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Outline of the Talk

Overview: Localized Spot Solutions to RD systems

1. Particle-Like, Spot and/or Stripe Solutions to RD systems
2. Instability Types: Self-Replicating, Oscillatory, Over-Crowding or

Annihilation, Breakup, Zigzag, etc..
3. Self-Replicating Spots (Laboratory and Numerical Evidence)
4. Theoretical approaches

Specific RD Systems in 2-D (Detailed Case Studies)

1. GM Model: Leading-order theory, based on ground-state solution to
scalar PDE, Nonlocal eigenvalue problems, and critical points of
Regular Part of Green’s Functions

2. Schnakenburg System: Beyond leading-order theory: Self-Replication of
Spots in 2-D; Dynamics of Collection of Spots (Main Focus)

3. GS System: Self-Replication, Oscillatory, and Annihilation Instabilities of
Spots in 2-D. (Brief Summary) (Ph.D thesis work of Wan Chen).
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Singularly Perturbed RD Models: Localization

Spatially localized solutions can occur for singularly perturbed RD models

vt = ε24v + g(u, v) ; τut = D4u + f(u, v) , ∂nu = ∂nv = 0 , x ∈ ∂Ω .

Since ε � 1, v can be localized in space as a spot, i.e. concentration at a
discrete set of points in Ω ∈ R2.
Semi-Strong Interaction Regime: D = O(1) so that u is global.
Weak Interaction Regime: D = O(ε2) so that u is also localized.
Different Kinetics: (There is No Variational Structure)

GM Model: (Gierer Meinhardt 1972; Meinhardt 1995).

g(u, v) = −v + vp/uq f(u, v) = −u + vr/us .

GS Model: (Pearson, 1993, Swinney 1994, Nishiura et al. 1999)

g(u, v) = −v + Auv2 , f(u, v) = (1 − u) − uv2 .

Schnakenburg Model: g(u, v) = −v + uv2 and f(u, v) = a − uv2.
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Spot Instabilities and Self-Replication
Snapshot of Phenomena for GM Model:

The local profile for v is to leading-order
approximated locally by a radially
symmetric ground-state solution of
∆w − w + wp = 0. Particle-like solution to
GM model.

Semi-strong regime: Slowly drifting spots
can undergo sudden (fast) instabilities
due to dynamic bifurcations. This leads to
an overcrowding, or annihilation,
instability (movie), or to oscillatory
instabilities in the spot amplitude (movie)

Weak-interaction regime: An isolated spot
can undergo a repeated self-replication
behavior, leading eventually to a Turing
type pattern (movie).
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Semi-Strong Regime: Breakup and Splitting
Spot patterns arise from generic initial conditions, or from the breakup of a
stripe to varicose instabilities: Spot-replication appears here as a
secondary instability GS Model: Semi-strong regime.

Ref: KWW, Zigzag and Breakup Instabilities of Stripes and Rings.... Stud.
Appl. Math., 116, (2006), pp. 35–95.
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Self-Replicating Spot Behavior: I
Experimental evidence of spot-splitting

The Ferrocyanide-iodate-sulphite reaction. (Swinney et al., Nature, V.
369, (1994), pp. 215-218). The numerical simulations are for GS
model by Pearson (Science, 1993).

A planar gas discharge system. (Astrov & Purwins, Phys. Lett. A,
V. 283, (2001), pp. 349-354. Such systems often modeled by
3-component RD systems.
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Self-Replicating Spot Behavior: II
Numerical evidence of spot-splitting

Pearson, Complex Patterns in a Simple System, Science, 216,
pp. 189-192.
Nishiura & Ueyama, Spatial-Temporal Chaos in the Gray-Scott model,
Physica D, 150, (3-4), (2001), pp. 137–152.
Muratov & Osipov, Scenarios of Domain Pattern Formation in
Reaction-Diffusion Systems, Phys. Rev. E, 54, (1996), pp. 4860–4879.

