
The Linear Stability of Symmetric Spike Patterns for a Bulk-Membrane
Coupled Gierer-Meinhardt Model

Daniel Gomez∗ , Michael J. Ward† , Juncheng Wei‡

October 23, 2018

Abstract

We analyze a coupled bulk-membrane PDE model in which a scalar linear 2-D bulk diffusion process is
coupled through a linear Robin boundary condition to a two-component 1-D reaction-diffusion (RD) system
with Gierer-Meinhardt (nonlinear) reaction kinetics defined on the domain boundary. For this coupled model,
in the singularly perturbed limit of a long-range inhibition and short-range activation for the membrane-bound
species, asymptotic methods are used to analyze the existence of localized steady-state multi-spike membrane-
bound patterns, and to derive a nonlocal eigenvalue problem (NLEP) characterizingO(1) time-scale instabilities
of these patterns. A central, and novel, feature of this NLEP is that it involves a membrane Green’s function
that is coupled nonlocally to a bulk Green’s function. When the domain is a disk, or in the well-mixed
shadow-system limit corresponding to an infinite bulk diffusivity, this Green’s function problem is analytically
tractable, and as a result we will use a hybrid analytical-numerical approach to determine unstable spectra of
this NLEP. This analysis characterizes how the 2-D bulk diffusion process and the bulk-membrane coupling
modifies the well-known linear stability properties of steady-state spike patterns for the 1-D Gierer-Meinhardt
model in the absence of coupling. In particular, phase diagrams in parameter space for our coupled model
characterizing either oscillatory instabilities due to Hopf bifurcations, or competition instabilities due to zero-
eigenvalue crossings are constructed. Finally, linear stability predictions from the NLEP analysis are confirmed
with full numerical finite-element simulations of the coupled PDE system.

Key Words: Spikes, bulk-membrane coupling, nonlocal eigenvalue problem (NLEP), Hopf bifurcation, com-
petition instability, Green’s function.

1 Introduction

Pattern formation is readily observed in a variety of physical and biological phenomena. It is widely believed
that, for systems modeled by reaction diffusion (RD) equations, the driving mechanism behind pattern formation
is a diffusion driven (or Turing) instability. First described in 1952 by Alan M. Turing [19], this mechanism relies
on a difference in the diffusivities of two interacting and diffusing species in order to drive the system away from a
spatially homogeneous, and kinetically stable, equilibrium solution to one exhibiting spatial patterns. One of the
key insights of Turing is the notion that diffusion, an intuitively smoothing and stabilizing process, can in fact lead
to spatial instabilities. Following Turing’s original work, a substantial body of literature detailing diffusion-driven
instabilities in the context of a variety of models has been developed. Most pertinent to our present study is the
activator-inhibitor model of Gierer and Meinhardt [6].
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While Turing instability analysis has been successful in predicting the onset of spatially periodic instabilities,
it does not provide a full account of pattern formation phenomena. Indeed, a complete picture requires a charac-
terization of the spatially periodic patterns that emerge from a Turing instability. To do so, one approach has been
to use techniques of weakly-nonlinear analysis where the asymptotically small parameter describes some distance
in parameter space from the Turing instability bifurcation point. A significant hurdle in such an analysis occurs
when the ratio of activator to inhibitor diffusivities is small, owing to the fact that the standard Turing-type
analysis reveals a large band of unstable modes with approximately equal growth rates. Our focus will instead
be on the alternative theoretical framework that assumes an asymptotically small ratio of activator to inhibitor
diffusivities. In this context, strongly localized spatial patterns emerge, which are characterized by an activator
that is concentrated in regions of small spatial extent. This strongly localized character of the activator solution
greatly facilitates the asymptotic construction of steady-state patterns by reducing the problem to that of finding
the spike locations and their heights. Furthermore, similar techniques can be used to study the linearized stabil-
ity of strongly localized patterns (cf. [8], [3], [20], [4]). These asymptotic reductions provide a framework for a
rigorous existence and linear stability theory of spike patterns (cf. [22], [23]).

Motivated by various specific biological cell signalling problems with surface receptor binding (cf. [9], [12], [15],
[16], [17], [7], [2], [5]), a more recent focus for research has been to analyze pattern formation aspects associated
with coupled bulk-surface RD systems. Given some bounded domain, these models consist of an RD system
posed in the interior that is coupled to an additional system posed on the domain boundary. The coupling for the
interior, or bulk, problem is directed through the boundary conditions, whereas on the boundary, or membrane,
it takes the form of source or “feed” terms. It is worth noting that these coupled systems are to be understood
as a leading order approximation in the limit of a small, but nonzero, membrane width. One key motivation
for studying these models is that in specific applications the difference in the diffusivities of two species may
not be substantial enough to lead to a Turing instability. On the other hand the bulk, or cytosolic, diffusivities
are typically substantially larger than their membrane counterparts. It is proposed, therefore, that it is this
large difference between the bulk and membrane diffusivities that can lead to a Turing instability and ultimately
pattern formation ([15], [17], [12], [11]).

The primary goal of this paper is to initiate detailed asymptotic studies of strongly localized patterns in
coupled bulk-surface RD systems. To this end, we introduce such a PDE model in which a scalar linear 2-D
bulk diffusion process is coupled through a linear Robin boundary condition to a two-component 1-D RD system
with Gierer-Meinhardt (nonlinear) reaction kinetics defined on the domain boundary or “membrane”. Similar, but
more complicated, coupled bulk-surface models, some with nonlinear bulk reaction kinetics and in higher space
dimensions, have previously been formulated and studied through either full PDE simulations or from a Turing
instability analysis around some patternless steady-state (cf. [15], [16], [17], [12], [12], [17], [10]). Our coupled
model, formulated below, provides the first analytically tractable PDE system with which to investigate how the
bulk diffusion process and the bulk-membrane coupling influences the existence and linear stability of localized
“far-from-equilibrium” (cf. [14]) steady-state spike patterns on the membrane. In the limit where the bulk and
membrane are uncoupled, our PDE system reduces to the well-studied 1-D Gierer-Meinhardt RD system on the
membrane with periodic boundary conditions. The existence and linear stability of steady-state spike patterns
for this limiting uncoupled problem is well understood (cf. [22], [8], [3], [4], [20]).

Our model is formulated as follows: Given some 2-D bounded domain Ω we pose on its boundary an RD
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system with Gierer-Meinhardt kinetics

∂tu = ε2∂2
σu− u+ up/vq , 0 < σ < L , t > 0 , (1.1a)

τs∂tv = Dv∂
2
σv − (1 +K)v +KV + ε−1um/vs , 0 < σ < L , t > 0 , (1.1b)

where σ denotes arclength along the boundary of length L, and where both u and v are L-periodic. In Ω we
consider the linear 2-D bulk diffusion process

τb∂tV = Db∆V − V , x ∈ Ω , Db∂nV +KV = Kv , x ∈ ∂Ω , (1.1c)

where the coupling to the membrane is through a Robin condition. The Gierer-Meinhardt exponent set (p, q,m, s)

is assumed to satisfy the usual conditions (cf. [22, 8])

p > 1 , q > 0 , m > 0 , s ≥ 0 , 0 <
p− 1

q
<

m

s+ 1
. (1.2)

In this model τb and τs are time constants associated with the bulk and membrane diffusion process, Db and
Dv are the diffusivities of the bulk and membrane inhibitor fields, and K > 0 is the bulk-membrane coupling
parameter.

The paper is organized as follows. In §2 we use the method of matched asymptotic expansions to derive
a nonlinear algebraic system for the spike locations and heights of a multi-spike steady-state pattern for the
membrane-bound species. A singular perturbation analysis is then used to derive an NLEP characterizing the
linear stability of these localized steady-states to O(1) time-scale instabilities. A more explicit analysis of both
the nonlinear algebraic system and the NLEP requires the calculation of a novel 1-D membrane Green’s function
that is coupled nonlocally to a 2-D bulk Green’s function. Although intractable analytically in general domains,
this Green’s function problem is explicitly studied in two special cases: the well-mixed limit, Db � 1, for the
bulk diffusion field in an arbitrary bounded 2-D domain, and when Ω is a disk of radius R with finite Db.

In §3 we restrict our steady-state and NLEP analysis to these two special cases, and consider only symmetric
N -spike patterns characterized by equally-spaced spikes on the 1-D membrane, for which the nonlinear algebraic
system is readily solved. In this restricted scenario, by using a hybrid analytical-numerical method on the NLEP
we are then able to provide linear stability thresholds for either synchronous or asynchronous perturbations of the
steady-state spike amplitudes. More specifically, we provide phase diagrams in parameter space characterizing
either oscillatory instabilities of the spike amplitudes, due to Hopf bifurcations, or asynchronous (competition)
instabilities, due to zero-eigenvalue crossings, that trigger spike annihilation events. These linear stability phase
diagrams show that the bulk-membrane coupling can have a diverse effect on the linear stability of symmetric
N -spike patterns. In each case we find that stability thresholds are typically increased (making the system more
stable) when the bulk-membrane coupling parameter K is relatively small, whereas the stability thresholds are
decreased as K continues to increase. This nontrivial effect is further complicated when studying synchronous
instabilities, for which there appears to be a complex interplay between the membrane and bulk timescales, τs
and τb, as well as with the coupling K. At various specific points in these phase diagrams for both the well-mixed
case (with Db infinite) and the case of the disk (with Db finite), our linear stability predictions are confirmed
with full numerical finite-element simulations of the coupled PDE system (1.1).

As an illustration of spike dynamics resulting from full PDE simulations, in Figures 1 and 2 we show results
computed for the unit disk withDb = 10, showing competition and oscillatory instabilities for a two-spike solution,
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respectively. The parameter values are given in the figure captions and correspond to specific points in the linear
stability phase diagram given in the left panel of Figure 13.

In §4 we use a regular perturbation analysis to show the effect on the asynchronous instability thresholds of
introducing a small smooth perturbation of the boundary of the unit disk. This analysis, which requires a detailed
calculation of the perturbed 1-D membrane Green’s function, shows that a two-spike pattern can be stabilized
by a small outward peanut-shaped deformation of a circular disk. Finally, in §5 we briefly summarize our results
and highlight some open problems and directions for future research.

2 Spike Equilibrium and its Linear Stability: General Asymptotic Theory

2.1 Asymptotic Construction of N-Spike Equilibria

In this section we provide an asymptotic construction of an N -spike steady-state solution to (1.1). Specifically,
we consider the steady-state problem for the membrane species

ε2∂2
σue − ue + upe/v

q
e = 0 , 0 < σ < L , u is L-periodic , (2.1a)

Dv∂
2
σve − (1 +K)ve +KVe + ε−1ume /v

s
e = 0 , 0 < σ < L , v is L-periodic , (2.1b)

which is coupled to the steady-state bulk-diffusion process by

Db∆Ve − Ve = 0 , x ∈ Ω ; Db∂nVe +KVe = Kve , x ∈ ∂Ω . (2.1c)

From (2.1c), the bulk-inhibitor evaluated on the membrane is readily expressed in terms of a Green’s function
as

Ve(σ) = K

ˆ L

0
GΩ(σ, σ̃)ve(σ̃) dσ̃ , (2.2)

Figure 1: Snapshots of the numerically computed solution of (1.1) starting from a 2-spike equilibrium for the unit
disk with Db = 10, τs = 0.6, τb = 0.1, K = 2, and Dv = 10 (this corresponds to point 2 in the left panel of Figure
13). The bulk inhibitor is shown as the colourmap, whereas the lines along the boundary indicate the activator
(blue) and inhibitor (orange) membrane concentrations. The results show a competition instability, leading to
the annihilation of a spike.
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Figure 2: Snapshots of the numerically computed solution of (1.1) starting from a 2-spike equilibrium for the
unit disk with Db = 10, τs = 0.6, τb = 0.1, K = 0.025, and Dv = 1.8 (this corresponds to point 5 in the left
panel of Figure 13). The bulk inhibitor is shown as the colourmap, whereas the lines along the boundary indicate
the activator (blue) and inhibitor (orange) membrane concentrations. The results show a synchronous oscillatory
instability of the spike amplitudes.

where we have used arc-length to parameterize the boundary. Here, GΩ(σ, σ̃) is the Green’s function satisfying

Db∆xGΩ(x, σ̃)−GΩ(x, σ̃) = 0 , x ∈ Ω , Db∂nGΩ(σ, σ̃) +KGΩ(σ, σ̃) = δ(σ − σ̃) , 0 < σ < L . (2.3)

We remark that the values of the bulk-inhibitor field within the bulk can likewise be obtained with a Green’s
function whose source is in the interior. However, for our purposes it is only the restriction to the boundary that
is important.

