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Outline of the Talk

SOME GENERAL CONSIDERATIONS:

1. Eigenvalue Problems in Perforated Domains and in Domains with
Perforated Boundaries (Some Previous Results)

2. Narrow Escape Problem and the Mean First Passage Time (MFPT)
3. Fekete Points

THREE SPECIFIC PROBLEMS CONSIDERED:

1. Diffusion on the Surface of a Sphere with Traps
2. The Mean First Passage Time for Escape from a Sphere with

Localized Absorbing Boundary Patches
3. Persistence Threshold for Diffuse Logistic Model in Highly Patchy

Environments
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Eigenvalues in Perforated Domains I
For a bounded 2-D or 3-D domain;

∆u+ λu = 0 , x ∈ Ω\Ωp ;

∫

Ω\Ωp

u2 dx = 1 ,

∂nu = 0 x ∈ ∂Ω , u = 0 , x ∈ ∂Ωp .

Here Ωp = ∪N
i=1Ωεi

are N interior non-overlapping holes or traps, each
of ‘radius’ O(ε) � 1.
Also Ωεi

→ xi as ε→ 0, for i = 1, . . . , N . The centers xi are arbitrary.

εO(  )

walls
reflecting

n
x

2

1

x

wandering particle

N small absorbing holes
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Eigenvalues in Perforated Domains II
EIGENVALUE ASYMPTOTICS FOR PRINCIPAL EIGENVALUE λ1:

Previous Studies in 2-D: For the case of N circular holes each of radius
ε� 1, Ozawa (Duke J., 1981) proved that

λ1 ∼ 2πNν

|Ω| +O(ν2), ν ≡ − 1

log ε
� 1 .

Previous Studies in 3-D: For the case of N localized traps, Ozawa (J. Fac.
Soc. U. Tokyo, 1983) (see also Flucher (1993)) proved that

λ1 ∼ 4πε

|Ω|

N
∑

j=1

Cj + 0(ε2) .

Here Cj is the electrostatic capacitance of the jth trap defined by

∆yw = 0 , y 6∈ Ωj ≡ ε−1Ωεj
,

w = 1 , y ∈ ∂Ωj ; w ∼ Cj

|y| , |y| → ∞ .
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Eigenvalues in Perforated Domains III
The MFPT: The Mean First Passage Time v(x) for diffusion in a perforated
domain with initial starting point x ∈ Ω\Ωp satisfies (ref. Z. Schuss, (1980))

∆v = − 1

D
, x ∈ Ω\Ωp ;

∂nv = 0 x ∈ ∂Ω , v = 0 , x ∈ ∂Ωp .

Relationship Between Averaged MFPT and Principal Eigenvalue: is that for ε→ 0

v̄ ∼ 1

Dλ1

, v̄ ≡ 1

|Ω|

∫

Ω\Ωp

v dx .

Main Goal: Calculate λ1 and the MFPT on the surface of a sphere that
contains N small traps. For ε→ 0 (small hole radius) find the hole
locations xi, for i = 1, . . . , N , that maximizes λ1, or equivalently minimizes
v̄. In other words, chose the trap locations to minimize the lifetime of a
wandering particle on the sphere.

Key Point: Since the previous results for λ1 are independent of trap
locations xj , j = 1, . . . , N , need higher order terms in λ1 to optimize λ1.
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Eigenvalues with Perforated Boundaries I
Let λ1 be the principal eigenvalue when ∂Ω is perforated

∆u+ λu = 0 , x ∈ Ω ;

∫

Ω

u2 dx = 1 ,

∂nu = 0 x ∈ ∂Ωr , u = 0 , x ∈ ∂Ωa = ∪N
j=1∂Ωεj

.

For a 2-D domain with smooth boundary (MJW, Keller, SIAP, 1993)

λ1 ∼ πNν

|Ω| +O(ν2), ν ≡ − 1

log ε
� 1 .

For a 3-D domain with smooth boundary (MJW, Keller, SIAP, 1993)

λ1 ∼ 2πε

|Ω|

N
∑

j=1

Cj + 0(ε2) .

