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In a one-dimensional domain, the stability of localized spike patterns is analyzed for two closely related singularly per-

turbed reaction-diffusion (RD) systems with Brusselator kinetics. For thefirst system, where there is no influx of the inhibitor

on the domain boundary, asymptotic analysis is used to derive a nonlocaleigenvalue problem (NLEP) whose spectrum deter-

mines the linear stability of a multi-spike steady-state solution. Similar to previousNLEP stability analyses of spike patterns

for other RD systems, such as the Gierer-Meinhardt (GM) and Gray-Scott (GS) models, a multi-spike steady-state solution

can become unstable to either a competition or an oscillatory instability depending on the parameter regime. An explicit

result for the threshold value for the initiation of a competition instability, which triggers the annihilation of spikes in a

multi-spike pattern, is derived. Alternatively, in the parameter regime when a Hopf bifurcation occurs, it is shown from a

numerical study of the NLEP that anasynchronous, rather than synchronous, oscillatory instability of the spike amplitudes

can be the dominant instability. The existence of robust asynchronous temporal oscillations of the spike amplitudes has not

been predicted from NLEP stability studies of other RD systems. For the second system, where there is an influx of inhibitor

from the domain boundaries, an NLEP stability analysis of a quasi-steady-state two-spike pattern reveals the possibility of

dynamic bifurcations leading to either a competition or an oscillatory instability ofthe spike amplitudes depending on the

parameter regime. It is shown that the novelasynchronousoscillatory instability mode can again be the dominant instability.

For both Brusselator systems, the detailed stability results from NLEP theoryare confirmed by rather extensive numerical

computations of the full PDE system.

Key words: Brusselator, singular perturbations, quasi-equilibria,nonlocal eigenvalue problem, Hopf bifurcation, asyn-
chronous oscillatory instability, dynamically triggeredinstability.

1 Introduction

Spatially localized patterns arise from a wide variety of reaction-diffusion systems, with applications to chemical

dynamics and biological modelling (cf. [29]), the spatial distribution of urban crime (cf. [24, 14]), electronic gas-

discharge systems (cf. [23]), and many other areas. In particular, it is now well-knownthat localized spot patterns can
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exhibit a wide range of different instabilities including,spot oscillation, spot annihilation, and spot self-replication be-

haviour. Various topics related to the analysis of far-from-equilibrium patterns modelled by PDE systems are discussed

in [19] and [11].

In this broad context, in this paper we study the stability oflocalized spike-type solutions to two closely related RD

systems with Brusselator-type kinetics. The Brusselator system (see e.g., [18], [28], or [20] and the references therein)

is a well-known theoretical model for a simplified autocatalytic reaction. It describes the space-time dependence of

the concentrations of the intermediate productsU (the activator) andV (the inhibitor) in the sequence of reactions

E → U , B + U → V + P , 2U + V → 3U , U → Q . (1.1)

Assuming (without loss of generality) that all rate constants of the reactions in (1.1) are unity, the conventional dimen-

sionless Brusselator model in a one-dimensional domain, with slow diffusion of the activator and constant influx of

the inhibitor from the boundaries, can be written as

Ut = ǫ20Uxx + E0 − (B0 + 1)U + V U2 , −1 < x < 1 , Ux(±1, t) = 0 , t > 0 , (1.2a)

Vt = D0Vxx +B0U − V U2 , −1 < x < 1 , Vx(±1, t) = ±A0 , t > 0 , (1.2b)

supplemented by appropriate initial conditions. HereU ≥ 0, V ≥ 0, 0 < ǫ0 ≪ 1, andA0,B0,D0 andE0 are all non-

negative constants. The constantA0 represents a boundary feed term for the inhibitor, while theconstantE0 represents

a constant bulk feed for the activator. Our key assumption inthe model is that there is an asymptotically large ratio of

the diffusivities forU andV .

In the absence of a boundary feed-term, so thatA0 = 0 in (1.2b), then spikes for (1.2) occur whenE0 = O(ǫ
1/2
0 )

(see Appendix A and [27]). Upon writingE0 = ǫ
1/2
0 E0 whereE0 = O(1), the scaling analysis in Appendix A yields

ut = ǫ2uxx + ǫ− u+ fvu2 , −1 < x < 1 , ux(±1, t) = 0 , t > 0 , (1.3a)

τvt = Dvxx +
1

ǫ

(

u− vu2
)

, −1 < x < 1 , vx(±1, t) = 0 , t > 0 , (1.3b)

wheret is a different time-scale than in (1.2). HereD, τ , ǫ, andf , are defined by

D ≡ D0(B0 + 1)3/2

E2
0

, τ ≡ (B0 + 1)5/2

E2
0

, ǫ ≡ ǫ0√
B0 + 1

, f ≡ B0

B0 + 1
. (1.4)

In contrast, when both the boundary and bulk feed terms are non-vanishing, and are asymptotically small of the

orderO(ǫ
1/2
0 ) so thatE0 = ǫ

1/2
0 E0 andA0 = ǫ

1/2
0 A0, whereE0 andA0 areO(1), then the appropriate re-scaled form

of (1.2) is (see Appendix A below)

ut = ǫ2uxx + ǫE − u+ fvu2 , −1 < x < 1 , ux(±1, t) = 0 , t > 0 , (1.5a)

τvt = Dvxx +
1

ǫ

(

u− vu2
)

, −1 < x < 1 , vx(±1, t) = ±1 , t > 0 , (1.5b)

whereD, E, τ , ǫ, andf are now defined by

D ≡ D0A
2
0

√
B0 + 1

B2
0

, E ≡ E0A0

B0

√
B0 + 1

, τ ≡ A2
0(B0 + 1)3/2

B2
0

, ǫ ≡ ǫ0√
B0 + 1

, f ≡ B0

B0 + 1
. (1.6)

The spatially uniform steady-state solution of (1.3) isue = ǫ/(1− f) andve = ǫ−1(1−f). For arbitraryǫ > 0, it is

well-known that this solution undergoes either a Turing or Hopf instability depending on the parameter ranges in (1.3)

(cf. [18]). Near the bifurcation points for the onset of these instabilities, small amplitude patterns emerge and they

have been well-studied in a multi-spatial dimensional context through canonical amplitude equations that are readily
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derived from a multi-scale weakly nonlinear analysis (see [20] and the references therein). For a detailed survey of

normal form theory as applied to the study of 1-D pattern formation in the Brusselator model see [36]. More recently, a

weakly nonlinear analysis was used in [26] to study pattern formation near a Turing-Hopf bifurcationin a Brusselator

model with superdiffusion.

In contrast, with an asymptotically large diffusivity ratio as in (1.3), localized large amplitude patterns are readily

observed in full numerical simulations of (1.3) with initial conditions close to the spatially uniform state(ue, ve). A

standard calculation shows that forf > 1/2, 0 < ǫ≪ 1, andτ = O(1), the band of unstable wave numbersm for an

instability mode of the form(u, v) = (ue, ve) + eλt+imx(Φ, N) satisfies

ǫ1/2 [(2f − 1)(1− f)D]
−1/2

< m <
(2f − 1)1/2

ǫ
, as ǫ→ 0 . (1.7)

The maximum growth rate within this instability band is calculated asλmax ∼ (2f − 1)− 2ǫ2m2, which occurs when

m = mmax, where

mmax ∼
(

f

D(f − 1)2

)1/4

ǫ−1/4 , as ǫ→ 0 . (1.8)

Therefore, the instability has a short wavelength ofO(ǫ1/4), In contrast, our results below (see (1.9) and (1.10)), show

that stable localized spikes occur only atO(1) inter-spike separation distances. This suggests that starting from initial

data a coarsening process must occur, which eventually leads to localized spikes. For a particular parameter set, in

Fig. 1 we show the formation of a two-spike pattern as obtained from the numerical solution of (1.3).
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Figure 1. Plot of numerical solutionu of (1.3) at different times for the parameter setǫ = 0.02, f = 0.8, D = 0.1,

andτ = 0.001, with initial conditionu(x, 0) = ue(1 + 0.02 × rand) andv(x, 0) = ve(1 + 0.02 × rand), where

ue = ǫ/(1− f), ve = ǫ−1(1 − f), andrand is a uniformly generated random number in[0, 1]. Left: the small

amplitude pattern att = 18 leads to the two-spike pattern shown att = 46. Right figure: Ast increases fromt = 193

to t = 837 the two spikes slowly drift to their equilibrium locations at x = ±0.5.

Rigorous results for the existence of large amplitude equilibrium solutions for some generalizations of the Brusse-

lator model (1.3) in the non-singular perturbation limitǫ = 1 have recently been obtained in [21] and [22] (see also the

references therein). However, to date, there is no comprehensive stability theory for these large amplitude solutions.

In a more general 1-D context, there are now many results for the existence and stability of localized equilibrium
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spike patterns for various singularly perturbed two-component RD systems such as the Gierer-Meinhardt (GM) model

[34, 2, 8, 32], the Gray-Scott (GS) model [5, 16, 17, 12, 1], and the Schnakenberg model [10, 31]. A explicit charac-

terization of the slow dynamics of spike patterns, and theirinstability mechanisms, is given in [3, 4, 9, 6, 25, 7] for

various RD systems in one space dimension. A central featurein all of these previous studies is that the determination

of the spectrum of various classes of nonlocal eigenvalue problems (NLEP’s) is critical for characterizing the stability

of both equilibrium and quasi-equilibrium multi-spike patterns. A survey of NLEP theory is given in [35].

The goal of this paper is to provide a detailed analysis of thestability of multi-spike equilibria of (1.3), and a detailed

study of the dynamics and stability of two-spike solutions for the Brusselator model (1.5) with a non-zero boundary

feed term. Although much of the general theoretical framework for the spike-stability analysis is closely related to

that developed in previous works for GM, GS, and Schnakenberg RD systems, there are important differences both in

the details of the analysis required and in the stability results that are obtained. The stability results obtained herein

complement the results obtained in the companion paper [27] for the dynamics of spikes in the Brusselator model.

We now summarize our main results. In§2.1 we begin by briefly outlining the asymptotic construction of symmetric

N -spike equilibrium solutions to (1.3). We refer to a symmetric N -spike solution as one for which the spikes are

equally spaced and, correspondingly, each spike has the same amplitude. The main focus of§2, not considered in

[27], is to analyze the stability of symmetricN -spike equilibrium solutions to (1.3). A singular perturbation analysis

is used in§2.2 to derive a nonlocal eigenvalue problem (NLEP) that determines the stability of this solution toO(1)

time-scale instabilities. The derivation of this NLEP is rather more intricate than for related RD systems in [2, 5, 8, 10,

12, 17, 31, 32] owing primarily to the presence of two separate nonlocal terms resulting from theO(ǫ−1) coefficient

in (1.3b), and secondarily from the nontrivial background state forthe activator resulting from the constant feed term

of orderO(ǫ) in (1.3a). From an analysis of this NLEP there are two distinct mechanisms through which the solution

can go unstable as the bifurcation parametersτ andD are varied.

Firstly, for τ sufficiently small, our analysis of the NLEP in§2.3 reveals the existence of a critical thresholdNc+

such that a pattern consisting ofN spikes withN > 1 is unstable to a competition instability if and only ifN > Nc+.

This instability, which develops on anO(1) time scale asǫ → 0, is due to a positive real eigenvalue, and it triggers

the collapse of some of the spikes in the overall pattern. This critical thresholdNc+ > 0 is the unique root of (see

Principal Results 2.3 and 2.4 below)

N (1 + cos (π/N))
1/3

=

(

2f2

3(1− f)D

)1/3

. (1.9)

In addition, from the location of the bifurcation point associated with the birth of an asymmetricN -spike equilibrium

solution, a further thresholdNc− is derived that predicts that anN -spike equilibrium solution withN > 1 is stable

with respect to slow translational instabilities of the spike locations if and only ifN < Nc−, where (see (2.47))

Nc− =

(

2f2

3(1− f)D

)1/3

. (1.10)

SinceNc− < Nc+, the stability properties of anN -spike equilibrium solution to (1.3) withN > 1 andτ sufficiently

small are as follows: stability whenN < Nc−; stability with respect to fastO(1) time-scale instabilities but unstable

with respect to slow translation instabilities whenNc− < N < Nc+; a fastO(1) time-scale instability dominates when

N > Nc+. We remark that for (1.3) posed on a domain of lengthL, then by a scaling argument we need only replace

D in (1.9) and (1.10) with4D/L2. As an example, consider the parameter setǫ = 0.02, f = 0.8, andτ = 0.001 ≪ 1.
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Then, the threshold (1.10) withNc− = 2 predicts that a two-spike pattern is stable to both fast and slow instabilities

whenD < 0.133. The numerical results shown in Fig. 1 withD = 0.1 confirm this prediction.

For the caseτ > 0 in (1.3), we show that anN -spike equilibrium solution to (1.3) is unstable whenN > Nc+, or

equivalently whenD > DcN (see Principal Result 2.3 below), where

DcN ≡ 2f2

3N3(1− f)
(

1 + cos π
N

) .

ForD < DcN , in §2.4 we show from a numerical computation of the spectrum of the NLEP that there is a critical value

τH of τ for which anN -spike equilibrium solution undergoes a Hopf bifurcation.In contrast to the previous NLEP

stability studies of [32, 30, 12] for the GM and GS models, where a synchronous oscillation inthe spike amplitudes

was always the dominant instability, our results show that there is a parameter regime where the Hopf bifurcation

for the Brusselator (1.3) triggers robustasynchronoustemporal oscillations of the spike amplitudes. Furthermore, we

establish the scaling lawτH ∼ c/D asD → 0 for someO(1) constantc > 0. Therefore, in contrast to the previous

analyses for the GM and GS models (cf. [32, 12] where τH = O(1) asD → 0, this new scaling law indicates

that spikes that are isolated from their neighbours or from the domain boundaries (i.e.D small) do not undergo an

oscillatory instability unlessτ is very large.

For the boundary-flux system (1.5), in§3.1 we derive an ODE for the slow evolution of a two-spike quasi-steady

pattern. In the presence of boundary flux, equilibrium spikes are not equally spaced, and depending on the parameter

values, slowly drifting spikes may annihilate against the domain boundaries. In§3.2 we derive an NLEP governing

the stability of the two-spike quasi-steady pattern toO(1) time-scale instabilities. From an analytical and numerical

study of this NLEP, in§3.3 and§3.4 we show the possibility of dynamic bifurcations leadingto either a competition

or an oscillatory instability of the spike amplitudes depending on the parameter regime. As in the study of the no-flux

system (1.3), the novelasynchronousoscillatory instability mode can again be the dominant instability.

For both Brusselator systems, the detailed stability results are confirmed and illustrated by rather extensive numerical

computations of the full PDE systems.

2 Stability of Symmetric N -Spike Equilibria with No Boundary Flux

In this section, we constructN -spike symmetric equilibrium solutions of (1.3). By a symmetric spike solution we

refer to a pattern of spikes with a common height and equal spacing. We then linearize about this equilibrium solution

to derive an NLEP governing the stability of the equilibriumpattern toO(1) eigenvalues. Stability with respect to

the smallO(ǫ2) eigenvalues as well as the existence of asymmetric equilibria were studied in [27]. We highlight

the differences between the NLEP derived here and analogousNLEP’s derived for the Gray-Scott ([12]) and Gierer-

Meinhardt ([32]) models. We also draw similarities to the aforementioned NLEP’s and appeal to results of [32] to

determine criteria for competition and oscillatory instabilities. Numerical results computed from (1.3) are used to

validate our stability results.