Left: Pearson (1993).
Right: Muratov and Osipov (1996).
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Self-Replicating Spot Behavior: IV
Numerical evidence of spot-splitting

Golovin, Matkowsky, Volpert, Turing Patterns for the Brusselator with
Superdiffusion, SIAP, 68, (2008), pp. 251–272.
Glasner, Spatially Localized Structures in Diblock Copolymer Mixtures,
SIAP, submitted, (2009).
Schnakenburg Model:

J. Zhu et al., Application of Discontinuous Galerkin Methods for RD
Systems in Developmental Biology, J. Sci. Comput., to appear,
(2009).
A. Madvamuse, P. Maini, Velocity-Induced Numerical Solutons of
RD Systems on Continuously Growing Domains, JCP, 225, (2007),
pp. 100-119.
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Self-Replicating Spots for Schnakenburg

Self-replication of spots
for the Schnakenburg
model in the semi-strong
regime in a 2-D domain
(Ref: J. Zhu, J. Zhang,
S. Newman, M. Alber,
J. Sci. Comput., to ap-
pear, (2009)).
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Theoretical Approaches: I
1) Turing Stability Analysis: linearize RD around a spatially homogeneous
steady state. Look for diffusion-driven instabilities (Turing 1952, and
ubiquitous first step in RD models of math biology (e.g. J. Murray)).
2) Weakly Nonlinear Theory: capture nonlinear terms in multi-scale
perturbative way and derive normal form GL and CGL amplitude
equations (Cross and Hohenberg, Knobloch, .....).
3) Localized Spot and Stripe patterns:

Use singular perturbation techniques to construct quasi-steady
pattern consisting of localized spots.
Dynamics of spots in terms of “collective” coordinates.
For stability, analyze singularly perturbed eigenvalue problems.
Semi-strong interactions to leading-order in −1/ log ε often lead to
Nonlocal Eigenvalue Problems (NLEP).

Remarks on Approach 3):

“Similar” to studying vortex dynamics (GL model of superconductivity)
Difficulty: RD systems have no variational structure, and even
leading-order NLEP problems are challenging to analyze.
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Theoretical Approaches: III
Some Previous Analytical Work On Spike and Spot Patterns

1-D Theory: Spike Solutions to RD System
Stability and dynamics of pulses for the GM and GS models in the
semi-strong regime (Doelman, Kaper, Promisolow, Muratov, Osipov,
Iron, MJW, Kolokolnikov, Chen, Wei),
Pulse-splitting “qualitative” mechanism for the GS model in the weak
interaction regime D = O(ε2) based on global bifurcation scenario
(Nishiura, Ei, Ueyama), and the GM model (KWW, 2004).

2-D Theory: Spot Solutions to RD Systems
Repulsive interactions of spots in weak interaction regime (Mimura,
Ei, Ohta...)
NLEP stability theory for spot stability for GM and GS in semi-strong
interaction regime (Wei-Winter, series of papers). NLEP problems
arise from leading-order terms in infinite logarithmic expansion in ε.
One-Spot dynamics for GM (Chen, Kowalczyk, Kolokolnikov, MJW).

Largely Open: Give an analytical theory for self-replication of spots,
dynamics of spots, and other instabilities (oscillatory and annihilation).
Focus on semi-strong regime where analysis can be done.

BIRS – p.11



Case Study: Older Results for GM Model I
The GM model in a 2-D bounded domain Ω, with ε � 1 is

vt = ε2∆v − v +
v2

u
, τut = D4u − u + ε−2v2 .

Principal Result: Provided that a stability condition on the spot profile is
satisfied, then for D ≥ O(− ln ε) and ε � 1 the spot dynamics is

dx0

dt
∼ −4πε2

(

1

− ln ε + 2π D
|Ω|

)

∇R0 ,

where R(x; x0) is the regular part of the Neumann Green’s function. (X.
Chen and M. Kowalczyk (2003), T. Kolokolnikov and MJW (2003)).
Principal Result: (KW) Provided that a stability condition on the spot profile is
satisfied, then for D = O(1) and ε → 0 the dynamics of a spot satisfies

dx0

dt
∼ − 4πε2

ln( 1
ε ) + 2πRd0

∇Rd0 ,

where Rd(x; x0) is the regular part of the reduced wave G-function.
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Case Study: Older Results for GM Model II
The Neumann Green’s Function: G(x; x0) with regular part R(x; x0) satisfies

∆G =
1

|Ω| − δ(x − x0) , x ∈ Ω ; ∂nG = 0 x ∈ ∂Ω ;

∫

Ω

G dx = 0 ,

G(x; x0) = − 1

2π
log |x − x0| + R(x; x0) ; ∇R0 ≡ ∇R(x; x0)|x=x0

.