Here Cj is the capacitance of the electrified disk problem

∆yw = 0 , y3 ≥ 0, −∞ < y1, y2 <∞ ,

w = 1 , y3 = 0 , (y1, y2) ∈ ∂Ωj ; ∂y3
w = 0 , y3 = 0 , (y1, y2) /∈ ∂Ωj ;

w ∼ Cj/|y| , |y| → ∞ .
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Eigenvalues with Peforated Boundaries II
Narrow Escape: Brownian motion with diffusivity D in Ω with ∂Ω insulated
except for an (multi-connected) absorbing patch ∂Ωa of measure O(ε). Let
∂Ωa → xj as ε→ 0 and X(0) = x ∈ Ω be initial point for Brownian motion.

The MFPT v(x) = E [τ |X(0) = x] satisfies (Z. Schuss (1980))

∆v = − 1

D
, x ∈ Ω ; v̄ ≡ 1

|Ω|

∫

Ω

v dx ,

∂nv = 0 , x ∈ ∂Ωr ; v = 0 , x ∈ ∂Ωa = ∪N
j=1∂Ωεj

.

The average MFPT is related to the fundamental eigenvalue λ1 by

v̄ ∼ 1

Dλ1

, for ε→ 0 .
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Eigenvalues with Peforated Boundaries III
KEY GENERAL REFERENCES:

Z. Schuss, A. Singer, D. Holcman, The Narrow Escape Problem for
Diffusion in Cellular Microdomains, PNAS, 104, No. 41, (2007),
pp. 16098-16103.
O. Bénichou, R. Voituriez, Narrow Escape Time Problem: Time
Needed for a Particle to Exit a Confining Domain Through a Small
Window, Phys. Rev. Lett, 100, (2008), 168105.
S. Condamin, et al., Nature, 450, 77, (2007)
S. Condamin, O. Bénichou, M. Moreau, Phys. Rev. E., 75, (2007).

RELEVANCE OF NARROW ESCAPE TIME PROBLEM IN BIOLOGY:

time needed for a reactive particle released from a specific site to
activate a given protein on the cell membrane
biochemical reactions in cellular microdomains (dendritic spines,
synapses, microvesicles), consisting of a small number of particles
that must exit the domain to initiate a biological function.
determines reaction rate in Markov model of chemical reactions
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Eigenvalues with Peforated Boundaries IV
RECENT 2-D and 3-D RESULTS:

In Ω ∈ R
2, (Ref: D. Holcman, et al., J. Stat. Phys., 117, (2004).)

v(x) =
|Ω|
πD

[− log ε+O(1)] , for ε→ 0 .

The O(1) term was determined for the unit disk Ref: A. Singer, Z.
Schuss, D. Holcman, J. Stat. Phys. 122, (2006), and was fit to
Brownian simulations for the case of two traps, Ref: D. Holcman et al.,
J. of Phys. A: Math Theor., 41, (2008), 155001.
For one circular trap of radius ε on the unit sphere Ω

v̄ ∼ |Ω|
4εD

[

1 − ε

π
log ε+O (ε)

]

, |Ω| = 4π/3 .

Ref: A. Singer et al. J. Stat. Phys., 122, No. 3, (2006).
For arbitrary Ω ∈ R

3 with smooth ∂Ω and one circular trap at x0 ∈ ∂Ω

v̄ ∼ |Ω|
4εD

[

1 − ε

π
H log ε+O (ε)

]

.

Here H is the mean curvature of ∂Ω at x0 ∈ ∂Ω. Ref: A. Singer,
Z. Schuss, D. Holcman, Phys. Rev. E., 78, No. 5, 051111, (2009). BIRS – p.9



Eigenvalues and Fekete Points
Main Goal: Calculate a higher-order expansion as ε→ 0 in 3-D to
determine the effect on v̄ of the spatial configuration {x1, · · · , xN} of
multiple absorbing boundary traps for a fixed trap area fraction. Minimize
v̄ wrt {x1, · · · , xN}.

3-D (Fekete Points): Let Ω be the unit sphere with N -circular absorbing
patches on ∂Ω of a common radius. Is minimizing v̄ equivalent to
minimizing the Coulomb energy HC(x1, . . . , xN ) defined by

HC(x1, . . . , xN ) =
N
∑

j=1

N
∑

k>j

1

|xj − xk|
, |xj | = 1 .

(Ref: J.J. Thomson, E. Saff, N. Sloane, A. Kuijlaars etc..)
2-D (Elliptic Fekete Points): minimum point of the logarithmic energy HL

HL(x1, . . . , xN ) = −
N
∑

j=1

N
∑

k>j

log |xj − xk| , |xj | = 1 .