2.1 Asymptotic Construction of N -Spike Equilibria

To construct anN -spike symmetric equilibrium solution, characterized by spikes of a common amplitude and equal

spacing, we employ the “gluing” technique used in [31]. We first consider a one-spike solution on the interval|x| < ℓ

centered atx = 0. In the inner region of widthO(ǫ), we introduce the stretched spatial variabley = ǫ−1x and let
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U(y) = u(ǫy). Becausev varies on anO(1) length scale, thenv ∼ vc in the inner region where the constantvc is to

be found. Then, by (1.3a), we obtain to leading order thatU satisfiesUyy − U + fvcU
2 = 0. The spike solution to

this problem is

U(y) =
1

fvc
w(y) , (2.1)

wherew = 3
2 sech

2(y/2) is the homoclinic solution to

w′′ − w + w2 = 0 , −∞ < y <∞ , w → 0 as |y| → ∞ , w′(0) = 0, w(0) > 0 , (2.2)

for which
∫ ∞

−∞

w dy =

∫ ∞

−∞

w2 dy = 6. (2.3)

In the outer region, we obtain from (1.3a) thatu = O(ǫ) so thatvu2 ≪ u. Thus,u ∼ ǫ to leading order in the outer

region. The resulting leading-order composite solution for u is then given by

u ∼ ǫ+
1

fvc
w(x/ǫ) , (2.4)

wherew(y) is defined by (2.2). Sinceu is localized nearx = 0, the terms involvingu in (1.3b) can be represented in

the outer region as delta functions. Upon using (2.3) and (2.4) we calculate that

1

ǫ
(u− vu2) ∼ 1 +

(

1

fvc

∫ ∞

−∞

w dy − 1

f2vc

∫ ∞

−∞

w2 dy

)

δ(x) = 1 +
6

fvc

(

1− 1

f

)

δ(x) . (2.5)

Therefore, in the outer region we obtain forǫ→ 0 thatv satisfies

Dvxx + 1 =
6

fvc

(

1

f
− 1

)

δ(x) , −ℓ < x < ℓ , vx(±ℓ) = 0 . (2.6)

Integrating this equation over|x| ≤ ℓ and imposing thatvx = 0 atx = ±ℓ, we obtain

vc =
3

fℓ

(

1

f
− 1

)

> 0 , (2.7)

sincef satisfies0 < f < 1. To obtain anN -spike equilibrium solution for (1.3) on the domain of length two, we

must set2 = 2Nℓ and periodically extend our solution on|x| < l to [−1, 1]. Thus, we identify thatl = 1/N and (2.7)

becomes

vc =
3N

f

(

1

f
− 1

)

. (2.8)

Before solving for the outer solution forv, we make some remarks. Firstly,vc in (2.8) increases withN , and so,

by (2.1), the common spike amplitude decreases as the numberof spikes increases. Also, the common amplitude is

independent ofD, which will not be the case when we construct spike solutionsunder the presence of boundary flux

in §3. Secondly, by usingℓ = 1/N , the center of each spike is located at

xj = −1 +
2j + 1

N
, j = 0, . . . , N − 1 . (2.9)

This equally-spaced spike result will be shown not to hold in§3 when we allow for the presence of boundary flux.

Lastly, the uniqueness of the solution to (2.6) is achieved by imposing the matching conditionv(xj) = vc.

Using the last remark, we write the equation forv on the interval−1 < x < 1 as

Dvxx + 1 =
6

fvc

(

1

f
− 1

)N−1
∑

j=0

δ(x− xj) , −1 < x < 1 , vx(±1) = 0 , (2.10)
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wherevc satisfies (2.8). The solution to (2.10) can be written in terms of the Neumann Green’s functionG(x;xj) as

v = v̄ +
6

fvc

(

1

f
− 1

)N−1
∑

j=0

G(x;xj) , (2.11)

for some constant̄v to be determined. HereG(x;xj) satisfies

DGxx(x;xj) +
1

2
= δ(x− xj) , −1 < x < 1 ; Gx(±1;xj) = 0 ,

∫ 1

−1

G(x;xj) dx = 0 , (2.12)

which has the explicit solution

G(x;xj) = − 1

4D
(x2 + x2j ) +

1

2D
|x− xj | −

1

6D
. (2.13)

The constant̄v is determined by the matching conditionv(xi) = vc, yielding

v̄ = vc −
6

fvc

(

1

f
− 1

)N−1
∑

j=0

G(xi;xj) , (2.14)

where the right-hand side of (2.14) is readily shown to be independent ofi. We summarize our result as follows:

Principal Result 2.1: Letǫ→ 0 in (1.3). Then, the leading order composite approximation for the symmetricN -spike

equilibrium solution foru is

ue(x) ∼ ǫ+
1

fvc

N−1
∑

j=0

w[ǫ−1(x− xj)] . (2.15a)

Alternatively, the outer solution forv valid for |x− xj | ≫ O(ǫ) andj = 0, . . . , N − 1 is given asymptotically by

ve(x) ∼ v̄ +
6

fvc

(

1

f
− 1

)N−1
∑

j=0

G(x;xj) . (2.15b)

Herew(y) satisfies(2.2), whilevc, xj , v̄, andG(x;xj) are given in(2.8), (2.9), (2.14), and(2.13), respectively.

Next, we calculate the critical valueDsN of D for which an asymmetricN -spike equilibrium solution, charac-

terized by spikes of different height and non-uniform spacing, bifurcates from the symmetricN -spike symmetric

solution branch. This bifurcation point corresponds to a zero eigenvalue crossing along the symmetric branch, and for

τ sufficiently small it characterizes the stability threshold of symmetricN -spike equilibria with respect to the small

eigenvalues withλ→ 0 asǫ→ 0 in the linearization of (1.3) (cf. [27]).

To determine this bifurcation point, we computev(l) for the one-spike equilibrium solution to (1.3) on the domain

−l < x < l. From (2.6) and (2.7), we readily calculate that

v(l) =
1

2D

(

l2 +
b

l

)

, b ≡ 6D

f2
(1− f) .

The bifurcation point for the emergence of an asymmetricN -spike solution on a domain of length two, is obtained by

calculating the minimum point of the graph ofv(l) versusl, and then setting2Nl = 2 (cf. [27]). This occurs at the

valueD = DsN , where

DsN ≡ f2

3(1− f)N3
. (2.16)

2.2 Derivation of Nonlocal Eigenvalue Problem

To analyze the stability of the equilibrium solution constructed above, we linearize aboutue andve, whereue andve

are given in (2.15a) and (2.15b), respectively. We substituteu = ue + eλtΦ andv = ve + eλtΨ into (1.3), where
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|Φ| ≪ 1 and|Ψ| ≪ 1. This leads to the eigenvalue problem

ǫ2Φxx − Φ+ 2fueveΦ+ fu2eΨ = λΦ , −1 < x < 1 , Φx(±1) = 0 , (2.17a)

DΨxx +
1

ǫ

[

Φ− 2ueveΦ− u2eΨ
]

= τλΨ , −1 < x < 1 , Ψx(±1) = 0 . (2.17b)

To analyze the large eigenvalues that areO(1) asǫ→ 0, we look for a localized eigenfunction forΦ of the form

Φ ∼
N−1
∑

j=0

Φj [ǫ
−1(x− xj)] , (2.18)

with Φj → 0 exponentially as|y| → ∞. In the inner region near thejth spike we obtain from (2.17b) thatΨ ∼ Ψj ,

whereΨj is a constant to be found. Since bothue andΦ are localized near eachxj , we calculate in the sense of

distributions that

1

ǫ

[

Φ− 2ueveΦ− u2eΨ
]

∼
(∫ ∞

−∞

Φj dy −
2

f

∫ ∞

−∞

wΦj dy −
Ψj

f2v2c

∫ ∞

−∞

w2 dy

)

δ(x− xj) . (2.19)

Substituting (2.18) into (2.17a) and (2.19) into (2.17b), and using (2.3) for the last integral in (2.19), we obtain that

Φ′′

j − Φj + 2wΦj +
1

fv2c
w2Ψj = λΦj , −∞ < y <∞ , Φj → 0 as |y| → ∞ , (2.20a)

and

Ψxx − µ2Ψ = −
N−1
∑

j=0

ω̃jδ(x− xj) , −1 < x < 1 , Ψx(±1) = 0 , (2.20b)

where we have definedµ andω̃j by

µ ≡
√

τλ

D
, ω̃j ≡

1

D

[∫ ∞

−∞

Φj dy −
2

f

∫ ∞

−∞

wΦj dy −
6Ψj

f2v2c

]

. (2.21)

To derive an NLEP forΦj , we must computeΨj for j = 0, . . . , N − 1 from (2.20b). To do so, we writeΨ(x) as

Ψ =

N−1
∑

j=0

G(µ)(x;xj)ω̃j , (2.22)

whereG(µ)(x;xj) is the Green’s function satisfying

G(µ)
xx − µ2G(µ) = −δ(x− xj) , −1 < x < 1 ; G(µ)

x (±1;xj) = 0 . (2.23)

Evaluating (2.22) atx = xi we obtain thatΨ(xi) = Ψi =
∑N−1

j=0 G
(µ)
i,j ω̃j , whereG(µ)

i,j ≡ G(µ)(xi, xj) andω̃j is given

in (2.21). In matrix form, this system can be written as

Ψ = G(µ)

(

ω − 6

f2v2cD
Ψ

)

, (2.24)

where

Ψ ≡













Ψ0

...

ΨN−1













, G(µ) ≡



















G
(µ)
0,0 G

(µ)
0,1 . . . G

(µ)
0,N−1

G
(µ)
1,0

. .. · · · G
(µ)
1,N−1

...
...

. . .
...

G
(µ)
N−1,0 G

(µ)
N−1,1 · · · G

(µ)
N−1,N−1



















, (2.25)



The Stability of Localized Spikes for the 1-D Brusselator Reaction-Diffusion Model 9

and

ω =
1

D

[∫ ∞

−∞

Φ dy − 2

f

∫ ∞

−∞

wΦ dy

]

, Φ ≡













Φ0

...

ΦN−1













. (2.26)

Solving forΨ in (2.24), we obtain

Ψ = C−1G(µ)
ω ; C ≡ I +

6

f2v2cD
G(µ) , (2.27)

whereI is theN ×N identity matrix.

Having obtainedΨ in terms ofΦ, we now derive a vector NLEP forΦ. Upon defining the local operatorL0 by

L0φ ≡ φ′′ − φ+ 2wφ , (2.28)

we then use (2.26) forω to write (2.20a) in vector form as

L0Φ+
w2

fv2cD
C−1G(µ)

[∫ ∞

−∞

(

Φ− 2

f
wΦ

)

dy

]

= λΦ . (2.29)

To obtainN uncoupled scalar NLEP’s, we diagonalizeC−1 andG(µ) by using the eigenpairsG(µ)vj = κjvj for

j = 0, . . . , N − 1 of G(µ). This yields,

G(µ) = SΛS−1 , C−1 = S [I + β0Λ]
−1 S−1 ; β0 ≡ 6

f2v2cD
, (2.30)

whereS is the non-singular matrix whose columns are the eigenvectors of G(µ) andΛ is the diagonal matrix of the

eigenvaluesκ0, . . . , κN−1. From the observation that
(

G(µ)
)−1

is a tridiagonal matrix, explicit formulae for these

eigenvalues were calculated in Proposition 2 of [8] as

κj =
1

µσj
, j = 0, . . . , N − 1 , (2.31)

whereσj for j = 0, . . . , N − 1 are given by

σ0 = eλ + 2fλ; σj = eλ + 2fλ cos

(

jπ

N

)

, j = 1, . . . , N − 1 . (2.32a)

Hereeλ andfλ are defined in terms ofµ ≡
√

τλ/D by

eλ ≡ 2 coth

(

2µ

N

)

, fλ ≡ − csch

(

2µ

N

)

. (2.32b)

The corresponding eigenvectors ofG(µ) are

vt0 = (1, . . . , 1) ; vℓ,j = cos

[

jπ

N
(ℓ− 1/2)

]

, j = 1, . . . , N − 1 , (2.32c)

wheret denotes the transpose andvℓ,j denotes theℓth component of the vectorvj .

Upon substituting (2.30) into (2.29), and making use of the transformationΦ = SΦ̂, we obtain the diagonal NLEP

L0Φ̂+ fβ0 [I + β0Λ]
−1

Λw2





∫∞

−∞

(

Φ̂− 2
fwΦ̂

)

dy
∫∞

−∞
w2 dy



 = λΦ̂ , (2.33)

whereβ0 is defined in (2.30), and where we have used that
∫∞

−∞
w2 dy = 6. While the components of̂Φ are generally

different, for notational convenience we labelΦ̂ = Φ̂e, wheree is theN -vector(1, . . . , 1)t. SinceΛ is the diagonal
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matrix of eigenvaluesκj , this substitution leads toN uncoupled scalar NLEP’s of the form

L0Φ̂ + fχ̃jw
2





∫∞

−∞

(

Φ̂− 2
fwΦ̂

)

dy
∫∞

−∞
w2 dy



 = λΦ̂ , j = 0 , . . . , N − 1 , (2.34)

whereχ̃j is defined by

χ̃j ≡
β0κj

1 + β0κj
. (2.35)

In contrast to the NLEP problems for the Gierer-Meinhardt and Gray-Scott models analyzed in [32] and [12], the

NLEP (2.34) involves the two separate nonlocal terms
∫∞

∞
Φ̂ dy and

∫∞

∞
wΦ̂ dy. These terms arise from the fact that

theO(ǫ−1) term in (1.3b) involves the sum of two localized terms. Due to this complication, it initially appears that

the general theory developed in [32] is not applicable. However, as we now show, by a simple manipulation we can

recast (2.34) into the same general form as the NLEP analyzedin [32].

To do so, we first defineI1 andI2 asI1 ≡
∫∞

−∞
Φ̂ dy andI2 ≡

∫∞

−∞
wΦ̂ dy. Then, by using (2.28) forL0Φ̂, together

with the condition that̂Φ → 0 as|y| → ∞, we integrate (2.34) over−∞ < y <∞ to obtain

−I1 + 2I2 + fχ̃j

[

I1 −
2

f
I2

]

= λI1 , (2.36)

which is then re-arranged to yield

I1 −
2

f
I2 = − 2

f

[

1 + λ− f

1 + λ− χ̃jf

]

I2 . (2.37)

Finally, using (2.37) in (2.34), we obtain the NLEP problem

L0Φ̂− χjw
2

(
∫∞

−∞
wΦ̂ dy

∫∞

−∞
w2 dy

)

= λΦ̂ , χj ≡ 2χ̃j

[

1 + λ− f

1 + λ− χ̃jf

]

, (2.38)

whereχ̃j is defined in terms ofκj in (2.35).

The NLEP in (2.38) is of the form given in Proposition 2.3 of [32] for the GM model and in Principal Result 3.2 of

[12] for the GS model. However, because the activator in the Brusselator model acts as two separate sources for the

inhibitor, the identity (2.37) is needed, which results in arather complicated coefficient in front of the nonlocal term

in (2.38). Finally, by substituting (2.35) and (2.31) into (2.38) we obtain the following main result:

Principal Result 2.2: Let ǫ → 0 in (1.3) and consider theN -spike equilibrium solution constructed in§2.1. The

stability of this solution on anO(1) time-scale is determined by the spectrum of the NLEP

L0Φ̂− χjw
2

(
∫∞

−∞
wΦ̂ dy

∫∞

−∞
w2 dy

)

= λΦ̂ , −∞ < y <∞ , Φ̂ → 0 as |y| → ∞ , (2.39a)

whereχj is given explicitly by

χj =
2

1 + µσj/β0

[

1 +
fµσj

fβ0 − (1 + λ)(β0 + µσj)

]

. (2.39b)

Hereσj is defined in terms ofµ in (2.32a), µ is defined in terms ofλ in (2.21), andβ0 is defined in(2.30).

