in [19, 20, 25] in all of R3, where there was a
single intracellular species within each cell and where
the bulk medium was purely diffusive. In a bounded
3-D domain, and in the limit of large bulk diffusiv-
ity D = Dgy/e, where Dy = O(1) and ¢ < 1, the
method of matched asymptotic analysis was used to re-
duce the cell-bulk ODE-PDE model to a novel ODE
system for the average bulk chemical concentration that
still retains the diffusion parameter Dy and an O(g)
correction term that depends on the spatial configu-
ration of the cells through the Neumann Green’s ma-
trix. For a spherical domain, where this Green’s matrix
can be evaluated analytically, and for two-component
Sel’kov-type intracellular reaction-kinetics, we showed
from our ODE system that both quorum-sensing and
diffusion-mediated communication can occur. We em-
phasize that our new ODE system is distinct from the
type of ODE system with global coupling that is usu-
ally formulated in the well-mixed limit D — co to study
quorum-sensing behavior, where spatial heterogeneity
is neglected and there is no diffusivity parameter.

For the leading-order dynamics of our ODE system,
where the spatial configuration of cells is neglected, we
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used the Kuramoto order parameter to study the degree
of phase synchronization in the intracellular dynamics
as a cell density parameter p = m/|Q| increases for a
fixed population of m = 1000 cells. The cell population
was composed of two groups: identical cells and defec-
tive cells, the latter of which have a random parameter
in the Sel’kov reaction kinetics. For all the scenarios
considered, and as similar to the results in section 4.2 of
[24], the cell density parameter was shown to play a dual
role of both triggering and quenching intracellular oscil-
lations. Synchronous oscillations are triggered through
quorum sensing when the cell density crosses a specific
threshold, and are extinguished when the cell density
parameter exceeds a further threshold. The QS behavior
observed here leads to a roughly switch-like transition
of the cells from a quiescent state to perfect phase syn-
chronization. The range of p where nearly perfect phase
synchronization occurs was shown to decrease as the
heterogeneity in the cell population increases. This ob-
servation conforms with the usual belief that it is more
difficult to trigger intracellular oscillations for a popula-
tion of non-identical cells (cf. [26], [27]).

Furthermore, for a small population of six cells, we
studied the effect of the spatial configuration of the cells
on their intracellular dynamics by including the O(e)
correction terms of the novel ODE system (2.18) in our
analysis. These correction terms incorporate the spatial
locations of the cells into the ODE system. Their co-
efficients can be rather significant even for moderately
small values of € and, as a result, we showed that they
played an important role in studying quorum-sensing
and diffusion-mediated intercellular communication.

There are several possible extensions of the modeling
framework and analysis provided in this paper. Firstly,
for our novel ODE system, which incorporates weak
spatial heterogeneity, it would be interesting to con-
sider the influence of a single defective cell with dif-
ferent reaction-kinetics or membrane permeabilities on
a population of identical cells, similar to that studied for
the 2-D problem in [23, 24]. In particular, can a single
defective cell either extinguish or trigger intracellular
oscillations in the entire group of cells? Secondly, the
development of a viable numerical approach to numer-
ically solve the 3-D cell-bulk model, in order to con-
firm the asymptotic results, should be undertaken. This
validation was done for the 2-D case in [23] using the
commercial solver FLEXPDE, but the 3-D problem is
more challenging owing to the need for a 3-D refined
mesh near the localized cells combined with accurate
long-time integrations of oscillatory solutions. Thirdly,
it is an interesting open problem to identify chimera



896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

o

942

943

944

type states in our near-well-mixed limiting ODE sys-
tem (2.18). For a collection of identical cells, where the
only heterogeneity arises from the cell locations at O(¢),
we expect that chimera states should be possible when
there are two or more distinct groups of closely spaced
cells and when « is rather large. When « is large, the
communication between the groups of cells should be
weak, allowing for asynchronous oscillations between
the groups. The possibility of such chimera-type states
should be examined systematically.

Next, for the regime of finite diffusion where D =
O(1) it would be worthwhile to extend the time-
marching approach developed in [29] for the integro-
differential ODE system for the cell-bulk model in R?
to our 3-D setting. In particular, by using the sum-
of-exponentials approximation together with Duhamel’s
integral, it should be possible to develop an accurate
time-marching scheme to numerically solve the integro-
differential system (6.15) and (6.4). Without such an
approach, it is computationally very inefficient to nu-
merically solve (6.15) and (6.4) with a standard time-
discretization since O(m?) convolution integrals with
full memory dependence would have to be evaluated
at time ¢ to advance the solution one time-step to time
t + At. Moreover, the convolution integrals in (6.15) are
improper integrals that need a careful analysis, where
the local behavior near the integrable singularity is ap-
proximated analytically. The approach used in [29] for
the analogous 2-D cell-bulk model in R? overcame both
of these challenges.