(Ref: Smale and Schub, Saff, Sloane, Kuijlaars, etc..) Are these points
related to optimizing the MFPT for diffusion on the surface of the
sphere with localized traps? BIRS – p.10



Three Specific Problems: Common Features
1. Diffusion on the Surface of a Sphere with Traps
2. The Mean First Passage Time for Escape from a Sphere with

Localized Absorbing Boundary Patches
3. Persistence Threshold for Diffuse Logistic Model in Highly Patchy

Environments

Common Features:

Eigenvalue Problems: singularly perturbed eigenvalue problems with
local expansions needed to resolve solution in O(ε) regions near traps
or patches, and match to global solution, which changes slowly as
ε→ 0. Method of matched asymptotic expansions.
Neumann Green’s Function: Calculation of the principal eigenvalue
requires the Neumann Green’s function for the Laplacian.
Discrete Optimization Problems: For the MFPT we want to maximimze λ1

for a fixed number of traps wrt the configuration {x1, . . . , xN}. For the
persistence problem, we want to minimize λ1.
Formal Asymptotic Analysis: Treatment by matched asymptotic analysis;
need of a rigorous theory.
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Diffusion on the Surface of a Sphere: I

Let S be the unit sphere, Ωεj
be a circular trap of radius O(ε) on S

centered at xj with |xj | = 1. Then, the The MFPT v satisfies

4sv = − 1

D
, x ∈ Sε ≡ S\ ∪N

j=1 Ωεj
; v = 0 , x ∈ ∂Ωεj

.

Eigenvalue Problem: The corresponding eigenvalue problem on S is

4sψ + σψ = 0 , x ∈ Sε ; ψ = 0 , x ∈ ∂Ωεj
.

For ε→ 0 then v̄ ∼ 1/(Dσ1).
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Diffusion on the Surface of a Sphere: II
Principal Result: Consider N perfectly absorbing circular traps of a common
radius εa� 1 centered at xj , for j = 1, . . . , N on S. Then, the asymptotics
for the MFPT v in the “outer” region |x− xj | � O(ε) for j = 1, . . . , N is

v(x) = −2π
N
∑

j=1

AjG(x;xj) + χ , χ ≡ 1

4π

∫

S

v ds ,

where Aj for j = 1, . . . , N with µ = −1/ log(εa) satisfies

Aj =
2

ND






1 + µ

N
∑

j=1

j 6=i

log |xi − xj | −
2µ

N
p(x1, . . . , xN ) +O(µ2)






.

The average MFPT v̄ = χ and the principal eigenvalue σ(ε) satisfy

v̄ = χ =
2

NDµ
+

1

D

[

(2 log 2 − 1) +
4

N2
p(x1, . . . , xN )

]

+O(µ) ,

σ(ε) ∼ µN

2
+ µ2

[

−N
2

4
(2 log 2 − 1) − p(x1, . . . , xN )

]

+O(µ3) .
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Diffusion on the Surface of a Sphere: III
Here the discrete energy p(x1, . . . , xN ) is the logarithmic energy

p(x1, . . . , xN ) ≡ −
N
∑

i=1

N
∑

j>i

log |xi − xj | .

The Green’s function G(x;x0) that appears satisfies

4sG =
1

4π
− δ(x− x0) , x ∈ S ;

∫

S

Gds = 0 ,

and is given analytically by

G(x;x0) = − 1

2π
log |x− x0| +R , R ≡ 1

4π
[2 log 2 − 1] .

G occurs in study of fluid vortices on a sphere (P. Newton, S. Boatto)
Can also treat the case of N partially absorbing traps of different radii.
Key Point: σ(ε) is maximized and v̄ minimized at the minumum point of
p, i.e. at the elliptic Fekete points.
Reference: D. Coombs, R. Straube, MJW, “Diffusion on a Sphere with
Traps...”, SIAM J. Appl. Math., Vol. 70, No. 1, (2009), pp. 302–332.
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Diffusion on the Surface of a Sphere: IV
EFFECT OF SPATIAL ARRANGEMENT OF N = 4 IDENTICAL TRAPS:
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Note: ε = 0.1 corresponds to 1% trap surface area fraction.
Plots: Results for σ(ε) (left) and χ(ε) (right) for three different 4-trap
patterns with perfectly absorbing traps and a common radius ε. Heavy
solid: (θ1, φ1) = (0, 0), (θ2, φ2) = (π, 0), (θ3, φ3) = (π/2, 0),
(θ4, φ4) = (π/2, π); Solid: (θ1, φ1) = (0, 0), (θ2, φ2) = (π/3, 0),
(θ3, φ3) = (2π/3, 0), (θ4, φ4) = (π, 0); Dotted: (θ1, φ1) = (0, 0),
(θ2, φ2) = (2π/3, 0), (θ3, φ3) = (π/2, π), (θ4, φ4) = (π/3, π/2). The marked
points are computed from finite element package COMSOL.
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Diffusion on the Surface of a Sphere: V
For N → ∞, the optimal energy for elliptic Fekete points gives