The Reduced-Wave Green’s Function Gd(x; x0) with regular part Rd(x; x0)

∆Gd − 1

D
Gd = −δ(x − x0) , x ∈ Ω ; ∂nGd = 0 x ∈ ∂Ω ,

Gd(x; x0) = − 1

2π
log |x − x0| + Rd(x; x0) ; ∇Rd0 ≡ ∇Rd(x; x0)|x=x0

.

Critical Points of R and Rd: In a symmetric dumbbell-shaped domain:
For D � 1, Rd is determined in terms of the distance function. Hence,
∇Rd0 = 0 has a root in each lobe of a dumbbell.
For D � 1, ∇Rd0 can be approximated by ∇R0, the Neumann regular
part, which has a root only at the origin. (explain see below)
So what happens to the roots as D is varied? (Bifurcation must occur)
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Case Study: Older Results for GM Model III
Consider the Dirichlet Green’s function H, with regular part Rh:

∆H = −δ(x − x0) x ∈ Ω , H = 0 , x ∈ ∂Ω ,

H(x, x0) = − 1

2π
log |x − x0| + Rh(x; x0) , ∇Rh0 ≡ ∇Rh(x, x0)|x=x0

.

For a strictly convex domain Ω, Rh0 is strictly convex, and thus there is
a unique root to ∇Rh0 = 0. (B. Gustafsson, Duke J. Math (1990),
Caffarelli and Friedman, Duke Math J. (1985)).
∇Rh0 can be found for certain mappings f(z) of the unit disk as

f
′

(z0)∇Rh0 = − 1

2π

(

z0

1 − |z0|2
+

f
′′

(z0)

2f ′(z0)

)

.

Let B be the unit disk, and f(z; a) = (1−a2)z
z2−a2 . Then f(B) is a symmetric

but nonconvex dumbbell-shaped domain for 1 < a < 1 +
√

2. Using the
formula above, Gustafson (1990) proved that ∇Rh0 = 0 has three
roots when 1 < a <

√
3.

One can derive a complex variable formula for the gradient of the
regular part of the Neumann Green’s function (Ref: KW, 2003 EJAM).
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Case Study: Older Results for GM Model IV
Example: Let f(z; a) = (1−a2)z

z2−a2 ; so f(B) is nonconvex for 1 < a < 1 +
√

3.
For any a > 1, the complex variable formula can be used to show that
∇R0 = 0 has exactly one root at z = 0. This is qualitatively different than
for the Dirichlet problem.
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Remark 1: Recall that the principal eigenvalue λ1 of the Laplacian with one
localized trap of radius ε

λ1 ∼ 2πν

|Ω| − 4π2ν2

|Ω| R(x0; x0) , ν = −1/ log ε .

Thus, λ1 is maximized for a symmetric dumbell-shaped domain by putting
the trap at the center of the neck (which is intuitively clear). BIRS – p.15



Case Study: Older Results for GM Model V
Remark 2: In non-symmetric dumbell-shaped domains ∇R0 = 0 for
Neumann G-function can have multiple roots (Kolokolnikov, Titcombe,
MJW, EJAM, 2004).
Reduced-Wave G-Function: Now use a BEM scheme to compute the roots of
∇Rd0 = 0 for the same class of mappings of the unit disk. Plot the zeroes
of ∇Rd0 = 0 along the real axis x versus λ ≡ D−1/2. There is a subcritical
pitchfork bifurcation for two nearly disjoint circles (a near one), and a
supercritical pitchfork when a � 1. (Open: Rigorous Theory??).
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Case Study: Older Results for GM Model VI
Theorem: (Winter Wei, (2001) JNS) For τ = 0, ε → 0, and D � O(− ln ε), an
N -spot equilibrium solution is stable on an O(1) time scale iff

D < DN ∼ −|Ω| ln ε

2πN
.

Analysis based on NLEP problem, for inner region with ρ = |y|

∆Φ − Φ + 2wΦ − χw2

∫

R2 wΦ dy
∫

R2 w2 dy
= λΦ ,

where ∆w − w + w2 = 0 is the scalar ground-state solution describing the
spot profile.