We make a few remarks concerning (2.39). Firstly, the dependence ofχj in (2.39) onτ is strictly through the

parameterµ =
√

τλ/D, the importance of which will be discussed in the following section. From the explicit formula

(2.32a), it follows thatχj does not have a branch point at the originλ = 0. Secondly, the spectrum of (2.39) is well-

known for the local eigenvalue problem corresponding to setting χj = 0. In this case, it is known from [15] and [2]

that, in addition to the zero eigenvalue associated with translation invariance,L0 has a unique positive eigenvalue
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ν0 = 5/4 corresponding to an eigenfunctionφ0 of constant sign, and has an additional discrete eigenvalueon the

negative real line atν2 = −3/4.

Finally, the spectrum of the NLEP for (2.39) is recast into a more convenient form by first writing

Φ̂ = χj

(
∫∞

−∞
wΦ̂ dy

∫∞

−∞
w2 dy

)

(L0 − λ)−1w2 ,

and then multiplying both sides of this equation byw and integrating over the real line. In this way, we obtain that the

eigenvalues of (2.39) are the roots of the transcendental equationsgj(λ) = 0, for j = 0, . . . , N − 1, where

gj(λ) ≡ Cj(λ)− F (λ) , Cj(λ) ≡
1

χj(λ)
, F (λ) ≡

∫∞

−∞
wψ dy

∫∞

−∞
w2 dy

, ψ ≡ (L0 − λ)−1w2 . (2.40)

2.3 Competition Instabilities

In this sub-section, we seek criteria in terms ofD that guarantee that there is a positive real solution to (2.40) in the

limit τ → 0+. Such a root corresponds to an unstable real positive eigenvalue of the NLEP (2.39). Forτ → 0+ it will

be shown that such a linear instability is of competition type in the sense that it conserves the sum of the amplitudes

of the spikes. The instability threshold condition onD will also be shown to apply to the case whereτ > 0.

We begin the analysis by recalling key properties of the functionF (λ) whenλ is real and positive as determined in

Proposition 3.5 of [32]. We then determine the behaviour ofCj(λ) in (2.40) in the limitτ → 0+. Using the properties

of Cj(λ) in this limit, together with the properties ofF (λ), we obtain criteria for which there exists a positive real

value ofλ at whichCj(λ) andF (λ) intersect. Some global properties ofF (λ) whenλ is real and positive, which were

rigorously established in [32], are as follows:

F (λ) > 0 , F ′(λ) > 0 , F ′′(λ) > 0 , for 0 < λ < 5/4 ; F (λ) < 0 , for λ > 5/4 . (2.41a)

Furthermore, sinceL0w = w2 and since the operator(L0 − λ) is not invertible atλ = 5/4, we obtain that

F (0) = 1 , F (λ) → +∞ , as λ→ 5/4
−
. (2.41b)

To determine the behaviour ofCj(λ) asτ → 0+, we first writeCj(λ) in terms ofσj as

Cj(λ) =
1

2

[

1 + ξj +
fξj

1 + λ− f

]

; ξj =
µσj
β0

, j = 0, . . . , N − 1 . (2.42)

For any branch of
√
λ, this function is analytic in the finiteλ plane except at the simple poleλ = −1+ f , which is on

the negative real axis since0 < f < 1. Upon taking the limitµ → 0+ in σj in (2.32a), we see thatξj in (2.42) has

the behaviour

ξ0 → 0+ ; ξj →
Naj
β0

, aj ≡ 1− cos

(

jπ

N

)

, j = 1, . . . , N − 1 , as τ → 0+ , (2.43)

whereβ0 is defined in (2.30).

Firstly, by (2.43) and (2.42), we have thatC0(λ) ≡ 1/2 for all λ whenτ = 0. Thus, by (2.41), it follows that

g0(λ) 6= 0 for anyλ ≥ 0. Moreover, from the rigorous study of [34] (see Corollary 1.2 of [34]), we can conclude,

more strongly, that whenC0 = 1/2 there are no roots tog0(λ) = 0 in the unstable right-half plane Re(λ) > 0 (see

(2.4)). Thus, the(1, . . . , 1)t mode, governing synchronous instabilities of the amplitudes of the spikes, is always stable

in the limit τ → 0+.

Next, consider the modesj = 1, . . . , N − 1. Sinceξj in (2.43) forj > 0 is independent ofλ in the limit τ → 0+, it
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follows from (2.42) thatC ′
j(λ) < 0 andCj(λ) > 0 for λ ≥ 0 whenj = 1, . . . , N −1. Thus, from (2.41), we conclude

that if maxj Cj(0) < 1 for j = 1, . . . , N − 1, then there are no real positive eigenvalues whenτ = 0. A simple

calculation using (2.42) and (2.43) shows that asτ → 0+, we have the orderingCN−1(0) > CN−2(0) > . . . > C1(0).

Therefore, in the limitτ → 0+, (2.39) has no real positive eigenvalues when

CN−1(0) =
1

2

[

1 + ξN−1 − f

1− f

]

< 1 . (2.44)

If CN−1(0) > 1, there is an unstable positive real eigenvalue whenτ → 0+. The threshold valueDcN of D, as given

below in (2.45), is obtained by settingCN−1(0) = 1, and then using (2.43) forξN−1 together with (2.30) forβ0.

Although for the caseτ > 0 it is no longer true thatCN−1(λ) is monotonically decreasing, we still have that

CN−1(0) > 1 whenD > DcN . Hence, by the properties ofF (λ) given in (2.41) it follows that there must still be a

positive root toCN−1(λ) = F (λ). However, whenτ > 0 it is possible that there can now be further real positive roots

where the other curvesCj(λ) for j = 0, . . . , N − 2 intersectF (λ). We summarize our instability result as follows:

Principal Result 2.3: Let ǫ → 0 andτ ≥ 0 in (1.3). Then theN -spike equilibrium solution (N ≥ 2) constructed in

§2.1 is unstable when

D > DcN ≡ 2f2

3N3(1− f)
(

1 + cos π
N

) , 0 < f < 1 , (2.45)

and the spectrum of the NLEP(2.39)contains at least one unstable positive real eigenvalue. For τ → 0+, the instability

is of competition type in the sense that any linearly unstable eigenvectorvj for the spike amplitudes must satisfy

(1, . . . , 1) · vj = 0.

We now make some remarks. Firstly, for the limiting caseτ → 0+, in §2.4 a winding number calculation will be used

to prove that there are no unstable complex eigenvalues in the right half-plane whenD < DcN . Therefore, forτ → 0+,

the thresholdDcN gives a necessary and sufficient condition for stability. Secondly, by comparing (2.45) with (2.47),

we see that asτ → 0+, theN -spike equilibrium solution (2.15) is stable if and only if it is stable to small eigenvalues.

Thirdly, the term competition instability is due to the factthat when such an instability is triggered, some spikes grow

in amplitude while other decrease. This is due to the difference in signs of the components of the eigenvectorsvj for

j = 1, . . . , N − 1. As shown in the numerical experiments below, computed fromthe full Brusselator model (1.3),

this linear instability triggers a nonlinear event that leads to spike annihilation. In contrast, as was shown above, the

synchronous mode corresponding tov0 = (1, . . . , 1)t is always stable whenτ is sufficiently small. Fourthly,DcN

decreases as∼ N−3 whenN is large, which is the same scaling as for the Schnakenberg model (Corollary 3.1 of

[31]). In contrast, the GM (Proposition 7 of [8]) and GS ([12]) models have a more robustN−2 scaling in terms of the

ability to support additional spikes. SinceD is inversely proportional to the square length of the domain, (2.45) shows

that in order to maintain stability the domain size must increase as the number of spikes increases. Finally, in terms of

the original Brusselator parametersB0,D0 andE0 in (1.6), we have the stability criterion

D0 < D0cN ≡ 2E2
0B

2
0

3N3(B0 + 1)5/2
(

1 + cos π
N

) . (2.46)

Thus a spike pattern can be stabilized with smallD0 or largeE0. Note that, by (1.4),E2
0 = O(τ−1) so thatD0cN =

O(τ−1) asτ → 0+. However, if we require thatD = O(1) with respect toτ , thenD0 must also beO(τ−1) by (1.4).

Also, if τ = (B0 + 1)5/2/E2
0 is held constant, then increasingB0 in (2.46) relaxes the stability criterion. This fact is

reflected in terms of the rescaled variables in (2.45), whereincreasingf = B0/(B0+1) towards unity increasesDcN .

Finally, we remark that the eigenvalue problem (2.17) admits another class of eigenvalues associated with translation-

type instabilities, and these eigenvalues are of the orderλ = O(ǫ2) asǫ→ 0. These eigenvalues, studied in [27], were
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found to be real negative whenτ = O(1) if and only ifD < DsN , where (cf. [27])

DsN ≡ f2

3N3(1− f)
< DcN . (2.47)

This threshold value is the same as that calculated in (2.16)for the bifurcation point corresponding to the emergence

of asymmetricN -spike equilibria from a symmetricN -spike equilibrium solution branch.

2.4 Complex Eigenvalues and Oscillatory Instabilities

For the caseD < DcN andτ = 0, we now use a winding number argument to prove that (2.39) hasno unstable

eigenvalues with Re(λ) > 0. To calculate the number of zeros ofgj(λ) in the right-half plane, we compute the

winding ofgj(λ) over the contourΓ traversed in the counterclockwise direction composed of the following segments

in the complexλ- plane:Γ+
I (0 < Im(λ) < iR, Re(λ) = 0), Γ−

I (−iR < Im(λ) < 0, Re(λ) = 0), andΓR is the

semi-circle in the right-half plane defined by|λ| = R > 0, −π/2 < arg(λ) < π/2, whereR > 0.

Each functiongj(λ) in (2.40) forj = 0, . . . , N − 1 is analytic in Re(λ) ≥ 0 except at the simple poleλ = 5/4

corresponding to the unique positive eigenvalue of the operatorL0 in (2.28). Therefore, by the argument principle we

obtain thatMj − 1 = (2π)−1 limR→∞ [arg gj ]Γ, whereMj is the number of zeros ofgj in the right half-plane, and

where[arg gj ]Γ denotes the change in the argument ofgj overΓ. Furthermore from (2.40), (2.42) and (2.43) it follows

thatgj → (1 + ξj)/2 as|λ| → ∞ on the semi-circleΓR, so thatlimR→∞ [arg gj ]ΓR
= 0. For the contourΓ−

I , we

use thatgj(λ) = gj(λ) so that[arg gj ]Γ−

I

= [arg gj ]Γ+

I

. By summing the roots of theN separate functionsgj(λ) for

j = 0, . . . , N − 1, we obtain that the numberM of unstable eigenvalues of the NLEP (2.39) whenτ = 0 is

M = N +
1

π

N−1
∑

j=0

[arg gj ]Γ+

I

. (2.48)

Here[arg gj ]Γ+

I

denotes the change in the argument ofgj as the imaginary axisλ = iλI is traversed fromλI = +∞
to λI = 0.

To explicitly calculate[arg gj ]Γ+

I

whenτ = 0, we substituteλ = iλI into (2.42) forCj , and separate the resulting

expression into real and imaginary parts to obtain

Cj(iλI) = CjR(λI) + iCjI(λI) , (2.49a)

where

C0R(λI) =
1

2
, C0I(λI) = 0 , (2.49b)

CjR(λI) =
1

2

[

1 + ξj +
fξj(1− f)

(1− f)2 + λ2I

]

, CjI(λI) = − fξjλI
(1− f)2 + λ2I

, j = 1, . . . , N − 1 . (2.49c)

In (2.49) we use the limiting behaviour forξj asτ → 0+ as given in (2.43).

Similarly, we separate the real and imaginary parts ofF (iλI), whereF (λ) was defined in (2.40), to obtain that

F (iλI) =

∫∞

−∞
wL0

[

L2
0 + λ2I

]−1
w2 dy

∫∞

−∞
w2 dy

+ i

(

λI
∫∞

−∞
w
[

L2
0 + λ2I

]−1
w2 dy

∫∞

−∞
w2 dy

)

≡ FR(λI) + iFI(λI) , (2.50)

which determinesg(iλI) from (2.40) as

gj(iλI) = CjR(λI)− FR(λI) + i [CjI(λI)− FI(λI)] ≡ gjR(λI) + igjI(λI) . (2.51)

In order to calculate[arg gj ]Γ+

I

, we require the following properties ofFR(λI) andFI(λI), as established rigorously
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in Propositions 3.1 and 3.2 of [32]:

FR(0) = 1 ; F ′

R(λI) < 0 , λI > 0 ; FR(λI) = O(λ−2
I ) , λI → +∞ , (2.52a)

FI(0) = 0 ; FI(λI) > 0 , λI > 0 ; FI(λI) = O(λ−1
I ) , λI → +∞ . (2.52b)

By using (2.49) and (2.52), we obtain from (2.51) thatg0R < 0 andg0I = 0 atλI = 0, while g0R > 0 andgI0 = 0

asλI → +∞. In addition, sinceFI(λI) > 0, we conclude thatg0I < 0 for λI > 0. Therefore,[arg g0]Γ+

I
= −π, and

hence (2.48) becomes

M = N − 1 +
1

π

N−1
∑

j=1

[arg gj ]Γ+

I

. (2.53)

The calculation of[arg gj ]Γ+

I

for j = 1, . . . , N−1 is similar, but depends on the range ofD. Suppose thatD < DcN ,

whereDcN is the threshold of (2.45), so thatCjR(0) < 1 for all j = 1, . . . , N − 1. Then, from (2.49), (2.52), and

(2.51), we calculate thatg0R < 0 andg0I = 0 atλI = 0, while g0R > 0 andgI0 = 0 asλI → +∞. In addition, since

FI(λI) > 0 andC0I(λI) < 0, we getg0I < 0 for all λI > 0. This gives[arg gj ]Γ+

I

= −π for j = 1, . . . , N − 1.

From (2.53), we then obtain the following result:

Principal Result 2.4: Let τ → 0+ and ǫ → 0. Then, whenD < DcN , whereDcN is the threshold of(2.45), the

NLEP(2.39)has no unstable eigenvalues in Re(λ) > 0. Therefore, forτ → 0+, the thresholdDcN gives a necessary

and sufficient condition for the stability of theN -spike equilibrium solution(2.15a) of (1.3).

We remark that asD is increased above the thresholdDcN in such a way thatCN−1(0) > 1 butCj(0) < 0 for

j = 1, . . . , N − 2, we readily calculate from (2.49), (2.52), and (2.51), that[arg gN−1]Γ+

I
= 0 and[arg gj ]Γ+

I

= −π
for j = 1, . . . , N − 2. Therefore, from (2.53) we conclude thatM = 1, and the only eigenvalue entering the right-

half plane is the real eigenvalue corresponding to the competition instability analyzed in§2.3. We remark that since

τ appears only through the factorτλ, then increasingτ cannot result in a competition instability. Thus, the threshold

criterion (2.45) for stability is also valid for a range of0 < τ < τ0 for someτ0 > 0 to be determined.