max [−p(x1, . . . , xN )] ∼ 1

4
log

(

4

e

)

N2 +
1

4
N logN + l1N + l2 , N → ∞ ,

with l1 = 0.02642 and l2 = 0.1382.

Reference: E. A. Rakhmanov, E. B. Saff, Y. M. Zhou, (1994); B. Bergersen,
D. Boal, P. Palffy-Muhoray, J. Phys. A: Math Gen., 27, No. 7, (1994).

This yields a key scaling law for the minimum of the averaged MFPT as
Principal Result: For N � 1, and N circular disks of common radius εa, and
with small trap area fraction Nε2a2 � 1 with |S| = 4π, then

min v̄ ∼ 1

ND

[

− log

(

∑N
j=1

|Ωεj
|

|S|

)

− 4l1 − log 4 +O(N−1)

]

.
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Diffusion on the Surface of a Sphere: VI
Application: Estimate the averaged MFPT T for a surface-bound molecule
to reach a molecular cluster on a spherical cell.
Physical Parameters: The diffusion coefficient of a typical surface molecule
(e.g. LAT) is D ≈ 0.25µm2/s. Take N = 100 (traps) of common radius
10nm on a cell of radius 5µm. This gives a 1% trap area fraction:

ε = 0.002 , Nπε2/(4π) = 0.01 .

Scaling Law: The scaling law gives an asymptotic lower bound on the
averaged MFPT. For N = 100 traps, the bound is 7.7s, achieved at the
elliptic Fekete points.
One Big Trap: As a comparison, for one big trap of the same area the
averaged MFPT is 360s, which is very different.
Bounds: Therefore, for any other arrangement, 7.7s < T < 360s.

Conclusion: Both the Spatial Distribution and Fragmentation Effect of
Localized Traps are Rather Significant even at Small Trap Area Fraction
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MFPT and Narrow Escape From a Sphere I
Narrow Escape Problem for MFPT v(x) and averaged MFPT v̄:

∆v = − 1

D
, x ∈ Ω ; v̄ ≡ 1

|Ω|

∫

Ω

v dx ,

∂nv = 0 x ∈ ∂Ωr ; v = 0 , x ∈ ∂Ωa = ∪N
j=1∂Ωεj

.

Key Question: What is effect of spatial arrangement of traps on the unit
sphere? Relation to Fekete Points? Need high order asymptotics.

Reference: S. Pillay, M.J. Ward, A. Pierce, R. Straube, T. Kolokolnikov, An
Asymptotic Analysis of the Mean First Passage Time for Narrow Escape
Problems, submitted, SIAM J. Multiscale Modeling, (2009). BIRS – p.18



MFPT and Narrow Escape From a Sphere II
The surface Neumann G-function, Gs, is central:

4Gs =
1

|Ω| , x ∈ Ω ; ∂rGs = δ(cos θ − cos θj)δ(φ− φj) , x ∈ ∂Ω ,

Lemma: Let cos γ = x · xj and
∫

Ω
Gs dx = 0 . Then Gs = Gs(x;xj) is

Gs =
1

2π|x− xj |
+

1

8π
(|x|2 + 1) +

1

4π
log

[

2

1 − |x| cos γ + |x− xj |

]

− 7

10π
.

Define the matrix Gs using R = − 9

20π and Gsij ≡ Gs(xi;xj) as

Gs ≡













R Gs12 · · · Gs1N

Gs21 R · · · Gs2N

...
... . . . ...