Leading-order theory predicts that DN is independent of spot locations
xi, i = 1, . . . , N .
Need higher order terms in the logarithmic series in ν for DN similar to
mean first passage time problems in 2-D with traps. We suggest

DN ∼ −|Ω| ln ε + F (x1, . . . , xN )

2πN
+ O(ν−1) , ν ≡ −1/ ln ε .
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Detailed Case Study: Schnakenburg Model
Schnakenburg Model: in a 2-D domain Ω consider

vt = ε2∆v − v + uv2 , ε2ut = D∆u + a − ε−2uv2 ,

∂nu = ∂nv = 0 , x ∈ ∂Ω .

Here 0 < ε � 1, and the two parameters are D > 0, and a > 0.

Ref: Kolokolnikov, Ward, Wei, Spot Self-Replication and Dynamics for the
Schnakenburg Model... J. Nonl. Sci., 19, (2009), pp. 1–56.

Detailed Outline: Spot Dynamics and Spot Self-Replication

Quasi-Equilibria: Asymptotic construction (summing log expansion).
Slow Dynamics: Derive DAE system for the evolution of K spots.
Spot-Splitting Instability: peanut-splitting and the splitting direction.
Numerical Confirmation of Asymptotic Theory: Unit Square and unit disk.

BIRS – p.18



Schnakenburg Model: Numerical Simulations
Example: Ω = [0, 1]2, ε = 0.02, a = 51, D = 0.1. (movie 1).

t = 4.0 t = 25.5 t = 40.3.

t = 280.3 t = 460.3 t = 940.3.

Detailed mechanism for spot splitting?
Why do some spots split and not others?
Characterize the dynamics of the spots after splitting?
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The Quasi-Equilibrium Solution: I
Asymptotic Construction of a One-Spot Pattern

Inner Region: near the spot location x0 ∈ Ω introduce V(y) and U(y) by

u =
1√
D

U , v =
√

DV , y = ε−1(x − x0) , x0 = x0(ε
2t) .

To leading order, U ∼ U(ρ) and V ∼ V (ρ) (radially symmetric) with ρ = |y|.

This yields the coupled core problem with U ′(0) = V ′(0) = 0, where:

Vρρ +
1

ρ
Vρ − V + UV 2 = 0 , Uρρ +

1

ρ
Uρ − UV 2 = 0 , 0 < ρ < ∞ ,

V → 0 , U ∼ S log ρ + χ(S) + o(1) , as ρ → ∞ .

Here S > 0 is called the “source strength” and is a parameter to be
determined upon matching to an outer solution.
The nonlinear function χ(S) must be computed numerically.
Thus, the “ground-state problem” is a coupled set of BVP, in contrast to
approach based on NLEP theory.
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The Quasi-Equilibrium Solution: II
Plots of the Numerical Solution to the Core Problem:
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Lower left figure: The key relation is the χ = χ(S) curve
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The Quasi-Equilibrium Solution: III
Outer Region: v � 1 and ε−2uv2 → 2π

√
DSδ(x − x0). Hence,

∆u = − a

D
+

2π√
D

S δ(x − x0) , x ∈ Ω ; ∂nu = 0 , x ∈ ∂Ω ,

u ∼ 1√
D

[

S log |x − x0| + χ(S) +
S

ν

]

as x → x0 , ν ≡ −1/ log ε .

Key Point: the regular part of this singularity structure is specified and was
obtained from matching to the inner core solution.

Divergence theorem yields S (specifying core solution U and V ) as

S =
a|Ω|

2π
√

D
.

The outer solution is given uniquely in terms of the Neumann
G-function and its regular part by

u(x) = − 2π√
D

(SG(x; x0) + uc) ,

where S + 2πνSR(x0; x0) + νχ(S) = −2πνuc , ν ≡ −1/ log ε .
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The Quasi-Equilibrium Solution: IV
Remarks On Asymptotic Construction:

G, its regular part R, and their gradients, can be calculated for different
Ω. (Simple formulae for a disk; more difficult for a rectangle where
Ewald-type summation is needed).
Construction yields a quasi-equilibrium solution for any “frozen” x0.
No rigorous existence theory for solutions to the coupled core problem.
The error is smaller than any power of ν = −1/ log ε. Therefore, in
effect, we have “summed” all the logarithmic terms.
Related infinite log expansions: eigenvalue of the Laplacian in a
domain with localized traps, slow viscous flow over a cylinder, etc.
For the trap problems the inner problem is linear and in 2-D we must
solve