At this stage the steady-state membrane problem takes the form

ε2∂2
σue − ue+upe/vqe = 0 , 0 < σ < L ,

Dv∂
2
σve − (1 +K)ve+K

2

ˆ L

0
GΩ(σ, σ̃)ve(σ̃) dσ̃ + ε−1ume /v

s
e = 0 , 0 < σ < L ,

(2.4)

which differs from the problem studied in [8] for the uncoupled (K = 0) case only by the addition of the non-local
term. This additional term leads to difficulties in the construction of spike patterns. In particular, it complicates
the concept of a "symmetric" pattern since, in general, the non-local term will not be translation invariant.
Moreover, in the well-mixed and disk case, the construction of asymmetric patterns is more intricate as a result
of the non-local term.

We now construct an N -spike steady-state pattern for (2.4) characterized by an activator concentration that
is localized at N distinct spike locations 0 ≤ σ1 < ... < σN < L to be determined. We assume that the spikes are
well-separated in the sense that |σ{(i+1) mod N} − σi mod L| � ε for i = 1, . . . , N . Upon introducing stretched
coordinates y = ε−1(σ − σj), we deduce that the inhibitor field is asymptotically constant near each spike, i. e.

ve ∼ vej ≡ ve(σj) . (2.5)

In addition, the activator concentration is determined in terms of the unique solution w(y) to the core problem

w′′ − w + wp = 0 , y ∈ R , w′(0) = 0 , w(0) > 0 , w(y)→ 0 as |y| → ∞ . (2.6)
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Since the solution to the core problem decays exponentially as y → ±∞ we deduce that

ue(σ) ∼
N∑
j=1

vγejw
(
ε−1[σ − σj ]

)
, as ε→ 0 , (2.7)

where γ ≡ q/(p− 1). The solution to (2.6) is given explicitly as

w(y) =

(
p+ 1

2

) 1
p−1
[
sech

(
p− 1

2
y

)] 2
p−1

. (2.8)

Next, since ue is localized, we have in the sense of distributions that

ε−1ume /v
s
e −→ ωm

N∑
j=1

[ve(σj)]
γm−sδ(σ − σj) as ε→ 0 ,

where we have defined
ωm ≡

ˆ ∞
−∞

[w(y)]m dy . (2.9)

In this way, for ε→ 0, we obtain from (2.4) the following integro-differential equation for the inhibitor field:

Dv∂
2
σve − (1 +K)ve +K2

ˆ L

0
GΩ(σ, σ̃)ve(σ̃) dσ̃ = −ωm

N∑
j=1

vγm−sej δ(σ − σj) . (2.10)

To conveniently represent the solution to this equation we introduce the Green’s function G∂Ω(σ, ζ) satisfying

Dv∂
2
σG∂Ω(σ, ζ)− (1 +K)G∂Ω(σ, ζ) +K2

ˆ L

0
GΩ(σ, σ̃)G∂Ω(σ̃, ζ) dσ̃ = −δ(σ − ζ) , 0 < σ, ζ < L . (2.11)

In terms of this Green’s function, the membrane inhibitor field is given by

ve(σ) = ωm

N∑
j=1

vγm−sej G∂Ω(σ, σj) . (2.12)

Substituting σ = σi, and recalling the definition vei ≡ ve(σi), (2.12) yields the N self-consistency conditions

vei − ωm
N∑
j=1

vγm−sej G∂Ω(σi, σj) = 0 , i = 1, . . . , N . (2.13)

These conditions provide the first N algebraic equations for our overall system in 2N unknowns to be completed
below. The remaining N equations arise from solvability conditions when performing a higher-order matched
asymptotic expansion analysis of the steady-state solution.

To this end, we again introduce stretched coordinates y = ε−1
(
σ − σj), but we now introduce a two-term

inner expansion for the surface bound species for ε→ 0 as

ue(y) ∼ vγejw(y) + εu1(y) +O(ε2) , ve(y) ∼ vej + εv1(y) +O(ε2) , Ve ∼ O(1) . (2.14)

Upon substituting this expansion into (2.1), and collecting the O(ε) terms, we get

L0u1 ≡ u′′1 − u1 + pwp−1u1 = qvγ−1
ej wpv1 , Dvv

′′
1 + vγm−sej wm = 0 . (2.15)
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Since L0w
′ = 0, the solvability condition for the first equation yields that

qvγ−1
ej

ˆ ∞
−∞

wpw′v1 dy = 0 ⇐⇒
ˆ ∞
−∞

(wp+1)′v1 dy = 0 .

Then, we integrate by parts twice, use the exponential decay of w(y) as |y| → ∞, and substitute (2.15) for v′′1 .
This yields that

Ip(y)v′1(y)

∣∣∣∣∞
−∞

+
vγm−sej

Dv

ˆ ∞
−∞

Ip(y)[w(y)]m dy = 0 ,

where we have defined Ip(y) ≡
´ y

0 [w(z)]p+1dz. Since w is even, while Ip is odd, the integral above vanishes, and
we get

v′1(+∞) + v′1(−∞) = 0 .

In this way, a higher order matching process between the inner and outer solutions yields the balance conditions,

∂σve(σi + 0) + ∂σve(σi − 0) = 0 , i = 1, . . . , N .

By using (2.12) for ve, we can write these balance equations in terms of the Green’s function G∂Ω as

vγm−sei

[
∂σG∂Ω(σi + 0, σi) + ∂σG∂Ω(σi − 0, σi)

]
+ 2

∑
j 6=i

vγm−sej ∂σG∂Ω(σi, σj) = 0 , i = 1, . . . , N . (2.16)

We summarize the results of this formal asymptotic construction in the following proposition:

Proposition 2.1 As ε → 0 an N -spike steady-state solution to (2.1) with spikes centred at σ1, ..., σN is asymp-
totically given by

ue(σ) ∼
N∑
j=1

vγejw
(
ε−1[σ − σj ]) , ve(σ) ∼ ωm

N∑
j=1

vγm−sej G∂Ω(σ, σj) , (2.17a)

Ve(σ) ∼ ωmK
N∑
j=1

vγm−sej

ˆ L

0
GΩ(σ, σ̃)G∂Ω(σ̃, σj) dσ̃ , (2.17b)

where ωm ≡
´∞
−∞[w(y)]m dy and γ ≡ q/(p− 1). Here the steady-state spike locations σ1, ..., σN and ve1, ..., veN ,

which determine the heights of the spikes, are to be found from the following non-linear algebraic system:

vei − ωm
N∑
j=1

vγm−sej G∂Ω(σi, σj) = 0 , i = 1, . . . , N , (2.18a)

vγm−sei

[
∂σG∂Ω(σi + 0, σi) + ∂σG∂Ω(σi − 0, σi)

]
+ 2

∑
j 6=i

vγm−sej ∂σG∂Ω(σi, σj) = 0 , i = 1, . . . , N . (2.18b)

2.2 Linear Stability of N-Spike Equilibria

In our linear stability analysis, given below, of N -spike equilibria we make two simplifying assumptions. First,
we focus exclusively on the case s = 0. Second, we consider only instabilities that arise on an O(1) timescale.
Therefore, we do not consider very weak instabilities, occurring on asymptotically long time-scales in ε, that are
due to any unstable small eigenvalue that tends to zero as ε→ 0.
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Let ue(σ), ve(σ), and Ve(x) denote the the steady-state constructed in §2.1. For λ ∈ C, we consider a
perturbation of the form

u(σ) = ue(σ) + eλtφ(σ) , v(σ) = ve(σ) + eλtψ(σ) , V (x) = Ve(x) + eλtη(x) ,

where φ, ψ, and η are small. Upon substituting into (1.1) and linearizing, we obtain the eigenvalue problem

ε2∂2
σφ− φ+ pup−1

e v−qe φ− qupev−(q+1)
e ψ = λφ , 0 < σ < L , (2.19a)

Dv∂
2
σψ − µ2

sλψ +Kη = −mε−1um−1
e φ , 0 < σ < L , (2.19b)

Db∆η − µ2
bλη = 0 , x ∈ Ω , (2.19c)

Db∂nη +Kη = Kψ , x ∈ ∂Ω , (2.19d)

where we have defined µsλ and µbλ by

µsλ =
√

1 +K + τsλ , µbλ =
√

1 + τbλ . (2.20)

The bulk inhibitor field evaluated on the boundary is represented as

η(σ) = K

ˆ L

0
GλΩ(σ, σ̃)ψ(σ̃) dσ̃ ,

where GλΩ is the λ-dependent bulk Green’s function satisfying

Db∆xG
λ
Ω(x, σ̃)− µ2

bλG
λ
Ω(x, σ̃) = 0 , x ∈ Ω , Db∂nG

λ
Ω(σ, σ̃) +KGλΩ(σ, σ̃) = δ(σ − σ̃) , 0 < σ < L . (2.21)

Next, we seek a localized activator perturbation of the form

φ(σ) ∼
N∑
j=1

φj
(
ε−1[σ − σj ]

)
, (2.22)

where we impose that φj(y)→ 0 as |y| → ∞. With this form, we evaluate in the sense of distributions that

ε−1mum−1
e φ −→ m

N∑
j=1

v
γ(m−1)
ej

(ˆ ∞
−∞

[w(y)]m−1φj(y) dy

)
δ(σ − σj) as ε→ 0 .

By using this limiting result in (2.19b), the problem for ψ becomes

Dv∂
2
σψ − µ2

sλψ +K2

ˆ L

0
GλΩ(σ, σ̃)ψ(σ̃) dσ̃ = −m

N∑
j=1

v
γ(m−1)
ej

(ˆ ∞
−∞

[w(y)]m−1φj(y) dy

)
δ(σ − σj) .

The solution to this problem is represented as

ψ(σ) = m

N∑
j=1

v
γ(m−1)
ej Gλ∂Ω(σ, σj)

ˆ ∞
−∞

[w(y)]m−1φj(y) dy , (2.23)

where Gλ∂Ω is the λ-dependent membrane Green’s function satisfying

Dv∂
2
σG

λ
∂Ω(σ, ζ)− µ2

sλG
λ
∂Ω(σ, ζ) +K2

ˆ L

0
GλΩ(σ, σ̃)Gλ∂Ω(σ̃, ζ) dσ̃ = −δ(σ − ζ) , 0 < σ, ζ < L . (2.24)
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Next, it is convenient to re-scale ve as

ve(σ) = ω
1

1−γm
m v̂e(σ) , vej = ω

1
1−γm
m v̂ej . (2.25)

In the stretched coordinates y = ε−1(σ − σj), we use (2.23) to obtain that (2.19a) becomes

φ′′i − φi + pwp−1φi −mqwp
N∑
j=1

v̂γ−1
ei Gλ∂Ω(σi, σj)v̂

γ(m−1)
ej

´∞
−∞w

m−1φj dy´∞
−∞w

m dy
= λφi .

To recast this spectral problem in vector form we define

φφφ ≡

φ1
...
φN

 , V̂e ≡

v̂e1 0
. . .

0 v̂eN

 , Gλ∂Ω ≡

Gλ∂Ω(σ1, σ1) · · · Gλ∂Ω(σ1, σN )

· · · . . .
...