GsN1 · · · GsN,N−1 R













,

Remark: As x→ xj , Gs has a subdominant logarithmic singularity:

Gs(x;xj) ∼
1

2π|x− xj |
− 1

4π
log |x− xj | +O(1) .
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MFPT and Narrow Escape From a Sphere III
Principal Result: For ε→ 0, and for N circular traps of radii εaj centered at
xj , for j = 1, . . . , N , the averaged MFPT v̄ satisfies

v̄ =
|Ω|

2πεDNc̄

[

1 + εlog

(

2

ε

)

∑N
j=1

c2j

2Nc̄
+

2πε

Nc̄
pc(x1, . . . , xN )

− ε

Nc̄

N
∑

j=1

cjκj +O(ε2 log ε)



 .

Here cj = 2aj/π is the capacitance of the jth circular absorbing window of
radius εaj , c̄ ≡ N−1(c1 + . . .+ cN ), |Ω| = 4π/3, and κj is defined by

κj =
cj
2

[

2 log 2 − 3

2
+ log aj

]

.

Moreover, pc(x1, . . . , xN ) is a quadratic form in terms Ct = (c1, . . . , cN )

pc(x1, . . . , xN ) ≡ CtGsC .

Remarks: 1) A similar result holds for non-circular traps. 2) The logarithmic
term in ε arises from the subdominant singularity in Gs.
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MFPT and Narrow Escape From a Sphere IV
One Trap: Let N = 1, c1 = 2/π, a1 = 1, (compare with Holcman et al)

v̄ =
|Ω|
4εD

[

1 +
ε

π
log

(

2

ε

)

+
ε

π

(

−9

5
− 2 log 2 +

3

2

)

+ O(ε2 log ε)

]

.

N Identical Circular Traps: of common radius ε:

v̄ =
|Ω|

4εDN
[1+

ε

π
log

(

2

ε

)

+
ε

π

(

−9N

5
+ 2(N − 2) log 2

+
3

2
+

4

N
H(x1, . . . , xN )

)

+O(ε2 log ε)
]

,

with discrete energy H(x1, . . . , xN ) given by

H(x1, . . . , xN ) =
N
∑

i=1

N
∑

k>i

(

1

|xi − xk|
− 1

2
log |xi − xk| −

1

2
log (2 + |xi − xk|)

)

.

Key point: Minimizing v̄ corresponds to minimizing H. This discrete
energy is a generalization of the purely Coulombic or logarithmic
energies associated with Fekete points.
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MFPT and Narrow Escape From a Sphere V
KEY STEPS IN DERIVATION OF MAIN RESULT

The Neumann G-function has a subdominant logarithmic singularity on
the boundary (related to surface diffusion)
Tangential-normal coordinate system used near each trap.
Asymptotic expansion of global (outer) solution and local (inner
solutions near each trap.
Leading-order local solution is electrified disk problem in a half-space,
with capacitance cj .
Logarithmic switchback terms in ε needed in global solution
(ubiquitous in Low Reynolds number flow problems)
Need corrections to the tangent plane approximation in the inner
region, i.e. near the trap. This determines κj .
Asymptotic matching and solvability conditions (Divergence theorem)
determine v and v̄
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MFPT and Narrow Escape From a Sphere VI
20
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Plot: v̄ vs. ε with D = 1 and either N = 1, 2, 4 equidistantly spaced circular
windows of radius ε. Solid: 3-term expansion. Dotted: 2-term expansion.
Discrete: COMSOL. Top: N = 1. Middle: N = 2. Bottom: N = 4.

N = 1 N = 2 N = 4

ε v̄2 v̄3 v̄n v̄2 v̄3 v̄n v̄2 v̄3 v̄n

0.02 53.89 53.33 52.81 26.95 26.42 26.12 13.47 13.11 12.99
0.05 22.17 21.61 21.35 11.09 10.56 10.43 5.54 5.18 5.12
0.10 11.47 10.91 10.78 5.74 5.21 5.14 2.87 2.51 2.47
0.20 6.00 5.44 5.36 3.00 2.47 2.44 1.50 1.14 1.13
0.50 2.56 1.99 1.96 1.28 0.75 0.70 0.64 0.28 0.30
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MFPT and Narrow Escape From a Sphere VII
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v̄

ε

Plot: v̄(ε) for D = 1, N = 11, and three trap configurations. Heavy: global
minimum of H (right figure). Solid: equidistant points on equator. Dotted:
random.

