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In a one-dimensional domain, the stability of localized spike patterns iszethfpr two closely related singularly per-
turbed reaction-diffusion (RD) systems with Brusselator kinetics. Fdir$tesystem, where there is no influx of the inhibitor
on the domain boundary, asymptotic analysis is used to derive a noelgealalue problem (NLEP) whose spectrum deter-
mines the linear stability of a multi-spike steady-state solution. Similar to preb&$ stability analyses of spike patterns
for other RD systems, such as the Gierer-Meinhardt (GM) and Geagt85S) models, a multi-spike steady-state solution
can become unstable to either a competition or an oscillatory instability dejgeadithe parameter regime. An explicit
result for the threshold value for the initiation of a competition instability, whiajgers the annihilation of spikes in a
multi-spike pattern, is derived. Alternatively, in the parameter regimenvenhelopf bifurcation occurs, it is shown from a
numerical study of the NLEP that @synchronousrather than synchronous, oscillatory instability of the spike amplitudes
can be the dominant instability. The existence of robust asynchronoy®tal oscillations of the spike amplitudes has not
been predicted from NLEP stability studies of other RD systems. For tlo@mdeystem, where there is an influx of inhibitor
from the domain boundaries, an NLEP stability analysis of a quasi-stgatlytwo-spike pattern reveals the possibility of
dynamic bifurcations leading to either a competition or an oscillatory instabilithefpike amplitudes depending on the
parameter regime. It is shown that the noagynchronousscillatory instability mode can again be the dominant instability.
For both Brusselator systems, the detailed stability results from NLEP tlaeergonfirmed by rather extensive numerical

computations of the full PDE system.

Key words: Brusselator, singular perturbations, quasi-equilibr@nlocal eigenvalue problem, Hopf bifurcation, asyn-
chronous oscillatory instability, dynamically triggeriedtability.

1 Introduction

Spatially localized patterns arise from a wide variety dat@n-diffusion systems, with applications to chemical
dynamics and biological modelling (cf29]), the spatial distribution of urban crime (cf24, 14]), electronic gas-
discharge systems (cf23]), and many other areas. In particular, it is now well-knaat localized spot patterns can
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exhibit a wide range of different instabilities includirgpot oscillation, spot annihilation, and spot self-regiicn be-
haviour. Various topics related to the analysis of far-frequilibrium patterns modelled by PDE systems are disclisse
in [19] and [11].

In this broad context, in this paper we study the stabilitiooflized spike-type solutions to two closely related RD
systems with Brusselator-type kinetics. The Brusselatstem (see e.g.18], [28], or [20] and the references therein)
is a well-known theoretical model for a simplified autocgtial reaction. It describes the space-time dependence of
the concentrations of the intermediate produd¢t&he activator) and” (the inhibitor) in the sequence of reactions

E—-U, B+U—->V+P, 2U+V-=3U, U-—=Q. (1.1)

Assuming (without loss of generality) that all rate constaf the reactions in (1.1) are unity, the conventional dime
sionless Brusselator model in a one-dimensional domaitt, siow diffusion of the activator and constant influx of
the inhibitor from the boundaries, can be written as

Uy =Uppe + & — (Bo + WU +VU?, —l1<z<l, Uy(+l,t)=0, t>0, (1.2a)
Vi = DoVis + BoU — VU?, —l<xz<l, Vi(£l,t)=%Ay, t>0, (1.2b)

supplemented by appropriate initial conditions. HEre> 0, V > 0, 0 < ¢p < 1, and. Ay, By, Dy and&, are all non-
negative constants. The constahtrepresents a boundary feed term for the inhibitor, whilecthestant, represents
a constant bulk feed for the activator. Our key assumptigdheémmodel is that there is an asymptotically large ratio of
the diffusivities forU andV'.

In the absence of a boundary feed-term, so that= 0 in (1.2b), then spikes for (1.2) occur whefy = 0(65/2)
(see Appendix A and7]). Upon writing&y = e(l)/QEO whereE, = O(1), the scaling analysis in Appendix A yields

Uy = Uy + € —u+ fou?, —l<ax<l, wu(£l,t)=0, t>0, (1.3a)
1
Tvt:Dvmm—i—f(u—qu) , —l<z<1, wv(£1,¢)=0, ¢t>0, (1.3b)
€
wheret is a different time-scale than in (1.2). Helte 7, ¢, andf, are defined by
Do(By +1)3/2 By +1)°/2 B
DEWa TE%’ e= 0 f=_0_ (1.4)
E2 E2 VBy +1 By +1

In contrast, when both the boundary and bulk feed terms amevanishing, and are asymptotically small of the
order(’)(eé/z) so thatg, = 6(1)/2E0 andAp = e(l)/on, whereFE, and Ay areO(1), then the appropriate re-scaled form
of (1.2) is (see Appendix A below)

U = €2 Uyy + €F — u + fou?, —l<ax<l, wu,(£l,t)=0, t>0, (1.5a)

1
TU :Dvm—kf(u—vuz) , —l<ax<l, w(£l,t)=+1, t>0, (1.5b)

€

whereD, F, 7, ¢, and f are now defined by
D= DUAg\/BO +1 = EyAp . A%(Bo + 1)3/2 . €0 f= By (1.6)
=, =, T=—" "=, €= —F/——, = . .
B2 BovBo + 1 B2 VBy +1 By+1

The spatially uniform steady-state solution of (1.3)is= ¢/(1 — f) andv, = ¢~ 1(1— f). For arbitrarye > 0, itis
well-known that this solution undergoes either a Turing opHnstability depending on the parameter ranges in (1.3)
(cf. [18]). Near the bifurcation points for the onset of these inditads, small amplitude patterns emerge and they
have been well-studied in a multi-spatial dimensional exnthrough canonical amplitude equations that are readily
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derived from a multi-scale weakly nonlinear analysis (s28 &nd the references therein). For a detailed survey of
normal form theory as applied to the study of 1-D pattern fation in the Brusselator model se3§]. More recently, a
weakly nonlinear analysis was used 286] to study pattern formation near a Turing-Hopf bifurcatiora Brusselator
model with superdiffusion.

In contrast, with an asymptotically large diffusivity raths in (1.3), localized large amplitude patterns are rgadil
observed in full numerical simulations of (1.3) with init@onditions close to the spatially uniform stdte., v.). A
standard calculation shows that for> 1/2, 0 < € < 1, andr = O(1), the band of unstable wave numbetgor an
instability mode of the fornfu, v) = (ue, ve) + Mm% (®, N) satisfies
_@f-1e

€

22 f -1 - DT <m ., as e—0. (1.7)

The maximum growth rate within this instability band is edted as\max ~ (2f — 1) — 2¢2m?, which occurs when

m = Mmax, Where

f 1/4
Mmax ™~ <D(f—1)2) 671/4 s as e—0. (18)

Therefore, the instability has a short wavelengti®gé!/4), In contrast, our results below (see (1.9) and (1.10)), show
that stable localized spikes occur only¢l) inter-spike separation distances. This suggests thainstéirom initial
data a coarsening process must occur, which eventuallg lealbcalized spikes. For a particular parameter set, in
Fig. 1 we show the formation of a two-spike pattern as obthfrem the numerical solution of (1.3).
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(@) uatt = 18 andt = 46 (b) v att = 193 andt = 837
Figure 1. Plot of numerical solutiom of (1.3) at different times for the parameter set 0.02, f = 0.8, D = 0.1,
and7 = 0.001, with initial conditionu(z,0) = u.(1 4+ 0.02 x rand andwv(z,0) = v.(1 + 0.02 x rand), where
ue = €¢/(1—f),ve = e (1 — f), andrand is a uniformly generated random number[in1]. Left: the small
amplitude pattern at= 18 leads to the two-spike pattern showrt at 46. Right figure: Ast increases from = 193

tot = 837 the two spikes slowly drift to their equilibrium locationsia= +0.5.

Rigorous results for the existence of large amplitude dayitim solutions for some generalizations of the Brusse-
lator model (1.3) in the non-singular perturbation limit 1 have recently been obtained 21] and [22] (see also the
references therein). However, to date, there is no compedrestability theory for these large amplitude solutions

In a more general 1-D context, there are now many resultdhfoekistence and stability of localized equilibrium
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spike patterns for various singularly perturbed two-conmgra RD systems such as the Gierer-Meinhardt (GM) model
[34, 2, 8, 32], the Gray-Scott (GS) modeb[ 16, 17, 12, 1], and the Schnakenberg mod&0[ 31]. A explicit charac-
terization of the slow dynamics of spike patterns, and tmsitability mechanisms, is given if3,[4, 9, 6, 25, 7] for
various RD systems in one space dimension. A central featw@éof these previous studies is that the determination
of the spectrum of various classes of nonlocal eigenvalablems (NLEP's) is critical for characterizing the statlili

of both equilibrium and quasi-equilibrium multi-spike manhs. A survey of NLEP theory is given i9].

The goal of this paper is to provide a detailed analysis o$thbility of multi-spike equilibria of (1.3), and a detalle
study of the dynamics and stability of two-spike solutioasthe Brusselator model (1.5) with a non-zero boundary
feed term. Although much of the general theoretical frant&wor the spike-stability analysis is closely related to
that developed in previous works for GM, GS, and SchnakenBEér systems, there are important differences both in
the details of the analysis required and in the stabilitylteghat are obtained. The stability results obtainedihere
complement the results obtained in the companion pa&fdr the dynamics of spikes in the Brusselator model.

We now summarize our main results.gfh 1 we begin by briefly outlining the asymptotic construetad symmetric
N-spike equilibrium solutions to (1.3). We refer to a symriteii-spike solution as one for which the spikes are
equally spaced and, correspondingly, each spike has the aamlitude. The main focus @B, not considered in
[27], is to analyze the stability of symmetrig-spike equilibrium solutions to (1.3). A singular pertutiba analysis
is used in§2.2 to derive a nonlocal eigenvalue problem (NLEP) thatrdeitees the stability of this solution t©(1)
time-scale instabilities. The derivation of this NLEP ither more intricate than for related RD systemsdyg 8, 10,

12, 17, 31, 32] owing primarily to the presence of two separate nonlocahgeresulting from theé)(e~1) coefficient

in (1.3b), and secondarily from the nontrivial background statelferactivator resulting from the constant feed term
of orderO(e) in (1.3a). From an analysis of this NLEP there are two distinct metdmas through which the solution
can go unstable as the bifurcation parametessd D are varied.

Firstly, for 7 sufficiently small, our analysis of the NLEP §2.3 reveals the existence of a critical threshdld.
such that a pattern consisting 8fspikes withV > 1 is unstable to a competition instability if and onlyNf > N .
This instability, which develops on afi(1) time scale ag — 0, is due to a positive real eigenvalue, and it triggers
the collapse of some of the spikes in the overall patterns Thiical thresholdV.,. > 0 is the unique root of (see
Principal Results 2.3 and 2.4 below)

, 9 1/3
N (1 + cos (n/N))/? = (3(12_ff)D) : (1.9)

In addition, from the location of the bifurcation point asgted with the birth of an asymmetrig-spike equilibrium
solution, a further threshold._ is derived that predicts that as-spike equilibrium solution withV > 1 is stable
with respect to slow translational instabilities of thekepiocations if and only itV < N._, where (see (2.47))

- 2f2 1/3
N,_ = (3(1_f)D> . (1.10)

SinceN,._ < N.., the stability properties of aiv-spike equilibrium solution to (1.3) wittv > 1 andr sufficiently
small are as follows: stability wheN < N._; stability with respect to fagP(1) time-scale instabilities but unstable
with respect to slow translation instabilities whh < N < N, ; afastO(1) time-scale instability dominates when
N > N.;. We remark that for (1.3) posed on a domain of lenbtlthen by a scaling argument we need only replace
Din (1.9) and (1.10) withtD /L2, As an example, consider the parametekset0.02, f = 0.8, andr = 0.001 < 1.
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Then, the threshold (1.10) witN._ = 2 predicts that a two-spike pattern is stable to both fast éowl mstabilities
whenD < 0.133. The numerical results shown in Fig. 1 with= 0.1 confirm this prediction.
For the case > 0 in (1.3), we show that aiV-spike equilibrium solution to (1.3) is unstable wh&n> N, , or
equivalently wherD > D, (see Principal Result 2.3 below), where
D., = 2 .
3N3(1—f) (L+cos )

in §2.4 we show from a numerical computation of the spectrumeNbEP that there is a critical value

ForD < D
Ty of 7 for which an V-spike equilibrium solution undergoes a Hopf bifurcatibomcontrast to the previous NLEP

CN

stability studies of 32, 30, 12] for the GM and GS models, where a synchronous oscillatichénspike amplitudes
was always the dominant instability, our results show thatd is a parameter regime where the Hopf bifurcation
for the Brusselator (1.3) triggers robustynchronousemporal oscillations of the spike amplitudes. Furtheemare
establish the scaling lawy; ~ ¢/D asD — 0 for someO(1) constant > 0. Therefore, in contrast to the previous
analyses for the GM and GS models (32] 12] whereTy = O(1) asD — 0, this new scaling law indicates
that spikes that are isolated from their neighbours or froemdomain boundaries (i.€ small) do not undergo an
oscillatory instability unless is very large.

For the boundary-flux system (1.5), 8.1 we derive an ODE for the slow evolution of a two-spike disésady
pattern. In the presence of boundary flux, equilibrium spikee not equally spaced, and depending on the parameter
values, slowly drifting spikes may annihilate against tloendin boundaries. 1§3.2 we derive an NLEP governing
the stability of the two-spike quasi-steady patterfX@ ) time-scale instabilities. From an analytical and numérica
study of this NLEP, ir§3.3 ands3.4 we show the possibility of dynamic bifurcations leadiageither a competition
or an oscillatory instability of the spike amplitudes deghey on the parameter regime. As in the study of the no-flux
system (1.3), the novalsynchronousscillatory instability mode can again be the dominantahgity.

For both Brusselator systems, the detailed stability tesue confirmed and illustrated by rather extensive nurakeric
computations of the full PDE systems.