Next, we show that for0 < D < DcN , there are exactly2N unstable eigenvalues in Re(λ) > 0 whenτ > 0 is

sufficiently large, and that these eigenvalues are on the positive real axis in0 < λ < 5/4. Forτ ≫ 1, we obtain from

(2.42) and (2.32a) thatCj = O(
√
λτ) onΓR, so thatlimR→∞ [arg gj ]ΓR

= π/2. In this way, we obtain in place of

(2.48) that

M =
5N

4
+

1

π

N−1
∑

j=0

[arg gj ]Γ+

I

. (2.54)

For τ ≫ 1 andλ = iλI , we obtain from (2.42) and (2.32a) that

Cj =
1

2

[

1 + κ
√

iτλI +
fκ

√
iτλI

1− f + iλI

]

, κ ≡ 2

β0
√
D
. (2.55)

Separating into real and imaginary parts, withCj = CjR + iCjI , we get forτ ≫ 1 andλI 6= 0 that

CjR =
κ
√
τλI
2

|1 + iλI |
|(1− f) + iλI |

cos
(π

4
+ θ0 − θ1

)

+
1

2
, CjI =

κ
√
τλI
2

|1 + iλI |
|(1− f) + iλI |

sin
(π

4
+ θ0 − θ1

)

,

(2.56a)

whereθ0 andθ1 are defined by

θ0 = arctan(λI) , θ1 = arctan(λI/(1− f)) . (2.56b)

SinceλI > 0, and0 < f < 1, then0 < θ0 < θ1 < π/2. Notice thatCjR > 0 for anyλI > 0 on this range ofθ0 and

θ1.
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For τ ≫ 1, we havegj ∼ ceiπ/4
√
λI , wherec > 0 is a real constant, asλI → +∞. Therefore, we have arg(gj) =

π/4 asλI → +∞. Now for λI = 0, we havegjR < 0 andgjI = 0 whenD < DcN , so that arg(gj) = π when

λI = 0. In order to prove that[arg gj ]Γ+

I

= 3π/4, we must show thatgjI > 0 whenevergRj = 0. SinceFR > 0 and

CjR(λI) > 0 for λI > 0, butCjR = O(
√
τ) ≫ 1 for τ ≫ 1, it follows that any rootλ∗I of gRj = 0 must be such that

λ∗I = O(τ−1) ≪ 1. Thus, forτ ≫ 1, we haveθ0 → 0 andθ1 → 0 asλI → 0, and so we conclude from (2.56) that

CjI > 0 with CjI = O(1) atλ∗I = O(τ−1). Finally, sincegjI = CjI − FI , andFI(0) = 0, we conclude thatgjI > 0

at any rootλ∗I ≪ 1 of gjR = 0. This proves that[arg gj ]Γ+

I

= 3π/4 for eachj = 0, . . . , N − 1. Finally, from (2.54)

we conclude thatM = 2N .

To determine more precisely the location of these unstable eigenvalues we proceed as in§2.3. Forτ ≫ 1, and on

the positive real axis in0 < λ < 5/4 we obtain from (2.42) and (2.32a) thatCj(λ) is a concave monotone increasing

function. SinceCj(0) < F (0) = 1 whenD < DcN for j = 0, . . . , N − 1, it follows from the properties ofF (λ) in

(2.41) that for eachj, Cj(λ) = F (λ) must have two roots on the interval0 < λ < 5/4. We summarize the result as

follows:

Principal Result 2.5: Let τ → ∞ andǫ → 0. Then, when0 < D < DcN , whereDcN is the threshold of(2.45), the

NLEP(2.39)has exactly2N unstable eigenvalues in Re(λ) > 0. These eigenvalues are located on the real axis in the

interval0 < λ < 5/4.

Therefore, for the parameter range0 < D < DcN , and by the continuity of the branches of eigenvalues with respect

to τ , we conclude that for eachj = 0, . . . N − 1, there must be a minimum valueτ0j > 0 of τ for which the NLEP

(2.39) has a complex conjugate pair of eigenvalues atλ = ±iλ0Ij , corresponding to each eigenmode in (2.32c). We

define the oscillatory stability thresholdτ0 as the minimum of these thresholds, i.e.τ0 = minj τ0j . Our numerical

results show thatτ0 is a Hopf bifurcation point, in the sense that an unstable complex conjugate pair of eigenvalues

enters the right half-plane forτ slightly aboveτ0. From (2.32c) the j = 0 mode corresponds to synchronous spike

amplitude oscillations, while the other modes correspond to asynchronous oscillations in the spike amplitudes. For the

Gierer-Meinhardt model, as studied in [32], an ordering principleτ0j < τ0j+1, j = 0, . . . , N − 2 was observed for

all values of the parameters tested. That is, the dominant oscillatory instability is that of synchronous oscillationsof

the spike amplitudes. In contrast, for all values of the parameterf tested, we find an interval ofD in 0 < D < DcN

in which this ordering principle is reversed. Thus, the Brusselator admits asynchronous oscillations not observed in

previous studies of the stability of spike solutions. We conjecture that this is due to the activator acting as two separate

sources for the inhibitor, necessitating the manipulation(2.37) to obtain the multiplier of the nonlocal term in the

NLEP (2.38). We illustrate asynchronous oscillatory phenomena for two-, three-, and four-spike examples in§2.5.

To determine the smallest valueτ0j for which there are two eigenvaluesλ = ±iλ0Ij with λ0Ij > 0, on the imaginary

axis, and no eigenvalues in the right-half plane, we solve the coupled systemgRj = gIj = 0 given in (2.51) forτ0j

andλ0Ij . In (2.51),CjR(λI) = Re(Cj(iλI)) andCjI(λI) = Im(Cj(iλI)), whereCj(λ) is defined in (2.42) in terms

of σj as given in (2.32a). The critical valueτ0 is then defined by

τ0 = min
j
τ0j . (2.57)

For given parametersD andf , we used theMATLAB functionfsolve() to solve the systemgRj = gIj = 0

for τ0j andλ0Ij . To evaluateFR(λI) andFI(λI) in (2.50), we discretized the operator[L2
0 + λ2I ] over the interval

−20 < y < 20 using500 grid points and usedMATLAB’s inversion algorithm to solve the boundary value problem.

The trapezoidal rule was used to evaluate the integrals inFR(λI) andFI(λI). Halving the number of grid points, or

halving the interval length, did not significantly affect the calculated values ofFR(λI) andFI(λI). In all subsequent
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plots ofτ0j andλ0Ij , we treatD as the bifurcation parameter and holdf fixed at a particular value. For the values off

tested in the interval0 < f < 1, the qualitative behaviour ofτ0j(D) remained unchanged.

In Figure 2(a), we plot the curvesτ0j(D) for N = 2 andf = 0.5. The critical valueDc2 is indicated by the vertical

dotted line in the figure. WhenD = Dc2, thej = 1 curve ends as the corresponding pair of imaginary eigenvalues

meet at the origin, as shown in the plot ofλ0Ij(D) in Figure 2(c). AsD increases aboveDc2, one eigenvalue moves

on the real axis into the right-half plane. Because thej = 0 mode does not undergo such a bifurcation, thej = 0

curve continues beyondDc2 but is not plotted. In general, thejth curve ends when thejth mode becomes unstable to

a real eigenvalue crossing into the right-half plane from the origin. In Figure 2(b), we magnify the interval in Figure

2(a) where the ordering principleτ01 < τ00 holds. ForD in this interval, we expect asynchronous oscillations to be

the dominant instability. ForD to the right of this interval, the familiar ordering principle τ00 < τ01, guaranteeing

synchronous oscillatory instabilities, is restored.
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(b) τ0j(D) for N = 2 closeup
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Figure 2. Plots ofτ0j(D) (left and center figures) andλ0Ij(D) (right figure) forN = 2 andf = 0.5. The critical value

Dc2 ≈ 0.0417 is indicated by the vertical dotted line. In all figures, the solid and dashed curves correspond toj = 0

andj = 1, respectively. In the magnified interval shown in the centerfigure,τ01 < τ00, indicating the possibility of

asynchronous oscillations.

In Figure 3(a), we show a plot ofτ0j(D) for a three-spike example withf = 0.6. We again plot only the interval

0 < D < Dc3 above which thej = 2 curve ceases to exist. In the plot ofλ0Ij(D) in Figure 3(c), we see thatλ0I2 → 0

asD → D−

c3. In Figure 3(b), the reverse ordering principle is again observed for an interval ofD, indicating the

possibility of asynchronous oscillations. As similar to the previous two-spike case, forD to the right of this interval,

the usual ordering principle guaranteeing synchronous oscillatory instabilities is restored. The same characteristics of

τ0j(D) andλ0Ij(D) for a four-spike example withf = 0.6 are seen in Figures 4(a)-4(c).

For the two-spike example of Figure 2 withf = 0.5, we trace the paths of the pair of complex conjugate eigenvalues

in the right-half plane asτ increases past the Hopf bifurcation value computed in Figures 2(a) and 2(b). For the two

modesj = 0 (Figure 5(a)) andj = 1 (Figure 5(b)), we start with the pair(τ, λ) = (τ0j(D), λ0Ij) and solveg(λ) = 0

in (2.40) for increasingly larger values ofτ . For thej = 0 mode we takeD = 0.03 while for thej = 1 mode, we take

D = 0.006 so that in both cases the eigenvalues being tracked are the first ones to cross into the right-half plane. The

eigenvalues converge onto the positive real axis whenτ is sufficiently large. Asτ is increased further, the eigenvalues

split and migrate along the positive axis toward0 andν0 = 5/4 asτ → ∞, whereν0 is the principal eigenvalue of the

operatorL0.

Two key characteristics shared by Figures 2-4 are the behaviours ofτ0j andλ0Ij for small values ofD. These figures
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(a) τ0j(D) for N = 3
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(b) τ0j(D) for N = 3 closeup
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Figure 3. Plots ofτ0j(D) (left and center figures) andλ0Ij(D) (right figure) forN = 3 andf = 0.6. The critical value

Dc3 ≈ 0.0148 is indicated by the vertical dotted line. In all figures, the solid, dashed, and dotted curves correspond to

j = 0, 1, 2, respectively. In the magnified interval shown in the centerfigure,τ02 < τ01 < τ00.
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(a) τ0j(D) for N = 4
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(b) τ0j(D) for N = 4 closeup
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Figure 4. Plots ofτ0j(D) (left and center figures) andλ0Ij(D) (right figure) forN = 4 andf = 0.6. The critical value

Dc4 ≈ 0.0055 is indicated by the vertical dotted line. In all figures, the solid, dashed, dotted, and dash-dotted curves

correspond toj = 0, 1, 2, 3, respectively. In the magnified interval shown in the centerfigure,τ03 < τ02 < τ01 < τ00.

suggest thatτ0j → ∞ asD → 0 independent ofj, while λ0Ij approaches a constant value also independent ofj. We

now provide a simple analytical explanation for this limiting behaviour. We remark that this unbounded behaviour of

τ0j asD → 0 is in marked contrast to the finite limiting behaviour as obtained in [12] or [32] for the Gray-Scott and

Gierer-Meinhardt RD models, respectively.

In the limitD → 0, a simple scaling argument shows that|µ| → ∞, whereµ =
√

τλ/D. We then readily obtain

from (2.32a) thatσj → 2 asD → 0 and thatβ0 = O(D−1). Therefore, from (2.42), we get the limiting behaviour

Cj ∼ C ≡ 1

2

[

1 + αz
√
λ+

αfz
√
λ

1− f + λ

]

, z =
√
τD, α =

α2v2c
3

, j = 0, . . . , N − 1 . (2.58)

We setλ = iλI , whereλI > 0, and then separate (2.58) into real and imaginary parts to get

C ≡ CR(λI) + iCI(λI) ≡
1

2

[

1 +
αz√
2

√

λIM+

]

+ i
1

2
√
2
αz
√

λIM− ; M± ≡ 1− f ± λIf + λ2I
(1− f)2 + λ2I

. (2.59)

SinceC is independent ofj, it follows that the rootτ = τ0l andλI = λIl to the limiting coupled systemCR(λI) =

FR(λI) andCI(λI) = FI(λI) must be independent ofj.

For this coupled system to possess a root, it is readily seen that we must havez =
√
τD = O(1) asD → 0, which
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(b) D = 0.006, j = 1

Figure 5. Plots of the paths ofλ = λI + iλR with N = 2, andf = 0.5 for (D, j) = (0.03, 0) (left) and(D, j) =

(0.006, 1) (right) asτ increases past its Hopf bifurcation valueτ0j(D). The arrows denote the direction of traversal for

increasingτ . The eigenvalues converge onto the positive real axis whenτ reaches some valueτc(D) > τ0j(D). The

eigenvalues split, with one tending to0 and the other tending toν0 = 5/4 asτ → ∞, whereν0 is the unique positive

eigenvalue of the operatorL0.

implies thatτ0l = O(D−1) asD → 0. We use (2.59) to eliminatez between the coupled systemCR(λI) = FR(λI)

andCI(λI) = FI(λI). In this way, we obtain thatλIl must be a root of

HR(λI) = HI(λI) , (2.60a)

whereHR(λI) andHI(λI) are defined by

HR(λI) =
2FR(λI)− 1

λ2I + fλI + 1− f
, HI =

2FI(λI)

λ2I − fλI + 1− f
. (2.60b)

Therefore, forD → 0, we conclude thatλIl depends only onf and is independent ofN . The scalingτ0l = O(D−1)

was not observed in the analysis of the Gray-Scott [12] or Gierer-Meinhardt models [32].

We now prove the existence of a solutionλIl > 0 to (2.60). We begin by noting thatHR(0) = (1−f)−1 > 0 and that

HR(λI) has no poles whenλI ≥ 0. Also, becauseFR → 0 asλI → ∞, we find from (2.60b) thatHR ∼ −1/λ2I < 0

asλI → ∞. To show the existence of an intersection betweenHR andHI , there are two cases to consider. The first

case is when0 < f < 2(
√
2−1) so that the denominator ofHI is always positive. SinceFI(0) = 0 < FR(0) = 1, and

FI(λI) > 0 for λI > 0, then by the properties ofHR there must exist a solution to (2.60a). When2(
√
2−1) < f < 1,

HI(λI) has two poles on the positive real axis atλI = λl,rI ordered0 < λlI < λrI with λlI → 0+ asf → 1−. Therefore,

HI → +∞ asλI → λl−I . BecauseHR(0) > 0 and is bounded for allλI whileHI(0) = 0, there must exist a solution

to (2.60a) on the interval0 < λI < λlI . This completes the proof of the existence of a rootλIl > 0 under the scaling

τ = O(D−1) asD → 0. While we have not been able to show analytically thatλIl is unique, we have not observed

numerically an example that yields more than one solution to(2.60a).

In Figure 6(a), we show the log-log relationship betweenτ0j and smallD for the examples shown in Figures 2 - 4.

Note that in each case, all curves corresponding to modesj = 0, . . . , N − 1 are plotted. However, as stated above,

τ0j is independent ofj for smallD and thus the curves are indistinguishable in the plot. In Figure 6(b), we plot theN
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curves ofλ0Ij as a function off with D small forN = 2, 3, 4. We also plot the solution to (2.60a). Although for each

value ofN we use a different value ofD specified asD = DcN/10, all curves are indistinguishable at the resolution

allowed by the figure. BecauseλlI → 0+ asf → 1−, we expect theoretically thatλIl → 0+ in this limit. Numerically,

however, the problem (2.60a) for 1 − f small becomes ill-conditioned and our numerical solver fails whenf is too

close tof = 1.
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(a) log-log plot of τ0j(D) for N = 2, 3, 4 andD ≪ 1
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Figure 6. The log-log relationship betweenτ0j and smallD with parameters from Figures 2 - 4 (left) andλ0Ij versus

f with D small forN = 2, 3, 4 (right). In the left figure, the solid lines are numerically computed solutions of̃gRj =

g̃Ij = 0, while the dotted lines all have slope−1. The top line corresponds toN = 2, f = 0.5, the center line to

N = 3, f = 0.6, and the bottom line toN = 4 andf = 0.6. The different curves of each example corresponding to

modesj = 0, . . . , N − 1 are indistinguishable. In the right figure, the curves ofλ0Ij versusf generated by the solution

to g̃Rj = g̃Ij = 0 are plotted, as is the solution to (2.60a). These curves are indistinguishable at the resolution allowed

by the figure.