Table: v̄ agrees well with COMSOL even at ε = 0.5. For ε = 0.5 and
N = 4, absorbing windows occupy ≈ 20% of the surface. Still, the
3-term asymptotics for v̄ differs from COMSOL by only ≈ 7.5%.
For ε = 0.1907, N = 11 traps occupy ≈ 10% of surface area; optimal
arrangement gives v̄ ≈ 0.368. For a single large trap with a 10%
surface area, v̄ ≈ 1.48; a result 3 times larger.
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MFPT and Narrow Escape From a Sphere VIII
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Plot: averaged MFPT v̄ versus % trap area fraction for
N = 1, 5, 10, 20, 30, 40, 50, 60 (top to bottom) at optimal trap locations.

fragmentation effect of traps on the sphere is a significant factor.
only marginal decrease in v̄ by increasing N when N is already large.
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MFPT and Narrow Escape From a Sphere IX
Numerical Computations: to compare optimal energies and point
arrangements of H with those of classic Coulomb or Logarithmic energies

HC =
N
∑

i=1

N
∑

j>i

1

|xi − xj |
, HL = −

N
∑

i=1

N
∑

j>i

log |xi − xj |.

(A. Cheviakov, R. Spiteri, MJW).

Numerical Methods:

Extended Cutting Angle method (ECAM). (cf. G. Beliakov, Optimization
Methods and Software, 19 (2), (2004), pp. 137-151).
Dynamical systems – based optimization (DSO). (cf. M.A. Mammadov, A.
Rubinov, and J. Yearwood, (2005)).
Our computational results obtained by using the open software library
GANSO where both the ECAM and DSO methods are implemented.

Results for Small N:

For N = 5, 6, 8, 9, 10 and 12, optimal point arrangments coincide
Some differences for N = 7, 11, 16.
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MFPT and Narrow Escape From a Sphere X
N=7: Left: H. Right: HC and HL.

N=11: Left: H. Middle: HC . Right: HL.

N=16: Left: H and HL. Right: HC .
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MFPT and Narrow Escape From a Sphere XI
OPTIMAL ENERGIES: (Computations by R. Spiteri and A. Cheviakov)

N H HC HL

3 -1.067345 1.732051 -1.647918

4 -1.667180 3.674234 -2.942488

5 -2.087988 6.474691 -4.420507

6 -2.581006 9.985281 -6.238324

7 -2.763658 14.452978 -8.182476

8 -2.949577 19.675288 -10.428018

9 -2.976434 25.759987 -12.887753

10 -2.835735 32.716950 -15.563123

11 -2.456734 40.596450 -18.420480

12 -2.161284 49.165253 -21.606145

16 1.678405 92.911655 -36.106152

20 8.481790 150.881571 -54.011130

25 21.724913 243.812760 -80.997510

30 40.354439 359.603946 -113.089255

35 64.736711 498.569272 -150.192059

40 94.817831 660.675278 -192.337690

45 130.905316 846.188401 -239.453698

50 173.078675 1055.182315 -291.528601

55 221.463814 1287.772721 -348.541796

60 275.909417 1543.830401 -410.533163

65 336.769710 1823.667960 -477.426426

1

Open Questions:

Q1: Derive a rigorous scaling law for the optimal energy for large N?
Q2: Does the result approach a homogenization theory result in the
dilute trap area limit?
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MFPT and Narrow Escape From a Sphere XII
For N � 1, the optimal H has the form

H ≈ F(N) =
N2

2
(1 − log 2)+b1N

3/2+b2N logN+b3N+b4N
1/2+b5 logN+b6 ,

where we least-squares fit the coefficients to the data as

b1 ≈ −0.5668 , b2 ≈ 0.0628 , b3 ≈ −0.8420 ,

b4 ≈ 3.8894 , b5 ≈ −1.3512 , b6 ≈ −2.4523 .

Caption: Scatter plot of the error |F(N) −H| vs. N
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Persistence in Patchy Environments I
Consider the diffusive logistic equation for u(x, t) with x ∈ Ω ∈ R

2

ut = ∆u+ λu [mε(x) − c(x)u] , x ∈ Ω ; ∂nu = 0 , x ∈ ∂Ω .

Linearize around the zero solution with u = eµtφ(x) and set µ = 0

∆φ+ λmε(x)φ = 0 , x ∈ Ω ; ∂nφ = 0 , x ∈ ∂Ω .