2 Stability of Symmetric N-Spike Equilibria with No Boundary Flux

In this section, we construdV-spike symmetric equilibrium solutions of (1.3). By a synirieespike solution we
refer to a pattern of spikes with a common height and equalisgaWe then linearize about this equilibrium solution
to derive an NLEP governing the stability of the equilibrignattern toO(1) eigenvalues. Stability with respect to
the smallO(e?) eigenvalues as well as the existence of asymmetric eqailibere studied inJ7]. We highlight
the differences between the NLEP derived here and analdgbE®’s derived for the Gray-Scotti2]) and Gierer-
Meinhardt (B2]) models. We also draw similarities to the aforementionddER's and appeal to results 087] to
determine criteria for competition and oscillatory insliies. Numerical results computed from (1.3) are used to
validate our stability results.

2.1 Asymptotic Construction of N-Spike Equilibria

To construct anV-spike symmetric equilibrium solution, characterized pikes of a common amplitude and equal
spacing, we employ the “gluing” technique used3d][ We first consider a one-spike solution on the intefwél< ¢
centered atr = 0. In the inner region of widthO(¢), we introduce the stretched spatial variaple- ¢!z and let
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U(y) = u(ey). Because varies on arO(1) length scale, then ~ v, in the inner region where the constantis to
be found. Then, by (1.8), we obtain to leading order théat satisfies/,, — U + fv.U? = 0. The spike solution to
this problem is

Ul) = Fe-(0), @)
wherew = %sechz(y/Q) is the homoclinic solution to
w' —wH+w?=0, -oco<y<oo, w-—0 asly—oo, w(0)=0, w(0)>0, (2.2)
for which
/Oowdy:/oodey:& (2.3)

In the outer region, we obtain from (1aBthatu = O(¢) so thatvu? < u. Thus,u ~ ¢ to leading order in the outer
region. The resulting leading-order composite solutianifes then given by
1

w(z/€), (2.4)

U~ €+

wherew(y) is defined by (2.2). Since is localized near: = 0, the terms involving: in (1.3b) can be represented in
the outer region as delta functions. Upon using (2.3) ar) (2e calculate that

1 ) 1 [ L[>, 6 1
Z(u— ~1 — =1 1—— . 2.
)~ (fvc /_oow WP /_mw dy) =147, ( f) o 29)
Therefore, in the outer region we obtain for> 0 thatv satisfies
6 1
Dvug, +1= <—1>6$, —l<xz<l, v, (£l)=0. 2.6
7o lF-1) @ (+0) (2.6)
Integrating this equation ovér| < ¢ and imposing that, = 0 atz = +¢, we obtain
3 /1
ve=—|=—-1)>0, 2.7
77 @7

since f satisfies) < f < 1. To obtain anN-spike equilibrium solution for (1.3) on the domain of lehgwo, we
must se = 2N/ and periodically extend our solution ¢n| < [ to [—1, 1]. Thus, we identify that = 1/N and (2.7)

becomes
Ve = % <]1"1 — 1) . (2.8)

Before solving for the outer solution far, we make some remarks. Firstly, in (2.8) increases witliV, and so,
by (2.1), the common spike amplitude decreases as the numhispikes increases. Also, the common amplitude is
independent oD, which will not be the case when we construct spike solutiomder the presence of boundary flux
in §3. Secondly, by using = 1/N, the center of each spike is located at

2741
o= 14250 0 N1, (2.9)
N
This equally-spaced spike result will be shown not to holg3rwhen we allow for the presence of boundary flux.

Lastly, the uniqueness of the solution to (2.6) is achieweiitposing the matching conditianz;) = v..

Using the last remark, we write the equation foon the interval-1 < = < 1 as

6

Dvg, +1=
Ve L

N—-1
(}1) ;5(:5ij), “l<z<1, wvu(x1)=0, (2.10)
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whereuv, satisfies (2.8). The solution to (2.10) can be written in teafithe Neumann Green’s functigi(z; z;) as

6 1 N—-1
V=74 —1) G(x;z;), 2.11
fvc (f ]:ZO ( J) ( )
for some constant to be determined. Her@(x; x;) satisfies
1 1
DGm(ac;xj)—i—g =0(x—2x;), -l<z<l; Gu(£l;z;)=0, /IG(x;xj)dxzo, (2.12)

which has the explicit solution
1

) — a2 4 e) b lp— | —
G(z;x;) = 4D(x +xj)+2D|x x| 5D (2.13)
The constant is determined by the matching conditiofi;) = v., yielding
6 1 N-1
V=V, — fvc (f - 1) jgo G(ZL’Z,ZL']) 5 (214)

where the right-hand side of (2.14) is readily shown to bepehdent of. We summarize our result as follows:
Principal Result 2.1: Lete — 0in (1.3). Then, the leading order composite approximation for thragtricNV-spike
equilibrium solution foru is

N-1

Z wle ™ (z — z;)]. (2.15a)

foe 2

Alternatively, the outer solution far valid for |z — z;| > O(e) andj = 0,..., N — 1 is given asymptotically by

Ue(T) ~ €+

6 /1 N—-1
Ve(T) ~ T+ Fo <f - 1> Z G(z;xj) . (2.15b)
¢ j=0

Herew(y) satisfieq2.2), whilev,, z;, v, andG(z; z;) are given in(2.8), (2.9), (2.14) and(2.13) respectively.

Next, we calculate the critical valuB,,, of D for which an asymmetriéV-spike equilibrium solution, charac-
terized by spikes of different height and non-uniform spggibifurcates from the symmetriy-spike symmetric
solution branch. This bifurcation point corresponds tora ségenvalue crossing along the symmetric branch, and for
7 sufficiently small it characterizes the stability thregshof symmetric/V-spike equilibria with respect to the small
eigenvalues withh — 0 ase — 0 in the linearization of (1.3) (cf.47]).

To determine this bifurcation point, we computg) for the one-spike equilibrium solution to (1.3) on the domai
—l < x < l. From (2.6) and (2.7), we readily calculate that

v(l)z% <z2+ll’> , b;%(kf).
The bifurcation point for the emergence of an asymmetrispike solution on a domain of length two, is obtained by
calculating the minimum point of the graph ofl) versusl, and then setting NI = 2 (cf. [27]). This occurs at the

valueD = D, ., where

SN Y f2
3(1— f)N3~

D,, (2.16)

2.2 Derivation of Nonlocal Eigenvalue Problem

To analyze the stability of the equilibrium solution consted above, we linearize abaut andv,., whereu, andv,
are given in (2.18) and (2.1%), respectively. We substitute = u. + e*'® andv = v, + e* ¥ into (1.3), where
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|®| < 1 and|¥| < 1. This leads to the eigenvalue problem

EDpy — O+ 2fuve® + fuiU =0, —l<z<l, &, (+1)=0, (2.17a)

1
DV + = [® — 2ucv.® —ul¥] = 7A¥, —1<az<1, V,(+1)=0. (2.17b)
€

To analyze the large eigenvalues that@@) ase — 0, we look for a localized eigenfunction fdr of the form

N-1
O~ Qe (x —xj)], (2.18)
7=0
with ®; — 0 exponentially agy| — oco. In the inner region near thgh spike we obtain from (2.10) that¥ ~ ¥,
where¥; is a constant to be found. Since bath and ® are localized near eachy, we calculate in the sense of
distributions that

%[CI)—Queve(I)—ui\I/} ~ </_°°@ dy_f/ w®; dy — f\fz/ww dy)é(x—mj). (2.19)

Substituting (2.18) into (2.15) and (2.19) into (2.1B), and using (2.3) for the last integral in (2.19), we obthiatt

Y — @ + 2wd; +f sw¥; =A0;,  —co<y<oo, ®;—0 as |y — oo, (2.20a)

and

N—
U,y — 20 = — Z Sz —mx;), —l<z<l, Wu(+l)=0, (2.20b)
7=0

where we have defingdandw; by

™ RN 2 [ 6V,
=5 esp| [ ma g [ ] ez

To derive an NLEP fo;, we must comput& ; for j = 0,..., N — 1 from (2.20b). To do so, we writel(z) as

N-1
U= G (2;2;)@;, (2.22)
§=0

whereG*) (z; z;) is the Green’s function satisfying
GW —12GW = —§(z —z;), -l<z<l1; Ggw(ﬂ; z;)=0. (2.23)

Evaluating (2.22) at = =; we obtain that (z;) = U; = ZN ! G(")wj, WhereG = G (z;, ;) andw, is given
in (2.21). In matrix form, this system can be written as

6
@ — g (w _ f%ZD\p) , (2.24)
where
) o e el
0 G G
U= g = o LN , (2.25)
Un_1

)
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and
D
w—i/mi’d z/oo P d P = (2.26)
B D — 00 y f 700w y ' N .
DOn_y
Solving for® in (2.24), we obtain
6

v =C1lg- =7 (w) 227
C'gWw; C + f%ng , ( )

whereZ is the N x N identity matrix.
Having obtained¥ in terms of®, we now derive a vector NLEP fab. Upon defining the local operatdr, by

Lop =¢" — ¢ +2wo, (2.28)

we then use (2.26) fav to write (2.20a) in vector form as

w? ° 2
1@+ e 60 | [ (2 Jwe) | e (229

To obtain N uncoupled scalar NLEP’s, we diagonalide’ and G(*) by using the eigenpairs(“)vj = kv, for
j=0,...,N—10of G, This yields,

6

-1 -1 -1 co-1. —
G = SAS™!, CL=8[Z+pA 'S %:Fﬁﬁ’

(2.30)

wheresS is the non-singular matrix whose columns are the eigenvectog () and A is the diagonal matrix of the
eigenvalues<, ..., xy_1. From the observation the(g(“))_1 is a tridiagonal matrix, explicit formulae for these
eigenvalues were calculated in Proposition 28)fds

1

kj=—, Jj=0,...,.N—-1, (2.32)
o
whereo; for j =0,..., N — 1 are given by
Jm ,
oo = ex + 2fy; sze,\+2f)\C0S<N), j=1,...,N—1. (2.32a)

Heree, andf) are defined in terms of = \/7\/D by
2 2
ex = 2coth (;) , fn = —csch (;) . (2.32b)

The corresponding eigenvectors@f” are
vh=(1,...,1); Vg,j = COS [‘7]\7;(61/2)} , j=1,...,N—1, (2.32¢)

wheret denotes the transpose atyd; denotes théth component of the vectar;.
Upon substituting (2.30) into (2.29), and making use of thagformation® = S®, we obtain the diagonal NLEP

I (q» - %w@) dy

— =\P, 2.33
= wdy (2.33)

Lo® + fBo [T + BoA] " Aw?

wheref, is defined in (2.30), and where we have used ]jh"%ng dy = 6. While the components @b are generally
different, for notational convenience we latiel= de, wheree is the N-vector(1, .. .,1)’. SinceA is the diagonal
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matrix of eigenvalues;, this substitution leads t& uncoupled scalar NLEP’s of the form

oo A_g =
Lo® + fx;w? ﬁﬂié fwé)@/ =\b, j=0,.. . N—-1 2.34
0 XjW foo dey - ’ J=YU,.. ) ( )

wherey; is defined by

- Pokj
= T (2.35)

In contrast to the NLEP problems for the Gierer-Meinhardt @ray-Scott models analyzed i82] and [12], the
NLEP (2.34) involves the two separate nonlocal terﬁﬁ%é dy and f;o w® dy. These terms arise from the fact that
the O(¢~!) term in (1.30) involves the sum of two localized terms. Due to this congtlian, it initially appears that
the general theory developed i8] is not applicable. However, as we now show, by a simple mdatpn we can
recast (2.34) into the same general form as the NLEP analypZé&4].

To do so, we first defing andl, asl; = [~ & dyandl, = [*_w® dy. Then, by using (2.28) fak,®, together
with the condition thafb — 0 as|y| — oo, we integrate (2.34) overco < i < oo to obtain

2
_Il + 2[2 + f)z_] l:[l - f]2:| = /\Il 5 (236)
which is then re-arranged to yield
2 2 1+A—f

L—=-b=—|—""7—|1I. 2.37
L f[HAScjf] : (237

Finally, using (2.37) in (2.34), we obtain the NLEP problem

R ffo wd dy . 1+X—f

Lo® — yw? | ==2—2 | =)\, =2y | ————— |, 2.38
0 X;W (f_oodey X3 X3 |:]-+)\_Xjf:| ( )

wherey; is defined in terms of; in (2.35).

The NLEP in (2.38) is of the form given in Proposition 2.3 82] for the GM model and in Principal Result 3.2 of
[12] for the GS model. However, because the activator in the &dasor model acts as two separate sources for the
inhibitor, the identity (2.37) is needed, which results irather complicated coefficient in front of the nonlocal term
in (2.38). Finally, by substituting (2.35) and (2.31) in®b38) we obtain the following main result:

Principal Result 2.2: Lete — 0 in (1.3) and consider theV-spike equilibrium solution constructed §2.1. The

stability of this solution on a®(1) time-scale is determined by the spectrum of the NLEP

. ) 2 wd dy . .
Ly® — yjw° | =2——— | = AP, —o<y<oo, ¢—0 as |y — oo, (2.39a)
o w?dy
wherey; is given explicitly by
2 fuo;
;= 14 . 2.39b
X7 T o,/ Bo [ fBo— (14 A)(Bo + poj) ( )

Hereo; is defined in terms qf in (2.32a), 11 is defined in terms of in (2.21) and 3, is defined in(2.30)

We make a few remarks concerning (2.39). Firstly, the depecel ofy; in (2.39) onr is strictly through the
parametep = \/W the importance of which will be discussed in the followirgson. From the explicit formula
(2.32a), it follows thaty; does not have a branch point at the origie= 0. Secondly, the spectrum of (2.39) is well-
known for the local eigenvalue problem corresponding ttrsel; = 0. In this case, it is known fromip] and [2]
that, in addition to the zero eigenvalue associated withstedion invariancel, has a unique positive eigenvalue
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vo = 5/4 corresponding to an eigenfunctiai of constant sign, and has an additional discrete eigenvaiutne
negative real line at, = —3/4.
Finally, the spectrum of the NLEP for (2.39) is recast into@enconvenient form by first writing
R foo wd dy
d=y, | T2 | (Lo — \) " 'w?,
v (f_ooWdy Lo =)

and then multiplying both sides of this equationdwnd integrating over the real line. In this way, we obtairt thea
eigenvalues of (2.39) are the roots of the transcendentaitemsg; (\) = 0, for j =0,..., N — 1, where

1 7wy dy

F(A) = T wrdy V= (Lo — N tw?. (2.40)

2.3 Competition Instabilities

In this sub-section, we seek criteria in terms/dthat guarantee that there is a positive real solution tdjdrithe
limit 7 — 0T. Such a root corresponds to an unstable real positive eadjemof the NLEP (2.39). Far — 07 it will
be shown that such a linear instability is of competitionetyp the sense that it conserves the sum of the amplitudes
of the spikes. The instability threshold condition brwill also be shown to apply to the case where- 0.