The main limitation of our analysis is that we are unable to determine whether, for each functiongj , a complex

conjugate pair of pure imaginary eigenvalues exists at onlyone value ofτ0j for all the ranges of the parameters. Our

numerical experiments suggest that for0 < τ < τ0j andD < D0cN , the pattern is stable. This indicates that our

computed thresholdsτ0j are the minimum values ofτ for which an oscillatory instability occurs.

One possible way to obtain a rigorous bound onτ0j is to use the following inequality, as derived in equation (2.29)

of [33] (see also equation (5.62) of [35]), for any eigenvalueλ of the NLEP of (2.39) with multiplierχj :

|χj − 1|2 + Re
(

λ̄χj

)

(
∫∞

−∞
w2 dy

∫∞

−∞
w3 dy

)

≤ 0 . (2.61)

Upon evaluating the integral ratio, and then usingχj = 1/Cj and Re(z̄) = Re(z), we obtain that (2.61) reduces to

|Cj − 1|2 + 5

6
Re(λCj) ≤ 0 . (2.62)

For the reaction-diffusion systems in [33] and§5 of [35] for which Cj is a simple rational function ofλ, (2.62) was

used successfully to obtain a rigorous bound on the Hopf bifurcation threshold ofτ . However, for the Brusselator,Cj
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in (2.42) is not rational inλ, and it is not clear how to use (2.62) to obtain an explicit analytical bound on the Hopf

bifurcation thresholdτ0j .

2.5 Numerical Validation

Next, we illustrate the theory presented in§2.3 and§2.4 regarding competition and oscillatory instabilities of N -

spike equilibria. We solve the Brusselator model without boundary flux (1.3) numerically using theMATLAB partial

differential equations solverpdepe() with non-uniformly spaced grid points distributed according to the mapping

y = x+

N−1
∑

i=0

tanh

[

x− xi
2ǫ

]

; −1−N < y < 1 +N,

wherex is the physical grid. The initial conditions were taken to bea perturbation of the equilibrium spike solution of

the form

u(x, 0) = u∗e(x)

[

1 + δ

N−1
∑

k=0

dke
−(x−xk)

2/(4ǫ2)

]

, v(x, 0) = v∗e(x), (2.63)

whereδ ≪ 1 is taken to be0.002, anddk is the(k + 1)th component of the vectord to be defined below. Either2000

(ǫ = 0.005) or 4000 (ǫ = 0.001) grid points were used to produce the numerical results below. In (2.63), instead of

ue, ve given in (2.15), we use the true equilibriumu∗e, v∗e calculated using smallτ starting from the initial conditions

ue, ve. Becauseτ does not influence the equilibrium solution,u∗e, v∗e may be used as valid initial conditions for any

value ofτ . We briefly explain the reason for this procedure. With an insufficiently small choice forτ while starting

with ue andve as initial conditions, we observe an immediate annihilation of one or more of the spikes. We conjecture

that this is due to the inaccuracy of the asymptotic solutionassociated with the non-zero background of the activator,

coupled with the sluggish response of the inhibitor. However, for τ sufficiently small, the inhibitor is able to respond

quickly to prevent an annihilation, allowing the system to evolve to a spike equilibrium stateu∗e, v∗e .

In (2.63), the choice of the vectord depends on the phenomenon that we illustrate. In computations illustrating

competition instabilities,d is taken to be a multiple ofvN−1, the eigenvector given in (2.32c) associated with the

eigenvalue that first crosses into the right-half plane asD is increased aboveDcN whenτ is sufficiently small. The

values ofD in the experiments illustrating competition instabilities will be such that only thej = N − 1 mode is

unstable. In computations illustrating oscillatory instabilities,d is taken to be a multiple of the vector
∑N−1

j=0 vj , with

vj given in (2.32c), which allows for all the modes to be present initially. We track the evolution of the modes through

the quantitybamp
j , defined as the amplitude of the oscillations ofbj given by

bj = |∆u
t
mvj | , ∆um ≡ (um0 − u∗e(x0, 0) , . . . , umN−1 − u∗e(xN−1, 0))

t ; j = 0, . . . , N − 1 , (2.64)

allowing clear identification of which modes grow or decay. Hereumn denotes the numerically computed solution at

thejth equilibrium spike location defined byumj ≡ u(xj , t) wherexj = −1 + (2j + 1)/N with j = 0, . . . , N − 1.

In all experiments,d is normalized so thatmaxk dk = 1.

We consider three experiments with two, three, and four spikes. In each experiment,f is fixed while different

combinations ofτ andD are used to illustrate the theory for competition and oscillatory instabilities. The results are

presented using plots of the amplitude of each spikeumn ≡ u(xn, t) versus time. For certain oscillatory examples, we
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also plot the quantitybamp
j versus time. In our computations, we limit the time-scale tomuch less thanO(ǫ−2) so that

the spikes remain approximately stationary over the time intervals shown.

Experiment 1: In this experiment we consider competition and oscillatoryinstabilities of a two-spike equilibrium

with f = 0.5. We begin with an example of competition instability. Forǫ = 0.005 andD = 0.043, in Figure 7(a) we

plot the initial conditions foru andv on the left and right axes, respectively. Note the non-zero background ofu. Using

the results depicted in Figure 2(a), we calculate thatτ0(D) = 0.165, while using (2.45) we calculateDc2 = 0.0417.

For τ = 0.01 < τ0(D) andD > Dc2, we expect a competition instability in which one spike is annihilated with

no oscillation in the amplitudes. In Figure 7(b), we plot theamplitudesum0 andum1 of the two spikes as a function

of time. As suggested by the eigenvectorv1 in (2.32c), one spike annihilates as time increases. Note that the spike

amplitude decays to approximately the value of the non-zerobackground state.
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Figure 7. Experiment 1: The left figure is the initial condition foru (solid curve and left axis) andv (dashed curve and

right axis) forN = 2 with ǫ = 0.005, f = 0.5 andD = 0.043 > Dc2 = 0.0417. The right figure shows the amplitudes

of the left (solid curve) and right (dashed curve) spikes forτ = 0.01 versus time. The right spike annihilates as time

increases.

We now illustrate oscillatory phenomena. In Figure 8(a), weplot the spike amplitudes whenD = 0.03 < Dc2

andτ = 0.17 < τ0(D) = τ00 = 0.183. As expected, no spike annihilations occur while initial oscillations decay.

While the equilibrium is stable to large eigenvalues for thiscombination ofD andτ , we calculate from (2.47) that

D > D∗
2 = 0.021. Thus, we expect to observe a drift-type instability whent = O(ǫ−2). Next, for the same value of

D, we setτ = 0.191 > τ0(D) so that the synchronous mode undergoes a Hopf bifurcation. The spike amplitudes are

plotted in Figure 8(b). As expected, the spike amplitudes synchronize quickly and oscillate with growing amplitude

in time. The eventual annihilation of the spikes suggests that the Hopf bifurcation is subcritical for these parameter

values.

In the next example, we takeǫ = 0.001 andD = 0.006. In Figure 2(b) we see that for this value ofD, the

asynchronous oscillatory mode is unstable ifτ > τ0(D) = τ01 = 1.065 while the synchronous mode is stable if

τ < τ00 = 1.083. In Figure 9(a), we plot the spike amplitudes whenτ = 1.04 during the initial growth of the

oscillations. Note the clear contrast between Figure 9(a) and Figure 8(b) where the spikes oscillate out of phase in

the former and in phase in the latter. In Figure 9(b), we show what appears to be regular asynchronous oscillations,
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Figure 8. Experiment 1: The left figure is a plot of spike amplitudes forN = 2, ǫ = 0.005, f = 0.5, D = 0.03, and

τ = 0.17. The critical value ofτ is τ0(D) = 0.183. The solid curve isum0 and the dashed curve isum1. In the right

figure, we make a similar plot withτ = 0.191 > τ0(D).

suggesting that the Hopf bifurcation may be supercritical for the parameters used. In Figure 9(c) we plot the initial

growth ofbamp
1 and the initial decay ofbamp

0 , consistent with predictions from analysis. Both modes arepresent, with

the j = 1 mode being dominant. We remark that while the numerical threshold inτ is not equal to the theoretical

value, we have observed in numerous experiments that agreement with analysis improves asǫ is decreased.
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Figure 9. Experiment 1: In the left figure, we plot spike amplitudes for the initial growth of asynchronous oscillations.

In the center figure, we show the large time behaviour of what appears to be regular asynchronous oscillations. The

solid (dashed) curve isum0 (um1). In the right figure, we plot the initial growth and decay ofbamp
1 (dashed curve) and

bamp
0 (solid curve). The parameters areN = 2, ǫ = 0.001, f = 0.6,D = 0.006, andτ = 1.04. The threshold value is

τ0(D) = τ01 = 1.065, and corresponds to asynchronous oscillations.

Experiment 2: In this experiment, we consider instabilities of a three-spike solution withf = 0.6. We first consider

a competition instability. In Figure 10(a), we plot the initial conditions foru andv for ǫ = 0.005 andD = 0.017 >

Dc3 = 0.0148. The initial perturbation, according tov2 in (2.32c), increases the amplitude of the first and third spikes

while decreasing that of the middle spike. Forτ = 0.01 < τ0(D) = τ00 = 0.28, we plot the spike amplitudes versus



The Stability of Localized Spikes for the 1-D Brusselator Reaction-Diffusion Model 23

time in Figure 10(b), observing that the middle spike annihilates while the other two spikes increase in amplitude. This

increase in amplitude, also observed in Figure 7(b) of Experiment 1, is expected because the common spike amplitude

increases when the number of spikes decreases (see (2.8) and(2.15a)). For a perturbation in the−v2 direction we

observe the annihilation of the first and third spikes (not shown).
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Figure 10. Experiment 2: The left figure is the initial condition for u (solid curve and left axis) andv (dashed curve

and right axis) forN = 3 with ǫ = 0.005, f = 0.6, andD = 0.017 > Dc3 = 0.0148. In the right figure, we plot

um0 andum2 (solid curve) andum1 (dashed curve) versus time withτ = 0.01. The second spike annihilates as time

increases.

To illustrate oscillatory behaviour, we takeǫ = 0.005 andD = 0.009 so that all real eigenvalues lie in the left-

half plane if τ is small enough. Using Figure 3(a), we calculateτ0(D) = τ00 = 0.3994. In Figure 11(a), we set

τ = 0.37 < τ0(D) so that oscillations decay in time. For stability also to small eigenvalues, however, we require

D < D∗
3 = 0.011. In Figure 11(b), we setτ = 0.42 so that the spike amplitudes quickly synchronize and the

subsequent oscillations grow in time. As in Experiment 1, weobserve the annihilation of the spikes, suggesting that

the Hopf bifurcation is subcritical.

We next decreaseD toD = 0.0034 so that, as suggested by Figure 3(b), asynchronous oscillations are the dominant

instability. We calculate thatτ0(D) = τ02 = 1.518, τ01 = 1.544, andτ00 = 1.557. In Figures 12(a) and 12(b) we

plot, respectively, the transient and large time behaviourof the spike amplitudes forǫ = 0.001 andτ = 1.51. In clear

contrast to Figure 11(b), the spike amplitudes oscillate out of phase for both small and large time. In Figure 12(b), as

the form of the eigenvectorv2 in (2.32c) suggests, the first and third spikes oscillate approximately in phase with each

other while out of phase with the second spike. For large time, the oscillations occur within an envelope that oscillates

slowly in time relative to the oscillations of the spike amplitudes. In Figure 12(c), we plot the initial growth and decay

of bamp
j for all three modes. Consistent with the results depicted inFigure 3(b), thej = 2 mode grows while the other

two modes decay. For large time, all modes are present with the dominant mode beingj = 2.

Experiment 3: In this experiment, we illustrate instabilities of a four-spike equilibrium withf = 0.6. In Figure

13(a), we plot the initial conditions foru andv with ǫ = 0.005 andD = 0.0057. We calculate from (2.45) that

Dc4 = 0.0055 < D. With τ = 0.01 < τ0(D) = 0.2344, we expect an annihilation of one or more spikes without

oscillatory behaviour. The form ofv3 in (2.32c) suggests that the second spike is the first to annihilate while the fourth
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Figure 11. Experiment 2: In the left figure, we plotum0 (solid curve),um1 (dashed curve), andum2 (dotted curve)

for N = 3, ǫ = 0.005, f = 0.6, D = 0.009, andτ = 0.37. The right figure is similar except thatτ is increased to

τ = 0.42. The critical value ofτ is τ0(D) = 0.3994.
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Figure 12. Experiment 2: In the left and center figures, we plot, respectively, the transient and large time asynchronous

oscillations ofum0 (solid curve),um1 (dashed curve), andum2 (dotted curve). The first and third spikes oscillate almost

in phase for large time. In the right figure, we plot the initial growth and decay ofbamp
j for j = 0 (solid curve),j = 1

(dashed curve), andj = 2 (dotted curve). The parameters areN = 3, ǫ = 0.001, f = 0.6,D = 0.0034, andτ = 1.51.

The threshold value isτ0(D) = τ02 = 1.518.

spike decays in amplitude as the other two spikes grow. Once the first annihilation occurs, the resulting three-spike

pattern is no longer in equilibrium and thus evolves according to the dynamics derived in [27], and any subsequent

annihilations should they occur are beyond the scope of thisanalysis. In Figure 13(b), we plot the spike amplitudes up

to the time of the annihilation of the second spike.

To show oscillatory phenomena, we takeǫ = 0.005 andD = 0.004. Using the data from Figure 4(a), we calculate

τ0(D) = τ00 = 0.287. In Figure 14(a), we plot the spike amplitudes forτ = 0.27 so that the equilibrium solution

is stable to large eigenvalues. Here, we requireD < D∗
4 = 0.00469 for the equilibrium to also be stable to small
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Figure 13. Experiment 3: The left figure is the initial condition for u (solid curve and left axis) andv (dashed curve

and right axis) forN = 4 with ǫ = 0.005, f = 0.6, andD = 0.0057 > Dc4 = 0.0055. In the right figure, we plot

um0 (solid curve),um1 (dashed curve),um2 (dotted curve), andum3 (dash-dotted) curve versus time withτ = 0.01.

The second spike annihilates as time increases. All complexeigenvalues are in the stable left-half plane.

eigenvalues. In Figure 14(b), we plot the spike amplitudes for τ = 0.31 so that synchronous oscillations grow in time

until all spikes annihilate. As in Experiment 2, we observe oscillatory behaviour subsequent to annihilation.
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Figure 14. Experiment 3: In the left figure, we plotum0 (solid curve),um1 (dashed curve), andum2 (dotted curve)

andum3 (dash-dotted curve) forN = 4, ǫ = 0.005, f = 0.6, D = 0.004, andτ = 0.27. The right figure is similar

exceptτ = 0.31. The critical value ofτ is τ0(D) ≈ 0.287.

Lastly, we illustrate asynchronous oscillations withǫ = 0.001 andD = 0.0015. According to the data in Figure

4(b), we calculate thatτ0(D) = τ03 = 1.084, τ02 = 1.098, τ01 = 1.112, andτ00 = 1.118. Takingτ = 1.06, we plot

the initial growth of asynchronous oscillations in Figure 15(a). The form ofv3 suggests that the first and fourth spikes

oscillateπ radians out of phase as should the second and third spikes, while no spikes oscillate in phase. This is shown
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to be approximately the case for large time in Figure 15(b). The initial growth and decay of the quantitiesbamp
j , shown

in Figure 15(c), demonstrate the reverse ordering principle of the Hopf bifurcation thresholds predicted by the theory.