∆yU = 0 , y /∈ Ω1 ; U = 0 , y ∈ ∂Ω1 ,

U ∼ log |y| − log d , |y| → ∞ ,

where d is the logarithmic capacitance. Our inner nonlinear core
problem yields U ∼ S log |y| + χ(S) as |y| → ∞.
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The One-Spot Dynamics: I
Principal Result: Provided that the one-spot profile is stable, the slow
dynamics of a one-spot solution satisfies the gradient flow

dx0

dt
∼ −2πε2γ(S)S ∇R(x0; x0) .

Here γ(S) > 0 is determined from the inner problem by a solvability
condition, and is computed numerically
Key: a stable equilibrium occurs at a minimum point of R(x0; x0).
Plot of numerically computed γ(S):
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The Stability of a One-Spot Solution: I
We seek fast O(1) time-scale instabilities relative to slow time-scale of x0.

Let u = ue + eλtη and v = ve + eλtφ. In the inner region we introduce the
local angular mode m = 0, 2, 3, . . . by

η =
1

D
eimθN(ρ) , φ = eimθΦ(ρ) , ρ = |y| , y = ε−1(x − x0) .

Then, on 0 < ρ < ∞, we get the two-component eigenvalue problem

LmΦ − Φ + 2UV Φ + V 2N = λΦ , LmN − 2UV Φ − V 2N = 0 ,

with operator Lm defined by

LmΦ ≡ ∂ρρΦ + ρ−1∂ρΦ − m2ρ−2Φ .

U and V are computed from the core problem and depend on S.
Key Point: This is a two-component eigenvalue problem, in contrast to
the scalar problem of NLEP theory. Hence, there is no ordering
principle for eigenvalues wrt number of nodal lines of eigenfunctions.
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The Stability of a One-Spot Solution: II
Definition of Thresholds: Let λ0(S, m) denote the eigenvalue with the largest
real part, with Σm being the value of S such that Reλ0(Σm, m) = 0.

The Modes m ≥ 2: We must impose N ∼ ρ−2 as ρ → ∞. We compute

Σ2 = 4.303 , Σ3 = 5.439 , Σ4 = 6.143 .
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S

Key points:

The peanut-splitting instability m = 2 is dominant.
Since N → 0 as ρ → ∞, this is a local instability
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The Stability of a One-Spot Solution: III
The Mode m = 0: Must allow for N to behave logarithmically at infinity.
Hence, it must be matched to an outer solution. For our one-spot solution,
this matching shows that N must be bounded as ρ → ∞.

1.0

0.5

0.0

−0.5

−1.0

0.0−0.5−1.0

Im(λ0)

Re(λ0)

Caption: eigenvalue path as a function of S

Key Point: Numerical computations show that we have stability wrt this
mode at least up to S = 7.8.
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The Direction of Splitting
For S ≈ Σ2, the linearization of the core problem has an approximate
four-dimensional null-space (two translation and splitting modes).
By deriving a certain solvability condition (center manifold-type
reduction), we show that for a one-spot solution splitting occurs in a
direction perpendicular to the motion when ε � 1.

Spot-Splitting in the Unit Disk: x0(0) = (0.5, 0.0), ε = 0.03, D = 1, and
a = 8.8. Left: Trace of the contour v = 0.5 from t = 15 to t = 175 with
increments ∆t = 5. Right: spatial profile of v at t = 105 during the splitting.
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The DAE System for a K-Spot Pattern: I
Collective Slow Coordinates: Sj , xj , for j = 1, . . . , K.

Principal Result: (DAE System): For “frozen” spot locations xj , the source
strengths Sj and uc satisfy the nonlinear algebraic system

Sj + 2πν






SjRj,j +

K
∑

i=1

i6=j

SiGj,i






+ νχ(Sj) = −2πνuc , j = 1, . . . , K ,

K
∑

j=1

Sj =
a|Ω|

2π
√

D
, ν ≡ −1

log ε
.

The spot locations xj , with speed O(ε2), satisfy

x′
j ∼ −2πε2γ(Sj)






Sj∇R(xj ; xj) +

K
∑

i=1

i6=j

Si∇G(xj ; xi)






, j = 1, . . . , K .