We begin the analysis by recalling key properties of the fioncF'(\) when\ is real and positive as determined in
Proposition 3.5 of32]. We then determine the behaviour@f(\) in (2.40) in the limitr — 0*. Using the properties
of C;()) in this limit, together with the properties d@f(\), we obtain criteria for which there exists a positive real
value of\ at whichC;(\) andF'(\) intersect. Some global propertiesiof\) when is real and positive, which were
rigorously established irBp], are as follows:

F(\) >0, F'()\) >0, F'(\) >0, for 0<\<5/4; F(\) <0, for A>5/4. (2.41a)
Furthermore, sincéow = w? and since the operatéf., — \) is not invertible at\ = 5/4, we obtain that
FO)=1, F(A) —» 400, as A—5/4". (2.41b)

To determine the behaviour 6f;(\) asT — 07, we first writeC; (\) in terms ofo; as

1 , .
Ci(A) =5 1+§j+1+ffj_f]; 5;‘2%,

2
For any branch of/), this function is analytic in the finita plane except at the simple pole= —1 + f, which is on
the negative real axis sin€e< f < 1. Upon taking the limitx — 0" in o in (2.32a), we see thaf; in (2.42) has

LN 1. (2.42)

the behaviour
& — 0T fjﬁﬁ, ajlcos<j7r), j=1,...,N—-1, as 7 — 0", (2.43)
Bo N
wheref, is defined in (2.30).

Firstly, by (2.43) and (2.42), we have that(\) = 1/2 for all A whent = 0. Thus, by (2.41), it follows that
go(N) # 0 forany A > 0. Moreover, from the rigorous study d84] (see Corollary 1.2 of34]), we can conclude,
more strongly, that whefiy, = 1/2 there are no roots tg,(A) = 0 in the unstable right-half plane Rg) > 0 (see
(2.4)). Thus, th€1, ..., 1) mode, governing synchronous instabilities of the ampéitudf the spikes, is always stable
in the limit — 0.

Next, consider the modgs=1,..., N — 1. Since¢; in (2.43) forj > 0 is independent of in the limit7 — 0%, it
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follows from (2.42) thaCJ’.()\) < 0andC;(A) > 0forA >0whenj =1,...,N—1. Thus, from (2.41), we conclude

that if max; C;(0) < 1forj = 1,...,N — 1, then there are no real positive eigenvalues whea 0. A simple

calculation using (2.42) and (2.43) shows thatas 0%, we have the ordering_1(0) > Cn_2(0) > ... > C;(0).

Therefore, in the limitr- — 0T, (2.39) has no real positive eigenvalues when

1)1 4+&n—1—

5 {fN_ } / } <1.

If Cy_1(0) > 1, there is an unstable positive real eigenvalue when 0*. The threshold valu®..,, of D, as given

below in (2.45), is obtained by settigy_; (0) = 1, and then using (2.43) f&iv_; together with (2.30) fof,.
Although for the case > 0 it is no longer true thay_;()) is monotonically decreasing, we still have that

Cn-1(0) = (2.44)

Cn-1(0) > 1 whenD > D., . Hence, by the properties @f(\) given in (2.41) it follows that there must still be a
positive root toC'y_1(A) = F(\). However, whern > 0 it is possible that there can now be further real positivégoo
where the other curvesS; () for j = 0,..., N — 2 intersectF'(\). We summarize our instability result as follows:
Principal Result 2.3: Lete — 0 and7 > 0 in (1.3). Then theV-spike equilibrium solution{¥ > 2) constructed in
§2.1 is unstable when

212
D>D,., = , 0<f<1, 2.45
Y TBN3(1— f) (1+cos ) d (2.43)

and the spectrum of the NLEP.39)contains at least one unstable positive real eigenvaluerFe> 0T, the instability

is of competition type in the sense that any linearly unstadiyenvectow; for the spike amplitudes must satisfy
1,...,1)-v; =0.

We now make some remarks. Firstly, for the limiting case 0T, in §2.4 a winding number calculation will be used
to prove that there are no unstable complex eigenvaluegiright half-plane whe® < D, . Therefore, forr — 0T,
the thresholdD..,, gives a necessary and sufficient condition for stabilitg.ddely, by comparing (2.45) with (2.47),
we see that as — 0™, the N-spike equilibrium solution (2.15) is stable if and onlytifs stable to small eigenvalues.
Thirdly, the term competition instability is due to the félsht when such an instability is triggered, some spikes grow
in amplitude while other decrease. This is due to the diffeegin signs of the components of the eigenvectgr®r
j=1,...,N — 1. As shown in the numerical experiments below, computed filoenfull Brusselator model (1.3),
this linear instability triggers a nonlinear event thatdedo spike annihilation. In contrast, as was shown aboee, th
synchronous mode correspondingu#tp = (1,...,1)¢ is always stable when is sufficiently small. FourthlyD,
decreases as N2 when N is large, which is the same scaling as for the SchnakenbedgnGorollary 3.1 of
[31]). In contrast, the GM (Proposition 7 a8]) and GS ([12]) models have a more robuat—2 scaling in terms of the
ability to support additional spikes. Sinéeis inversely proportional to the square length of the dom@5) shows
that in order to maintain stability the domain size mustéase as the number of spikes increases. Finally, in terms of
the original Brusselator parametdss, Dy and E, in (1.6), we have the stability criterion

2E2 B?

3N3(By+1)5/2 (1 +cos &)

Dy < Doe,, = (2.46)

Thus a spike pattern can be stabilized with snizjlor large F,. Note that, by (1.4)E2 = O(7~1) so thatD,, =
O(r71) asT — 0T. However, if we require thab = O(1) with respect tar, thenD, must also be&) (7~ 1) by (1.4).
Also, if T = (By + 1)°/2/EZ is held constant, then increasif in (2.46) relaxes the stability criterion. This fact is
reflected in terms of the rescaled variables in (2.45), whnareasingf = By/(Bp + 1) towards unity increaseB.., .
Finally, we remark that the eigenvalue problem (2.17) adglaniiother class of eigenvalues associated with translation
type instabilities, and these eigenvalues are of the orderO(¢2) ase — 0. These eigenvalues, studied 7], were
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found to be real negative when= O(1) if and only if D < Dy, , where (cf. R7])

_ f?
Dar = g =y < Don- (2.47)
This threshold value is the same as that calculated in (2ot@he bifurcation point corresponding to the emergence

of asymmetricV-spike equilibria from a symmetrity-spike equilibrium solution branch.

2.4 Complex Eigenvaluesand Oscillatory Instabilities

For the caseD < D., andT = 0, we now use a winding number argument to prove that (2.39)nbasnstable
eigenvalues with Re\) > 0. To calculate the number of zeros @f(\) in the right-half plane, we compute the
winding of g; () over the contouf” traversed in the counterclockwise direction composed@®faliowing segments
in the complexA- plane:T'f (0 < Im(\) < iR, Re(\) = 0), '} (—iR < Im(\) < 0, RgA) = 0), andT'y is the
semi-circle in the right-half plane defined by = R > 0, —7/2 < arg()\) < 7/2, whereR > 0.

Each functiong; () in (2.40) forj = 0,..., N — 1 is analytic in Ré\) > 0 except at the simple pole = 5/4
corresponding to the unique positive eigenvalue of theaipeL in (2.28). Therefore, by the argument principle we
obtain that\/; — 1 = (27) ' limr_ |arg g;];-, Where)M; is the number of zeros af; in the right half-plane, and
where|arg g;]- denotes the change in the argumengpbverl’. Furthermore from (2.40), (2.42) and (2.43) it follows
thatg; — (1+4¢&;)/2 as|A| — oo on the semi-circld'r, so thatlimg_, [arg g;]., = 0. For the contout’;, we
use thaty;(A\) = g;()) so that[arg gj}rl_ = [arg gj]r;r. By summing the roots of th& separate functiong; (\) for
j=0,...,N — 1, we obtain that the numbét of unstable eigenvalues of the NLEP (2.39) whes 0 is

N-1

1
M =N+~ 2% [arg 9]+ - (2.48)
iz

Here[arg gj}rj denotes the change in the argumeny pés the imaginary axis = i\ is traversed from\; = +oo
toA; =0.

To explicitly calculatelarg gj]w whent = 0, we substitute\ = iA; into (2.42) forC;, and separate the resulting
expression into real and imaginary parts to obtain

Cj(irr) = Cir(Ar) +1iCj1 (A1) , (2.49a)
where
ConA) =3, Corlh) =0, (2.49b)
1 (1 — A
CjR(AI):§ 1+§j+M] , ij(Af)z—(l]?M, j=1,...,N—1. (2.490)

In (2.49) we use the limiting behaviour féy ast — 0" as given in (2.43).
Similarly, we separate the real and imaginary partg'of\;), whereF'(\) was defined in (2.40), to obtain that

" Lo [L2 +A2] w2 d A [ w [L2 4+ A2
F(Mf)zj’mw o[Lo+ ] w y+z‘( 1w LG+ ]

ff;uﬂ dy f_oooowQ dy

which determineg(iA;) from (2.40) as

2 dy
) = Fr(Ar) +iFr(Ar), (2.50)

gj(i)\[) = CjR()\[) — FR()\[) +1 [Cj[(/\]) — FI(/\])} = ij()\]) + igjl()\j) . (2.51)

In order to calculat¢arg gj]FT , we require the following properties &%z (A;) andF;(\), as established rigorously
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in Propositions 3.1 and 3.2 o32]:

Fr(0) =1; Frp(\r) <0, A > 0; Fr(A\r) = 0(\/?), A — +o0, (2.52a)
Fr(0) =0; Fr(A\;) >0, Ar>0; Fr(Ar) =00\ h), Al = +00. (2.52b)

By using (2.49) and (2.52), we obtain from (2.51) thgt < 0 andgo; = 0 at A\; = 0, while gogr > 0 andg;o =0
asA; — +oo. In addition, sincefr (A;) > 0, we conclude thagy; < 0 for A; > 0. Therefore arg go]rj = —, and
hence (2.48) becomes

1 N-1
M=N-1+ p Z [arggj]rj . (2.53)
j=1

The calculation ofarg gj]FT forj =1,..., N—1issimilar, but depends on the range/ofSuppose thab < D.,,
where D, is the threshold of (2.45), so that;z(0) < 1forall j = 1,...,N — 1. Then, from (2.49), (2.52), and
(2.51), we calculate that)r < 0 andgg; = 0 at\; = 0, while gog > 0 andg;o = 0 asA; — +oo. In addition, since
Fr(A\r) > 0andCyr(A1) < 0, we getgor < 0 for all Ay > 0. This gives[arggj]rj =-—qnforj=1,...,N -1
From (2.53), we then obtain the following result:

Principal Result 2.4: LetT — 0™ ande — 0. Then, whenD < D.,, where D, is the threshold of(2.45) the
NLEP (2.39)has no unstable eigenvalues in(Rg > 0. Therefore, forr — 07, the thresholdD.,, gives a necessary

and sufficient condition for the stability of thé-spike equilibrium solutiof2.15a) of (1.3).

We remark that a® is increased above the threshdid,, in such a way tha€'x_;(0) > 1 butC;(0) < 0 for
j=1,...,N — 2, we readily calculate from (2.49), (2.52), and (2.51), t[laaggN,l]FT = 0and [arggj}w = -7
forj =1,...,N — 2. Therefore, from (2.53) we conclude thiaf = 1, and the only eigenvalue entering the right-
half plane is the real eigenvalue corresponding to the ctitigreinstability analyzed ir§2.3. We remark that since
7 appears only through the factop, then increasing cannot result in a competition instability. Thus, the thied
criterion (2.45) for stability is also valid for a range@k + < 7o for somery > 0 to be determined.

Next, we show that fob < D < D.y, there are exactlg N unstable eigenvalues in Re > 0 whent > 0 is
sufficiently large, and that these eigenvalues are on thiéyeoreal axis in0 < A < 5/4. ForT > 1, we obtain from
(2.42) and (2.32) thatC; = O(VA7) onT'g, so thatlimp_, . [arg 9ilp,, = ™/2. In this way, we obtain in place of

(2.48) that
1 N-1
M = T + p 2 [aurggj]rjr . (2.54)
For7 > 1 and\ = i\, we obtain from (2.42) and (2.3 that
C’j:;[l—km iT)\]+m:|, K ,80\2/5'
Separating into real and imaginary parts, With= C;r + iC};, we get forr > 1 and\; # 0 that

(2.55)

_RVTAL 14 E 1 _RVTAL |14 X (T
Cir = = T = Pt in] COS(4 +o 91) MR L ST s Sm(4 + o 91) )
(2.56a)
wheref, and#, are defined by
6o = arctan(\y) , 6, = arctan(A\;/(1— f)) . (2.56b)

Since\; > 0, and0 < f < 1, then0 < 6y < 6; < 7/2. Notice thatC;z > 0 for anyA\; > 0 on this range o#, and
0.
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For7 >> 1, we haveg; ~ ce™™/4y/X;, wherec > 0 is a real constant, @s; — +oc. Therefore, we have afg;) =
w/4asA; — +oo. Now for A\; = 0, we haveg;r < 0 andg;; = 0 whenD < D.,, so that ary;) = = when
Ar = 0. In order to prove thaarg gj]FT = 3m/4, we must show thag;; > 0 whenevelyr; = 0. SinceFr > 0 and
Cijr(Ar) > 0for A\; > 0, butCjr = O(y/7) > 1for T > 1, it follows that any roof\} of gr; = 0 must be such that
Ny = O(t71) < 1. Thus, forr >> 1, we haved, — 0 andd; — 0 asA; — 0, and so we conclude from (2.56) that
Cjr > 0with Cj; = O(1) at\; = O(r~1). Finally, sinceg;; = C;; — Fy, andF;(0) = 0, we conclude thag;; > 0
at any root\} <« 1 of g;r = 0. This proves thajarg gj}rj = 3w /4 foreachj = 0,..., N — 1. Finally, from (2.54)
we conclude thad/ = 2N.