Finally, from the viewpoint of more realistic quorum-
sensing modeling in biology, it would be worthwile to
apply our analysis to some specific intracellular sig-
nalling pathways relevant to applications such as gly-
colytic oscillations in yeast cells [9, 43] or the Lux ki-
netics used to model bioluminescence behavior [8] and
[17]. Moreover, in many quorum-sensing applications
it is known that the onset of collective intracellular dy-
namics is a precursor to the migration or drift of lo-
calized cells, which occurs on a longer time-scale, to
form some cell colony. Although our asymptotic analy-
sis requires that cells are well-separated, in principle we
can impose a dynamical behavior for the center of each
cell in terms of the local dipole moment near each cell
in order to study the initial stage of cell amalgamation.
This dipole moment can be derived from a higher-order
asymptotic analysis near each cell. In [8] a phenomeno-
logical rule was imposed to model the dynamics of the
cell centers in an agent-based model of quorum-sensing.

945

946
947
948

949

950

951

952

953

954

955

956
957
958
959
960

961

25

Acknowledgments

Michael J. Ward gratefully acknowledges the support of
the NSERC Discovery Grant Program of Canada. We
are grateful to the referees for their helpful comments
that improved the initial manuscript.

Appendices

A. Non-dimensionalization of the cell-bulk model

In this appendix we non-dimensionalize the cell-bulk
(1.1) into its dimensionless form in (1.2). The dimen-
sions, labeled by [...], of the quantities in (1.1) are

moles length?
= IO gy = 2 = (] = mol
length? time [1j] = [ue] = moles
1
[kgr] = [kg] = —, [X]=length [T] = time,
time
length 1
il=— , ]l=—7.
B time B time x length?

We assume that the common radius R of the cells ; for
j=1,...,mis small compared to the length-scale L of
Q, and so we introduce a small parameter € = R/L < 1.
In addition, we introduce the ¢, x, U and u by
3 ,
Uzl;q/[, X=—, t=kgT, lljZ&,
He L He
so that the time-scale is chosen based on the reaction
kinetics. We find that the dimensionless bulk diffusion
field satisfies (1.2a), while on the cell boundary (1.1c)
becomes

(A.1)

Bij BajL?
-y,
Lkg [P
Similarly, by using dSx = L?dSy, the dimensional in-

tracellular kinetics (1.1d) transforms to
du; Bij LB
— =F; J+e _J
g = Fiwre fag (LkR

kg
where 9€),; is the surface of a sphere of radius &. Since
0Qe | = O(?), in order to ensure that there is an O(1)

efflux out of the jth cell into the bulk medium, we must
consider the limit where 35;L?/kg = O(&72). Moreover,

the feedback into the jth cell from the bulk is O(g) when
the dimensionless influx parameter is on the asymptotic
range f31;/(Lkg) = O(¢71). Based on these observations,
we chose the permeability scalings as in (1.3). With
this choice, (A.2) and (A.3) become (1.2¢) and (1.2d),
respectively.

D, U = Xx€0Q, . (A2

uﬂ) Sy, (A3)
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B. Cell locations 1000

1001
Here, we give the coordinates of the centers of the cells 1002

for the different configurations considered in this paper. :zzz

1005
1006
1007

B.1. Arbitrarily located cells on a sphere of radius r

In Table 1 below, we give the coordinates of m = 6 1008
cells on the surface of the unit sphere (corresponding to ;g
ro = 1). These coordinates can be used to generate the 1ot
centers of cells on any sphere of radius 0 < ry < 1 by "
scaling appropriately. o

1013

1014

’ Cell i \ X; \ Vi \ Z \ color code ‘1015
1 [-0.1639 | -0.8138 | 05576 [ black [°°

2 [ 09691 | -0.1934 | —0.1531 | green o

3 [ -05636 | —0.1124 | 0.8184 red  Jor

4 04022 | 07875 | 04671 | blue [

5 [ 05681 | 04443 | -0.6927 | cyan |

6 -0.6892 | —0.5772 | —0.4380 | magenta (o2

1024

Table 1: Coordinates of the center of m = 6 cells arbitrarily located 9%
on the surface of the unit sphere. Colors corresponds to color codes 1°%

for the cells in Fig. 14. 1027
1028

1029

In Table 2 we give the center-to-center distances be- '*®

tween the cells with coordinates in Table 1.

1031
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1034
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1036
1037

B.2. Arbitrarily located cells inside the unit sphere

In Table 3 and Table 4 we give the coordinates of the
centers of m = 6 identical cells arbitrarily located inside
the unit sphere, their distance from the origin, and their
center-to-center distances.
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