Here Gj,i ≡ G(xj ; xi) and Rj,j ≡ R(xj ; xj) (Neumann G-function).
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The DAE System II: Qualitative Comments
Vortices in GL Theory: some similarities for the law of motion.
Spot-Splitting Criterion: For D = O(1) and K ≥ 1 the q. e. solution is
stable wrt the local angular modes m ≥ 2 iff Sj < Σ2 ≈ 4.303 for all
j = 1, . . . , K. The J th spot is unstable to the m = 2 peanut-splitting
mode when SJ > Σ2, which triggers a nonlinear spot self-replication
process. Note: asymptotically no inter-spot coupling when m ≥ 2.
Stability to Locally Radially Symmetric Fluctuations: For D = O(1), and to
leading order in ν, a K-spot q. e. solution with K > 1 is stable wrt
m = 0. A one-spot solution is always stable wrt m = 0.
NLEP theory when D = 0(ν−1) � 1: Yields a scalar inner eigenvalue
problem, so that the m = 2 mode is always stable. For K ≥ 2, the
m = 0 mode is stable only when

D ≤ D0K ≡ a2|Ω|2ν−1

4π2K2b0
; b0 ≡

∫ ∞

0

ρ [w(ρ)]2 dρ .

Universality: For other RD systems, similar DAE systems but with other
γ(S) and χ(S) (from other core problems), and possibly with other
G-functions (such as reduced-wave G-function), can be derived.

BIRS – p.30



Comparison: Asymptotics with Full Numerics
Asymptotic Theory

Inner: Compute γ(S) and χ(S) from core problem at discrete points in
S. Then, interpolate with a spline.
Domain: Calculate G, its regular part R, and gradients of G, R. This
can be done analytically for the unit ball and the square.
Solve DAE system numerically using Newton’s method for nonlinear
algebraic part, and a Runge-Kutta ODE solver for the dynamics.
For special geometries, the algebraic part of the DAE system can be
solved analytically (ring patterns in a disk).

Full Numerics

Adaptive grid finite-difference code VLUGR2 (P. Zegeling, J.Blom, J.
Verwer) to compute solutions in a square. Use finite-element code of
W. Sun (U. Calgary) for a disk. “Prepared” initial data:

v =
√

D
K
∑

j=1

vjsech2

( |x − xj |
2ε

)

, u = − 2π√
D





K
∑

j=1

SjG(x; xj) + uc



 .

Find the location of maxima of v on the computational grid
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Numerical Validation for 1-Spot Solution
Splitting of One Spot: Let Ω = [0, 1]2 and fix ε = 0.02, x0 = (0.2, 0.8), a = 10,
and D = 0.1. Then, S ≈ 5.03 > Σ2. We predict a spot-splitting event
beginning at t = 0. The growth rate is λ0(S, 2) ≈ 0.15. (movie)

t = 23.6 t = 40.2 t = 322.7.

For ε = .02, full numerics gives a threshold in 4.15 < S < 4.28.
Splitting occurs in direction perpendicular to motion.
In a slowly growing square Ω = [0, L]2, we predict spot-splitting when

L > L1 =

(

2π
√

DΣ2

a

)1/2

.

BIRS – p.32



Numerical Validation, 2-Spot Solutions: I
Let Ω = [0, 1]2. Fix ε = 0.02, x1(0) = (0.3, 0.3), a = 18, and D = 0.1.
We only only vary x2(0), the initial location of the second spot.
(I): x2(0) = (0.5, 0.8); S1 = 4.61, S2 = 4.46; Both spots split; (movie)

t = 2.0 t = 33.5 t = 46.3 t = 280.3.
The DAE system tracks spot trajectories closely after the splitting
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Numerical Validation, 2-Spot Solutions: II
(II): x2(0) = (0.8, 0.8); S1 = 5.27, S2 = 3.79; Only x1 splits; (movie)

t = 2.5 t = 19.9 t = 29.4 t = 220.3.