To determine more precisely the location of these unstabknealues we proceed asy@.3. Forr > 1, and on
the positive real axis il < A < 5/4 we obtain from (2.42) and (2.38 thatC; () is a concave monotone increasing
function. SinceC;(0) < F(0) = 1 whenD < D, for j =0,...,N — 1, it follows from the properties of'(\) in
(2.41) that for eaclj, C;(\) = F(X) must have two roots on the intenal< A < 5/4. We summarize the result as
follows:

Principal Result 2.5: LetT — oo ande — 0. Then, wher) < D < D.,, whereD.,, is the threshold 0{2.45) the
NLEP (2.39)has exacth2N unstable eigenvalues in Re > 0. These eigenvalues are located on the real axis in the
interval0 < A < 5/4.

Therefore, for the parameter rangec D < D..,., and by the continuity of the branches of eigenvalues witheet
to 7, we conclude that for each= 0,... N — 1, there must be a minimum valug; > 0 of 7 for which the NLEP
(2.39) has a complex conjugate pair of eigenvalues at ii)\‘}j, corresponding to each eigenmode in (ZB2Ne
define the oscillatory stability threshotg as the minimum of these thresholds, irg.= min; 79;. Our numerical
results show that, is a Hopf bifurcation point, in the sense that an unstablepexconjugate pair of eigenvalues
enters the right half-plane far slightly abovery. From (2.3%) the j = 0 mode corresponds to synchronous spike
amplitude oscillations, while the other modes corresporasiynchronous oscillations in the spike amplitudes. For th
Gierer-Meinhardt model, as studied 2], an ordering principler; < 79541, = 0,..., N — 2 was observed for
all values of the parameters tested. That is, the dominanitadery instability is that of synchronous oscillation
the spike amplitudes. In contrast, for all values of the pater f tested, we find an interval @D in 0 < D < D,
in which this ordering principle is reversed. Thus, the Belator admits asynchronous oscillations not observed in
previous studies of the stability of spike solutions. Wejeoture that this is due to the activator acting as two separa
sources for the inhibitor, necessitating the manipula{87) to obtain the multiplier of the nonlocal term in the
NLEP (2.38). We illustrate asynchronous oscillatory pheana for two-, three-, and four-spike example§2rb.

To determine the smallest valug; for which there are two eigenvalugs= ii)\?j with /\(}j > 0, on the imaginary
axis, and no eigenvalues in the right-half plane, we soleectiupled systemg; = gr; = 0 given in (2.51) forry;
and)\9j. In (2.51),Cjr(A1r) = Re(C;(iAr)) andCjr(Ar) = Im(C;(iAr)), whereC; () is defined in (2.42) in terms
of o; as given in (2.32). The critical valuer, is then defined by

T0 = min T0; - (257)
J

For given parameter® and f, we used theVATLAB functionf sol ve() to solve the systemr; = g;; = 0
for 79; and A‘}j. To evaluateFr(\;) and F;(A;) in (2.50), we discretized the operatdi2 + A\?] over the interval
—20 < y < 20 using500 grid points and use®ATLAB's inversion algorithm to solve the boundary value problem.
The trapezoidal rule was used to evaluate the integral&:ifh\;) and F;(\;). Halving the number of grid points, or
halving the interval length, did not significantly affecetbalculated values dfz(\;) andF;(A;). In all subsequent
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plots of7y; andA(}j, we treatD as the bifurcation parameter and hgldixed at a particular value. For the valuesfof
tested in the interval < f < 1, the qualitative behaviour of);(D) remained unchanged.

In Figure 2(a), we plot the curves; (D) for N = 2 andf = 0.5. The critical valueD. is indicated by the vertical
dotted line in the figure. Whe® = D, thej = 1 curve ends as the corresponding pair of imaginary eigeasalu
meet at the origin, as shown in the plot)dﬁj(D) in Figure 2(c). AsD increases abov®, ., one eigenvalue moves
on the real axis into the right-half plane. Because the 0 mode does not undergo such a bifurcation, the 0
curve continues beyonB ., but is not plotted. In general, thih curve ends when thgh mode becomes unstable to
a real eigenvalue crossing into the right-half plane fromdhigin. In Figure 2(b), we magnify the interval in Figure
2(a) where the ordering principl®; < 7o holds. ForD in this interval, we expect asynchronous oscillations to be
the dominant instability. FoD to the right of this interval, the familiar ordering printgprog < 791, guaranteeing
synchronous oscillatory instabilities, is restored.

1.5

0.7,

18 1.4
0.6
1.
1.3
1.4 05
1.2 12
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X,(D)

"1 03
08 -
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0.2

0.8
G0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 45 5 55 g 65 7 75
D

(@) 10;(D) for N = 2 (b) 70;(D) for N = 2 closeup () AY,(D) for N =2
Figure 2. Plots ofy; (D) (left and center figures) an’d}j(D) (right figure) forN = 2 andf = 0.5. The critical value
D.» =~ 0.0417 is indicated by the vertical dotted line. In all figures, tiéicsand dashed curves correspondjte: 0

andj = 1, respectively. In the magnified interval shown in the cefitgire, 7p; < 70, indicating the possibility of

asynchronous oscillations.

In Figure 3(a), we show a plot of,; (D) for a three-spike example witfi = 0.6. We again plot only the interval
0 < D < D.3 above which thg = 2 curve ceases to exist. In the plot,kﬁj(D) in Figure 3(c), we see thaf), — 0
asD — D_,. In Figure 3(b), the reverse ordering principle is againeobsd for an interval o, indicating the
possibility of asynchronous oscillations. As similar te tbrevious two-spike case, f@r to the right of this interval,
the usual ordering principle guaranteeing synchronoudiascy instabilities is restored. The same charactessf
70, (D) and)\‘}j(D) for a four-spike example witlf = 0.6 are seen in Figures 4(a)-4(c).

For the two-spike example of Figure 2 with= 0.5, we trace the paths of the pair of complex conjugate eigeegal
in the right-half plane as increases past the Hopf bifurcation value computed in Eg@(a) and 2(b). For the two
modesj = 0 (Figure 5(a)) ang = 1 (Figure 5(b)), we start with the paft-, \) = (70;(D), /\?j) and solveg(\) = 0
in (2.40) for increasingly larger values of For thej = 0 mode we takeé) = 0.03 while for thej = 1 mode, we take
D = 0.006 so that in both cases the eigenvalues being tracked aregherifigs to cross into the right-half plane. The
eigenvalues converge onto the positive real axis whisrsufficiently large. As is increased further, the eigenvalues
split and migrate along the positive axis towardndy, = 5/4 asT — oo, wherev, is the principal eigenvalue of the
operatorLy.

Two key characteristics shared by Figures 2-4 are the bete/ofr; and)\?j for small values o). These figures
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Figure 3. Plots ofy;(D) (left and center figures) an@j(D) (right figure) forN = 3 andf = 0.6. The critical value

D.3 =~ 0.0148 is indicated by the vertical dotted line. In all figures, tlodéidy dashed, and dotted curves correspond to

j =0,1,2, respectively. In the magnified interval shown in the cefiterre, 702 < 791 < 700-

1

4
1.5)
1.4

13

0,(D)
n
A,(D)

“12

1.1

0 1 2 3 4 5 6 1 12 13 14 15 1.6 17 0 1 2 3 4 5 6
x10° x10°

(@) 7o;(D) for N = 4 (b) 70;(D) for N = 4 closeup (€) A};(D) for N =4
Figure 4. Plots ofy;(D) (left and center figures) anxfj(D) (right figure) forv = 4 and f = 0.6. The critical value
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correspond tg = 0, 1, 2, 3, respectively. In the magnified interval shown in the cefitgre, 793 < 192 < 791 < 700-

suggest thaty; — oo asD — 0 independent of, while A(}j approaches a constant value also independent\de
now provide a simple analytical explanation for this limgibehaviour. We remark that this unbounded behaviour of
T0; asD — 0 is in marked contrast to the finite limiting behaviour as aid in [12] or [32] for the Gray-Scott and
Gierer-Meinhardt RD models, respectively.

In the limit D — 0, a simple scaling argument shows thalt — oo, wherey = \/W We then readily obtain
from (2.32d) thato; — 2 asD — 0 and that3, = O(D~1). Therefore, from (2.42), we get the limiting behaviour

afzv
1—f+A

2,,2
c

14 azVA+ , z=VT1D, aza; , j=0,...,N—1. (2.58)

1

We set\ = i\r, whereA; > 0, and then separate (2.58) into real and imaginary partstto ge
1 az 1 L—fEAf+ )
— |14+ —=VAIMy| +i—=az/AfM_; My=
2[ v *] 22 ! SR VNS ERDY
SinceC is independent of, it follows that the rootr = 7p; and\; = Aj; to the limiting coupled syster@'r(\;) =
Fr(Ar) andCr (A1) = Fr(Ar) must be independent gf

For this coupled system to possess a root, it is readily $e#me must have = 7D = O(1) asD — 0, which
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Figure 5. Plots of the paths of = A\; + iAg with N = 2, andf = 0.5 for (D, j) = (0.03,0) (left) and (D, j) =
(0.006, 1) (right) asr increases past its Hopf bifurcation valtig (D). The arrows denote the direction of traversal for
increasingr. The eigenvalues converge onto the positive real axis whemches some value(D) > 7,(D). The
eigenvalues split, with one tending @and the other tending t@y = 5/4 asT — oo, wherev, is the unique positive

eigenvalue of the operatdy,.

implies thatry, = O(D~1) asD — 0. We use (2.59) to eliminate between the coupled systefk (\;) = Fr(Af)
andCr(Ar) = Fr(\r). In this way, we obtain thaX;; must be a root of

Hp(Ar) = Hr(Ar), (2.609)
whereHg(A;) andH;()\;) are defined by
2Fr(A) — 1 2F; (A1)
Hr(\f) = . Hy= . 2.60b
r(A) N4 fA+1—f HED VIS iy gy (2.60b)

Therefore, forD — 0, we conclude thak;; depends only orf and is independent o¥. The scaling;, = O(D~1)
was not observed in the analysis of the Gray-Scdd} fr Gierer-Meinhardt models3p].

We now prove the existence of a solutibp > 0to (2.60). We begin by noting th&f (0) = (1—f)~* > 0 and that
Hpg()\r) has no poles wheh; > 0. Also, becausé’r — 0 asA; — oo, we find from (2.6®) that Hg ~ —1/A? < 0
asA; — oo. To show the existence of an intersection betw&enand H;, there are two cases to consider. The first
case iswhef < f < 2(v/2—1) so that the denominator &f; is always positive. Sincg(0) = 0 < Fr(0) = 1, and
Fr(\r) > 0for Ay > 0, then by the properties df  there must exist a solution to (2.6 When2(v/2—-1) < f < 1,

H (A1) has two poles on the positive real axisat= \;" ordered) < A, < X7 with .. — 0+ asf — 1~. Therefore,
H; — 4+ooasi; — )\l[. Becausdir(0) > 0 and is bounded for al\; while H;(0) = 0, there must exist a solution
to (2.60a) on the intervah < \; < A.. This completes the proof of the existence of a tbpt> 0 under the scaling
7= 0O(D~ ') asD — 0. While we have not been able to show analytically thatis unique, we have not observed
numerically an example that yields more than one solutiq 180a).

In Figure 6(a), we show the log-log relationship betwegnand smallD for the examples shown in Figures 2 - 4.
Note that in each case, all curves corresponding to mgdes), ..., N — 1 are plotted. However, as stated above,
To; IS independent of for small D and thus the curves are indistinguishable in the plot. luE@(b), we plot theV
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curves ofA?j as a function off with D small for N = 2, 3, 4. We also plot the solution to (2.&0). Although for each
value of N we use a different value dp specified ad) = D.x /10, all curves are indistinguishable at the resolution
allowed by the figure. Becausé — 0+ asf — 1~, we expect theoretically that; — 07 in this limit. Numerically,
however, the problem (2.61) for 1 — f small becomes ill-conditioned and our numerical solvdsfaihenf is too
close tof = 1.
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D
(@) log-log plot of 7o, (D) for N = 2,3,4andD < 1 (b) A9, versusf for N = 2,3,4andD < 1

Figure 6. The log-log relationship betweey} and smallD with parameters from Figures 2 - 4 (left) ah@ij versus

f with D small for N = 2, 3,4 (right). In the left figure, the solid lines are numericallyneputed solutions ofjr; =

gr; = 0, while the dotted lines all have slopel. The top line corresponds & = 2, f = 0.5, the center line to

N =3, f = 0.6, and the bottom line t&v = 4 and f = 0.6. The different curves of each example corresponding to
modesj = 0,..., N — 1 are indistinguishable. In the right figure, the curvesl@}fversusf generated by the solution
togr; = g1; = 0 are plotted, as is the solution to (2.80 These curves are indistinguishable at the resolutiamwaid

by the figure.

The main limitation of our analysis is that we are unable ttedwine whether, for each functiayj, a complex
conjugate pair of pure imaginary eigenvalues exists at onbyvalue ofry; for all the ranges of the parameters. Our
numerical experiments suggest that fox. 7 < 7y; andD < Dg.n, the pattern is stable. This indicates that our
computed thresholds; are the minimum values of for which an oscillatory instability occurs.