Gλ∂Ω(σN , σ1) · · · Gλ∂Ω(σN , σN )

 , (2.26)

and we introduce the matrix E by
E ≡ V̂γ−1

e Gλ∂ΩV̂γ(m−1)
e . (2.27)

In this way, we deduce that φφφ must solve the vector nonlocal eigenvalue problem (NLEP) given by

φφφ′′(y)−φφφ(y) + pwp−1φφφ(y)−mqwp
´∞
−∞[w(y)]m−1Eφφφ(y) dy´∞

−∞[w(y)]m dy
= λφφφ(y) . (2.28)

We can reduce this vector NLEP to a collection of scalar NLEPs by diagonalizing it. Specifically, we seek
perturbations of the form φφφ = φccc where ccc is an eigenvector of E , that is

Eccc = χ(λ)ccc . (2.29)

Then, it readily follows that the vector NLEP (2.28) can be recast as the scalar NLEP

L0φ−mqχ(λ)wp
´∞
−∞[w(y)]m−1φ(y) dy´∞
−∞[w(y)]m dy

= λφ , (2.30)

where χ(λ) is any eigenvalue of E . In (2.30), the operator L0, referred to as the local operator, is defined by

L0φ ≡ φ′′(y)− φ(y) + pwp−1φ(y) . (2.31)

Notice that we obtain a (possibly) different NLEP for each eigenvalue χ(λ) of E . Therefore, the spectrum of the
matrix E will be central in the analysis below for classifying the various types of instabilities that can occur.

2.3 Reduction of NLEP to an Algebraic Equation and an Explicitly Solvable Case

Next, we show how to reduce the determination of the spectrum of the NLEP (2.30) to a root-finding problem.
To this end, we define cm by

cm ≡ mqχ(λ)

´∞
−∞[w(y)]m−1φ(y) dy´∞
−∞[w(y)]m dy

, (2.32)
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and write the NLEP as (L0 − λ)φ = cmw
p, so that φ = cm(L0 − λ)−1wp. Upon multiplying both sides of this

expression by wm−1, we integrate over the real line and substitute the resulting expression back into (2.32). For
eigenfunctions for which

´∞
−∞w

m−1φdy 6= 0, we readily obtain that λ must be a root of A(λ) = 0, where

A(λ) ≡ C(λ)−F(λ) C ≡ 1

χ(λ)
, F(λ) ≡ mq

´∞
−∞[w(y)]m−1(L0 − λ)−1[w(y)]p dy´∞

−∞[w(y)]m dy
. (2.33)

Since, it is readily shown that there are no unstable eigenvalues of the NLEP (2.30) for eigenfunctions for which´∞
−∞w

m−1φdy = 0, the roots of A(λ) = 0 will provide all the unstable eigenvalues of the NLEP (2.30).
For general Gierer-Meinhardt exponents, the spectral theory of the operator L0 leads to some detailed proper-

ties of the term F(λ) for various exponent sets (cf. [20]). In addition, to make further progress on the root-finding
problem (2.33), we need some explicit results for the multiplier χ(λ).

For special sets of Gierer-Meinhardt exponents, known as the “explicitly solvable cases” (cf. [13]), the term
F(λ) can be evaluated explicitly. We focus specifically on one such set (p, q,m, 0) = (3, 1, 3, 0) for which the key
identity L0w

2 = 3w2 holds, where w =
√

2 sechy from (2.8). Thus, after integrating by parts we obtain
ˆ ∞
−∞

w2(L0 − λ)−1w3dy =

´∞
−∞(L0 − λ)w2(L0 − λ)−1w3dy

3− λ
=

´∞
−∞w

2(L0 − λ)(L0 − λ)−1w3dy

3− λ
=

´∞
−∞w

5dy

3− λ
.

By making use of the identities ˆ ∞
−∞

w5dy =
3π√

2
,

ˆ ∞
−∞

w3dy =
√

2π,

we obtain that F(λ) = 9/ [2(3− λ)], so that the root-finding problem (2.33) reduces to determining λ such that

A(λ) ≡ 1

χ(λ)
− 9/2

3− λ
= 0 . (2.34)

In addition to the explicitly solvable case (p, q,m, s) = (3, 1, 3, 0), the root-finding problem (2.33) simplifies
considerably for a general Gierer-Meinhardt exponent set, when we focus on determining parameter thresholds for
zero-eigenvalue crossings (corresponding to asynchronous instabilities). Since L0w = w′′ − w + pwp = (p− 1)wp,
it follows that L−1

0 wp = 1
p−1w, from which we calculate

F(0) = mq

´∞
−∞w

m−1L−1
0 wp dy´∞

−∞w
m dy

=
mq

p− 1
.

Therefore, a zero-eigenvalue crossing for a general Gierer-Meinhardt exponent set occurs when

A(0) =
1

χ(0)
− mq

p− 1
= 0 . (2.35)

3 Symmetric N-Spike Patterns: Equilibria and Stability

For the remainder of this paper we will focus exclusively on symmetric N -spike steady-states that are charac-
terized by equidistant (in arc-length) spikes of equal heights. Due to the bulk-membrane coupling it is unclear
whether such symmetric patterns will exist for a general domain. Indeed it may be that a spike pattern with
spikes of equal heights may require the equidistant requirement to be dropped. These more general considerations
can perhaps be better approached by requiring that a certain Green’s matrix admit the eigenvector e = (1, ..., 1)T .
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Avoiding these additional complications, we focus instead on two distinct cases for which symmetric spike
patterns, as we have defined them, can be constructed. The first case is the disk of radius R, denoted by
Ω = BR(0), and the second case corresponds to the well-mixed limit for which Db →∞ in an arbitrary bounded
domain. In both cases the Green’s function is invariant under translations, satisfying

G∂Ω(σ + ϑ mod L, ζ + ϑ mod L) = G∂Ω(σ, ζ) , ∀ σ , ζ ∈ [0, L) , ϑ ∈ R .

By using this key property in (2.18a), we calculate the common spike height as

vej = ve0 =

[
ωm

N−1∑
k=0

G∂Ω

(
kL

N
, 0

)] 1
1−γm+s

. (3.1)

With a common spike height, the balance equations (2.18b) then reduce to

[
∂σG∂Ω(0+, 0) + ∂σG∂Ω(0−, 0)

]
+ 2

N−1∑
k=1

∂σG∂Ω

(
kL

N
, 0

)
= 0 , (3.2)

which can be verified either explicitly or by using the symmetry of the Green’s function.
For a symmetric N -spike steady-state the NLEP (2.30) can be simplified significantly. First the matrix E ,

defined in (2.27), simplifies to
E = v̂γm−1

e0 Gλ∂Ω .

Therefore, from (2.29) it follows that χ(λ) = v̂γm−1
e0 µ(λ), where µ(λ) is an eigenvalue of the Green’s matrix Gλ∂Ω

defined in (2.26). Furthermore, by using the bi-translation invariance and symmetry of Gλ∂Ω, we can define

Hλ
|j−i| ≡ G

λ
∂Ω(|σi − σj |, 0) = Gλ∂Ω(|i− j|L/N, 0) , (3.3)

which allows us to write the Green’s matrix as

Gλ∂Ω =


Hλ

0 Hλ
1 Hλ

2 · · · Hλ
N−1

Hλ
N−1 Hλ

0 Hλ
1 · · · Hλ

N−2
...

...
...

. . .
...

Hλ
1 Hλ

2 Hλ
3 · · · Hλ

0

 ,

which we recognize as a circulant matrix. As a result, the matrix spectrum of Gλ∂Ω is readily available as

µk(λ) =
N−1∑
j=0

Hλ
j e

i 2πjk
N , ccck(λ) =

(
1, · · · , ei

2π(N−1)k
N

)T
, k = 0, . . . , N − 1 . (3.4)

For each value of k = 0, . . . , N−1 we obtain a corresponding NLEP problem from (2.30). Since ccc0 = (1, . . . , 1)T

we can interpret this “mode” as a synchronous perturbation. In contrast, the values k = 1, . . . , N − 1 for
N ≥ 2 correspond to asynchronous perturbations, since the corresponding eigenvectors ccck(λ) are all orthogonal
to (1, . . . , 1)T . Any unstable asynchronous “mode” of this type is referred to as a competition instability, in the
sense that the linear stability theory predicts that the heights of individual spikes may grow or decay, but that
the overall sum of all the spike heights remains fixed. For each value of k, the NLEP (2.30) becomes

L0φ−mqχk(λ)wp
´∞
−∞[w(y)]m−1φ(y) dy´∞
−∞[w(y)]m dy

= λφ , where χk(λ) ≡ µk(λ)∑N−1
j=1 G∂Ω(jL/N, 0)

=
µk(λ)

µ0(0)
. (3.5)

Further analysis requires details of the Green’s function Gλ∂Ω, which are available in our two special cases.
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3.1 NLEP Multipliers for the Well-Mixed Limit

In the well-mixed limit, Db → ∞, the membrane Green’s function, satisfying (2.24), is given by (see (A.5) of
Appendix A)

Gλ∂Ω(σ, ζ) = Γλ(|σ − ζ|) +
K2

µ2
sλA

1

µ2
sλ(µ2

bλ + β)−Kβ
= Γλ(|σ − ζ|) +

γλ
µ2
sλ

, γλ ≡
K2/A

µ2
sλ(µ2

bλ + β)−Kβ
, (3.6)

where β ≡ KL/A. Here Γλ is the periodic Green’s function for the uncoupled (K = 0) problem, which is given
explicitly by (A.2) of Appendix A as

Γλ(x) =
1

2
√
Dvµsλ

coth

(
µsλL

2
√
Dv

)
cosh

(
µsλ√
Dv
|x|
)
− 1

2
√
Dvµsλ

sinh

(
µsλ√
Dv
|x|
)
.

After some algebra we use (3.4) to calculate the eigenvalues µk(λ) of the Green’s matrix as

µk(λ) =

N−1∑
j=0

Γλ(jL/n)ei
2πjk
N + δk0

Nγλ
µ2
sλ

=
1

2
√
Dvµsλ

cosh
( µsλL

2N
√
Dv

)
sinh

( µsλL
2N
√
Dv

)
sinh

( µsλL
2N
√
Dv

+ iπk
N

)
sinh

( µsλL
2N
√
Dv
− iπk

N

) + δk0
Nγλ
µ2
sλ

,

where δk0 is the Kronecker symbol. In this way, we obtain from (3.5) that the NLEP multipliers are given by

χ0(λ) =

1
2
√
Dvµsλ

coth

(
µsλL

2N
√
Dv

)
+ Nγλ

µ2sλ

1
2
√
Dvµs0

coth

(
µs0L

2N
√
Dv

)
+ Nγ0

µ2s0

, χk(λ) =

1
2
√
Dvµsλ

cosh
(

µsλL

2N
√
Dv

)
sinh
(

µsλL

2N
√
Dv

)
sinh
(

µsλL

2N
√
Dv

+ iπk
N

)
sinh
(

µsλL

2N
√
Dv
− iπk

N

)
1

2
√
Dvµs0

coth

(
µs0L

2N
√
Dv

)
+ Nγ0

µ2s0

, (3.7)

for k = 1, ..., N −1. We observe from the χ0(λ) term in (3.7), that any synchronous instability will depend on the
membrane diffusivity Dv only in the form N2Dv. This shows that a synchronous instability parameter threshold
will be fully determined by the one-spike case upon rescaling by 1/N2. We remark here that the numerator for
χk(λ) can be simplified by using the identity sinh(z + ia) sinh(z − ia) = 1

2 [cosh(2z) − cos(2a)] so that χk(λ) is
real valued whenever Imλ = 0.