Threshold for species persistence is determined by the stability border
to the extinct solution u = 0, with λ = 1/D, and D the diffusivity.
Growth rate mε changes sign → indefinite weight eig. problem.

Key Previous Result I: Assume that
∫

Ω
mε dx < 0, but that mε > 0 on a set of

positive measure. Then, there exists a positive principal eigenvalue λ, with
corresponding positive eigenfunction φ (Brown and Lin, (1980))
Goal: Minimize λ1 wrt mε(x), subject to a given

∫

Ω
mε dx < 0: i.e.

determine the largest D that can still allow for the persistence of the
species. (Cantrell and Cosner 1990’s, Lou and Yanagida, (2006); Kao,
Lou, and Yanagida, (2008); Roques and Stoica, (2007); Berestycki et al.
(2005)).
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Persistence in Patchy Environments II
Key Previous Result II: The optimal growth rate mε(x) is of bang-bang type.
(Theorem 1.1 of Lou and Yanagida, 2006, for 2-D).
Patch Model: The eigenvalue problem for the persistence threshold is

∆φ+ λmε(x)φ = 0 , x ∈ Ω; ∂nφ = 0 , x ∈ ∂Ω ;

∫

Ω

φ2 dx = 1 ,

where the growth rate mε(x) is defined as

mε(x) =







mj/ε
2 , x ∈ Ωεj

≡ {x | |x− xj | = ερj ∩ Ω} , j = 1, . . . , n ,

−mb , x ∈ Ω\⋃n
j=1

Ωεj
.

Remarks and Terminology:

Patches Ωεj
are portions of small circular disks strictly inside Ω.

The constant mj is the local growth rate of the jth patch, with mj > 0
for a favorable habitat and mj < 0 for a non-favorable habitat.
The constant mb > 0 the background bulk decay rate.
The boundary ∂Ω is piecewise smooth, with possible corner points.
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Persistence in Patchy Environments III
Remarks and Terminology:

Define ΩI ≡ {x1, . . . , xn} ∩ Ω to be the set of the centers of the interior
patches, while ΩB ≡ {x1, . . . , xn} ∩ ∂Ω is the set of the centers of the
boundary patches. We assume patches are well-separated, i.e.
|xi − xj | � O(ε) for i 6= j and that dist(xj , ∂Ω) � O(ε) if xj ∈ ΩI .
To accommodate a boundary patch, we put with each xj for
j = 1, . . . , n, an angle παj representing the angular fraction of a
circular patch that is contained within Ω. More specifically, αj = 2

whenever xj = ΩI , and αj = 1 when xj ∈ ΩB and xj is a point where
∂Ω is smooth, and αj = 1/2 when xj ∈ ∂Ω is at a π/2 corner of ∂Ω,
etc.

The condition
∫

Ω
mε dx < 0 is asymptotically equivalent for ε→ 0 to

∫

Ω

mε dx = −mb|Ω| + π

2

n
∑

j=1

αjmjρ
2

j + O(ε2) < 0 .

Assumption I: Assume that this holds, and that one mj is positive.
Then, there exists a positive principal eigenvalue λ. BIRS – p.32



Persistence in Patchy Environments IV
Goal: Calculate the positive principal eigenvalue λ as ε→ 0, and
determine the patch distribution for a fixed

∫

Ω
mε dx than minimizes λ.

The parameter set is {m1, . . . ,mn}, {ρ1, . . . , ρn}, {x1, . . . , xn}, and
{α1, . . . , αn}.
Modified G-Function: Define the modified G-function Gm by

Gm(x;xj) ≡ G(x;xj) , xj ∈ Ω ; Gm(x;xj) ≡ Gs(x;xj) , xj ∈ ∂Ω .

Here G(x;xj) is the unique Neumann Green’s function satisfying

∆G =
1

|Ω| − δ(x− xj) , x ∈ Ω ; ∂nG = 0 , x ∈ ∂Ω ;

∫

Ω

Gdx = 0 ,

G(x;xj) ∼ − 1

2π
log |x− xj | +R(xj ;xj) , as x→ xj ,

while Gs(x;xj) is the unique surface Neumann Green’s function

4Gs =
1

|Ω| , x ∈ Ω ; ∂nGs = 0 , x ∈ ∂Ω\{xj} ;

∫

Ω

Gs dx = 0 ,

Gs(x;xj) ∼ − 1

αjπ
log |x− xj | +Rs(xj ;xj) , as x→ xj ∈ ∂Ω .
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Persistence in Patchy Environments V
Principal Result: In the limit ε→ 0, the positive principal eigenvalue λ has
the following two-term asymptotic expansion

λ = µ0ν − µ0ν
2

(

κt (πGm −P)κ

κtκ
+

1

4

)

+ O(ν3) , ν = −1/ log ε .