One possible way to obtain a rigorous boundmpis to use the following inequality, as derived in equatior2@}
of [33] (see also equation (5.62) d9]), for any eigenvalue\ of the NLEP of (2.39) with multipliery;:

ffooo w? dy

— 12+ Re(Xy;) [ ==——] <0. 2.61

Upon evaluating the integral ratio, and then using= 1/C; and Ré€z) = Re(z), we obtain that (2.61) reduces to
IC; — 12 + %Re()\cj) <0. (2.62)

For the reaction-diffusion systems i83] and §5 of [35] for which C; is a simple rational function of, (2.62) was
used successfully to obtain a rigorous bound on the Hopfdation threshold of. However, for the Brusselataf;;
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in (2.42) is not rational im\, and it is not clear how to use (2.62) to obtain an explicitigital bound on the Hopf
bifurcation thresholdy;.

2.5 Numerical Validation

Next, we illustrate the theory presentedsn.3 and§2.4 regarding competition and oscillatory instabilitiefs /-
spike equilibria. We solve the Brusselator model withoutifmtary flux (1.3) numerically using tHdATLAB patrtial
differential equations solvgrdepe() with non-uniformly spaced grid points distributed accaglio the mapping

y:ac—i—Ztanh

N-1
[93 —x;
i=0

} -1-N<y<1+N,
wherez is the physical grid. The initial conditions were taken toeggerturbation of the equilibrium spike solution of

the form
N-l 2 2
1+0 Z de™(@—zr)™/(4e )] , vz, 0) =vi(x), (2.63)
k=0
wheres < 1 is taken to b&).002, anddy, is the(k + 1)th component of the vectat to be defined below. Eith&@000
(e = 0.005) or 4000 (e = 0.001) grid points were used to produce the numerical resultshbdto(2.63), instead of

Ue, Ve given in (2.15), we use the true equilibriumy, v} calculated using smafi starting from the initial conditions

u(z,0) = ug ()

u., v.. Becauser does not influence the equilibrium solutiaty,, v may be used as valid initial conditions for any
value of r. We briefly explain the reason for this procedure. With anffisiently small choice forr while starting
with u, andv, as initial conditions, we observe an immediate annihifatibone or more of the spikes. We conjecture
that this is due to the inaccuracy of the asymptotic solutissociated with the non-zero background of the activator,
coupled with the sluggish response of the inhibitor. Howelog ~ sufficiently small, the inhibitor is able to respond
quickly to prevent an annihilation, allowing the systemolee to a spike equilibrium state’, v;.

In (2.63), the choice of the vectal depends on the phenomenon that we illustrate. In compotatitustrating
competition instabilitiesd is taken to be a multiple of_1, the eigenvector given in (2.32 associated with the
eigenvalue that first crosses into the right-half planéas increased abov®.y whenr is sufficiently small. The
values ofD in the experiments illustrating competition instabiktiwill be such that only thg = N — 1 mode is
unstable. In computations illustrating oscillatory irslities, d is taken to be a multiple of the vectEj\’:_o1 v;, with
v; given in (2.3X), which allows for all the modes to be present initially. Waeck the evolution of the modes through
the quantityp;™”, defined as the amplitude of the oscillationpgiven by

bj = |Aut vil, AUy = (Umo — ul(20,0), ..., UmN_1 — uw'(zy_1,0)'; §=0,...,N—1, (2.64)

m

allowing clear identification of which modes grow or decagrét.,,,,, denotes the numerically computed solution at
the jth equilibrium spike location defined hy,,; = u(z;,t) wherez; = -1+ (2j +1)/N with j =0,...,N — 1.
In all experimentsd is normalized so thahaxy, d, = 1.

We consider three experiments with two, three, and fourespikn each experimeny, is fixed while different
combinations of- and D are used to illustrate the theory for competition and cestmilly instabilities. The results are
presented using plots of the amplitude of each spikg = u(z,, t) versus time. For certain oscillatory examples, we
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also plot the quantitgajmp versus time. In our computations, we limit the time-scalmtech less thad (¢~2) so that

the spikes remain approximately stationary over the tinerials shown.

Experiment 1: In this experiment we consider competition and oscillatostabilities of a two-spike equilibrium
with f = 0.5. We begin with an example of competition instability. ot 0.005 and D = 0.043, in Figure 7(a) we
plot the initial conditions fow, andwv on the left and right axes, respectively. Note the non-zarkground of:. Using

the results depicted in Figure 2(a), we calculate théD) = 0.165, while using (2.45) we calculat®., = 0.0417.
Fort = 0.01 < 79(D) andD > D., we expect a competition instability in which one spike iniailated with

no oscillation in the amplitudes. In Figure 7(b), we plot #raplitudesu,,,o andu,,; of the two spikes as a function
of time. As suggested by the eigenvectgrin (2.32c), one spike annihilates as time increases. Note that the spi

amplitude decays to approximately the value of the non-haokground state.
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Figure 7. Experiment 1: The left figure is the initial conditifor » (solid curve and left axis) and(dashed curve and
right axis) forNV = 2 with e = 0.005, f = 0.5andD = 0.043 > D, = 0.0417. The right figure shows the amplitudes

of the left (solid curve) and right (dashed curve) spikesrfer 0.01 versus time. The right spike annihilates as time

increases.
We now illustrate oscillatory phenomena. In Figure 8(a), pla the spike amplitudes wheb = 0.03 < D,
andT = 0.17 < 19(D) = 790 = 0.183. As expected, no spike annihilations occur while initiatitbations decay.
While the equilibrium is stable to large eigenvalues for #osnbination of D andr, we calculate from (2.47) that
D > D3 = 0.021. Thus, we expect to observe a drift-type instability whea O(¢~2). Next, for the same value of
D, we setr = 0.191 > 74(D) so that the synchronous mode undergoes a Hopf bifurcatiom spike amplitudes are
plotted in Figure 8(b). As expected, the spike amplitudeskyonize quickly and oscillate with growing amplitude
in time. The eventual annihilation of the spikes suggesds ttte Hopf bifurcation is subcritical for these parameter

values.
In the next example, we take = 0.001 and D = 0.006. In Figure 2(b) we see that for this value bf, the

1.065 while the synchronous mode is stable if

asynchronous oscillatory mode is unstable if> 74(D) = 703
T < 190 = 1.083. In Figure 9(a), we plot the spike amplitudes when= 1.04 during the initial growth of the

oscillations. Note the clear contrast between Figure 9fd)Eigure 8(b) where the spikes oscillate out of phase in
the former and in phase in the latter. In Figure 9(b), we shdwatvappears to be regular asynchronous oscillations,
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Figure 8. Experiment 1: The left figure is a plot of spike aryules forN = 2, e = 0.005, f = 0.5, D = 0.03, and
7 = 0.17. The critical value ofr is 79(D) = 0.183. The solid curve is.,,( and the dashed curveis,; . In the right

figure, we make a similar plot with = 0.191 > 74(D).

suggesting that the Hopf bifurcation may be supercriticalthie parameters used. In Figure 9(c) we plot the initial
growth ofb{""* and the initial decay of;"*”, consistent with predictions from analysis. Both modespaesent, with
the j = 1 mode being dominant. We remark that while the numericalstiole in+ is not equal to the theoretical
value, we have observed in numerous experiments that agreewith analysis improves ads decreased.
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Figure 9. Experiment 1: In the left figure, we plot spike armyales for the initial growth of asynchronous oscillations.
In the center figure, we show the large time behaviour of wpatars to be regular asynchronous oscillations. The
solid (dashed) curve i8,,o (u,1)- In the right figure, we plot the initial growth and decaydf'? (dashed curve) and
by (solid curve). The parameters ake= 2, e = 0.001, f = 0.6, D = 0.006, andr = 1.04. The threshold value is

70(D) = 701 = 1.065, and corresponds to asynchronous oscillations.

Experiment 2: In this experiment, we consider instabilities of a threéagolution with f = 0.6. We first consider

a competition instability. In Figure 10(a), we plot the iaitconditions foru andv for e = 0.005 andD = 0.017 >

D.3 = 0.0148. The initial perturbation, according i@ in (2.32c), increases the amplitude of the first and third spikes
while decreasing that of the middle spike. Foe 0.01 < 7o(D) = 190 = 0.28, we plot the spike amplitudes versus
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time in Figure 10(b), observing that the middle spike anates while the other two spikes increase in amplitude. This
increase in amplitude, also observed in Figure 7(b) of Erpant 1, is expected because the common spike amplitude
increases when the number of spikes decreases (see (2.8).46d)). For a perturbation in the-vy direction we

observe the annihilation of the first and third spikes (natat).
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Figure 10. Experiment 2: The left figure is the initial comafit for » (solid curve and left axis) and (dashed curve
and right axis) forN = 3 with ¢ = 0.005, f = 0.6, andD = 0.017 > D.3 = 0.0148. In the right figure, we plot

Umo andu,,o (solid curve) and:,,,; (dashed curve) versus time with= 0.01. The second spike annihilates as time

increases.
To illustrate oscillatory behaviour, we take= 0.005 and D = 0.009 so that all real eigenvalues lie in the left-
half plane ifr is small enough. Using Figure 3(a), we calculatéD) = 790 = 0.3994. In Figure 11(a), we set
7 = 0.37 < 79(D) so that oscillations decay in time. For stability also to Bre@envalues, however, we require
D < Dj = 0.011. In Figure 11(b), we set = 0.42 so that the spike amplitudes quickly synchronize and the
subsequent oscillations grow in time. As in Experiment 1,0luserve the annihilation of the spikes, suggesting that
the Hopf bifurcation is subcritical.
We next decreasP to D = 0.0034 so that, as suggested by Figure 3(b), asynchronous osxilare the dominant
instability. We calculate thaty(D) = 792 = 1.518, 791 = 1.544, andryg = 1.557. In Figures 12(a) and 12(b) we
plot, respectively, the transient and large time behavidtine spike amplitudes far= 0.001 andr = 1.51. In clear
contrast to Figure 11(b), the spike amplitudes oscillateobphase for both small and large time. In Figure 12(b), as
the form of the eigenvectar, in (2.32c) suggests, the first and third spikes oscillate approxipaigohase with each
other while out of phase with the second spike. For large,ttheeoscillations occur within an envelope that oscillates
slowly in time relative to the oscillations of the spike aitypdes. In Figure 12(c), we plot the initial growth and decay
of b5 for all three modes. Consistent with the results depicteeigare 3(b), thej = 2 mode grows while the other
two modes decay. For large time, all modes are present wetdaminant mode being= 2.
Experiment 3: In this experiment, we illustrate instabilities of a founilee equilibrium with f = 0.6. In Figure
13(a), we plot the initial conditions for andv with ¢ = 0.005 and D = 0.0057. We calculate from (2.45) that
D,y = 0.0055 < D. With 7 = 0.01 < 79(D) = 0.2344, we expect an annihilation of one or more spikes without
oscillatory behaviour. The form af; in (2.32c) suggests that the second spike is the first to annihilatke e fourth
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Figure 11. Experiment 2: In the left figure, we plat,o (solid curve),u.,,; (dashed curve), and,,» (dotted curve)
for N = 3, e = 0.005, f = 0.6, D = 0.009, andT = 0.37. The right figure is similar except thatis increased to
T = 0.42. The critical value ofr is 7o(D) = 0.3994.
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Figure 12. Experiment 2: In the left and center figures, wg péspectively, the transient and large time asynchronous
oscillations ofu,,q (solid curve)u,,; (dashed curve), and,,, (dotted curve). The first and third spikes oscillate almost
in phase for large time. In the right figure, we plot the inieowth and decay of;"™” for j = 0 (solid curve);j = 1
(dashed curve), anfl= 2 (dotted curve). The parameters &¢e= 3, ¢ = 0.001, f = 0.6, D = 0.0034, andr = 1.51.

The threshold value is (D) = 192 = 1.518.

spike decays in amplitude as the other two spikes grow. Cedirst annihilation occurs, the resulting three-spike
pattern is no longer in equilibrium and thus evolves acegdo the dynamics derived 2], and any subsequent
annihilations should they occur are beyond the scope oéttadysis. In Figure 13(b), we plot the spike amplitudes up
to the time of the annihilation of the second spike.

To show oscillatory phenomena, we take- 0.005 and D = 0.004. Using the data from Figure 4(a), we calculate
To(D) = 100 = 0.287. In Figure 14(a), we plot the spike amplitudes fo= 0.27 so that the equilibrium solution
is stable to large eigenvalues. Here, we reqiire< D} = 0.00469 for the equilibrium to also be stable to small
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Figure 13. Experiment 3: The left figure is the initial comatit for « (solid curve and left axis) and (dashed curve
and right axis) forN = 4 with e = 0.005, f = 0.6, andD = 0.0057 > D.4 = 0.0055. In the right figure, we plot
umo (solid curve)u,,; (dashed curvel,.,,o (dotted curve), and,,3 (dash-dotted) curve versus time with= 0.01.

The second spike annihilates as time increases. All congigenvalues are in the stable left-half plane.

eigenvalues. In Figure 14(b), we plot the spike amplitudes f= 0.31 so that synchronous oscillations grow in time
until all spikes annihilate. As in Experiment 2, we obserseiltatory behaviour subsequent to annihilation.
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Figure 14. Experiment 3: In the left figure, we plat,o (solid curve),u.,,; (dashed curve), and,,» (dotted curve)
andu,,3 (dash-dotted curve) faV = 4, ¢ = 0.005, f = 0.6, D = 0.004, andr = 0.27. The right figure is similar

exceptr = 0.31. The critical value ofr is 74 (D) = 0.287.

Lastly, we illustrate asynchronous oscillations with= 0.001 and D = 0.0015. According to the data in Figure
4(b), we calculate thaty(D) = 793 = 1.084, 192 = 1.098, 791 = 1.112, andry, = 1.118. TakingT = 1.06, we plot
the initial growth of asynchronous oscillations in Figutgd). The form ofvs suggests that the first and fourth spikes
oscillaterr radians out of phase as should the second and third spikés,nvespikes oscillate in phase. This is shown
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to be approximately the case for large time in Figure 15(hg ihitial growth and decay of the quantitiléj’én”, shown
in Figure 15(c), demonstrate the reverse ordering prieaypthe Hopf bifurcation thresholds predicted by the theory
For large time, all modes are present, with jhe 3 mode being dominant.
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Figure 15. Experiment 3: In the left and center figures, wg péspectively, the transient and large time asynchronous
oscillations ofu,,q (solid curve)u,,1 (dashed curvel,,,» (dotted curve), and,, 3 (dash-dotted curve). For large time,
the first and fourth spikes oscillate approximatelsadians out of phase, as do the second and third spikes. tigtiie
figure, we show initial growth and decay &zgf’”” for j = 0 (solid curve),j = 1 (dashed curve); = 2 (dotted curve),
and;j = 3 (dash-dotted curve). The parameters &re= 4, ¢ = 0.001, f = 0.6, D = 0.0015, andT = 1.06. The

critical value ofr is 74(D) = 193 = 1.084.