For large time, all modes are present, with thej = 3 mode being dominant.
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Figure 15. Experiment 3: In the left and center figures, we plot, respectively, the transient and large time asynchronous

oscillations ofum0 (solid curve),um1 (dashed curve),um2 (dotted curve), andum3 (dash-dotted curve). For large time,

the first and fourth spikes oscillate approximatelyπ radians out of phase, as do the second and third spikes. In theright

figure, we show initial growth and decay ofbamp
j for j = 0 (solid curve),j = 1 (dashed curve),j = 2 (dotted curve),

andj = 3 (dash-dotted curve). The parameters areN = 4, ǫ = 0.001, f = 0.6, D = 0.0015, andτ = 1.06. The

critical value ofτ is τ0(D) = τ03 = 1.084.

3 Stability of Two-Spike Quasi-Equilibria with Prescribed Boundary Flux

In this section, we analyze dynamically triggered instabilities of two-spike quasi-equilibrium solutions to (1.5). In

contrast to the equilibrium case studied in§2, for which the initial pattern was either stable or unstable depending on

the “tuning” of the model parameters, dynamically triggered instabilities occur when a spike pattern, that is initially

stable, eventually undergoes anO(1) time-scale instability that is triggered by the slow evolution of the spikes. To

study this phenomenon, we first construct a two-spike quasi-equilibrium solution and derive an equation of motion

for theO(ǫ2) slow dynamics of the spike locations. For the special case ofa symmetric two-spike quasi-equilibrium

solution, we then derive an NLEP, which depends on the spike locations, that governs the stability of this solution.

From an analysis of the NLEP we derive criteria for which a stable quasi-equilibrium solution may become unstable

as a result of the slow dynamics. We then present numerical examples illustrating the theory. Since generalN -spike

quasi-equilibria and their slow dynamics have been studiedin [27] for the original scaling of the Brusselator model,

we omit much of the detail in the analysis of the quasi-equilibrium solution and its slow dynamics.

3.1 Construction and Slow Dynamics of the Two-Spike Quasi-Equilibrium Solution

We seek a two-spike quasi-equilibrium solution to (1.5) with spikes centered atx1 andx0 with x1 > x0. As in §2.1,

in each inner region the leading-order solution forv is v ∼ vqej for j = 0, 1. Then, as in§2.1, we solve (1.5a) for u
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in the inner region of thejth spike to get

u ∼ 1

fvqej
w(yj) , yj = ǫ−1(x− xj) , for j = 0, 1 ,

wherew(y) is the solution to (2.2). In the outer regionu ∼ ǫE +O(ǫ2). Then, upon representing the terms involving

u in (1.5b) as delta masses, we proceed as in§2.1 and use (2.3) to obtain that the outer equation forv is

Dvxx + E − 6

f2
(1− f)

1
∑

j=0

δ(x− xj)

vqej
= 0 , −1 < x < 1 ; vx(±1) = ±1 . (3.1)

Upon integrating (3.1) over the interval−1 < x < 1 and applying the boundary conditions, we calculate that

1
∑

j=0

1

vqej
=

(E +D)

3

f2

1− f
> 0 . (3.2)

For the special case of a symmetric two-spike quasi-equilibrium wherex1 = −x0 = α, thenvqe0 = vqe1 ≡ vcqe,

wherevcqe is given by

vcqe =
6

f2(D + E)
(1− f) > 0 . (3.3)

Note that due to the presence of boundary flux, the spike amplitudes depend on the inhibitor diffusion coefficient.

Next, we letv = x2/2+ ν(x) and solve forν(x) in terms ofG, as defined in (2.13). Then, we impose the matching

condition thatv(xj) = vqej for j = 0, 1. In this way, we obtain the following result for the quasi-equilibrium solution:

Principal Result 3.1: Let ǫ→ 0 in (1.5)and consider a two-spike quasi-equilibrium solution with spikes centered at

x1 andx0 with x1 > x0. Then, the leading order composite solution foru is

uqe ∼ ǫE +
1

fvqe0
w
[

ǫ−1(x− x0)
]

+
1

fvqe1
w
[

ǫ−1(x− x1)
]

, (3.4a)

while the leading order outer solutionvqe for v is given by

vqe ∼ ν̄ +
x2

2
+

6

f2
(1− f)

1
∑

j=0

1

vqej
G(x;xj) , (3.4b)

whereG is the Green’s function defined in(2.13). Herevqe0, vqe1, andν̄ satisfy the coupled system consisting of (3.2)

and

vqe0 = ν̄ +
x20
2

+
6

f2
(1− f)

(

G(x0;x0)

vqe0
+
G(x0;x1)

vqe1

)

, (3.5a)

vqe1 = ν̄ +
x21
2

+
6

f2
(1− f)

(

G(x1;x0)

vqe0
+
G(x1;x1)

vqe1

)

. (3.5b)

By subtracting the two equations in (3.5), and then using (2.13) forG, we obtain thatvqe0 andvqe1 satisfy

vqe1 − vqe0 = a− b

(

1

vqe1
− 1

vqe0

)

,
1

vqe0
+

1

vqe1
= c , (3.6a)

where we have defineda, b, andc, by

a ≡ − E

2D
(x21−x20) , b ≡ ζ0(x1−x0) > 0 , c ≡ 1

ζ0

(

1 +
E

D

)

> 0 , ζ0 ≡ 3

Df2
(1− f) > 0 . (3.6b)

By eliminatingvqe0 in (3.6a), we readily derive that

vqe0 =
ξ

c(ξ − 1)
, vqe1 =

ξ

c
, (3.7a)
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whereξ is a root of the cubic

K(ξ) ≡ (ξ − 2)(ξ2 − bc2ξ + bc2) + acξ(1− ξ) = 0 , (3.7b)

on the intervalξ > 1.

In discussing the solvability of (3.7) we will consider two cases: Case 1 wherex1 = −x0 and Case 2 wherex1 6= x0.

For Case I, suppose that the initial data is such thatx1 = −x0 at timet = 0. Sincea = 0, we obtain that (3.7b) has a

unique rootξ = 2 whenc < 2/
√
b, and it has three rootsξ = 2 andξ = ξ± > 1 whenc > 2/

√
b, whereξ± is defined

by

ξ± =
bc2

2

[

1±
√

1− 4

bc2

]

, for c > 2/
√
b . (3.8)

Therefore, whenx1 = −x0, we have a symmetric two-spike quasi-equilibrium solutionwith vqe0 = vqe1 = 2/c, and

two asymmetric quasi-equilibrium solutions with eithervqe0 < vqe1 or vqe1 < vqe0 that exist whenc > 2/
√
b. These

asymmetric quasi-equilibria arise from a pitchfork bifurcation at the critical valuec = 2/
√
b.

Remark 1. From an analysis of an NLEP in§3.2 below (see equation (3.29)), we will show that the two asymmetric

quasi-equilibria forx1 = −x0 andc > 2/
√
b are unstable on anO(1) time-scale for anyτ ≥ 0.

Next, we briefly consider the generic Case II wherex1 6= x0 so thata 6= 0. Then, sinceK(1) = −1 < 0 and

K → +∞ asξ → +∞, there is always a root to (3.7b) on ξ > 1. Therefore, there always exists a two-spike quasi-

equilibrium state for anyx1 > x0. By plottingK(ξ) it readily follows that there is a unique root toK(ξ) = 0 when

|a| ≫ 1. For smaller values of|a| and whenbc2 > 4, there can be three quasi-equilibrium states. SinceK(ξ) is a cubic,

which therefore has at most two critical points, a sufficientcondition forK(ξ) = 0 to have a unique root onξ > 1 is

thatK′(1) < 0. This yields the inequalitybc2 − ac < 1.

Next, we derive theO(ǫ2) slow dynamics of the spike locations. We introduce the slow time variableσ = ǫ2t and

we retain the next terms in the asymptotic series for the inner solutions ofu andv nearxj as

u =
1

fvqej
w(yj) + ǫU1j(yj) , v = vqej + ǫV1j(yj) ; yj = ǫ−1 [x− xj(σ)] , σ = ǫ2t . (3.9)

Substituting (3.9) into (1.5), and collecting terms of similar orders, we obtain that

L0U1j = − ẋj
fvqej

w′ − E − w2

fv2qej
V1j , −∞ < yj <∞ , U ′

1j → 0 as |yj | → ∞ , (3.10a)

DV ′′

1j = − w

fvqej
+

w2

f2vqej
, −∞ < yj <∞ , V ′

1j → vqex(x
±

j ) as yj → ±∞ , (3.10b)

whereẋj ≡ dxj/dσ and the operatorL0 is defined in (2.28). The limiting condition in (3.10b) comes from matching

the gradients of the inner and outer solutions ofv. In (3.10a), L0 has a one-dimensional kernel with eigenfunctionw′.

Thus, the right-hand side of (3.10a) must be orthogonal tow′. This solvability condition yields

− ẋj
fvqej

∫ ∞

−∞

(w′)2 dyj − E

∫ ∞

−∞

w′ dyj −
1

fv2qej

∫ ∞

−∞

w′w2V1j dyj = 0 .

Sincew′ is odd andw′w2 = (w3)′/3, we can integrate by parts and usew → 0 as|yj | → ∞ to obtain

ẋj

∫ ∞

−∞

(w′)2 dyj =
1

3vqej

∫ ∞

−∞

w3V ′

1j dyj . (3.11)

Next, we integrate by parts on the right-hand side of (3.11).Using the facts that
∫ yj

0
w3(s) ds is odd and that, by
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(3.10b), V1j is even, we calculate that

ẋj

∫ ∞

−∞

(w′)2 dyj =
1

6vqej

∫ ∞

−∞

w3 dyj
[

V ′

1j(∞) + V ′

1j(−∞)
]

. (3.12)

Finally, since
∫

∞

−∞
w3 dyj∫

∞

−∞
(w′)2 dyj

= 6, we can apply the limiting conditions forV1j in (3.10b) to reduce (3.12) to

ẋj =
1

vqej

[

vqex(x
+
j ) + vqex(x

−

j )
]

. (3.13)

To calculate the right-hand side of (3.13), we use (3.4b) and (2.13). In this way, we obtain the following ODE-DAE

system characterizing the slow dynamics ofx0 andx1:

Principal Result 3.2: Consider the quasi-equilibrium solution(3.4) of (1.5) with spikes centered atx1 andx0 with

−1 < x0 < x1 < 1. Then, forǫ → 0, and provided that the quasi-equilibrium profile is stable to O(1) time-scale

instabilities, the spikes drift with speedO(ǫ2) according to the asymptotic ODE-DAE system

ẋ0 ∼ 2

vqe0

[

x0 − ζ0

(

x0
vqe0

+
(1 + x0)

vqe1

)]

, ẋ1 ∼ 2

vqe1

[

x1 + ζ0

(

(1− x1)

vqe0
− x1
vqe1

)]

. (3.14)

Herevqe0 andvqe1, which depend onx0 andx1, are positive solutions of the nonlinear algebraic system (3.6), while

ζ0 is defined in (3.6 b).

For the special case of a symmetric two-spike quasi-equilibrium solution withx1 = −x0 ≡ α andvqe1 = vqe0 =

vcqe, we use (3.3) to simplify (3.14). This leads to the followingresult:

Principal Result 3.3: Consider the quasi-equilibrium solution(3.4)of (1.5)with spikes centered atx1 = −x0 ≡ α

for 0 < α < 1, for which the spikes have a common amplitude, i.e.vqe0 = vqe1 = vcqe. Then, forǫ→ 0, and provided

that the quasi-equilibrium profile is stable toO(1) time-scale instabilities, the spikes drift with speedO(ǫ2) according

to the ODE

dα

dt
∼ ǫ2H(α) ; H(α) ≡ 1

vcqe

[

1 +
E

D
− 2αE

D

]

. (3.15)

Herevcqe, which is independent of the spike locations, is defined in(3.3). The equilibrium locations of the spikes are

at ±αe whereH(αe) = 0, which yields

αe =
1

2
+

D

2E
. (3.16)

Due to the imposed boundary flux, these equilibrium locations are not at the symmetry locations±1/2 of the no

boundary flux system studied previously in§2. From (3.16), we observe that for the equilibrium locations to be inside

the domain, we must have thatD/E < 1. SinceH′(αe) < 0, the equilibrium points of the ODE are always stable.

We limit our study to the parameter range where the inequality D/E < 1 is satisfied. We note that the symmetric

equilibrium is stable under the dynamics (3.15), which was derived under the assumption thatx0 = −x1. That is,

the equilibrium (3.16) is stable only to perturbations thatpreserve this symmetry. For the equilibrium to be stable to

any perturbation, including to those that break the symmetry, the parametersD, E andf must satisfy the condition

(cf. [27])

1− f

Ef2
<

1

24

E

D

[

1 +
D

E

]3

. (3.17)

The criterion (3.17), as derived in [27], is the condition that must be satisfied for a two-spike symmetric equilibrium

solution to be stable to eigenvalues ofO(ǫ2).
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3.2 Derivation of the NLEP

In this subsection, we study the stability of the two-spike quasi-equilibrium solution with respect to the large eigenval-

ues withλ = O(1) asǫ→ 0. This is done by first deriving the NLEP governing the stability on anO(1) time-scale of

the two-spike quasi-equilibrium solution of Principal Result 3.1 associated with (1.5). Since this NLEP has the same

form as in (2.39), differing only in the coefficient of the nonlocal term, we will only briefly outline its derivation.

We linearize about the quasi-equilibrium solution of (3.4)by writing u = uqe + eλtΦ and v = vqe + eλtΨ.

Substituting this into (1.5), we then follow the same procedure as used in (2.17)–(2.39). In place of the vector NLEP

(2.29) we obtain thatΦ ≡ (Φ0,Φ1)
t satisfies

L0Φ+
w2

fD
VC−1G(µ)

[∫ ∞

−∞

(

Φ− 2

f
wΦ

)

dy

]

= λΦ , (3.18)

whereC, the Green’s matrixG(µ), and the diagonal matrixV are defined by

C = I +
6

f2D
G(µ)V , G(µ) ≡





G(µ)(x0;x0) G(µ)(x0;x1)

G(µ)(x1;x0) G(µ)(x1;x1)



 , V ≡





1/v2qe0 0

0 1/v2qe1



 . (3.19)

HereG(µ)(x;xj) is the Green’s function satisfying (2.23).

To obtain two uncoupled scalar NLEP’s, we diagonalizeC−1 andG(µ) by using the spectral decomposition ofG(µ)V
given by

G(µ)V = SΛS−1 , C−1G(µ)V = S
[

I +
6

f2D
Λ

]−1

ΛS−1 , (3.20)

whereΛ is the diagonal matrix of the eigenvaluesκ̃0 andκ̃1 of G(µ)V. Then, upon substituting (3.20) andΦ = VSΦ̂
into (3.18), we obtain in place of (2.34) the two uncoupled NLEP’s

L0Φ̂ + fχ̃jw
2





∫∞

−∞

(

Φ̂− 2
fwΦ̂

)

dy
∫∞

−∞
w2 dy



 = λΦ̂ , j = 0, 1 ; χ̃j ≡
κ̃j

κ̃j +
Df2

6

. (3.21)

Finally, by proceeding as in (2.36)–(2.37) to eliminate oneof the nonlocal terms in (3.21) we obtain the following

result:

Principal Result 3.4: For ǫ→ 0, consider the quasi-equilibrium solution(3.4)of (1.5)with spikes centered atx1 and

x0 with−1 < x0 < x1 < 1. Then the stability of this solution on anO(1) time-scale is determined by the spectrum of

the NLEP

L0Φ̂− χjw
2

(
∫∞

−∞
wΦ̂ dy

∫∞

−∞
w2 dy

)

= λΦ̂ , (3.22)

whereχj = χj(λ) is defined by

χj ≡ 2χ̃j

[

1 + λ− f

1 + λ− χ̃jf

]

, χ̃j =
κ̃j

κ̃j +
Df2

6

, j = 0, 1 . (3.23)

Hereκ̃j for j = 0, 1, which also depend onλ, are the eigenvalues of the matrix productG(µ)V defined in (3.19).