(III): x2(0) = (0.5, 0.6); S1 = 3.67, S2 = 5.39; Only x2 splits; (movie)

t = 4.0 t = 16.5 t = 29.4 t = 322.7.
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Numerical Validation, Another Example
(IV): Let Ω = [0, 1]2, ε = 0.02, a = 51, D = 0.1 and let

xj = xc + 0.33eiπ(j−1)/3 , j = 1, . . . , 6 ;

The DAE system gives S1 = S4 ≈ 4.01, and S2 = S3 = S5 = S6 ≈ 4.44.
Thus, since Σ2 ≈ 4.3, we predict that four spots split (movie). The DAE
system closely tracks the spots after the splitting.

t = 4.0 t = 25.5 t = 40.3.

t = 280.3 t = 460.3 t = 940.3. BIRS – p.35



Ring Patterns in the Unit Disk: I
Let G be the (symmetric) Green’s function matrix with entries Gii = R and
Gij = Gij . Then:

Proposition: Suppose that the spot locations xj for j = 1, . . . , K are
arranged so that G is a circulant matrix. Then, with e = (1, . . . , 1)t,

Ge =
p

K
e , p = p(x1, . . . , xK) ≡

K
∑

i=1

K
∑

j=1

Gij ,

and (from the DAE system) the spots have a common source strength Sc

Sj ≡ Sc ≡ a|Ω|
2πK

√
D

, j = 1, . . . , K .

Key: For a ring pattern of spots in the unit disk, G is circulant. Hence, we
predict the possibility of simultaneous spot-splitting events. In addition, we
can derive a simple ODE for the ring radius in terms of p.
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Ring Patterns in the Unit Disk: II
Analysis of the DAE system is possible for a ring pattern in the unit disk

Put K spots on a ring of radius r at the roots of unity

xj = re2πij/K , j = 1, . . . , K , (Pattern I) .

Then, G is circulant with eigenpair e = (1, . . . , 1)t and pK(r)/K, where

pK(r) ≡ 1

2π

[

−K log(KrK−1) − K log
(

1 − r2K
)

+ r2K2 − 3K2

4

]

.

There is a common source strength Sc ≡ a|Ω|/(2πK
√

D). For
Sc < Σ2 ≈ 4.3, the spot locations xj satisfy the ODE’s

x′
j ∼ −πε2γ(Sc)Sc

1

K
p′K(r)e2πij/K , j = 1, . . . , K .

This yields an ODE for the ring radius

r′ = −ε2γ(Sc)Sc

[

− (K − 1)

2r
+

Kr2K−1

1 − r2K
+ rK

]

,

which has a unique stable equilibrium re in 0 < re < 1.
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Ring Patterns in the Unit Disk: III
Experiment (Expanding Ring): ε = 0.02, K = 5, a = 35, and D = 1. Then,
Sc = 3.5 < Σ2, and the ring expands to re ≈ 0.625.

t = 8 t = 90 t = 297.
Experiment (Spot-Splitting on a Ring): ε = 0.02, K = 3, a = 30, and D = 1.
Then, Sc = 5.0 > Σ2. Final state has 6 spots with re ≈ 0.642. (movie)

t = 30 t = 45 t = 75 t = 135.
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Ring Patterns in the Unit Disk: IV
Although the radial ODE for the ring radius has a stable equilibrium, the
full DAE system has a weak instability if too many spots are on one ring.
Experiment (Small Eigenvalue Instability): Choose ε = 0.02, a = 60, K = 9,
and D = 1. Initially nine spots remain on a slowly expanding ring.
However, the equilibrium has eight spots on a ring with a center-spot.
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Similar weak instability to: 1) S. Gueron, I. Shafir, “On a Discrete
Variational Principle Involving Interacting Particles”, SIMA, 1999. 2) Fluid
vortices on the equatorial plane of a sphere (S. Boatto, Physica D 2002).
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Ring Patterns in the Unit Disk: V
Consider ring pattern II consisting of spots together with a center spot of
source strength SK

Dynamic Spot-Splitting Instability: A ring pattern II that is stable at t = 0 can
become unstable at some t > 0 when SK exceeds Σ2 ≈ 4.3. Thus, as t is
increased and the ring radius exceeds a critical value, a dynamic
instability occurs and the center spot splits before the equilibrium ring
radius is achieved.