3 Stability of Two-Spike Quasi-Equilibriawith Prescribed Boundary Flux

In this section, we analyze dynamically triggered insttieg of two-spike quasi-equilibrium solutions to (1.50. |
contrast to the equilibrium case studieds® for which the initial pattern was either stable or unstadgpending on
the “tuning” of the model parameters, dynamically triggknestabilities occur when a spike pattern, that is inigiall
stable, eventually undergoes @1{1) time-scale instability that is triggered by the slow evilntof the spikes. To
study this phenomenon, we first construct a two-spike ge@silibrium solution and derive an equation of motion
for the O(e?) slow dynamics of the spike locations. For the special casesyimmetric two-spike quasi-equilibrium
solution, we then derive an NLEP, which depends on the spi&ations, that governs the stability of this solution.
From an analysis of the NLEP we derive criteria for which dEauasi-equilibrium solution may become unstable
as a result of the slow dynamics. We then present numerieahpbes illustrating the theory. Since genekéspike
quasi-equilibria and their slow dynamics have been stuiti¢d?] for the original scaling of the Brusselator model,
we omit much of the detail in the analysis of the quasi-eftiiim solution and its slow dynamics.

3.1 Construction and Slow Dynamics of the Two-Spike Quasi-Equilibrium Solution

We seek a two-spike quasi-equilibrium solution to (1.5)fwvapikes centered at; andxg with z; > x. Asin§2.1,
in each inner region the leading-order solutiondds v ~ v,e; for j = 0,1. Then, as ir2.1, we solve (1.8) for u
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in the inner region of thegth spike to get

U~ w(y;), Yj = e_l(x —z;), for j=0,1,

Vgej
wherew(y) is the solution to (2.2). In the outer regian~ ¢E + O(€?). Then, upon representing the terms involving
u in (1.5b) as delta masses, we proceed agdrl and use (2.3) to obtain that the outer equation fier

6 L5z —xj)
DvarE—ﬁ(l—f)ZM:o, l<a<l; w(£l) =41, (3.1)

=0 Vaes

Upon integrating (3.1) over the intervall < z < 1 and applying the boundary conditions, we calculate that

1
1 E+D 2
S - EED) 7y (3.2)
j=0 quj 3 1- f
For the special case of a symmetric two-spike quasi-equiibwherex; = —z¢ = «, thenvgey = vge1 = Vege,
wherev,,. is given by
6
(1-f)>0. (3.3)

Note that due to the presence of boundary flux, the spike &undpk depend on the inhibitor diffusion coefficient.
Next, we letv = 22 /2 + v(z) and solve for/(z) in terms ofG, as defined in (2.13). Then, we impose the matching

condition that(z;) = vy, for j = 0, 1. In this way, we obtain the following result for the quasiz@ifprium solution:

Principal Result 3.1: Lete — 0in (1.5)and consider a two-spike quasi-equilibrium solution wipikes centered at

x1 andxy with z; > . Then, the leading order composite solution fids

Uge ~ €E + queow [e Mz —20)] + fvtdw ez —21)], (3.4a)
while the leading order outer solutian,. for v is given by
x? 6 LR
~Y 1 — —_— 1 —_ PR . . .
Vge v+ B + f2 ( f)jgovqejG(:r’xj)’ (3 4b)

whereG is the Green'’s function defined (2.13) Herewv,.o, v4e1, andv satisfy the coupled system consisting of (3.2)

and
2
_ on 6 G(.’L’(ﬁl‘o) G(mo;x1)>
Vgeo =V + — + — (1 — + , 3.5a
ac0 2 f2 ( f) ( Vge0 Vgel ( )
2
_zy 6 G(x1;20) G(xl;m1)>
Vgel =V + — + — (1 — + . 3.5b
act 2 f ( f) ( Vge0 Vgel ( )
By subtracting the two equations in (3.5), and then using3@for G, we obtain thab,.o andv,.; satisfy
1 1 1 1
Vgel — Vge0 = A — b < - ) , + =c, (36&)
Vgel Vge0 Vqe0 Vgel

where we have defined b, ande, by
E 1 E
a=———(z1—2?), b= C(o(x1 —x0) >0, CE<1—|—>>O7 (05%(1—f)>0.(3.6b)

By eliminatinguv,.o in (3.6a), we readily derive that

Vge0 = C(fg— 1) , Vgel = %a (37a)
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where is a root of the cubic
K(€) = (6 = 2)(€ = b’ +bc?) + act(1 - €) =0, (3.7b)

on the intervak > 1.
In discussing the solvability of (3.7) we will consider twases: Case 1 whetg = —xq and Case 2 where, # .
For Case I, suppose that the initial data is suchthat —x at timet = 0. Sincea = 0, we obtain that (3.B) has a
unique roott = 2 whenc < 2/+/b, and it has three roots= 2 and¢ = ¢+ > 1 whenc > 2/+/b, wheret_. is defined
by
bc?

§i=7

be?

14 1—4], for ¢>2/Vb. (3.8)

Therefore, when:; = —xz, we have a symmetric two-spike quasi-equilibrium solutioth v,.o = v4e1 = 2/c, and
two asymmetric quasi-equilibrium solutions with eithgry < vge1 Or vge1 < vgeo that exist where > 2/\/5. These
asymmetric quasi-equilibria arise from a pitchfork bifaion at the critical value = 2/+/b.

Remark 1. From an analysis of an NLEP i§8.2 below (see equation (3.29)), we will show that the twaeresgtric
quasi-equilibria forz; = —zo andc > 2/+/b are unstable on ad(1) time-scale for any > 0.

Next, we briefly consider the generic Case Il whete# z, so thata # 0. Then, sinceC(1) = —1 < 0 and
K — 400 asé — +oo, there is always a root to (3bf on ¢ > 1. Therefore, there always exists a two-spike quasi-
equilibrium state for any:; > x. By plotting K(&) it readily follows that there is a unique root #(¢) = 0 when
la| > 1. For smaller values df:| and wherbc? > 4, there can be three quasi-equilibrium states. SKa@g is a cubic,
which therefore has at most two critical points, a sufficiemdition fork(£) = 0 to have a unique root o> 1 is
thatK’(1) < 0. This yields the inequalityc? — ac < 1.

Next, we derive the)(e?) slow dynamics of the spike locations. We introduce the siovetvariables = %t and
we retain the next terms in the asymptotic series for therinakitions ofu andv nearx; as

U w(y;) +eUn(y;),  v="14e +€eV1i(y;); y; = e ! [z —z;(0)], o= €2t (3.9)

a fVge;
Substituting (3.9) into (1.5), and collecting terms of danobrders, we obtain that

’LU2

’—E—TVU, —oo<y;<oo, Uj;—0 as |y;| — oo, (3.10a)
qej

T
v .
qej

w UJ2

wherez; = dx;/do and the operatak is defined in (2.28). The limiting condition in (3.b) comes from matching
the gradients of the inner and outer solutions.dh (3.10a), Ly has a one-dimensional kernel with eigenfunctign
Thus, the right-hand side of (3.8) must be orthogonal te’. This solvability condition yields

i /oo(w')QdyjfE/oo w’dyjf%/ocw’wzvljdyj =0.

quEj —00 —o0 gej J—oo

DV{; = —00 < y; < 00, Vi, — vqm(mf) as y; — +oo, (3.10h)

Sincew’ is odd andw'w? = (w?)'/3, we can integrate by parts and use- 0 as|y;| — oo to obtain

o0 1 o0
i / (w')? dy; = / WPV dy; (3.11)

— 00 3’quj — 0

Next, we integrate by parts on the right-hand side of (3.Ukjng the facts thayoijf’(s) ds is odd and that, by
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(3.10b), V1 is even, we calculate that

. = / 1 > / /
iy [ @ty = g [ty (Vo) + iy (=o0)] (3.12)

—0o0 — 00

. . > w dy;
Finally, since Jow du;

T= (0 dy; = 6, we can apply the limiting conditions fdf; ; in (3.10b) to reduce (3.12) to

Tj = L [Vgea () + vgea ()] - (3.13)

Vgej !
To calculate the right-hand side of (3.13), we use £3.dnd (2.13). In this way, we obtain the following ODE-DAE
system characterizing the slow dynamicscgfandz:
Principal Result 3.2: Consider the quasi-equilibrium solutidB.4) of (1.5) with spikes centered at; and ¢ with

—1 < zp < x1 < 1. Then, fore — 0, and provided that the quasi-equilibrium profile is stabibe?(1) time-scale
instabilities, the spikes drift with spe€?(e?) according to the asymptotic ODE-DAE system

2 1+ . 2 1-—
- (S X g D g (U2 pag
Vqe0 Vgqe0 Vgel Vgel Vge0 Vgel

Herewv,o andvg.1, which depend ory andx;, are positive solutions of the nonlinear algebraic syst8r), while
(o is defined in (3.6 b).
For the special case of a symmetric two-spike quasi-equilibsolution withz; = —x¢ = a andvger = vge0 =

Ty ~

Vege, We USE (3.3) to simplify (3.14). This leads to the followirggult:
Principal Result 3.3: Consider the quasi-equilibrium solutidB.4) of (1.5)with spikes centered at; = —x9 = «

for 0 < o < 1, for which the spikes have a common amplitudepi,& = vge1 = veqe. Then, fore — 0, and provided
that the quasi-equilibrium profile is stable (1) time-scale instabilities, the spikes drift with sp&@?) according
to the ODE

da EH(a); H(a) =

& . 14 = 2
dt Vege +

D D
Herev.qe, which is independent of the spike locations, is defing@.®). The equilibrium locations of the spikes are

1 { E QQE] . (3.15)
at +a, whereH (o, ) = 0, which yields

Qe = %—F% (3.16)
Due to the imposed boundary flux, these equilibrium locatiare not at the symmetry locatiossl /2 of the no
boundary flux system studied previouslgi From (3.16), we observe that for the equilibrium locaid@a be inside
the domain, we must have tha/ £ < 1. SinceH’(a.) < 0, the equilibrium points of the ODE are always stable.

We limit our study to the parameter range where the inequalitE < 1 is satisfied. We note that the symmetric

equilibrium is stable under the dynamics (3.15), which wasved under the assumption that = —x;. That is,
the equilibrium (3.16) is stable only to perturbations thaserve this symmetry. For the equilibrium to be stable to
any perturbation, including to those that break the symyn#ie parameter®, E and f must satisfy the condition

(cf. [27))

(3.17)

I-f _1E[ D 3
Ef?2 ~ 24D E|
The criterion (3.17), as derived i27], is the condition that must be satisfied for a two-spike sytria equilibrium

solution to be stable to eigenvalues®fe?).
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3.2 Derivation of the NLEP

In this subsection, we study the stability of the two-spikasj-equilibrium solution with respect to the large eigdnv
ues withA = O(1) ase — 0. This is done by first deriving the NLEP governing the stapitin anO(1) time-scale of
the two-spike quasi-equilibrium solution of Principal REs3.1 associated with (1.5). Since this NLEP has the same
form as in (2.39), differing only in the coefficient of the nocal term, we will only briefly outline its derivation.

We linearize about the quasi-equilibrium solution of (30§) writing u = u,e + eM® andv = v, + MU,
Substituting this into (1.5), we then follow the same pragedas used in (2.17)—(2.39). In place of the vector NLEP
(2.29) we obtain tha® = (¥, P;)* satisfies

w1 /OO 2 _
Lo® + VGl {oo @ - k) dy| =)@, (3.18)

whereC, the Green’s matrig(*), and the diagonal matriX are defined by

6 G (zg: G (zg: 1/v2, 0
C=T+ 559"V, W= (oiw) G moia) )y, (v . (3.19)
/ GW(zy;m0) G (21521) 0 1/2

gel

HereG) (z; ;) is the Green’s function satisfying (2.23).
To obtain two uncoupled scalar NLEP’s, we diagonalizé andG(*) by using the spectral decompositiongif")V
given by
-1
gy = SAS™T, clgWy=s [z+ ]%A] ASE, (3.20)
whereA is the diagonal matrix of the eigenvalugsand#; of G(*)V. Then, upon substituting (3.20) aded= V.5&
into (3.18), we obtain in place of (2.34) the two uncouplecEBf's
R ) ffooo (i) — %wé) dy
Lo® + £, _
o Jow? dy

Kj

=\b, j=01; Vi=—3 . 3.21
) J X Rj+Dg2 ( )

Finally, by proceeding as in (2.36)—(2.37) to eliminate ofi¢he nonlocal terms in (3.21) we obtain the following
result:
Principal Result 3.4: For ¢ — 0, consider the quasi-equilibrium solutig8.4)of (1.5)with spikes centered at; and

xo With —1 < ¢ < 1 < 1. Then the stability of this solution on &P(1) time-scale is determined by the spectrum of
the NLEP

R < wdd A
Lo® — xju? w 2\, (3.22)
o w2 dy
wherex; = x; () is defined by
- 1+X—f ] - K .
=2y | — 2| = =0,1. 3.23

Here%; for j = 0, 1, which also depend oR, are the eigenvalues of the matrix prod@ét)y defined in (3.19).