We now analyze this NLEP to derive an instability threshold for a two-spike quasi-equilibrium solution with ar-

bitrary spike locationsx1 > x0. The analysis in§3.3 below proves that ifχj(0) < 1 for eitherj = 0, 1, then the

NLEP in (3.22) has a positive real eigenvalue for anyτ ≥ 0. If χj(0) = 1, thenλ = 0 is an eigenvalue of (3.22) with

eigenfunctionΦ̂ = w. Furthermore, ifχj(0) > 1 for j = 0, 1, then Re(λ) < 0 for τ sufficently small. Upon using
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(3.23), we obtain that the conditionχj(0) < 1 is equivalent to

κ̃j |λ=0 <
Df2

6(1− f)
. (3.24)

To calculate the two eigenvaluesκ̃j of G(µ)V for λ = 0, we expandG(µ) asµ2 → 0, to obtain that

G(µ) ∼ 1

2µ2





1 1

1 1



−





G(x0;x0) G(x0;x1)

G(x1;x0) G(x1;x1)



 , (3.25)

whereµ2 = τλ/D andG(x;xj) is the Neumann Green’s function of (2.12) withD = 1. By using (2.13) forG with

D = 1, we calculate forµ2 ≪ 1 that

G(µ)V ∼
(

1

2µ2
+

1

6

)

A+D , A ≡





1/v2qe0 1/v2qe1

1/v2qe0 1/v2qe1



 , D ≡







x2
0

2v2
qe0

(x2
0+x2

1)

4v2
qe1

− (x1−x0)
2v2

qe1

(x2
0+x2

1)

4v2
qe0

− (x1−x0)
2v2

qe0

x2
1

2v2
qe1






.

(3.26)

To leading order inµ, the eigenvectorsvj and eigenvalues̃κj of G(µ)V are the eigenvectors ofA. Therefore, for

µ2 ≪ 1, we getv0 ∼ (1, 1)t andv1 ∼ (v2qe0,−v2qe1)t. This shows that̃κ0 → +∞ asλ → 0, so thatχ0(0) = 2 > 1.

We conclude that the synchronous modev0 ∼ (1, 1)t does not generate any instabilities whenτ ≪ 1. Alternatively,

for the competition modev1, we haveAv1 = 0 so thatκ̃1 = O(1) asµ2 → 0. From a routine matrix eigenvalue

perturbation calculation we calculate forµ2 = τλ/D ≪ 1 that

κ̃1 ∼ vt1Dv1
vt1v1

=
1

2(v4qe0 + v4qe1)

[

(x21 − x20)

2

(

v2qe1 − v2qe0
)

+ (x1 − x0)
(

v2qe0 + v2qe1
)

]

. (3.27)

By combining (3.27) and (3.24), we obtain an instability criterion for the arbitrary two-spike quasi-equilibrium solution

of Principal Result 3.1.

Principal Result 3.5: The two-spike quasi-equilibrium solution of Principal Result 3.1 is unstable on anO(1) time-

scale for anyτ ≥ 0, when

1

2(v4qe0 + v4qe1)

[

(x21 − x20)

2

(

v2qe1 − v2qe0
)

+ (x1 − x0)
(

v2qe0 + v2qe1
)

]

<
Df2

6(1− f)
=

1

2ζ0
, (3.28)

whereζ0 is defined in (3.6 b). Herevqe0 andvqe1 is any solution to the nonlinear algebraic system (3.6).

We now use (3.28) to prove for the casex1 = −x0 that the two asymmetric quasi-equilibrium solutions obtained in

(3.8) for c > 2/
√
b are unstable on anO(1) time-scale. This will establish Remark 1 of§3.1. Forx1 = −x0, (3.28)

implies that we have instability when

(v2qe0 + v2qe1)

(v4qe0 + v4qe1)
<

1

2ζ0x1
=

1

b
. (3.29)

However, sincevqe0 = b/vqe1 when a = 0 in (3.6a), this instability inequality holds whenv2qe1 + b4/v4qe1 >

b
(

v2qe1 + b2/v2qe1
)

. Upon settingy = vqe1/
√
b, this inequality reduces to showing thaty4 + 1/y4 > y2 + 1/y2

for all 0 < y < ∞ with y 6= 1. Defining z by z = y2 + 1/y2, for which z > 2 for any y 6= 1, the inequality

y4 + 1/y4 > y2 + 1/y2 is equivalent to showing the obvious result thatz2 − z − 2 > 0 whenz > 2. This establishes

Remark 1.

The instability criterion (3.28) can be used together with anumerical simulation of the DAE system in Principal

Result 3.2 to characterize when the slow spike motion, as predicted by (3.14), ceases to be valid due to the triggering

of anO(1) time-scale instability. Rather than investigating this problem numerically, for the remainder of this section
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we will restrict the analysis to the simpler case of symmetric two-spike quasi-equilibria wherex1 = −x0 andvqe0 =

vqe1 ≡ vcqe, which is analytically more tractable.

For such a symmetric two-spike quasi-equilibrium solution, thenV is a multiple of a diagonal matrix andG(µ) is

a symmetric matrix with constant row sum. Thus, the eigenvectors ofG(µ) are(1, 1)t and(1,−1)t. To calculate the

eigenvalues ofG(µ) in this case, we proceed as in [25] and writeG(µ) = B−1/µ, whereB is given in Section 2 of [25]

as

Bα ≡





dα fα

fα dα



 ; dα ≡ coth(2µα) + tanh [µ(1− α)] , fα ≡ − csch(2µα) . (3.30)

Hereµ2 = τλ/D is defined in (2.21). The eigenvaluesσ0 andσ1 of Bα and the corresponding eigenvectorsv0 andv1

are

σ0 = tanh(µα) + tanh [µ(1− α)] ; v0 = (1, 1)t,

σ1 = coth(µα) + tanh [µ(1− α)] ; v1 = (1,−1)t .

(3.31)

The eigenvalues̃κj of the matrixG(µ)V are then given bỹκj = 1/(µv2cqeσj), for j = 0, 1.

In terms ofσj , the NLEP in (3.22) corresponding to a symmetric two-spike quasi-equilibrium solution reduces to

the following:

Principal Result 3.6: Let ǫ → 0 and consider the two-spike symmetric quasi-equilibrium solution with x1 = −x0
andvqe1 = vqe0 ≡ vcqe, as given in(3.4). The stability of this quasi-equilibrium solution on anO(1) time-scale is

determined by the spectrum of the NLEP in(3.22), whereχj is defined by

χj =
2

1 + µσj/β

[

1 +
fµσj

fβ − (1 + λ) (β + µσj)

]

, j = 0, 1; β ≡ (D + E)2f2

6D (1− f)
2 . (3.32)

The discrete eigenvalues of(2.39a) are the roots of the transcendental equationsgj(λ) = 0, where

gj(λ) ≡ Cj(λ)− F (λ) , Cj(λ) ≡
1

χj(λ)
. (3.33)

HereF (λ) is defined in(2.40), andCj(λ) is given by

Cj(λ) =
1

2

[

1 + ξj +
fξj

1 + λ− f

]

, ξj ≡
µσj
β

. (3.34)

3.3 Dynamically Triggered Competition Instabilities; Symmetric Quasi-Equilibria

We now calculate a valueαc such that the symmetric quasi-equilibrium solution with spikes atx1 = −x0 ≡ α is

unstable to a competition instability whenα < αc for τ = 0. Thus, a competition instability is dynamically triggered

if the conditionαe < αc < α(0) < 1 holds. For then,α(t) will dip below αc on its approach to its equilibrium state

αe. In §3.4, we calculate the Hopf bifurcation thresholds as a function ofα, analogous to those calculated in§2.4, and

we find that dynamically triggered oscillatory instabilities can also occur.

To determineαc, we look for roots to (3.33) on the positive real axis. The analysis here is similar to that in§2.3.

We first consider the case whereτ = 0. To find real positive roots ofgj(λ) asτ → 0, we letµ → 0 in (3.31) to

obtain thatξ0 → 0 andξ1 → (αβ)
−1 asτ → 0. Then, from (3.33) and (3.34), we have thatC0 = 1/2 < 1, so that

the synchronous mode(1, 1)t mode is always stable whenτ = 0. Here we have used the properties (2.41) forF (λ).
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Alternatively, whenτ = 0, we have from (3.34) that

C1(λ) =
1

2

[

1 + ξ1 +
fξ1

1 + λ− f

]

, ξ1 ≡ 1/(αβ) . (3.35)

SinceC1(λ) is a positive decreasing function ofλwhileF (λ) has the properties in (2.41), theng1 has a unique positive

real root ifC1(0) > 1 and no roots ifC1(0) < 1. A winding number argument similar to that used in§2.3 can be used

to show that no other roots exist in the right-half plane. This leads to the following stability criteria:

Principal Result 3.7: For τ = 0, consider the quasi-equilibrium solution(3.4) to (1.5) with spikes centered atx =

±α for 0 < α < 1, and where the spikes have a common amplitude. The solution is stable on anO(1) time-scale if

and only if

α > αc; αc ≡
6D(1− f)

(D + E)2f2
. (3.36)

If the inequality in(3.36) is reversed, the quasi-equilibrium profile is unstable to one real positive eigenvalue cor-

responding to the(1,−1)t mode, which conserves the sum of the amplitudes of the spikes. Note that ifD ≪ 1 but

D ≫ O(ǫ2), we have thatαc ∼ 6D(1− f)/(E2f2) ≪ 1 so that the region of stability spans almost the entire range

0 < α < 1. Also, from(3.36), we see thatαc ∼ O(D−1) asD → ∞. We remark that the conditionα > αc is

equivalent to the conditionc > 2/
√
b in the analysis of the quasi-equilibria in (3.8).

As discussed earlier, a symmetric two-spike quasi-equilibrium solution can undergo a dynamic competition insta-

bility wheneverαe < αc < 1. By using the expression forαe in (3.16), we have the following result:

Principal Result 3.8: The quasi-equilibrium solution in(3.4) with a rightmost initial spike locationα(0) satisfying

α(0) > αc will undergo a dynamic competition instability at some timet > 0 whenαe < αc < 1. These inequalities

hold when

1

12

E

D

[

1 +
D

E

]3

<
1− f

Ef2
<

1

6

E

D

[

1 +
D

E

]2

. (3.37)

The region described by (3.37) is plotted in Figure 16. Abovethe dotted curve a competition instability occurs

starting att = 0 for anyα(0), while below the solid curve the two-spike quasi-equilibrium solution is stable to the

large eigenvalues and there is no competition instability for anyα(0) with α(0) > αe.

By comparing the lower bound of (3.37) with (3.17), we conclude that forτ = 0 the two-spike equilibrium solution

is stable if and only if it is stable to the small eigenvalues in the limit τ → 0. The result is written as:

Principal Result 3.9: The symmetric two-spike equilibrium solution in(3.4)withα = αe is stable with respect to the

large eigenvalues but unstable with respect to the small eigenvalues when

1

24

E

D

[

1 +
D

E

]3

<
1− f

Ef2
<

1

12

E

D

[

1 +
D

E

]3

. (3.38)

It is stable with respect to the small eigenvalues when(3.17)holds.

For the caseτ > 0, it is difficult, owing to the non-monotonicity of the curvesCj(λ), to obtain explicit results that

count the number of positive real eigenvalues in the right half-plane. However, the following (less precise) results are

readily proved.

Principal Result 3.10: Suppose thatτ ≥ 0 and that0 < α < αc. Then, the NLEP in Principal Result 3.3 admits

at least one real positive eigenvalue. Hence, the quasi-equilibrium pattern in unstable. Alternatively, suppose that

αc < α < 1. Then, forτ > 0 sufficiently large, the NLEP in Principal Result 3.3 admits four real positive eigenvalues.

To prove the first statement, we note thatC1(0) > 1 whenα < αc. Therefore, the curvesC1(λ) andF (λ) must

have at least one intersection inλ > 0 whenτ ≥ 0. To prove the second statement we notice thatCj(0) < 1 when
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Figure 16. The region between the two curves is the parameterspace in which a dynamic competition instability is

possible for a two-spike pattern with initial stateα(0) with αe < α(0) < 1. The horizontal axis is on the range

0 < D/E < 1 for which a two-spike equilibrium solution exists.

α > αc for j = 0, 1 and thatCj(λ) = O
(√

τλ
)

for λ > 0 whenτ ≫ 1. It follows from the concavity ofCj(λ) in the

largeτ limit and the convexity ofF (λ) (see properties (2.41)) that for bothj = 0 andj = 1, there are two intersection

points ofCj(λ) = F (λ) on0 < λ < 5/4.

3.4 Dynamically Triggered Oscillatory Instabilities; Symmetric Quasi-Equilibria

For the parameter rangeαc < α < 1, we calculate the thresholdτ0 for which the NLEP has a complex conjugate pair

of eigenvalues on the imaginary axis. More specifically, we calculate the valuesτ = τ0j(α) such thatgj = 0 has a

pair of complex conjugate solutionsλ = ±iλ0Ij(α) on the imaginary axis. The quantity

τ0(α) = min(τ00, τ01) , (3.39)

is then defined to be the Hopf instability threshold. As in§2.4, either thej = 0 mode, which corresponds to syn-

chronous oscillations, or thej = 1 mode, which corresponds to asynchronous oscillations, canbe the dominant

instability, depending on the value ofα. In contrast, for the GM and GS models studied in [25] the synchronous mode

was always the dominant instability. Using the numerical procedure used to produce the Hopf bifurcation curves of

§2.4, we solvegj(iλI) = 0 to obtain curvesτ0j(α) andλ0Ij(α).

Treatingα as the independent variable, we fixD andE and generate Hopf curves for values off in the interval

fc < f ≤ 0.9, whereαc = 1 whenf = fc. In Figure 16, this corresponds to a vertical traversal fromthe dotted

curve down toward theD/E-axis. Results are presented on a semi-log plot for three ratios ofD/E. In Figures 17(a) -

17(c), we takeE = 1 andD = 0.2, 0.4 and0.6. Similar plots were made (not shown) for the same ratios ofD/E but

with D = 1 andE = 5, 2.5, 1.67, yielding qualitatively similar plots. For values ofα where the curves are solid, the

synchronous mode is the dominant instability (τ0 ≡ τ00), whereas for the portions of the curves where they are dashed,

the asynchronous mode is dominant (τ0 ≡ τ01). The curves are ordered such that for a givenα, τ0(α) increases with

increasingf . We end the plot forα < αc, that is, values ofα for which theτ01 curve does not exist; the corresponding
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complex conjugate imaginary eigenvalues approach the origin asα → α+
c the same way thatλ0I1 → 0 asD → D−

c2

as discussed in§2.4. The equilibrium locationαe is denoted by a dot; in the absence of a dot, the conditionαe < αc

is satisfied and a dynamic competition instability is possible. In Figure 17(a),τ00 and τ01 are almost equal forα

sufficiently near unity, and the breaks in the curves appear to be due to differences in decimal places beyond the

precision of the solver.
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Figure 17. Plot ofτ0 versusα for variousf with E = 1 andD = 0.2 (left), D = 0.4 (center) andD = 0.6 (right).

The extent of the curves inα increases inf , as does the value ofτ0 for any givenα. Forα where the curves are solid

(dashed), the dominant instability is the synchronous (asynchronous) mode. The dot denotes the equilibrium location

αe; for curves without a dot, a dynamic competition instability is possible. The values off are as follows: left figure:

f = 0.6181, 0.6494, 0.6808, 0.7121, 0.7434, 0.7747, 0.8060, 0.8374, 0.8687, 0.9000; center figure:f = 0.6772,

0.7019, 0.7267, 0.7514, 0.7762, 0.8010, 0.8257, 0.8505, 0.8752, 0.9000; right figure:f = 0.6980, 0.7204, 0.7429,

0.7653, 0.7878, 0.8102, 0.8327, 0.8551, 0.8776, 0.9000.