Experiment: ε = 0.02, K = 9, a = 74, and D = 1. The center-spot
eventually splits since SK > Σ2 at some t = T with T > 0. (movie).

t = 54 t = 372 t = 387 t = 800.
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GS Model: Brief Overview of Case Study
GS Model: in a 2-D domain Ω consider the GS model

vt = ε2∆v − v + Auv2 , ∂nv = 0 , x ∈ ∂Ω

τut = D∆u + (1 − u) − uv2 , ∂nu = 0 , x ∈ ∂Ω .

Consider semi-strong limit ε → 0 with D = O(1).
There are three key parameters D > 0, τ > 0, A > 0.
Three types of instabilities of spots: self-replication, oscillatory
instability, annihilation or overcrowding Instability.
Calculate a phase diagram classification for various symmetric
arrangements of spots.
Ph.D thesis work of Wan Chen, UBC.
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GS Model: Dynamics of Spots
Collective Slow Coordinates: Sj and xj , for j = 1, . . .K.

Principal Result: (DAE System): Let A = εA/(ν
√

D) and ν = −1/ log ε. The
DAE system for the source strengths Sj and spot locations xj is

A = Sj + 2πν






SjRj,j +

K
∑

i=1

i6=j

SiGj,i






+ νχ(Sj) , j = 1, . . . , K

x′
j ∼ −2πε2γ(Sj)






Sj∇R(xj ; xj) +

K
∑

i=1

i6=j

Si∇G(xj ; xi)






, j = 1, . . . , K .

Here Gj,i ≡ G(xj ; xi) and Rj,j ≡ R(xj ; xj), where G(x; xj) is the Reduced
Wave Green’s function with regular part R(xj ; xj), i.e.

∆G − 1

D
G = −δ(x − xj) , ∂nG = 0 , x ∈ ∂Ω ,

G(x; xj) ∼ − 1

2π
log |x − xj | + R(xj ; xj) , as x → xj .
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GS Model: Three Types of Spot Instabilities
M=2 Mode: The core problem is asymptotically the same as for
Schakenburg. Hence, J th spot splits iff SJ > Σ2 ≈ 4.3.
M=0 Mode: Stability problem is formulated as:

L0Φj − Φj + 2UjVjΦj + V 2
j Nj = λΦj ,

L0Nj − V 2
j Nj − 2UjVjΦj = 0 ,

Φj → 0 , Nj → Cj (log ρ + Bj) , ρ → ∞ ,

These inner problems are coupled through the outer problem as

Cj(1 + 2πνRλ jj) + νBj +
K
∑

i=1,i6=j

ν CiGλij = 0 , for j = 1, . . . , K .

The G-function Gλ(x; xj) with regular part Rλ(x; xj) satisfy

∆Gλ − (1 + τλ)

D
Gλ = δ(x − xj) , ∂nGλ = 0 , x ∈ ∂Ω ,

Gλ(x; xj) ∼
1

2π
log |x − xj | + Rλ(x; xj) , as x → xj .

To leading order in ν we can get an NLEP problem. Numerical
Computations: Annihilation or Oscillatory Instabilty. BIRS – p.43



Phase Diagram: Spots on a Ring in Unit Disk
Phase diagram A versus r for K = 2, 4, 8, 16 spots on a ring of radius r
with D = 0.2.
Regions: (a) Non-existence; (b) Annihilation instability; (c) Oscillatory
instability with large τ ; (d) Spot-replication.
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Open Issues and Further Directions
Green’s Function (PDE): Rigorous results needed for critical points of
regular part of Neumann and Reduced-wave Green’s functions.
Rigour: existence and stability theory for coupled core problem.
Rigorous derivation of DAE system for spot dynamics?
Universality: Apply framework to RD systems with classes of kinetics, to
derive general principles for dynamics, stability, replication.
Other Related Models: self-replication in integro-differential models of
Fisher type (B. Perthame ..)?
Annihilation-Creation Attractor: construct a “chaotic” attractor or “loop” for
GS model composed of spot-replication events, leading to spot
creation, followed by an over-crowding instability (spot-annihilation).
Patterns on Growing Domains and on Manifolds: Delayed bifurcation effects,
and require Green’s functions on manifolds.
Fractional Diffusion: Theory largely based on large diffusivity ratio. Can
one do a similar theory when the activator has subdiffusive fractional
diffusion (due to binding/unbinding events on crowded substrate) while
the inhibitor diffuses freely? (inspired by talk of A. Marciniak-Czopra in
Brazil, March 2009).
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