3.2 NLEP Multipliers for the Disk

In the disk we can calculate the membrane Green’s function as a Fourier series (see (A.7) of Appendix A)

Gλ∂Ω(σ, ζ) =
1

2πR

∞∑
n=−∞

gλne
i
n
R (σ−ζ) , (3.8)

where gλn is given explicitly by

gλn =
1

Dv

(
n
R

)2
+ µ2

sλ −K2aλn
, aλn =

1

DbP ′n(R) +K
, Pn(r) ≡

I|n|(ωbλr)

I|n|(ωbλR)
, ωbλ ≡

µbλ√
Db

. (3.9)

Here In(z) is the nth modified Bessel function of the first kind. From (3.4) the eigenvalues of the Green’s matrix
become

µk(λ) =
1

2πR

∞∑
n=1

gλn

N−1∑
j=0

ei
2π(k+n)j

N .
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By using the identities

N−1∑
j=0

ei
2π(k+n)j

N =

{
N n ∈ NZ− k ,
0 otherwise

, and gλ−n = gλn ,

the eigenvalues are given explicitly by

µk(λ) =
N

2πR
gλk +

N

2πR

∞∑
n=1

(
gλnN+k + gλnN−k

)
.

Therefore, since χk(λ) = µk(λ)/µ0(0), the NLEP multipliers are given by

χk(λ) =
gλk +

∑∞
n=1

(
gλnN+k + gλnN−k

)
g0

0 + 2
∑∞

n=1 g
0
nN

, k = 0, . . . , N − 1 . (3.10)

3.3 Synchronous Instabilities

From (2.35), and the special form of χk(λ) given in (3.5), we deduce that

A0(0) = 1− mq

p− 1
< 0 ,

where the strict inequality follows from the the usual assumption (1.2) on the Gierer-Meinhardt exponents. As
a result, synchronous instabilities do not occur through a zero-eigenvalue crossing, and can only arise through a
Hopf bifurcation. To examine whether such a Hopf bifurcation for the synchronous mode can occur, we now seek
purely imaginary zeros of A0(λ). Classically, in the uncoupled case K = 0, such a threshold occurs along a Hopf
bifurcation curve Dv = D?

v(τs) (cf. [20]). We have an oscillatory instability if τs is sufficiently large, and no such
instability when τs is small (cf. [20], [21]). Bulk-membrane coupling introduces two additional parameters, τb and
K, in addition to the quantities L and A for the well-mixed case, or R and Db for the case of the disk. Thus, it
is no longer clear how the existence of a synchronous instability threshold Dv = D?

v(τs) will be modified by the
additional parameters. Indeed, the analysis below reveals a variety of new phenomenon such as the existence of
synchronous instabilities for τs = 0 and islands of stability for large values of τs. These are two behaviors that
do not occur for the classical uncoupled case K = 0.

We begin by addressing the question of the existence of synchronous instability thresholds. The key assumption
(supported below by numerical simulations) underlying this analysis is that synchronous instabilities persist
as either the bulk and/or membrane diffusivities increase. While this assumption is heuristically reasonable
(large diffusivities make it easier for neighbouring spikes to communicate) an open problem is to demonstrate
it analytically. With this assumption it suffices to seek parameter values of τb, τs, and K for which no Hopf
bifurcations exist when Dv →∞ in the well-mixed limit Db →∞.

As a first step, we remark that in [20] it was shown that ReF(iλI) is monotone decreasing when λI > 0

for special choices of the Gierer-Meinhardt exponents (see also [21]). The monotonicity of this function for
general Gierer-Meinhardt exponents is supported by numerical calculations. Thus we expect that ReF(iλI)

decreases monotonically from ReF(0) = mq
p−1 > 1 as λI > 0 increases. Furthermore, numerical evidence suggests

that ReC0(iλI) is monotone increasing in λI . Since C0(0) = 1 there must exist a unique root λI = λ?I > 0
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to ReA0(iλI) = 0 bounded above by λFI , the unique solution to ReF(iλFI ) = 1, which depends solely on the
exponents (p, q,m, 0). Therefore in the limit Dv →∞ the well-mixed NLEP multiplier, as given in (3.7), becomes

χ0(λ) ∼
µ2
s0(µ2

b0 + β)−Kβ
µ2
sλ(µ2

bλ + β)−Kβ

(
µ2
bλ + β

µ2
b0 + β

)
.

Seeking a purely imaginary root of A0(λ) = 0 we focus first on the real part. We calculate

ReA0(iλI) =
1 + β

1 + β +K

(
1 +K − Kβ

1 + β

1

1 +
(
τbλI
1+β

)2)− ReF(iλI) ,

and note that the root λI = λ?I(τb,K) to ReA0(iλI) = 0 is independent of τs. Next, for the imaginary part we
calculate

ImA0(iλ?I) =
1 + β

1 + β +K

(
τs +

Kβ

1 + β

τb
1+β

1 +
( τbλ?I

1+β

)2)λ?I − ImF(iλ?I) .

Fortunately, at each fixed value of τs the threshold K = K(τb) can be calculated as the τs-level-set of a function
depending only on K and τb. Indeed the condition ImA0(iλ?I) = 0 can equivalently be written as

ImA0(iλ?I) =
1 + β

1 + β +K

(
τs −M(τb,K)

)
λ?I = 0 , (3.11)

where we have defined

M(τb,K) ≡
(

1 + β +K

1 + β

)
ImF(iλ?I)

λ?I
− Kβ

1 + β

 τb
1+β

1 +
( τbλ?I

1+β

)2
 . (3.12)

In the (p, q,m, s) = (3, 1, 3, 0) explicitly solvable case we find that ImF(iλ?I) = 1
3λ

?
IReF(iλ?I), so that by

solving ReA0(iλI) = 0 for ReF(iλ?I), (3.12) becomes

M(τb,K) =
1 +K

3
− Kβ

1 + β

 τb
1+β + 1

3

1 +
( τbλ?I

1+β

)2
 .

By substituting this expression into (3.11), we deduce the existence of two distinct threshold branches obtained
by considering the limits K � 1 and K � 1. In this way, we derive

τs −M(τb,K) ∼ τs −
1

3
+

1

β0

(
τb −

1

3

)
+O(K−1) for K � 1 ,

τs −M(τb,K) ∼ τs −
1

3
− 1

3
K +O(K2) for K � 1 ,

where β0 ≡ L/A. Notice that in ordering both of these asymptotic expansions we have used that 0 < λ?I ≤ λFI ,
where the upper bound is independent of K. In the K � 1 regime we deduce that if τb = 1

3 − β0

(
τs − 1

3

)
, then

ImA0(iλ?I) = 0 forces K → ∞, implying the existence of a threshold branch emerging from K = ∞ at these
parameter values. Furthermore, since τb approaches 0 when τs tends to 1

3

(
1
β0

+ 1
)
, we deduce that this branch

will disappear for sufficiently large values of τs. In addition, in the K � 1 regime we find that a new branch given
by K ≈ 3τs − 1 emerges when τs > 1

3 . The left panel of Figure 3 shows the numerically-computed contours of
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Figure 3: Level sets ofM(τb,K) for Gierer-Meinhardt exponents (p, q,m, s) = (3, 1, 3, 0) (left) and (p, q,m, s) =
(2, 1, 2, 0) (right). In both cases the level set value corresponds to a value of τs = M(τb,K). Note also the
contours tending to a vertical asymptote, and the emergence of a horizontal asymptote as τs exceeds some
threshold. Geometric parameters are L = 2π and A = π.

M(τb,K) for the explicitly solvable case (p, q,m, s) = (3, 1, 3, 0). The right panel of Figure 3 shows a qualitatively
similar behavior that occurs for the prototypical Gierer-Meinhardt parameter set (p, q,m, s) = (2, 1, 2, 0).

The preceding analysis does not directly predict in which regions synchronous instabilities exist, as it only
provides the boundaries of these regions. We now outline a winding-number argument, related to that used in
[21], that provides a hybrid analytical-numerical algorithm for calculating the synchronous instability threshold
Dv = D?

v(K, τb, τs). Furthermore, as we show below, this algorithm indicates that synchronous instabilities exist
whenever M(τb,K) < τs.

Synchronous instabilities are identified with the zeros to (2.33) having a positive real-part when χ(λ) in (2.33)
is replaced by χ0(λ). By using a winding number argument, the search for such zeros can be reduced from one
over the entire right-half plane Re(λ) > 0 to one along only the positive imaginary axis. Indeed, if we consider
a counterclockwise contour composed of a segment of the imaginary axis, −ρ ≤ Imλ ≤ ρ, together with the
semi-circle defined by |λ| = ρ and −π/2 < argλ < π/2, then in the limit ρ→∞ the change in argument is

∆argA0(λ) = 2π(Z − 1), (3.13)

where Z is the number of zeros of A0 with positive real-part. Here we have used that χ0(λ) 6= 0 when Re(λ) ≥ 0,
while F(λ) has exactly one simple (and real) pole in the right-half plane corresponding to the only positive
eigenvalue of the self-adjoint local operator L0 (cf. [22]). We immediately note that F(λ) = O(λ−1) for |λ| � 1,
| arg λ| < π/2, whereas

C0(λ) ∼ 2µ0(0)
√
τsDvλ

1/2 , C0(λ) ∼ µ0(0)
N
√
Dvτs
πR

λ1/2 , for |λ| � 1 , | arg λ| < π/2 ,

for the well-mixed limit and the disk cases, respectively. Therefore, in both cases we have A0(λ) ∼ O(λ1/2) for
|λ| � 1 with | arg λ| < π/2, so that the change in argument over the large semi-circle is π/2. Furthermore, since
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Figure 4: Colormap of the synchronous instability threshold D?
v in the K versus τb parameter plane for the

well-mixed explicitly solvable case for various values of τs with L = 2π and A = π. The dashed vertical lines
indicate the asymptotic predictions for the largeK threshold branch, while the dashed horizontal lines indicate the
asymptotic predictions for the small K threshold branch. The unshaded regions correspond to those parameter
values for which synchronous instabilities are absent.

the parameters in A0(λ) are real-valued, the change in argument over the segment of the imaginary axis can be
reduced to that over the positive imaginary axis. In this way, we deduce that

Z =
5

4
+

1

π
∆argA0(iλI)

∣∣
λI∈(∞,0]

. (3.14)

We readily evaluate the limiting behaviour limλI→∞ argA0(iλI) = π/4. Moreover since χ0(0) = 1 we evaluate
A0(0) = 1 − mq

p−1 < 0 by the assumption (1.2) on the Gierer-Meinhardt exponents. Numerical evidence suggests
that ReA0(iλI) increases monotonically with λI and there should therefore be a unique λ?I for which ReA0(iλ?I) =

0. We conclude that there are two positive values for the change in argument, and hence the number of zeros of
A0(λ) in Re(λ) > 0 is dictated by the sign of ImA0(iλ?I) as follows:

Z = 2 if ImA0(iλ?I) > 0 , or Z = 0 if ImA0(iλ?I) < 0 . (3.15)

Note in particular that, in view of the expression (3.11) for ImA0(iλI), this criterion implies that synchronous
instabilities will exist whenever M(τb,K) < τs in the previous analysis. Within this region, the criterion (3.15)
suggests a simple numerical algorithm for iteratively computing the threshold value of Dv = D?

v(K, τb, τs). Specif-
ically, with all parameters fixed, we first solve ReA0(iλI) = 0 for λ0

I . Then, we calculate ImA0(iλ0
I) and increase

(resp. decrease) Dv if ImA0(iλ0
I) < 0 (resp. ImA0(iλ0

I) > 0 until ImA0(iλ0
I) = 0. This procedure is repeated

until |A0(iλ0
I)| is sufficiently small.
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Figure 5: Synchronous instability threshold D?
v versus K for three pairs of (τs, τb) for a one-spike steady-state

(N = 1) in the unit disk (R = 1). The quality of the well-mixed approximation rapidly improves as Db is
increased. The labels for Db in the right panel also apply to the left and middle panels.