For a givenα, the quasi-equilibrium is stable (unstable) whenτ is below (above) the curve. Thus, because the spike

motion from (3.15) is directed monotonically towards the equilibrium location, dynamic oscillatory instabilities are

only possible when either the slope ofτ0 is negative whenα < αe or positive whenα > αe. From Figures 17(a)

- 17(c), we see that forf nearfc, the only possibility for a dynamic oscillatory instability is when the initial spike

locations satisfyα(0) > αe andτ satisfiesτ0(αe) < τ < τ0(α(0)) (or τ0(αc) < τ < τ0(α(0)) if αe < αc), leading

to the triggering of synchronous spike oscillations at somet > 0 asα → α+
e . For largerf , a similar scenario is

possible for asynchronous oscillations. For still largerf , synchronous oscillations may be triggered when the initial

spike location satisfiesα(0) < αe. This may occur after passage through a region of instability to asynchronous

oscillations. In the next section, we illustrate these scenarios by numerically solving the full PDE system (1.5).

3.5 Numerical Validation: Symmetric Quasi-Equilibria

We now illustrate five different scenarios involving spike dynamics with parameters used to generate curves in Figure

17(a). For clarity, we reproduce the curves in Figure 18 on which we qualitatively annotate the dynamics ofα(t)

for each run. Below, we present the results of each run by plotting the spike amplitudesum and spike locationsxj

versus time, produced by solving (1.5) with4000 grid points usingMATLAB’s pdepe() solver. In all runs, we took

ǫ = 0.005, D = 0.2 andE = 1, with f andτ being varied between the runs. The initial conditions are treated in
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the same way as described in§2.5, where the quasi-equilibrium solution in (3.4) is takenas the initial conditions, and

a small value ofτ is used to solve forward in time until a true quasi-equilibrium solution is reached. While the time

required for the initiation process is small compared toǫ−2, the spikes still drift during this time. As such, appropriate

compensations were made in the initial conditions so that the spike locations were in their desired locations at the end

of the initiation. All values for the initial spike locationsα(0) quoted below refer to their locations at the end of the

initiation.

0 0.2 0.4 0.6 0.8 1

10
0

10
1

α

τ 0

Run 1
Run 2

Run 3

Run 5

Run 4

Figure 18. Hopf stability curves for (bottom to top)f = 0.6494, 0.7121, and0.806. The arrows indicate the evolution

of α(t), while the height of the arrows is only indicative of the value ofτ used in the runs. Runs 1 and 2 are associated

with the lowest curve, Run 3 with the middle curve, and Runs 4 and 5 with the top curve. Solid curves indicate that

τ0 ≡ τ00 (synchronous mode) while dashed curves indicate thatτ0 ≡ τ01 (asynchronous mode). The curves are cut off

on the left atα = αc. The equilibrium pointαe = 0.6 is indicated by a dot when the conditionαe > αc is satisfied.

In Run 1, we takeα(0) = 0.85, f = 0.6494, andτ = 1.05 < τ0(α(0)) so that the quasi-equilibrium is initially

stable att = 0. However, as indicated in Figure 18, our theory predicts that a dynamic synchronous oscillatory

instability is triggered at somet > 0 whenα decreases below the synchronous stability threshold indicated by the

solid curve in this figure. That is, for some timet > 0, the conditionτ > τ0(α(t)) is satisfied, at which time the

solution becomes unstable to synchronous oscillations. InFigure 19(a) we show the amplitudes of the two spikes,

which are indistinguishable, after the onset of the synchronous Hopf instability. The spikes annihilate beforeα reaches

αc, implying that the annihilation was not due to a competitioninstability. In Figure 19(b), we show a favorable

comparison between the slow time evolution of the location of the spikes and the dynamics in (3.15) before the time

of annihilation.

With the initial conditions and the other parameters unchanged, for Run 2 we decreaseτ to τ = 0.8 so that the Hopf

stability threshold is not crossed at any point in the dynamics. However, becauseαe < αc, a competition instability

occurs asα(t) decreases belowαc. This scenario is illustrated in Figure 18. In Figure 20(a),we show the annihilation

of one of the spikes after the thresholdα(t) < αc is crossed. In Figure 20(b), we show a favorable comparison between

the numerical spike dynamics and that predicted by (3.15) upto the time of the annihilation of the right spike. After

the annihilation, the remaining spike evolves according tothe one-spike dynamical result of [27].
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Figure 19. Run 1: Dynamic synchronous oscillatory instability for ǫ = 0.005, D = 0.2, E = 1, f = 0.6494,

τ = 1.05, andα(0) = 0.85. In the left figure, synchronous oscillations of the spike amplitudes grow in time at the

onset of instability and annihilate at some later time. In the right figure, we show a comparison between the evolution

of the spike locations and the dynamics (3.15). They are indistinguishable in this plot.

In Run 3, we keepτ unchanged but increasef to f = 0.7121 so thatαc < αe andτ remains belowτ0(α) for all

values ofα in the interval(αe, α(0)). Thus, no dynamic instabilities occur, and the spikes evolve monotonically to

their equilibrium locations atαe = 0.6. The motion of the spikes, along with the dynamics (3.15), are shown in Figure

20(c).
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Figure 20. Runs 2 and 3: The left and center figures (Run 2) are plots of the spike amplitudes and locations versus

time in the case of a dynamic competition instability forǫ = 0.005, D = 0.2, E = 1, f = 0.6494, τ = 0.8, and

α(0) = 0.85. In the right figure (Run 3),f is increased tof = 0.7172 so that no instabilities are triggered and the

spikes approach the equilibrium locationαe = 0.6.

In Run 4, we takeα(0) = 0.91, f = 0.806, andτ = 15 < τ0(α(0)). This run is similar to Run 1 except that a

dynamic asynchronous instability is triggered instead of asynchronous instability. This scenario is shown in Figure

18. For somet > 0, α(t) will satisfy τ > τ0(α(t)), initiating an asynchronous instability. In Figure 21(a) we show
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asynchronous spike amplitude oscillations resulting fromthe triggering of an asynchronous Hopf instability. As in Run

1, the spikes annihilate at some time after onset but beforeα has reachedαc, implying that the annihilation was not

due to a competition instability. In Figure 21(b), we show a favorable comparison between the slow spike dynamics

before the annihilation event and that predicted by (3.15).For this run, we perturbed the initial condition as in (2.63),

whered0 = 1 andd1 = −1 in accordance with the eigenvector associated with the asynchronous mode. While the

perturbation initially decayed and appeared to be unnoticeable by the time the spikes approached the asynchronous

instability threshold, enough of the initial perturbationremained to trigger the asynchronous instability. Withoutthe

initial perturbation, a synchronous instability developed due to the nearby synchronous instability threshold (not shown

in Figure 18).
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Figure 21. Run 4: Dynamic asynchronous oscillatory instability for ǫ = 0.005,D = 0.2, E = 1, f = 0.806, τ = 15,

andα(0) = 0.91. In the left figure, asynchronous oscillations of the left (solid) and right (dashed) spike amplitudes

grow in time at the onset of instability and annihilate at some later time. In the right figure, we show a comparison

between the evolution of the spike locations and the dynamics (3.15) up to the time of annihilation.

In Run 5, we keep the parameters as in Run 4, except we setα(0) = 0.28 andτ = 6.6 so thatτ > τ0(α(0)) = τ01.

Thus, the solution starts above the asynchronous stabilitythreshold but gains stability asα(t) increases towardsαe.

However, before reachingαe, a loss of stability to synchronous oscillations occurs before stability is regained after

α(t) drifts across the zone of synchronous instability. The evolution through the zones of stability and instability is

depicted in Figure 18. In Figures 22(a) and 22(b), we show thespike amplitudes and locations versus time for the en-

tire duration of the dynamics. Note that the spikes evolve according to (3.15) even whenα(t) is in an unstable region.

Figure 22(a) shows the triggering of two distinct types of instabilities, each of which are eventually extinguished as

time increases. The first of these instabilities, as previously mentioned, is to the asynchronous mode and is magnified

in Figure 22(c). The initial conditions were perturbed in the same way as in Run 4. After an initial growth in the

amplitude of asynchronous oscillations, the spike amplitudes approach their quasi-equilibrium value as they move into

the zone of stability. At a later time, shown in Figure 22(d),the spikes move into a zone of synchronous instability

where the amplitude of synchronous oscillations grow. These oscillations decay as the spikes move out of the unstable

region and towards their equilibrium locations. Note that the frequency of synchronous oscillations is approximately
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four times that of the asynchronous oscillations, which is consistent with our calculations (not shown). In other exper-

iments, it was observed that starting too far above the asynchronous stability curve led to an annihilation of one of the

spikes. Further, the movement of the spikes through a zone ofinstability without annihilating may be facilitated by

ǫ sufficiently large; for smallǫ where the times spent in unstable regions are significantly longer, annihilation events

may occur.

Finally, we note that all of these experiments involve onlyO(1) instabilites. For numerical computations involving

instabilities toO(ǫ2) eigenvalues, see [27].
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Figure 22. Run 5: Synchronous and asynchronous instabilities forǫ = 0.005, D = 0.2, E = 1, f = 0.806, τ = 6.6,

andα(0) = 0.28. The top left figure shows the spike amplitudes as the spikes move through zones of stability and

instability and eventually to their equilibrium locations(top right). The first instability is to the asynchronous mode

(bottom left) and the second instability is to the synchronous mode (bottom right). In the bottom left figure, the

solid (dashed) curve is the amplitude of the left (right) spike. In the bottom right figure, the spike amplitudes are

indistinguishable.
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4 Discussion

We have analyzed the stability of localized spike patterns for two closely related singularly perturbed RD systems with

Brusselator kinetics. The derivation of the NLEP for the Brusselator is more intricate than in previous stability analyses

of spike patterns for the GM and GS models [32, 30, 12], owing to the non-trivial background state for the activator

and the existence of two nonlocal terms arising from theO(ǫ−1) coefficient in (1.3b) and (1.5b). A combination of

rigorous and numerical analysis was used to obtain stability thresholds from this NLEP, and the results have been

confirmed with full numerical simulations of the PDE systems. For (1.5), an NLEP stability theory is applied to a

quasi-steady two-spike evolution, and our results show theexistence of dynamically triggered instabilities depending

on the parameter regime.

For both Brusselator models (1.5) and (1.3), our NLEP stability results show that asτ increases above a threshold,

a Hopf bifurcation triggers either a synchronous or an asynchronous oscillation in the spike amplitudes. The nature of

the oscillation depends on the parameter values off andD, and for (1.5), also on the inter-spike distance. Our full

numerical simulations of the PDE systems confirm the two modes of oscillation. Furthermore, our numerical results

suggest that the synchronous instability, which leads to the annihilation of spikes, is subcritical, while the asynchronous

instability is supercritical. The existence of robust asynchronous spike amplitude oscillations observed in our analysis

of the Brusselator model has not been reported in NLEP stability studies of other RD (cf. [32, 12]).

A key open problem, suggested by our results, is to perform a weakly nonlinear theory on the Brusselator model, and

on related RD systems with spike solutions, to analyze whether spike amplitude oscillations are sub- or super-critical.

Another interesting open problem is to try to extend the pulse-splitting analysis of [5, 16, 13] to analyze a similar

pulse-splitting phenomena for the Brusselator model (1.3)that occurs in the regime whef approaches unity. Starting

from a one-pulse quasi-equilibrium state, in Fig. 23 we shownumerical results computed from (1.3) for the parameter

setǫ = 0.01, A = 0, D = 0.02, f = 0.95, andτ = 0.001. Such a pulse-splitting behaviour has not been reported

previously for the Brusselator model.

A final open problem is to analyze (1.3) in a two-dimensional spatial domain, where localized spot patterns undergo

either self-replication, competition, or oscillatory, instabilities depending on the parameter regime. The determina-

tion of phase diagrams in parameter space for these instabilities is critical for characterizing dynamic bifurcationsof

localized spot patterns.
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Figure 23. Self-replication of a pulse for (1.3) withǫ = 0.01, A = 0,D = 0.02, f = 0.95, andτ = 0.001. The solid

curve isu while the dotted curve isv.
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A Scaling Analysis of the Brusselator Model

In this appendix we outline the scaling analysis of [27] for the existence of spikes to (1.2). Forǫ0 → 0, U has an inner

scaleUinn near a spike and an outer scaleUout away from a spike. In contrast,V has only one scale across the interval,

which is induced by the boundary feed so thatV = O(A0). In order to obtain a homoclinic solution characterizing

the spike profile, we require in the inner region near a spike thatU2
innV ∼ Uinn. Therefore,Uinn = O

(

A−1
0

)

.

Next, sinceU is localized, we require from (1.2b) thatDVxx ∼
∫ 1

−1
V U2 dx. Since the integrand has anO(ǫ0)

support near a spike, this yields thatA0 ∼ ǫ0/A0, which implies thatA0 = O(ǫ
1/2
0 ). Consequently, we conclude

thatUinn = O(ǫ
−1/2
0 ) andVinn = O(ǫ

1/2
0 ). Finally, from (1.2b) we must balance the scales ofDVxx andBU across

−1 < x < 1, which yields thatUout = O(ǫ
1/2
0 ), and consequentlyE0 = O(ǫ

1/2
0 ) from (1.2a).

Therefore, we will consider (1.2) in the parameter regime whereA0 = ǫ
1/2
0 A0 andE0 = ǫ

1/2
0 E0 for some non-

negativeO(1) constantsA0 andE0. We also give an alternate scaling for theA0 = 0 case.

First, we introduce the rescaledO(1) variablesu andv and the new temporal variableσ, defined by

U = ǫ
−1/2
0 ucu , V = ǫ

1/2
0 vcv , t = Tσ .
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From (1.2), we then obtain the system

1

T (B0 + 1)
uσ =

(

ǫ0√
B0 + 1

)2

uxx +
ǫ0E0

uc(B0 + 1)
− u+

ucvc
B0 + 1

vu2 , (A.1a)

√
B0 + 1

u2cT
vσ =

D0

√
B0 + 1

u2c
vxx +

√
B0 + 1

ǫ0

(

B0

ucvc
u− vu2

)

. (A.1b)

ChoosingT = 1/(B0 + 1) anducvc = B0 in (A.1), and defining the new parametersǫ,D, E, f , andτ as

ǫ ≡ ǫ0√
B0 + 1

, D ≡ D0

√
B0 + 1

u2c
, E ≡ E0

uc
√
B0 + 1

, f ≡ B0

B0 + 1
, τ ≡ (B0 + 1)3/2

u2c
, (A.2)

we obtain the system

uσ = ǫ2uxx + ǫE − u+ fvu2 , −1 < x < 1 , ux(±1, σ) = 0 , (A.3a)

τvσ = Dvxx +
1

ǫ

(

u− vu2
)

, −1 < x < 1 , vx(±1, σ) = ±A0/vc , (A.3b)

valid forA0 ≥ 0. If A0 > 0, we choosevc = A0 so thatuc = B0/A0. Replacing the time variableσ with t in (A.3),

the Brusselator model with asymptotically small boundary feed of the inhibitor is written in the form (1.5) whereσ is

replaced byt, andǫ, f , E,D andτ are defined in terms of the original variables by (1.6).

Alternatively, if A0 = 0, we may chooseuc = E0/
√
B0 + 1 so thatvc = B0

√
B0 + 1/E0, resulting in the

parameterE in (A.2) and (A.3) being unity. In this case, the Brusselatormodel with no flux boundary conditions is

(1.3) whereǫ, f ,D, andτ are as defined in (1.4).
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