Here κ = (κ1, . . . , κn) and µ0 > 0 is the first positive root of B(µ0) = 0

B(µ0) ≡ −mb|Ω| + π

n
∑

j=1

√
αjκj , κj ≡

√
αjmjρ

2
j

2 −mjρ2
jµ0

.

Finally, the n× n matrix Gm and diagonal matrix P are defined by

Gmij =
√
αiαjGmij , i 6= j ; Gmjj = αjRmjj ; Pjj = log ρj .

Principal Result: There exists a unique root µ0 to B(µ0) = 0 on the range
0 < µ0 < µ0u ≡ 2/(mJρ

2

J), where mJρ
2

J = maxmj>0{mjρ
2
j | j = 1, . . . , n}.

Proof: B(0) < 0 by Assumption I; B(µ0) → +∞ as µ0 → µ−
0u, and

B′(µ0) > 0 on 0 < µ0 < µ0u. Hence, there exists a unique root µ0 > 0.
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Persistence in Patchy Environments VI
By optimizing the leading-order coefficient µ0 subject to

∫

Ω
mεdx < 0 and

fixed we obtain:

Qualitative Result I: The movement of either a single favorable or
unfavorable habitat to the boundary of the domain is advantageous for the
persistence of the species.

Qualitative Result II: The fragmentation of one favorable interior habitat into
two separate favorable interior habitats is not advantageous for species
persistence. Similarly, the fragmentation of a favorable boundary habitat
into two favorable boundary habitats, with each centered at a smooth
point of ∂Ω, is not advantageous.
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Persistence in Patchy Environments VII
Qualitative Result III: The fragmentation of one favorable interior habitat into
a new smaller interior favorable habitat together with a favorable boundary
habitat, is advantageous for species persistence when the boundary
habitat is sufficiently strong in the sense that

mkρ
2

k >
4

2 − αk
mjρ

2

j > 0 .

Such a fragmentation of a favorable interior habitat is not advantageous
when the new boundary habitat is too weak in the sense that

0 < mkρ
2

k < mjρ
2

j .

Finally, the clumping of a favorable boundary habitat and an unfavorable
interior habitat into one single interior habitat is not advantageous for
species persistence when the resulting interior habitat is still unfavorable.
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Persistence in Patchy Environments VIII
These qualitative results shows that, given some fixed amount of favorable
resources to distribute, the optimal strategy is to clump them all together
at a point on the boundary of the domain, and more specifically at the
corner point of the boundary (if any are present) with the smallest angle.
This strategy will minimize µ0, thereby maximizing the chance for the
persistence of the species.
Principal Result: For a single boundary patch centered at x1 on a smooth
boundary ∂Ω, µ0 is minimized at the global maximum of the regular part
Rs(x1;x1) of the surface Neumann Green’s function.

Question: For ∂Ω smooth, is the global maximum of Rs(x1;x1) obtained at
the global maximum of the boundary curvature κ? (No; we can find a
counterexample for smooth perturbations of the unit disk, by deriving a
perturbation formula for Rs)
Remark: Given a pre-existing patch distribution, the optimal location of a
new favorable habitat may require optimizing the O(ν2) term.

BIRS – p.37



Further Directions and Open Problems
Narrow escape problems in arbitrary 3-d domains: require Neumann
G-functions in 3-D with boundary singularity
Surface diffusion on arbitrary 2-d surfaces: require Neumann
G-function and regular part on surface.
Include chemical reactions occurring within each trap, with binding and
unbinding events. Can diffusive transport between traps influence
stability of steady-state of time-dependent localized reactions (ode’s)
valid inside each trap? Yields a new Steklov-type eigenvalue problem.
Couple surface diffusion to diffusion processes within the cell.
Analysis of localized spot patterns for RD systems in 2-D planar
domains (Lecture II) and on manifolds (open).
Rigorous results for persistence threshold with localized patches?

Schnakenburg model on a Manifold: S. Ruuth (JCP, 2008)
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