Using the algorithm described above, the results in Figure 4 illustrate how the synchronous instability threshold
D?
v depends on parameters τs, τb, and K for the explicitly solvable case in the well-mixed limit. From these

figures we observe that coupling can have both a stabilizing and a destabilizing effect with respect to synchronous
instabilities. Indeed, on theK = 0 axis we see, as expected from the classical theory, that synchronous instabilities
exist beyond some τs value. However, well before this threshold of τs is even reached it is possible for synchronous
instabilities to exist when both τb and K are sufficiently large. In contrast, we also see from the panels in Fig. 4
with τs = 0.36, τs = 0.38, and τs = 0.4 that when τb is sufficiently small, there are no synchronous instabilities
when the coupling K is large enough. Perhaps the most perplexing feature of this bulk-membrane interaction is
the island of stability that arises around τs = 0.4 and appears to persist, propagating to larger values of τb as
τs increases (only shown up to τs = 0.6). Finally in Figure 5 we demonstrate how the synchronous instability
threshold behaves for finite bulk-diffusivity. A key observation from these plots is that that the instability
threshold increases with decreasing value of Db, which further supports our earlier monotonicity assumption.

3.4 Asynchronous Instabilities

Since asynchronous instabilities emerge from a zero-eigenvalue crossing there are two significant simplifications.
Firstly, the thresholds are determined by the nonlinear algebraic problem Ak(0) = 0, for each mode k = 1, . . . , N−
1, as given by (2.33) in which χ(λ) is replaced by χk(λ) as defined in (3.5). Secondly, by setting λ = 0, it
follows that all τs and τb dependent terms in χk(λ) vanish. Therefore, asynchronous instability thresholds are
independent of these two parameters. The resulting nonlinear algebraic equations are readily solved with an
appropriate root finding algorithm (e.g. the brentq routine in the Python library SciPy). Furthermore, in the
uncoupled case (K = 0) the threshold can be determined explicitly (notice that when K = 0 the well-mixed
and disk cases coincide). Indeed, defining z = L

2N
√
Dv

and y = πk/N , the algebraic problem Ak(0) = 0 becomes( mq
p−1 − 1

)
sinh2(z) = sin2(y). From this relation it readily follows that the competition stability threshold for

K = 0 is

Dv =

[
2N

L
log

(√
p−1

mq−p+1

∣∣∣∣sin(πkN
)∣∣∣∣+

√
p−1

mq−p+1 sin2

(
πk

N

)
+ 1

)]−2

. (3.16)
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Figure 6: Asynchronous instability thresholds Dv versus the coupling K in the well-mixed limit for different
values of L, different (N, k) pairs, and for domain areas A = 3.142 (solid), 1.571 (dashed), and 0.785 (dotted).
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Figure 7: Asynchronous instability thresholds Dv versus the coupling K for the unit disk with Gierer-Meinhardt
exponents (3, 1, 3, 0), and for different Db. The dashed lines show the corresponding thresholds for the well-mixed
limit. The legend in the right-most plot applies to each plot.

Figure 6 illustrates the dependence of the asynchronous threshold on the geometric parameters L and A for
the well-mixed limit. In Figure 7 the effect of finite bulk diffusivity Db is explored for the unit disk. This figure
also illustrates that while the asynchronous threshold tends to zero as K → ∞ for sufficiently large values of
Db the same is not true for small values of Db. It is however worth remembering that for large K, where the
competition threshold value of Dv appears to approach zero in these figures, the result is not uniformly valid
since the NLEP derivation required that Dv � ε2.

3.5 Numerical Support of the Asymptotic Theory

In this subsection we verify some of the predictions of the steady-state and linear stability theory by performing
full numerical PDE simulations of the coupled bulk-membrane system (1.1). In §3.5.1 we give an outline of the
methods used for computing the full numerical solutions. In §3.5.2 and §3.5.3 we provide both quantitative and
qualitative support for the instability thresholds predicted by the asymptotic theory.
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3.5.1 Outline of Numerical Methods

The spatial discretization of (1.1) is much simpler for the well-mixed limit than for the case of the disk with a
finite-bulk diffusivity. Indeed, in the well-mixed limit, the bulk inhibitor V is spatially independent to leading
order. By integrating the bulk PDE (1.1c), and using the divergence theorem, we obtain that V satisfies the ODE

τbVt = −(β − 1)V +
β

L

ˆ L

0
v dσ , (3.17)

where β ≡ KL/A. For the well-mixed case it suffices to use a uniform grid in the arc-length coordinate for the
spatial discretization of the membrane problem (1.1a) and (1.1b). Alternatively, the problem (1.1) for finite Db

in the disk requires a full spatial discretization of the two-dimensional disk. To do so, we use a finite-element
approach where the mesh is chosen in such a way that the boundary nodes are uniformly distributed. In this
way, we can continue to apply a finite difference discretization for the membrane problem (1.1a) and (1.1b). For
both the well-mixed case and the disk problem, the spatially discretized system leads to a large system of ODEs

dW

dt
= AW + F (W ) . (3.18)

Here the matrix A arises from the spatially discretized diffusion operator, while F (W ) denotes the reaction
kinetics and the bulk-membrane coupling terms.

The choice of a time-stepping scheme for reaction diffusion systems is generally non-trivial. Since the operator
A is stiff, it is best handled using an implicit time-stepping method. On the other hand, the kinetics F (W ) are
typically non-linear so explicit time-stepping is favourable. Using a purely implicit or explicit time-stepping
algorithm therefore leads to substantial computation time, either by requiring the use of a non-linear solver to
handle the kinetics in the first case, or by requiring a prohibitively small time-step to handle the stiff linear
operator in the second case. This difficulty can be circumvented by using so-called mixed methods, specifically
the implicit-explicit methods described in [1]. We will use a second order semi-implicit backwards difference
scheme (2-SBDF), which employs a second-order backwards difference to handle the diffusive term together with
an explicit time-stepping strategy for the nonlinear term (cf. [18]). This time-stepping strategy is given by

(3I− 2∆tA)Wn+1 = 4Wn + 4∆tF (Wn)−Wn−1 − 2∆tF (Wn−1) . (3.19)

To initialize this second-order method we bootstrap with a first order semi-implicit backwards difference scheme
(1-SBDF) as follows:

(I−∆tA)Wn+1 = Wn + ∆tF (Wn) . (3.20)

We will use the numerical method outlined above in the two proceeding sections.

3.5.2 Quantitative Numerical Validation: Numerically Computed Synchronous Threshold

We begin by describing a method for numerically calculating the synchronous instability threshold for a one (or
more) spike pattern. Given an equilibrium solution (u0, v0, V0), for sufficiently small times the numerical solution
will evolve approximately as the linearization

u(σ, t) = u0(σ) + eλtφ(σ) , v(σ, t) = v0(σ) + eλtψ(σ) , V (σ, t) = V0(σ) + eλtη(σ) .
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Figure 8: Comparison between numerical and asymptotic synchronous instability threshold for N = 1 with
L = 2π, A = π, τs = 0.6, and τb = 0.01. Notice that, as expected, the agreement improves as ε decreases.

For ε > 0 fixed and sufficiently small the steady-state will be very close to that predicted by the asymptotic
theory. By initializing the numerical solver with one of the steady-state solutions predicted by the asymptotic
theory, and then tracking its time evolution, we will thus be able to approximate the value of Re(λ). If we fix a
location on the boundary σ? (e.g. one of the spike locations) and let t?1 < t?2 < ... denote the sequence of times
at which u(σ?, t) attains a local maximum or minimum in t, then the sequence u?j = u(σ?, t?j ) (j = 1, ..,) will
approximate the envelope of u(σ?, t). If this sequence is diverging from its average then Reλ ≥ 0, whereas if it is
converging then Reλ < 0. Furthermore, by writing

|u?n − u0(σ?)| ≈ etnRe(λ)|φ(σ?)| ,

we can solve for Re(λ) by taking two values t?n > t?m sufficiently far apart to get

Re(λ) ≈
log
∣∣u?n − u0(σ?)

∣∣− log
∣∣u?m − u0(σ?)

∣∣
t?n − t?m

.

This motivates a simple method for estimating the synchronous instability threshold numerically. Starting with
some point in parameter space (chosen close to the threshold predicted by the asymptotic theory) we approximate
Re(λ) and then increase or decrease one of the parameters to drive Re(λ) towards zero. Once Re(λ) is sufficiently
close to zero we designate the resulting point in parameter space as a numerically-computed synchronous insta-
bility threshold point.

In the well-mixed limit, we fix values of K and vary Dv using the numerical approach described above until
Re(λ) is sufficiently small. The results in Figure 8 compare the synchronous instability threshold for N = 1 in the
well-mixed limit as predicted by the asymptotic theory and by our full numerical approach for ε = 0.3, 0.4, 0.5. We
observe, as expected, that the asymptotic prediction improves with decreasing values of ε, but that the agreement
is non-uniform in the coupling parameter K.

3.5.3 Qualitative Numerical Support: A Gallery of Numerical Simulations

We conclude this section by first showcasing the dynamics of multiple spike patterns for several choices of the
parameters K, Dv, τs, and τb in the well-mixed limit. We will focus exclusively on the explicitly solvable Gierer-
Meinhardt exponent set (p, q,m, s) = (3, 1, 3, 0) with ε = 0.05 and the geometric parameters L = 2π and A = π.
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Figure 9: Synchronous (solid) and asynchronous (dashed) instability thresholds in the Dv versus K parameter
plane in the well-mixed limit for N = 1 (blue), N = 2 (orange), and N = 3 (green). At the top of each of the
three panels a different pair (τs, τb) is specified. See Table 1 for Dv and K values at the numbered points in each
panel. Figures 10, 11, and 12 show the corresponding spike dynamics from full PDE simulations of (1.1) at the
indicated points.

For the numerical computation we discretized the domain boundary with 1200 uniformly distributed points
(∆σ ≈ 0.00524) and used trapezoidal integration for the bulk-inhibitor equation (3.17). Furthermore, we used
2-SBDF time-stepping initialized by 1-SBDF with a time-step size of ∆t = 2.5(∆σ)2 ≈ 6.854 × 10−4. In Figure
9 we plot the asymptotically predicted synchronous and asynchronous instability thresholds for three pairs of
time-scale parameters: (τs, τb) = (0.2, 2), (0.6, 2), (0.6, 0.1). Each plot also contains several sample points whose
K and Dv values are given in Table 1 below. The corresponding full PDE numerical simulations, tracking the
heights of the spikes versus time, at these sample points are shown in Figures 10, 11, and 12. We observe that
the initial instability onset in these figures is in agreement with that predicted by the linear stability theory. For
example, when τs = 0.6 and τb = 2 an N = 3 spike pattern at point six should be stable with respect to an
N = 3 synchronous instability but unstable with respect to the N = 3 asynchronous instabilities. Indeed the
initial instability onset depicted in the “point 6, N = 3” plot of Figure 11 showcases the non-oscillatory growth of
two spikes and decay of one as expected. In addition the plots in Figures 10, 11, and 12 support two previously
stated conjectures. Firstly, pure Hopf bifurcations for N ≥ 2 should be supercritical (see “Point 4, N = 2”,
“Point 7, N = 3” in Figure 11, and “Point 4, N = 2”, “Point 8, N = 3” in Figure 12). Secondly, we observe that
asynchronous instabilities lead to the eventual annihilation of some spikes and the growth of others. As a result,
our PDE simulations suggest that these instabilities are subcritical.