We now analyze this NLEP to derive an instability threshadd two-spike quasi-equilibrium solution with ar-
bitrary spike locations:; > x¢. The analysis ir$3.3 below proves that if;(0) < 1 for eitherj = 0,1, then the
NLEP in (3.22) has a positive real eigenvalue for any 0. If x;(0) = 1, then = 0 is an eigenvalue of (3.22) with
eigenfunctiond = w. Furthermore, ify;(0) > 1for j = 0,1, then R¢\) < 0 for 7 sufficently small. Upon using
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(3.23), we obtain that the conditiop; (0) < 1 is equivalent to

Df?
Rila=o < ——= . 3.24
ﬁ]|>\_0 6(1 — f) ( )
To calculate the two eigenvalugs of G(*)V for A = 0, we expand;®) asu? — 0, to obtain that
guo L[ 1) [ Glresm) Gl ) (3.25)
21 . .
1 1 G(Il,xo) G(I’l,Il)

wherep? = 7A/D andG(z; z;) is the Neumann Green’s function of (2.12) with= 1. By using (2.13) foiG with
D = 1, we calculate fop?> < 1 that

1/,02 1/,02 Tg (Tﬁ—‘—’l‘f) _ ('751_'750)
g(p)v ~ (1 + 1) A+D A= qe0 gel D= 211360 41)361 2v§el
2 2 6 ’ B ’ B 2242 xr1—x 2?2
I 1/“2@0 1/,0381 ( 401;3;,1) _ 211)3600) 2v§1ﬂ
(3.26)

To leading order iy, the eigenvectors; and eigenvalues; of Gy are the eigenvectors of. Therefore, for
p? < 1, we getvg ~ (1,1)" andvy ~ (v2, —vZ.;)". This shows thaky — +oo asA — 0, so thaty(0) = 2 > 1.
We conclude that the synchronous magde~ (1,1)* does not generate any instabilities wherc 1. Alternatively,
for the competition mode;, we haveAv; = 0 so thatz; = O(1) asu? — 0. From a routine matrix eigenvalue
perturbation calculation we calculate fof = 7\/D < 1 that

tD 2 2

-~ V101 1 (21 —23) (o 2 2 2

~Y = _— - . 3.27
K1 Ugvl 2(7}350 4 U;Lel) 2 (qul quO) + (ml .%‘0) (quO + vqel) ( )

By combining (3.27) and (3.24), we obtain an instabilityerion for the arbitrary two-spike quasi-equilibrium stidun
of Principal Result 3.1.
Principal Result 3.5: The two-spike quasi-equilibrium solution of Principal Re$8.1 is unstable on ad(1) time-

scale for anyr > 0, when
1 (w% - x%) (v2

— v +(r1 —x v v
2(,0380 +1}3€1) D) gel qe0 1 0 qe0 gel

61— f) 26’

where(, is defined in (3.6 b). Here,.o andu.; is any solution to the nonlinear algebraic system (3.6).

(3.28)

We now use (3.28) to prove for the casge= —x that the two asymmetric quasi-equilibrium solutions ot in
(3.8) forc > 2/+/b are unstable on a€?(1) time-scale. This will establish Remark 1§8.1. Forz; = —x, (3.28)
implies that we have instability when

(Vgeo + V1) _ 1 _ 1 (3.29)
(Vi +vly) "2z b
However, sincev,co = b/vger Whena = 0 in (3.6a), this instability inequality holds when3,, + b*/vj,, >
b (v, +b%/v2,,). Upon settingy = vge1/v/b, this inequality reduces to showing that + 1/y% > 42 + 1/y?
forall 0 < y < oo with y # 1. Definingz by » = y? + 1/y2, for whichz > 2 for anyy # 1, the inequality

y* +1/y* > 4% + 1/42 is equivalent to showing the obvious result that- » — 2 > 0 whenz > 2. This establishes
Remark 1.

The instability criterion (3.28) can be used together withuanerical simulation of the DAE system in Principal
Result 3.2 to characterize when the slow spike motion, adigiesl by (3.14), ceases to be valid due to the triggering
of anO(1) time-scale instability. Rather than investigating thislgem numerically, for the remainder of this section
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we will restrict the analysis to the simpler case of symnaeitfio-spike quasi-equilibria wherey = —xz¢ andvgeo =
Ugel = Ueqe, Which is analytically more tractable.

For such a symmetric two-spike quasi-equilibrium solutitven) is a multiple of a diagonal matrix an@*) is
a symmetric matrix with constant row sum. Thus, the eigetavefG () are(1,1)* and(1, —1)*. To calculate the
eigenvalues of ) in this case, we proceed as 6] and writeG(*) = B!/, whereB is given in Section 2 0fZ5]

as
do  fa
By = ; do = coth(2pa) + tanh (1 — «)],  fo = —csch(2pa) . (3.30)
fa da
Hereu? = 7)/D is defined in (2.21). The eigenvalues ando; of B, and the corresponding eigenvectogsanduv,
are
oo = tanh(pa) + tanh [p(1 — )] ; vo = (1,1)%,
(3.31)
o1 = coth(pa) + tanh [u(1 — )] ; v = (1,-1)".

The eigenvalues; of the matrixG(")V are then given byt; = 1/(uv?2,.0;), for j =0,1.

In terms ofo;, the NLEP in (3.22) corresponding to a symmetric two-spikasi-equilibrium solution reduces to
the following:
Principal Result 3.6: Lete — 0 and consider the two-spike symmetric quasi-equilibriutatgmn with x; = —z¢

andvge1 = Vg0 = Ucge, @S given in(3.4). The stability of this quasi-equilibrium solution on &h(1) time-scale is

determined by the spectrum of the NLER3r22) wherey; is defined by

2 fuo; : (D + E)*f?
_ 1+ , =0,1; = ) 3.32
A wryl R v ey | R Seoa-g 8%
The discrete eigenvalues (#.39a) are the roots of the transcendental equatigné\) = 0, where
1
g;(N) =C;(\) — F(\), C;(\) = (3.33)
i(A) = C5(N) — F(A) i(A) oY
Here F'(\) is defined in2.40), andC; () is given by
=L LY _ Moy
CJ(A)_2 1+§j+1+/\_f , &= 5 (3.34)
3.3 Dynamically Triggered Competition I nstabilities; Symmetric Quasi-Equilibria
We now calculate a value. such that the symmetric quasi-equilibrium solution witlikep atz; = —x9 = «is

unstable to a competition instability when< «a. for 7 = 0. Thus, a competition instability is dynamically triggered
if the conditiona, < a. < «(0) < 1 holds. For theng(t) will dip below «.. on its approach to its equilibrium state
ae. In §3.4, we calculate the Hopf bifurcation thresholds as a fonatf o, analogous to those calculatedin 4, and
we find that dynamically triggered oscillatory instabégican also occur.

To determinex,., we look for roots to (3.33) on the positive real axis. Thelgsia here is similar to that i§2.3.
We first consider the case where= 0. To find real positive roots of;(\) asT — 0, we lety — 0in (3.31) to
obtain that, — 0 and&; — (a[i’)’l asT — 0. Then, from (3.33) and (3.34), we have tliat = 1/2 < 1, so that
the synchronous modg, 1)! mode is always stable when= 0. Here we have used the properties (2.41)Fgi).
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Alternatively, whenr = 0, we have from (3.34) that

Cl(/\):% 1"‘51‘*‘1_'_][)\% )

&1=1/(af). (3.35)
SinceC; () is a positive decreasing function dfwhile F(\) has the properties in (2.41), thenhas a unique positive
real root ifC; (0) > 1 and no roots ifC; (0) < 1. A winding number argument similar to that usedt3 can be used
to show that no other roots exist in the right-half plane sTibads to the following stability criteria:

Principal Result 3.7: For 7 = 0, consider the quasi-equilibrium solutid.4)to (1.5) with spikes centered at =

tafor 0 < a < 1, and where the spikes have a common amplitude. The solst&table on arO(1) time-scale if

and only if

. _ 6D(—f)
(Dt B2

If the inequality in(3.36)is reversed, the quasi-equilibrium profile is unstable t@ eeal positive eigenvalue cor-

a > ag; (3.36)

responding to theé1, —1)* mode, which conserves the sum of the amplitudes of the spikés that if D < 1 but
D > O(e?), we have thatv. ~ 6D(1 — f)/(E?f?) < 1 so that the region of stability spans almost the entire range
0 < a < 1. Also, from(3.36) we see that,, ~ O(D~1) asD — oo. We remark that the condition > «.. is
equivalent to the condition > 2/+/b in the analysis of the quasi-equilibria in (3.8).

As discussed earlier, a symmetric two-spike quasi-equilib solution can undergo a dynamic competition insta-
bility whenevera, < a. < 1. By using the expression far, in (3.16), we have the following result:
Principal Result 3.8: The quasi-equilibrium solution i(B.4) with a rightmost initial spike locatiom(0) satisfying

a(0) > a, will undergo a dynamic competition instability at some tiinme 0 whena, < a. < 1. These inequalities
hold when

- - (3.37)

The region described by (3.37) is plotted in Figure 16. Abthe dotted curve a competition instability occurs

1 E D1 1-f 1E D1?
—— |1+ = <=Zl1+=] .
12D Ef? T 6D

starting att = 0 for any «(0), while below the solid curve the two-spike quasi-equilioni solution is stable to the
large eigenvalues and there is no competition instabitityahy«(0) with a(0) > a..

By comparing the lower bound of (3.37) with (3.17), we coun@uthat forr = 0 the two-spike equilibrium solution
is stable if and only if it is stable to the small eigenvaluethie limit~ — 0. The result is written as:
Principal Result 3.9: The symmetric two-spike equilibrium solution®4)with o = «. is stable with respect to the

large eigenvalues but unstable with respect to the smadireiglues when

1E{ D]3<1—f lE{ Dr.

— 14+ = — = = .
5o |1t 5 <1 |t (3.38)

E E
It is stable with respect to the small eigenvalues w{gh7)holds.

For the case > 0, itis difficult, owing to the non-monotonicity of the curvés (), to obtain explicit results that
count the number of positive real eigenvalues in the rigktflane. However, the following (less precise) results ar
readily proved.

Principal Result 3.10: Suppose that > 0 and that0 < a < «.. Then, the NLEP in Principal Result 3.3 admits

at least one real positive eigenvalue. Hence, the quasilibfum pattern in unstable. Alternatively, suppose that

a. < a < 1. Then, forr > 0 sufficiently large, the NLEP in Principal Result 3.3 admésifreal positive eigenvalues.
To prove the first statement, we note tliat(0) > 1 whena < a.. Therefore, the curve§ (\) and F'(A) must

have at least one intersectionin> 0 whenr > 0. To prove the second statement we notice tg)) < 1 when
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Figure 16. The region between the two curves is the pararsptare in which a dynamic competition instability is
possible for a two-spike pattern with initial stat€0) with a. < «(0) < 1. The horizontal axis is on the range

0 < D/E < 1 for which a two-spike equilibrium solution exists.

a>ac.forj=0,1andthatC;(\) = O (\/T)\) for A > 0 whenr > 1. It follows from the concavity of”; () in the
larger limit and the convexity ofr'(\) (see properties (2.41)) that for bgth= 0 andj = 1, there are two intersection
points ofC;(A) = F'(A) on0 < A < 5/4.

3.4 Dynamically Triggered Oscillatory I nstabilities; Symmetric Quasi-Equilibria

For the parameter range. < o < 1, we calculate the threshotg for which the NLEP has a complex conjugate pair
of eigenvalues on the imaginary axis. More specifically, &iewate the values = 7y;(«) such thaty; = 0 has a
pair of complex conjugate solutions= iz’)\(}j(a) on the imaginary axis. The quantity

70(cr) = min(7o0, 701) , (3.39)

is then defined to be the Hopf instability threshold. A4, either they = 0 mode, which corresponds to syn-
chronous oscillations, or thg = 1 mode, which corresponds to asynchronous oscillations,beathe dominant
instability, depending on the value af In contrast, for the GM and GS models studied25][the synchronous mode
was always the dominant instability. Using the numericalcpdure used to produce the Hopf bifurcation curves of
§2.4, we solvey;(iA;) = 0 to obtain curvesy;(a) andAf,(«).

Treatinga as the independent variable, we fixand £ and generate Hopf curves for values foin the interval
fe < f < 0.9, wherea, = 1 whenf = f.. In Figure 16, this corresponds to a vertical traversal ftbmdotted
curve down toward th@®/ E-axis. Results are presented on a semi-log plot for thréaesrat D/ E. In Figures 17(a) -
17(c), we takeF = 1 andD = 0.2,0.4 and0.6. Similar plots were made (not shown) for the same ratio® pE but
with D =1 andFE = 5,2.5,1.67, yielding qualitatively similar plots. For values ofwhere the curves are solid, the
synchronous mode is the dominant instability € 7o), whereas for the portions of the curves where they are dashe
the asynchronous mode is dominant € 791). The curves are ordered such that for a gisem, («) increases with
increasingf. We end the plot fory < «., that is, values of: for which thery; curve does not exist; the corresponding
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complex conjugate imaginary eigenvalues approach thénceigy — o the same way that}, — 0 asD — D,

as discussed if2.4. The equilibrium location. is denoted by a dot; in the absence of a dot, the conditior: a

is satisfied and a dynamic competition instability is passitn Figure 17(a);00 andry; are almost equal foe
sufficiently near unity, and the breaks in the curves appedretdue to differences in decimal places beyond the
precision of the solver.
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Figure 17. Plot ofry versusa for variousf with E = 1 and D = 0.2 (left), D = 0.4 (center) andD = 0.6 (right).

The extent of the curves im increases iry, as does the value af for any givena. For o where the curves are solid
(dashed), the dominant instability is the synchronousn(@ssonous) mode. The dot denotes the equilibrium location
a; for curves without a dot, a dynamic competition instapiig possible. The values gfare as follows: left figure:

f = 0.6181, 0.6494, 0.6808, 0.7121, 0.7434, 0.7747, 0.8060, 0.8374, 0.8687, 0.9000; center figure;f = 0.6772,
0.7019, 0.7267, 0.7514, 0.7762, 0.8010, 0.8257, 0.8505, 0.8752, 0.9000; right figure: f = 0.6980, 0.7204, 0.7429,
0.7653, 0.7878, 0.8102, 0.8327, 0.8551, 0.8776, 0.9000.