We now show that this agreement between predictions of our linear stability theory and results from full PDE
simulations continues to hold for the case of a finite bulk diffusivity. To illustrate this agreement, we consider
the unit disk with Db = 10 for (τs, τb) = (0.6, 0.1). For this parameter set, in the left panel of Figure 13 we show
the asymptotically predicted synchronous and asynchronous instability thresholds in the Dv versus K parameter
plane for N = 1 and N = 2. The faint grey dotted lines in this figure indicate the corresponding well-mixed
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Figure 10: Numerically computed spike heights (vertical axis) versus time (horizontal axis) from full PDE simu-
lations of (1.1) for τs = 0.2 and τb = 2 at the points indicated in the left panel of Figure 9. Distinct spike heights
are distinguished by line types (solid, dashed, and dotted).
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Figure 11: Numerically computed spike heights (vertical axis) versus time (horizontal axis) from full PDE sim-
ulations of (1.1) for τs = 0.6 and τb = 2 at the points indicated in the middle panel of Figure 9. Distinct spike
heights are distinguished by line types (solid, dashed, and dotted).
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Point K Dv

1 8 7
2 4 6
3 4 2
4 1 3
5 1 1.25
6 1 0.5

(a)

Point K Dv

1 3 7
2 1.5 5
3 0.75 2.5
4 0 1.75
5 1.5 1.25
6 0.75 1.25
7 0 0.9
8 1 0.5

(b)

Point K Dv

1 0.5 18
2 2 10
3 1.75 3
4 0 1.75
5 2 1.75
6 0.25 1.5
7 1.25 1.25
8 0 0.9
9 1 0.9

(c)

Point K Dv

1 0.5 18
2 2 10
3 2 3.5
4 1 0.5
5 0.025 1.8

(d)

Table 1: K and Dv values at the sampled points in the three panels of Fig. 9: (a) Left panel: (τs, τb) = (0.2, 2),
(b) Middle panel: (τs, τb) = (0.6, 2), and (c) Right panel: (τs, τb) = (0.6, 0.1). Table (d) shows the K and Dv

values at the sampled points for the disk appearing in the left panel of Fig. 13.

thresholds. In the right panel of Figure 13 we plot the spike heights versus time, as computed numerically from
(1.1), at the sample points indicated in the left panel. In each case, the numerically computed solution uses a
2% perturbation away from the asymptotically computed N -spike equilibrium. As in the well-mixed case, the
full numerical simulations confirm the predictions of the linear stability theory. Furthermore, Figures 1 and 2
depict both the bulk-inhibitor and the two membrane-bound species at certain times for an N = 2 spike pattern
at points 2 and 5 in the left panel of Figure 13, respectively. From this figure, we observe that the bulk-inhibitor
field is largely constant except within a small near region near the spike locations.

4 The Effect of Boundary Perturbations on Asynchronous Instabilities

The goal of this section is to calculate the leading order correction to the asynchronous instability thresholds
for a perturbed disk. Specifically we consider the domain

Ωδ ≡ {(r, θ) | 0 ≤ r < R+ δh(θ) , 0 ≤ θ < 2π} ,

where h(θ) is a smooth O(1) function with a Fourier series h(θ) =
∑∞

n=−∞ hne
inθ. Although our final results will

be restricted to the specific form

h(θ) = 2Rξ cos(Nθ) = RξeiNθ +Rξe−iNθ , (4.1)

where ξ is a parameter, there is no additional difficulty in considering a general Fourier series in the analysis
below. However, we remark that in using the general Fourier series given above we must impose appropriate
symmetry conditions on h(θ) so that the symmetric N -spike pattern construction, and in particular the resulting
NLEP (3.5), remain valid. Our main goal is to determine a two-term asymptotic expansion in powers of δ for
each asynchronous instability threshold in the form

Dv ∼ D?
vk0(Db,K,R) +D?

vk1(Db,K,R)δ +O(δ2) ,

such that a zero-eigenvalue crossing is maintained to at least second order, i.e. for which λ = O(δ2).
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Figure 12: Numerically computed spike heights (vertical axis) versus time (horizontal axis) from full PDE sim-
ulations of (1.1) for τs = 0.6 and τb = 0.1 at the points indicated in the right panel of Figure 9. Distinct spike
heights are distinguished by line types (solid, dashed, and dotted).
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Figure 13: Left panel (a): Synchronous (solid) and asynchronous (dashed) instability thresholds in the Dv versus
K parameter plane for the unit disk with Db = 10 and (τs, τb) = (0.6, 0.1). N = 1 spike and N = 2 spikes
correspond to the (blue) and (orange) curves, respectively. The faint grey dotted lines are the corresponding well-
mixed thresholds. Right panel (b): Numerically computed spike heights (vertical axis) versus time (horizontal
axis) from full PDE simulations of (1.1) at the points indicated in the left panel for N = 1 and N = 2.
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Figure 14: The effect of boundary perturbations on the asynchronous stability of symmetric N -spike patterns
for the unit disk. The top row shows the multiplier MN,k, defined in (4.7), as a function of K while the bottom
row shows the leading order correction to the asynchronous instability threshold, with the dashed line indicating
the unperturbed threshold. Each column correspond to a choice of Db = 50 or Db = 5 with Gierer-Meinhardt
exponents of (p, q,m, s) = (3, 1, 3, 0) or (p, q,m, s) = (2, 1, 2, 0). In the second row the boundary perturbation
has parameters ξ = 1 (indicating an outward bulge at the spike locations), and δ = 0.01.

Recall that the only component of the asynchronous NLEP (3.5) that depends on the problem geometry is the
NLEP multiplier χk(λ). To study the effect of boundary perturbations, it therefore suffices to calculate the leading
order corrections to the corresponding membrane Green’s function satisfying (2.24). Furthermore, we note that
since we are only interested in a first order expansion, whereas λ = O(δ2), there is no loss in validity assuming
that λ is an independent parameter that we ultimately set to zero. Upon expanding Dv = Dv0

(
1 + Dv1

Dv0
δ
)
, a

two-term expansion for the perturbed membrane Green’s function is given by (see Appendix B)

Gλ∂Ω(θ, θ0) ∼ Gλ∂Ω0(θ, θ0) +Gλ∂Ω1(θ, θ0)δ +O(δ2),

where Gλ∂Ω0 is the membrane Green’s function for the unperturbed disk calculated previously in (A.7) and the
leading-order correction is

Gλ∂Ω1(θ, θ0) = −h(θ0)
R Gλ∂Ω0(θ, θ0) + 1

2πR

∞∑
n=−∞

∞∑
k=−∞

ĝλn,khn−kg
λ
kg

λ
ne
inθ−ikθ0 − Dv1

2πR3

∞∑
n=−∞

n2(gλn)2ein(θ−θ0) . (4.2)
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In this expression the coefficients ĝλn,k are given by

ĝλn,k = Dv0
R3 k(n+ k) +K2aλk

(
âλn,k + P ′k(R)

)
, (4.3)

where gλk , a
λ
k , and â

λ
n,k are defined in (3.9), (A.6), and (B.7), respectively.

Restricting our attention to perturbations of the form (4.1), and considering a symmetric N -spike pattern
with spikes centered at θj = 2π(j−1)

N for j = 1, ..., N , we deduce from (4.2) that

Gλ∂Ω1(θ, θj) = −2ξGλ∂Ω0(θ, θj) +
ξ

2π

∞∑
n=−∞

{
ĝλn,n+Ng

λ
0,n+N + ĝλn,n−Ng

λ
0,n−N}gλ0nein(θ−θj)

− Dv1
2πR3

∞∑
n=−∞

n2(gλ0n)2ein(θ−θj) .

(4.4)

Note that by symmetry the consistency and balance equations continue to hold for a symmetric N spike pattern.
Furthermore the perturbed Green’s matrix remains circulant, and therefore its eigenvalues can be read off as

µk(λ) =
N−1∑
j=0

Gλ∂Ω

(
2π
N j, 0

)
e

2πijk
N ∼ µk0(λ) + δ

{
−2ξµk0(λ) + ξµk11(λ) +Dv1µk12(λ)

}
≡ µk0(λ) + δµk1(λ),

where

µk0(λ) = N
2πR

∞∑
n=−∞

gλnN−k , (4.5a)

µk11(λ) = N
2π

∞∑
n=−∞

{
ĝλnN−k,(n+1)N−kg

λ
(n+1)N−k + ĝλnN−k,(n−1)N−kg

λ
(n−1)N−k

}
gλnN−k , (4.5b)

µk12(λ) = − N
2πR3

∞∑
n=−∞

(nN − k)2(gλnN−k)
2 . (4.5c)

Finally, upon setting λ = 0 in the zero-eigenvalue crossing condition Ak(0) = [χk(0)]−1 −mq/(p− 1) for the
asynchronous modes k = 1, . . . , N − 1 (see (2.35)), and noting χk(0) = µk(0)/µ0(0) from (3.5), we obtain that

µ00(0) + δ [−2ξµ00(0) + ξµ011(0) +Dv1µ012(0)]

µk0(λ) + δ [−2ξµk0(λ) + ξµk11(λ) +Dv1µk12(λ)]
− mq

p− 1
= 0 , for k = 1, . . . , N − 1 . (4.6)

The leading-order problem is satisfied by the previously determined threshold Dv0 = D?
vk0(K,Db, R). On the

other hand, by expanding (4.6) in powers of δ, we obtain from equating O(δ) terms in this expansion that

ξ
(
µ011(0)− mq

p−1µk11(0)
)

+Dv1

(
µ012(0)− mq

p−1µk12(0)
)

= 0 .

Upon solving for Dv1 = D?
vk1(K,Db, R) in this expression, we conclude that

D?
vk1 = −MN,kξ , where MN,k ≡

µ011(0)− mq
p−1µk11(0)

µ012(0)− mq
p−1µk12(0)

. (4.7)

Therefore, the sign and magnitude of the multiplier MN,k determines how the asynchronous instability threshold
changes when the boundary is perturbed by a single Fourier mode of the form (4.1).
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Figure 14 illustrates the effect of boundary perturbations of the form (4.1) by plotting the multiplier −MN,k

in the top row, and the leading order corrected asynchronous threshold Dv ∼ D?
vk0 + D?

vk1δ in the bottom row.
Note that the (positive) maximums of h(θ) correspond with the quasi-equilibrium spike locations θj for each
j = 1, ..., N . From (4.7) we therefore conclude that positive values of −MN,k indicate an increase in stability
when spike locations bulge out (ξ > 0), and a decrease in stability otherwise. The results of Figure 14 thus indicate
that an outward bulge at the location of each spike in a symmetric N -spike pattern leads to an improvement in
stability of the pattern with respect to asynchronous instabilities. In addition, the magnitude of −MN,k shows
that this stabilizing effect is most pronounced at some finite value of K corresponding to a maximum of −MN,k.
Furthermore, comparing the Db = 50 and Db = 5 plots we see that decreasing the bulk diffusivity further
accentuates the effect of boundary perturbations as is clear from the relative magnitude of −MN,k in these two
cases. These numerical observations lead us to propose the following numerically supported proposition.

Proposition 4.1 Consider a symmetric N -spike pattern for the Gierer-Meinhardt system (1.1) on the unit disk.
Then a domain perturbation of the form (4.1), which creates an outward bulge at each spike location, will increase
the asynchronous instability threshold of the symmetric N -spike pattern.

5 Discussion

We have introduced a coupled bulk-membrane PDE model in which a scalar linear 2-D bulk diffusion process is
coupled through a linear Robin boundary condition to a two-component 1-D RD system with Gierer-Meinhardt
(nonlinear) reaction kinetics defined on the domain boundary. For this coupled bulk-membrane PDE model,
in the singularly perturbed limit of a long-range inhibition and short-range activation for the membrane-bound
species, we have studied the existence and linear stability of localized steady-state multi-spike patterns defined on
the membrane. Our primary goal was to study how the bulk diffusion process and the bulk-membrane coupling
modifies the well-known linear stability properties of steady-state spike patterns for the 1-D Gierer-Meinhardt
model in the absence of coupling.

By using a singular perturbation analysis on our coupled model (1.1) we first derived a nonlinear algebraic
system (2.18) characterizing the locations and heights of steady-state multi-spike patterns on the membrane.
Then we derived a new class of NLEPs (nonlocal eigenvalue problems) characterizing the linear stability on O(1)

time-scales of these steady-state patterns. In this NLEP, the multiplier of the nonlocal term is determined in
terms of the model parameters together with a new coupled nonlocal Green’s function problem. More specifically,
a novel feature of our steady-state and linear stability analysis is the appearance of a nonlocal 1-D membrane
Green’s function Gλ∂Ω(σ, ζ) (see (2.24)), satisfying

Dv∂
2
σG

λ
∂Ω(σ, ζ)− (1 +K + τsλ)Gλ∂Ω(σ, ζ) +K2

ˆ L

0
GλΩ(σ, σ̃)Gλ∂Ω(σ̃, ζ) dσ̃ = −δ(σ − ζ) , 0 < σ, ζ < L ,

which is coupled to a 2-D bulk Green’s function GλΩ satisfying (see (2.21))

Db∆G
λ
Ω − (1 + τbλ)GλΩ = 0 , in Ω ; Db∂nG

λ
Ω +KGλΩ = δ∂Ω(x− x0) , on ∂Ω .

Recall (1.1) for the description of all the model parameters including, the time constants τs and τb, the diffusivities
Dv and Db, and the coupling constant K.

27



To proceed with a more explicit linear stability theory we restricted our analysis to symmetric multi-spike
patterns, which are characterized by equidistantly (in arc-length) separated spikes of equal height, for two ana-
lytically tractable cases. The first case is when Ω is a disk of radius R, while the second case is when the bulk is
well mixed (i.e. Db � 1). For these two specific cases, we obtained analytical expressions for the relevant Green’s
function, and consequently the NLEP multipliers, in the form of infinite series for the disk and explicit formulae
for the well-mixed limit. Parameter thresholds for two distinct forms of linear instabilities, corresponding to
either synchronous or asynchronous perturbations of the heights of the steady-state spikes, were then computed
from the NLEP. Our results indicate a non-monotonic dependence on the bulk-membrane coupling strength K for
both modes of instability, together with an intricate relationship between the time-scale and coupling parameters
for the synchronous instabilities. Specifically, for the asynchronous instability modes the coupling has the effect
of improving stability for smaller values of K by raising the instability threshold for Dv, but reducing the range
of stability for larger values of K. This effect is amplified in the synchronous case where for certain choices of
τs a small region in the K versus τb parameter space can be found for which no instabilities exist (see Figure
4). Finally, by using a Finite Element / Finite Difference mixed IMEX scheme, we confirmed our linear stability
thresholds with full numerical PDE simulations.

We conclude the discussion by highlighting some open problems and directions for future research. Firstly,
for our coupled model, additional work is required to calculate and study the linear stability of asymmetric spike
patterns. Secondly, we have neglected the role of small O(ε2) eigenvalues corresponding to weak drift instabilities,
which can be studied either through a more detailed asymptotic analysis or by deriving and analyzing a corre-
sponding slow spike-dynamics ODE system. Thirdly, the numerical evidence provided by our PDE simulations
suggests that, when N ≥ 2 in the absence of competition instabilities, the Hopf bifurcation is supercritical, and
leads to the emergence of a small amplitude time-periodic solution near the bifurcation point. The numerical
evidence also suggests that competition instabilities are subcritical, and result in the annihilation of one or more
spikes in a multi-spike pattern. It would be worthwhile to analytically establish these conjectured branching be-
haviors from a weakly nonlinear analysis that is valid either near a Hopf bifurcation point or near a zero-eigenvalue
crossing.

Finally, there are several directions for extending our model and applying a similar methodology. One direction
would be to analyze similar problems in higher space dimensions, such as a 3-D linear bulk diffusion process
coupled to a nonlinear RD system on a 2-D surface. A further direction would be to consider a two-component
bulk diffusion process, with nonlinear bulk kinetics. For this more complicated model it would be interesting to
study the interplay between 1-D membrane-bound and 2-D bulk-bound localized patterns. Additionally it would
be instructive to asymptotically construct and analyze the localized patterns observed in the numerical study of
Madzvamuse et. al. [12, 11] as well those of Rätz et. al. [15, 16, 17].
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A Green’s Functions in the Well-Mixed Limit and for the Disk

In this appendix we collect all the relevant Green’s functions and indicate some of their key properties. We focus
specifically on the uncoupled (K = 0) Green’s function, the well-mixed Green’s function (Db →∞), and the disk
Green’s function (Ω = BR(0)). For the first two cases explicit formulae can be derived, while for the final case
we must rely on a Fourier series expansion representation.

A.1 Uncoupled Membrane Green’s Function

When the bulk and membrane are uncoupled there is no direct dependence on the bulk Green’s function. Indeed
the only relevant geometric dependent parameter becomes the perimeter of the domain L = |∂Ω|. Thus, Ω may
be an arbitrary bounded and simply connected subset of R2. We define the uncoupled Green’s function Γλ as the
solution to

Dv∂
2
σΓ− µ2Γ = −δ(σ − ζ) , 0 < σ < L , Γ is L-periodic . (A.1)

The solution to (A.1) is readily calculated as

Γ(σ, ζ) =
1

2
√
Dvµ

coth

(
µL

2
√
Dv

)
cosh

(
µ√
Dv
|σ − ζ|

)
− 1

2
√
Dvµ

sinh

(
µ√
Dv
|σ − ζ|

)
. (A.2)

A.2 Bulk and Membrane Green’s functions in the Well-Mixed Limit

We now derive the leading order expression for the membrane Green’s function, defined by (2.24), when Db →∞.
To leading order GλΩ, defined by (2.21), is constant and from the divergence theorem we find

GλΩ(σ, σ̃) ∼ GλΩ0 =
1

KL+ µ2
bλA

=
β/K

µ2
bλ + β

1

L
, where β ≡ KL

A
. (A.3)
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Here L ≡ |∂Ω| and A ≡ |Ω|. The leading order problem for the membrane Green’s function in (2.24) is then

Dv∂
2
σG

λ
∂Ω − µ2

sλG
λ
∂Ω +K2GλΩ0

ˆ L

0
Gλ∂Ω(σ̃; ζ) dσ̃ = −δ(σ − ζ) . (A.4)

Upon integrating this equation and using the periodic boundary conditions we get
ˆ L

0
Gλ∂Ω(σ̃; ζ) dσ̃ =

1

µ2
sλ −K2LGλΩ0

=

(
1

µ2
sλ(µ2

bλ + β)−Kβ

)
1

AGλΩ0

,

where GλΩ0 is defined in (A.3). Therefore, from (A.4), we find that Gλ∂Ω satisfies

Dv∂
2
σG

λ
∂Ω − µ2

sλG
λ
∂Ω = −δ(σ − ζ)− K2/A

µ2
sλ(µ2

bλ + β)−Kβ
.

This problem is readily solved in terms of the uncoupled Green’s function of (A.2) by defining

Γλ(σ, ζ) := Γ(σ, ζ)
∣∣
µ=µsλ

,

and then using the decomposition

Gλ∂Ω(σ, ζ) = Γλ(σ, ζ) +
K2

µ2
sλA

1

µ2
sλ(µ2

bλ + β)−Kβ
= Γλ(σ, ζ) +

γλ
µ2
sλ

, γλ ≡
K2/A

µ2
sλ(µ2

bλ + β)−Kβ
. (A.5)

A.3 Bulk and Membrane Green’s functions in the Disk

Here we consider the bulk Green’s function defined by (2.21). By using separation of variables (in polar coordi-
nates), and applying the boundary condition in (2.21), we can write this Green’s function as a Fourier series

GλΩ(r, σ, σ̃) =
1

2πR

∞∑
n=−∞

aλnPn(r)e
in
R (σ−σ̃) , Pn(r) ≡

I|n|(ωbλr)

I|n|(ωbλR)
, aλn ≡

1

DbP ′n(R) +K
, ωbλ ≡

µbλ√
Db

. (A.6)

We remark that the singularity lies on the boundary and for this reason the radial dependence is given only in
terms of the modified Bessel functions of the first kind In(z). Similarly, we can represent the membrane Green’s
function in (2.24) for the disk in terms of the Fourier series

Gλ∂Ω(σ, σ0) =
1

2πR

∞∑
n=−∞

gλne
in
R (σ−σ0) , gλn ≡

1

Dv
n2

R2 + µ2
sλ −K2aλn

. (A.7)

A.4 A Useful Summation Formula for the Disk Green’s Functions

We make note here of a useful summation formula for numerically evaluating the Green’s function eigenvalues
for the disk. By integrating the function (ζ2 + z2)−1 cot

(
π
N (ζ − k)

)
over the contour enclosing [−R,R]× [−R,R],

and then taking the limit R→∞, we obtain

S(z;N, k) :=
∞∑

n=−∞

1

(nN + k)2 + z2
=

π

2Nz

[
coth

(
π

N
(z + ik)

)
+ coth

(
π

N
(z − ik)

)]
. (A.8)
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B Derivation of Membrane Green’s Function for the Perturbed Disk

In this appendix we provide the details for calculating the leading-order correction to the perturbed disk Green’s
function given in (4.2). Recall that the bulk Green’s function solves

Db∆G
λ
Ω − µ2

bλG
λ
Ω = 0, in Ωδ , Db∂nG

λ
Ω +KGλΩ = δ∂Ωδ(x− x̃), on ∂Ωδ . (B.1)

On the boundary r = R+ δh(θ) of the perturbed disk we calculate in terms of polar coordinates that

n̂(θ) =
[
1 +

( δh′(θ)
R+δh(θ)

)2]− 1
2
(
êr − δh′(θ)

R+δh(θ) êθ
)
, ∇ = êr∂r +

1

r
êθ∂θ , δ∂Ωδ(x− x̃) =

[
1 +

( δh′(θ)
R+δh(θ)

)2]− 1
2
δ(θ − θ̃)
R+ δh(θ)

,

which yields the following asymptotic behaviour as δ → 0:

n̂(θ) ∼ êr − δ
h′(θ)

R
êθ +O(δ2) , δ∂Ωδ(x− x̃) ∼ 1

R
δ(θ − θ̃)− δh(θ)

R2
δ(θ − θ̃) +O(δ2) .

Next, for δ � 1, we seek a solution of the form

GλΩ(r, θ, θ̃ ∼ GλΩ0(r, θ, θ̃) +GλΩ1(r, θ, θ̃)δ +O(δ2) .

Upon substituting these expansions into (B.1), and collecting powers of δ, we obtain the following zeroth-order
and first-order problems:

Db∆G
λ
Ω0 − µ2

bλG
λ
Ω0 = 0 , in Ω0 , B0G

λ
Ω0 =

δ(θ − θ̃)
R

, on ∂Ω0 , (B.2a)

Db∆G
λ
Ω1 − µ2

bλG
λ
Ω1 = 0 , in Ω0 , B0G

λ
Ω1 = −h(θ)

R

δ(θ − θ̃)
R

− B1G
λ
Ω0, on ∂Ω0 , (B.2b)

where the boundary operators B0 and B1 are defined by

B0 ≡ Db∂r +K B1 ≡ Db

(
h(θ)∂2

r −
h′(θ)

R2
∂θ

)
+Kh(θ)∂r.

The zeroth-order solution is the unperturbed disk bulk Green’s function given in (A.6). For the problem for the
leading order correction, we use linearity to decompose its solution in the form

GλΩ1(r, θ, θ̃) = −h(θ̃)

R
GλΩ0(r, θ, θ̃) + G̃λΩ1(r, θ, θ̃) , G̃λΩ1(r, θ, θ̃) =

1

2πR

∞∑
n=−∞

ãλ1n(θ̃)Pn(r)einθ , (B.3)

for some coefficients ãλ1n to be found. To determine an expression for these coefficients, we first multiply the
boundary condition B0G̃

λ
Ω1 = −B1G

λ
Ω0 by e−inθ, and then integrate from 0 to 2π. This gives

1

R

(
DbP

′
n(R) +K)ãλ1n(θ̃) = −

ˆ 2π

0
e−inθB1G

λ
Ω0 dθ . (B.4)

Then, by using the differential equation satisfied by GλΩ0 we calculate the right-hand side of this expression as
ˆ 2π

0
e−inθB1G

λ
Ω0(R, θ, θ̃) dθ = Db

ˆ 2π

0
h(θ)GλΩ0rr(R, θ, θ̃)e

−inθ dθ − Db
R2

ˆ 2π

0
h′(θ)GλΩ0θ(R, θ, θ̃)e

−inθ dθ

+K

ˆ 2π

0
h(θ)GλΩ0r(R, θ, θ̃)e

−inθ dθ .