For a giveny, the quasi-equilibrium is stable (unstable) wheis below (above) the curve. Thus, because the spike
motion from (3.15) is directed monotonically towards theiiélgrium location, dynamic oscillatory instabilitieser
only possible when either the slope of is negative whemv < «, or positive whenx > «.. From Figures 17(a)

- 17(c), we see that fof near f., the only possibility for a dynamic oscillatory instabjliis when the initial spike
locations satisfyx(0) > «. andr satisfiesry(a.) < 7 < 79(a(0)) (or 79(cte) < 7 < 70((0)) iIf e < ), leading

to the triggering of synchronous spike oscillations at ssme 0 asa — . For largerf, a similar scenario is
possible for asynchronous oscillations. For still largesynchronous oscillations may be triggered when the Initia
spike location satisfiea(0) < «.. This may occur after passage through a region of instahitasynchronous
oscillations. In the next section, we illustrate these ades by numerically solving the full PDE system (1.5).

3.5 Numerical Validation: Symmetric Quasi-Equilibria

We now illustrate five different scenarios involving spikgdmics with parameters used to generate curves in Figure
17(a). For clarity, we reproduce the curves in Figure 18 oiclwlve qualitatively annotate the dynamics @ft)

for each run. Below, we present the results of each run byipipthe spike amplitudes,,, and spike locations;;
versus time, produced by solving (1.5) with00 grid points usingVATLAB's pdepe() solver. In all runs, we took

e = 0.005, D = 0.2 andE = 1, with f andr being varied between the runs. The initial conditions asated in
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the same way as describedg2.5, where the quasi-equilibrium solution in (3.4) is takerthe initial conditions, and

a small value ofr is used to solve forward in time until a true quasi-equililomi solution is reached. While the time
required for the initiation process is small comparedtd, the spikes still drift during this time. As such, appropeia
compensations were made in the initial conditions so thesfike locations were in their desired locations at the end
of the initiation. All values for the initial spike locatisny(0) quoted below refer to their locations at the end of the
initiation.

’
’

’
<—"Run4

10" | e
Run 5-==-

.

-

70

<—Run3
10° - 74

<——Run2

Figure 18. Hopf stability curves for (bottom to topf)= 0.6494, 0.7121, and0.806. The arrows indicate the evolution
of a(t), while the height of the arrows is only indicative of the v@ahf r used in the runs. Runs 1 and 2 are associated
with the lowest curve, Run 3 with the middle curve, and Rungd & with the top curve. Solid curves indicate that
To = Too (Synchronous mode) while dashed curves indicaterthat 79, (asynchronous mode). The curves are cut off

on the left ate = «.. The equilibrium pointy, = 0.6 is indicated by a dot when the conditian > «. is satisfied.

In Run 1, we takex(0) = 0.85, f = 0.6494, andT = 1.05 < 79(«(0)) so that the quasi-equilibrium is initially
stable att = 0. However, as indicated in Figure 18, our theory predictd ghdynamic synchronous oscillatory
instability is triggered at some > 0 whena decreases below the synchronous stability threshold ateticby the
solid curve in this figure. That is, for some time> 0, the conditionr > 7y(«(t)) is satisfied, at which time the
solution becomes unstable to synchronous oscillationgidare 19(a) we show the amplitudes of the two spikes,
which are indistinguishable, after the onset of the synobus Hopf instability. The spikes annihilate befareeaches
a., implying that the annihilation was not due to a competitinstability. In Figure 19(b), we show a favorable
comparison between the slow time evolution of the locatibthe spikes and the dynamics in (3.15) before the time
of annihilation.

With the initial conditions and the other parameters ungleanfor Run 2 we decreasdo = = 0.8 so that the Hopf
stability threshold is not crossed at any point in the dyramiHowever, because. < «a., a competition instability
occurs asy(t) decreases below.,.. This scenario is illustrated in Figure 18. In Figure 20¢eg,show the annihilation
of one of the spikes after the threshelt) < «. is crossed. In Figure 20(b), we show a favorable comparistmden
the numerical spike dynamics and that predicted by (3.18pupe time of the annihilation of the right spike. After
the annihilation, the remaining spike evolves accordintp#oone-spike dynamical result &7].
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Figure 19. Run 1: Dynamic synchronous oscillatory instgbfior ¢ = 0.005, D = 0.2, E = 1, f = 0.6494,
7 = 1.05, and(0) = 0.85. In the left figure, synchronous oscillations of the spikepimdes grow in time at the
onset of instability and annihilate at some later time. kntight figure, we show a comparison between the evolution

of the spike locations and the dynamics (3.15). They aresiimdjuishable in this plot.

In Run 3, we keep- unchanged but increageto f = 0.7121 so thata, < a, andr remains belowr(«) for all
values ofc in the interval(a., «(0)). Thus, no dynamic instabilities occur, and the spikes evahonotonically to
their equilibrium locations at. = 0.6. The motion of the spikes, along with the dynamics (3.1% sfwown in Figure
20(c).
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Figure 20. Runs 2 and 3: The left and center figures (Run 2) late of the spike amplitudes and locations versus
time in the case of a dynamic competition instability o= 0.005, D = 0.2, E = 1, f = 0.6494, 7 = 0.8, and
a(0) = 0.85. In the right figure (Run 3)f is increased tgf = 0.7172 so that no instabilities are triggered and the

spikes approach the equilibrium locatiop = 0.6.

In Run 4, we takex(0) = 0.91, f = 0.806, andT = 15 < 70(«(0)). This run is similar to Run 1 except that a
dynamic asynchronous instability is triggered instead efachronous instability. This scenario is shown in Figure
18. For somé > 0, a(t) will satisfy 7 > 79(«(t)), initiating an asynchronous instability. In Figure 21(a9 show
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asynchronous spike amplitude oscillations resulting ftbetriggering of an asynchronous Hopf instability. As imRu

1, the spikes annihilate at some time after onset but befdras reached., implying that the annihilation was not
due to a competition instability. In Figure 21(b), we showaadrable comparison between the slow spike dynamics
before the annihilation event and that predicted by (3.B8).this run, we perturbed the initial condition as in (2,63)
wheredy = 1 andd; = —1 in accordance with the eigenvector associated with thecisgnous mode. While the
perturbation initially decayed and appeared to be unnalileeby the time the spikes approached the asynchronous

instability threshold, enough of the initial perturbatigmained to trigger the asynchronous instability. Withidet

initial perturbation, a synchronous instability develdjkie to the nearby synchronous instability threshold (nohvs
in Figure 18).
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Figure 21. Run 4: Dynamic asynchronous oscillatory inditsiior e = 0.005, D = 0.2, £ =1, f = 0.806, 7 = 15,

anda(0) = 0.91. In the left figure, asynchronous oscillations of the leftli) and right (dashed) spike amplitudes
grow in time at the onset of instability and annihilate at sdater time. In the right figure, we show a comparison

between the evolution of the spike locations and the dyna(@id 5) up to the time of annihilation.

In Run 5, we keep the parameters as in Run 4, except we(8gt= 0.28 andr = 6.6 so thatr > 79(a(0)) = 791.
Thus, the solution starts above the asynchronous statiiligshold but gains stability ag(t) increases towards..
However, before reaching., a loss of stability to synchronous oscillations occurbeftability is regained after
«(t) drifts across the zone of synchronous instability. The @imh through the zones of stability and instability is
depicted in Figure 18. In Figures 22(a) and 22(b), we shovsftike amplitudes and locations versus time for the en-
tire duration of the dynamics. Note that the spikes evolwating to (3.15) even whem(t) is in an unstable region.
Figure 22(a) shows the triggering of two distinct types aftabilities, each of which are eventually extinguished as

time increases. The first of these instabilities, as preshomentioned, is to the asynchronous mode and is magnified
in Figure 22(c). The initial conditions were perturbed ir ttame way as in Run 4. After an initial growth in the
amplitude of asynchronous oscillations, the spike amgiditiapproach their quasi-equilibrium value as they mowe int
the zone of stability. At a later time, shown in Figure 22(the spikes move into a zone of synchronous instability
where the amplitude of synchronous oscillations grow. €leesillations decay as the spikes move out of the unstable

region and towards their equilibrium locations. Note tteg frequency of synchronous oscillations is approximately
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four times that of the asynchronous oscillations, whicloissistent with our calculations (not shown). In other exper
iments, it was observed that starting too far above the dsgnous stability curve led to an annihilation of one of the
spikes. Further, the movement of the spikes through a zomestahbility without annihilating may be facilitated by
e sufficiently large; for smalt where the times spent in unstable regions are significaotigdr, annihilation events
may occur.

Finally, we note that all of these experiments involve oflfl) instabilites. For numerical computations involving
instabilities toO(e?) eigenvalues, se€7).
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Figure 22. Run 5: Synchronous and asynchronous instaBilitire = 0.005, D = 0.2, £ =1, f = 0.806, 7 = 6.6,
anda(0) = 0.28. The top left figure shows the spike amplitudes as the spil@srthrough zones of stability and
instability and eventually to their equilibrium locatioftep right). The first instability is to the asynchronous reod
(bottom left) and the second instability is to the synchimonode (bottom right). In the bottom left figure, the
solid (dashed) curve is the amplitude of the left (right)kepiln the bottom right figure, the spike amplitudes are

indistinguishable.
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4 Discussion

We have analyzed the stability of localized spike patteon$iio closely related singularly perturbed RD systems with
Brusselator kinetics. The derivation of the NLEP for the &mlator is more intricate than in previous stability asaty

of spike patterns for the GM and GS mode?g,[30, 12], owing to the non-trivial background state for the actrat
and the existence of two nonlocal terms arising fromdhe—!) coefficient in (1.3) and (1.5). A combination of
rigorous and numerical analysis was used to obtain stalbiliesholds from this NLEP, and the results have been
confirmed with full numerical simulations of the PDE systeifier (1.5), an NLEP stability theory is applied to a
quasi-steady two-spike evolution, and our results shovexistence of dynamically triggered instabilities depeidi
on the parameter regime.

For both Brusselator models (1.5) and (1.3), our NLEP stgbi#ésults show that as increases above a threshold,
a Hopf bifurcation triggers either a synchronous or an asgmmous oscillation in the spike amplitudes. The nature of
the oscillation depends on the parameter valueg ahd D, and for (1.5), also on the inter-spike distance. Our full
numerical simulations of the PDE systems confirm the two madescillation. Furthermore, our numerical results
suggest that the synchronous instability, which leadsd@tinihilation of spikes, is subcritical, while the asymeious
instability is supercritical. The existence of robust agyionous spike amplitude oscillations observed in ounesmal
of the Brusselator model has not been reported in NLEP gtabilidies of other RD (cf.32, 12]).

A key open problem, suggested by our results, is to perforraakly nonlinear theory on the Brusselator model, and
on related RD systems with spike solutions, to analyze vdrethike amplitude oscillations are sub- or super-critical
Another interesting open problem is to try to extend the gugiglitting analysis off, 16, 13] to analyze a similar

pulse-splitting phenomena for the Brusselator model (th&)occurs in the regime wheapproaches unity. Starting
from a one-pulse quasi-equilibrium state, in Fig. 23 we shamerical results computed from (1.3) for the parameter
sete = 0.01, A = 0, D = 0.02, f = 0.95, andT = 0.001. Such a pulse-splitting behaviour has not been reported
previously for the Brusselator model.

A final open problem is to analyze (1.3) in a two-dimensiompalt&l domain, where localized spot patterns undergo
either self-replication, competition, or oscillatorystabilities depending on the parameter regime. The detarmi
tion of phase diagrams in parameter space for these ingiebib critical for characterizing dynamic bifurcatioos
localized spot patterns.
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A Scaling Analysis of the Brusselator M odel

In this appendix we outline the scaling analysis2¥][for the existence of spikes to (1.2). Rer— 0, U has an inner
scaleUinn near a spike and an outer scéig; away from a spike. In contradt; has only one scale across the interval,
which is induced by the boundary feed so that= O(Ap). In order to obtain a homoclinic solution characterizing
the spike profile, we require in the inner region near a spib@lfiﬁnv ~ Uinn. Therefore Uipn = O (Agl).

Next, sinceU is localized, we require from (119 that DV, ~ f_ll VU? dx. Since the integrand has @)
support near a spike, this yields thdy ~ ¢,/.4p, which implies that4, = 0(6(1)/2). Consequently, we conclude
thatUinn = (’)(651/2) andVip, = 0(6(1)/2). Finally, from (1.2b) we must balance the scalesio¥,, and BU across
—1 < z < 1, which yields thallo,; = O(e/?), and consequentl§l, = O(e/?) from (1.2a).

Therefore, we will consider (1.2) in the parameter regimengtd, = 6(1)/2140 and&y = 6(1)/2E0 for some non-
negativeO(1) constantsd, and Ey. We also give an alternate scaling for thg = 0 case.

First, we introduce the rescal€d 1) variablesu andv and the new temporal variabte defined by

U:eal/Qucu, V:eé/chv, t=To.
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From (1.2), we then obtain the system

1 2 E Ve
Uy = (60) Ugy + (60 0 + Uele u? (Ala)
Uc

—_ —u vu”,
T(By+1) vBy+1 By+1) By+1
VBo+1 Do/ By + 1 vVBo+1 [ By 2
o = (o +— | —u—vu . (Al b)
u2T u? €0 UV
ChoosingI’ = 1/(By + 1) andu.v. = By in (A.1), and defining the new parameterd, E, f, andr as
Dov/By + 1 E, B By +1)3/2
65760 , p=20vV2oT o o+t , F=_—_"9 , = 0 , 7’57( 0o+ 1) , (A.2)
vV BO +1 ’U/g Ue BO +1 BO +1 ’U,g
we obtain the system
Uy = EXUpy + €F — u + fou?, “l<z<1l, wux(xl,o)=0, (A.3a)
1
Ty = Dugy + — (u — vu2) , —l<z<1l, w(£l,0)==xA0/vc, (A.3b)
€

valid for Ay > 0. If Ay > 0, we choose,. = Ay so thatu. = By/Aq. Replacing the time variable with ¢ in (A.3),
the Brusselator model with asymptotically small boundasd of the inhibitor is written in the form (1.5) wherds
replaced by, ande, f, E, D andr are defined in terms of the original variables by (1.6).

Alternatively, if Ag = 0, we may choose,. = Ey/v/By + 1 so thatv, = Bg\/By + 1/E, resulting in the
parameter® in (A.2) and (A.3) being unity. In this case, the Brusselatardel with no flux boundary conditions is
(1.3) where, f, D, andt are as defined in (1.4).
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