(B.5)
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Next, we assume that the boundary perturbation h(θ) is sufficiently smooth so that each of the following hold:

h(θ) =
∞∑

n=−∞
hne

inθ , h′(θ) = i
∞∑

n=−∞
nhne

inθ , h′′(θ) = −
∞∑

n=−∞
n2hne

inθ . (B.6)

This allows us to calculate the individual terms on the right-hand side of (B.5) as

ˆ 2π

0
h(θ)GλΩ0rr(R, θ, θ̃)e

−inθdθ =
1

R

∞∑
k=−∞

P ′′k (R)aλkhn−ke
−ikθ̃ ,

ˆ 2π

0
h′(θ)GλΩ0θ(R, θ, θ̃)e

−inθdθ = − 1

R

∞∑
k=−∞

k(n− k)aλkhn−ke
−ikθ̃ ,

ˆ 2π

0
h(θ)GλΩ0r(R, θ, θ̃)e

−inθdθ =
1

R

∞∑
k=−∞

P ′k(R)aλkhn−ke
−ikθ̃ ,

where aλk are the Fourier coefficients of the leading-order Green’s function, as defined in (A.6). By substituting
these relations into (B.5), and then using (B.4), we determine the coefficients as

ãλ1n(θ̃) =
∞∑

k=−∞
âλn,ka

λ
khn−ke

−ikθ̃ , where âλn,k ≡ −
DbP

′′
k (R) +KP ′k(R) + Db

R2 k(n− k)

DbP ′n(R) +K
. (B.7)

In (B.7), to calculate various derivatives of Pn(R), as defined in (A.6), we make repeated use of the identity

I ′n(z) =
n

z
In(z) + In+1(z) ,

to readily derive that

P ′n(R) =
|n|
R

+ ωbλ
I|n+1|(ωbλR)

I|n|(ωbλR)
, P ′′n (R) =

|n|(|n| − 1)

R2
+

2|n|+ 1

R
ωbλ

I|n+1|(ωbλR)

I|n|(ωbλR)
+ ω2

bλ

I|n+2|(ωbλR)

I|n|(ωbλR)
.

This completes the derivation of the leading-order correction for the bulk Green’s function, defined in (B.3).
Next, we derive a two-term approximation for the membrane Green’s function problem on the perturbed disk.

This Green’s function satisfies

Dv∂
2
σG

λ
∂Ω(σ, σ0)− µ2

sλG
λ
∂Ω(σ, σ0) +K2

ˆ |∂Ωδ|

0
GλΩ(σ, σ̃)Gλ∂Ω(σ̃, σ0) dσ̃ = −δ(σ − σ0), 0 ≤ σ < |∂Ωδ|. (B.8)

Repeated use of the chain rule to the arc-length formula

σ(θ) =

ˆ θ

0

(
R+ δh(ϑ)

)√
1 +

(
δh′(ϑ)

R+ δh(ϑ)

)2

dϑ ,

gives

∂2
σ =

1

(R+ δh(θ))2 + (δh′(θ))2
∂2
θ − δh′(θ)

R+ δh(θ) + δh′′(θ)

[(R+ δh(θ))2 + (δh′(θ))2]2
∂θ .
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Multiplying the membrane equation through by (R+ δh(θ))2 + (δh′(θ))2, writing Dv = Dv0

(
1 + Dv1

Dv0
δ
)
, and then

dividing through by R2
(
1 + Dv1

Dv0
δ
)
, we obtain the perturbed problem

Dv0
R2 ∂

2
θG

λ
∂Ω(θ, θ0)− Dv0

R2 δh
′(θ) R+δ[h(θ)+h′′(θ)]

(R+δh(θ))2+(δh′(θ))2 ∂θG
λ
∂Ω(θ, θ0)− µ2

sλ

R2

(R+δh(θ))2+(δh′(θ))2

1+
Dv1
Dv0

δ
Gλ∂Ω(θ, θ0)

+ K2

R2

(R+δh(θ))2+(δh′(θ))2

1+
Dv1
Dv0

δ

ˆ 2π

0

(
GλΩ0(R, θ, θ̃) + δGλΩ1(R, θ, θ̃) + δh(θ)GλΩ0r(R, θ, θ̃)

)
Gλ∂Ω(θ̃, θ0)

√
(R+ δh(θ̃))2 + (δh′(θ̃))2 dθ̃

= − 1
R2

√
(R+δh(θ))2+(δh′(θ))2

1+
Dv1
Dv0

δ
δ(θ − θ0) .

To determine a two-term asymptotic solution to this problem, we expand the membrane Green’s function as

Gλ∂Ω(θ, θ0) ∼ Gλ∂Ω0(θ, θ0) + δGλ∂Ω1(θ, θ0) +O(δ2) .

Upon substituting this expansion into the perturbed problem, and collecting powers of δ, we obtain the following
zeroth-order and first-order problems:

M0G
λ
∂Ω0(θ, θ0) = − 1

Rδ(θ − θ0) , M0G
λ
∂Ω1(θ, θ0) = −

(h(θ)
R −

Dv1
Dv0

)
1
Rδ(θ − θ0)−M1G

λ
∂Ω0(θ, θ0) . (B.9a)

Here we have defined the unperturbed membrane operatorM0 by

M0ψ(θ, θ0) ≡ Dv0
R2 ∂

2
θψ(θ, θ0)− µ2

sλψ(θ, θ0) +K2

ˆ 2π

0
GλΩ0(R, θ, θ̃)ψ(θ̃, θ0)Rdθ̃ , (B.9b)

and its leading-order correctionM1 by

M1ψ(θ, θ0) ≡− Dv0
R3 h

′(θ)∂θψ(θ, θ0)− µ2
sλ

(2h(θ)
R − Dv1

Dv0

)
ψ(θ, θ0)

+K2
(2h(θ)

R − Dv1
Dv0

) ˆ 2π

0
GλΩ0(R, θ, θ̃)ψ(θ̃, θ0)Rdθ̃ +K2

ˆ 2π

0
GλΩ1(R, θ, θ̃)ψ(θ̃, θ0)Rdθ̃

+K2h(θ)

ˆ 2π

0
GλΩ0r(R, θ, θ̃)ψ(θ̃, θ0)Rdθ̃ +K2

ˆ 2π

0
GλΩ0(R, θ, θ̃)ψ(θ̃, θ0)h(θ̃) dθ̃ .

(B.9c)

The zeroth-order solution is that of the unperturbed disk and is given by (A.7). By linearity, we then seek
the solution for the leading order correction in the form

Gλ∂Ω1(θ, θ0) =
(h(θ0)

R − Dv1
Dv0

)
Gλ∂Ω0(θ, θ0) + G̃λ∂Ω1(θ, θ0) , (B.10)

where G̃λ∂Ω1(θ, φ) now satisfies
M0G̃

λ
∂Ω1(θ, θ0) = −M1G

λ
∂Ω0(θ, θ0) .

We will represent the solution G̃λ∂Ω1 in terms of a Fourier series as

G̃λ∂Ω1(θ, θ0) =
1

2πR

∞∑
n=−∞

g̃λ1n(θ0)einθ , (B.11)

for some coefficients g̃λ1n(θ0) to be found. Similar to the calculation provided above for the perturbed bulk Green’s
function, we obtain that

g̃λ1n(θ0) = Rgλ0n

ˆ 2π

0
e−inθM1G

λ
∂Ω0(θ, θ0) dθ . (B.12)
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By using (B.9c) we calculate the right-hand side of this expression as
ˆ 2π

0
e−inθM1G

λ
∂Ω0(θ, θ0)dθ = −Dv0

R3 J1n(θ0)− 2µ2sλ
R J2n(θ0) +

µ2sλDv1
Dv0

J3n(θ0)

+ 2K2J4n(θ0)− K2RDv1
Dv0

J5n(θ0) +K2RJ6n(θ0) +K2RJ7n(θ0) ,

(B.13)

where the various integrals J1n, . . . , J7n are defined by

J1n(θ0) =

ˆ 2π

0
h′(θ)Gλ∂Ω0θ(θ, θ0)e−inθdθ , J2n(θ0) =

ˆ 2π

0
h(θ)G∂Ω0(θ, θ0)e−inθdθ ,

J3n(θ0) =

ˆ 2π

0
Gλ∂Ω0(θ, θ0)e−inθdθ , J4n(θ0) =

ˆ 2π

0

ˆ 2π

0
h(θ)GλΩ0(R, θ, θ̃)Gλ∂Ω0(θ̃, θ0)e−inθdθ̃dθ ,

J5n(θ0) =

ˆ 2π

0

ˆ 2π

0
GλΩ0(R, θ, θ̃)Gλ∂Ω0(θ̃, θ0)e−inθdθ̃dθ , J6n(θ0) =

ˆ 2π

0

ˆ 2π

0
G̃λΩ1(R, θ, θ̃)Gλ∂Ω0(θ̃, θ0)e−inθdθ̃dθ ,

J7n(θ0) =

ˆ 2π

0

ˆ 2π

0
h(θ)GλΩ0r(R, θ, θ̃)G

λ
∂Ω0(θ̃, θ0)e−inθdθ̃dθ .

By using the Fourier series representations for the leading-order bulk and membrane Green’s functions given in
(A.6) and (A.7), respectively, together with (B.6) for h(θ), we calculate explicitly that

J1n(θ0) = − 1

R

∞∑
k=−∞

k(n− k)hn−kg
λ
ke
−ikθ0 , J2n(θ0) =

1

R

∞∑
k=−∞

hn−kg
λ
ke
−ikθ0 , J3n(θ0) =

1

R
gλne
−inθ0 ,

J4n(θ0) =
1

R2

∞∑
k=−∞

hn−ka
λ
kg
λ
ke
−ikθ0 , J5n(θ0) =

1

R2
aλng

λ
ne
−inθ0 ,

J6n(θ0) =
1

R2

∞∑
k=−∞

hn−kâ
λ
n,ka

λ
kg
λ
ke
−ikθ0 , J7n(θ0) =

1

R2

∞∑
k=−∞

hn−kP
′
k(R)aλkg

λ
ke
−ikθ0 .

Upon substituting these expressions into (B.13), and then recalling (B.12), we conclude that

g̃λ1n(θ0) =gλn

∞∑
k=−∞

{
Dv0
R3 k(n− k)− 2µ2sλ

R + 2K2

R aλk +K2âλn,ka
λ
k +K2P ′k(R)aλk

}
hn−kg

λ
ke
−ikθ0

+ Dv1
Dv0

gλn
(
µ2
sλ − 2πK2Raλn

)
gλne
−inθ0 ,

where the coefficients aλk are defined in (A.6). We can use the definition of the coefficients gλn, as given in (A.7),
to write µ2

sλ −K2aλn = 1
gλn
− Dv0

R2 n
2. In this way, we get

g̃λ1n(θ0) =

∞∑
k=−∞

ĝλn,khn−kg
λ
ke
−ikθ0gλn +

(
Dv1
Dv0
− 2h(θ0)

R

)
gλne
−inθ0 − Dv1

R2 n
2(gλn)2e−inθ0 ,

where
ĝλn,k = Dv0

R3 k(n+ k) +K2aλk
(
âλn,k + P ′k(R)

)
.

Finally, from (B.10) and (B.11), we conclude that the first order correction for the membrane Green’s function is

Gλ∂Ω1(θ, θ0) = −h(θ0)
R Gλ∂Ω0(θ, θ0) + 1

2πR

∞∑
n=−∞

∞∑
k=−∞

ĝλn,khn−kg
λ
kg

λ
ne
inθ−ikθ0 − Dv1

2πR3

∞∑
n=−∞

n2(gλn)2ein(θ−θ0) .
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