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Abstract

The narrow escape problem refers to the problem of calculating the mean first passage time
(MFPT) needed for an average Brownian particle to leave a domain with an insulating boundary
containing N small well-separated absorbing windows, or traps. This mean first passage time
satisfies the Poisson partial differential equation (PDE) subject to a mixed Dirichlet-Neumann
boundary condition on the domain boundary, with the Dirichlet condition corresponding to
absorbing traps. In the limit of small total trap size, a common asymptotic theory is presented
to calculate the MFPT in two-dimensional domains and in the unit sphere. The asymptotic
MFPT formulas depend on mutual trap locations, allowing for global optimization of trap
locations.

Although the asymptotic theory for the MFPT was developed in the limit of asymptotically
small trap radii, and under the assumption that the traps are well-separated, a comprehensive
study involving comparison with full numerical simulations shows that the full numerical and
asymptotic results for the MFPT are within 1% accuracy even when total trap size is only
moderately small, and for traps that may be rather close together. This close agreement between
asymptotic and numerical results at finite, and not necessarily asymptotically small, values of
the trap size clearly illustrates one of the key side benefits of a theory based on a systematic
asymptotic analysis.

In addition, for the unit sphere, numerical results are given for the optimal configuration of
a collection of traps on the surface of a sphere that minimizes the average MFPT. The case of
N identical traps, and a pattern of traps with two different sizes are considered. The effect of
trap fragmentation on the average MFPT is also discussed.

1 Introduction

Narrow escape problems are ubiquitous in biological modeling, since they arise naturally in the
description of Brownian particles that attempt to escape from a bounded domain through small
absorbing windows on an otherwise reflecting boundary. In the biological context, the Brownian
particles could be diffusing ions, globular proteins or cell-surface receptors. It is then of interest
to determine, for example, the mean time that an ion requires to find an open channel located in
the cell membrane or the mean time for a receptor to hit a certain target binding site (cf. [1–4]).
Similar problems also arise in the modeling of escape kinetics in chemistry [5].
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Consider the trajectory X(t) of a Brownian particle confined in a bounded domain Ω ∈ Rd,
d = 2, 3, for which the boundary ∂Ω is almost entirely reflecting except for small windows (traps)
centered at the points xj ∈ ∂Ω, for j = 1, . . . , N , through which the particle can escape (see Fig. 1).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: A Schematic of the Narrow Escape Problem in a 2-D and a 3-D domain.

The mean first passage time (MFPT) v(x) is defined as the expectation value of the time taken
for the Brownian particle starting initially from X(0) = x ∈ Ω, to become absorbed by one of the
boundary traps. It is well-known that in the continuum limit, the MFPT v(x) satisfies the mixed
Dirichlet-Neumann problem (cf. [3])

4v = − 1
D

, x ∈ Ω ; ∂nv = 0 , x ∈ ∂Ωr ,

v = 0 , x ∈ ∂Ωa =
N⋃

j=1

∂Ωεj ,
(1.1)

where D is the constant diffusivity. For two- and three-dimensional problems with diam (Ω) = O(1),
the windows Ωεj are respectively characterized by a length |∂Ωεj | = O(ε) or an area |∂Ωεj | = O(ε2),
where ε ¿ 1 is a small parameter.

Due to the mixed nature of the boundary condition for the PDE (1.1), no exact and only a few
approximate solutions are known. In particular, leading-order terms for the asymptotic expansion
of the MFPT in the limit ε → 0 have been recently derived for a unit disk with one and two
traps [6,7], a two-dimensional domain with a single trap located at a cusp of a boundary [8], a unit
sphere and a general three-dimensional domain with smooth boundary and with a single trap [9,10].
A recent survey of the calculation of the MFPT for small targets in the interior or on the boundary
of a confining domain is given in [11].

The method of matched asymptotic expansions was used to derive new asymptotic MFPT for-
mulas in the limit ε → 0 for two-dimensional [12] and three-dimensional [13] domains with an
arbitrary number of non-identical, but well-separated, boundary traps. In Section 2 we present
the asymptotic formulas for two-dimensional and three-dimensional domains in a common general
framework. These formulas employ the Neumann Green’s function for each respective domain, and
can be used for direct computations for domains for which this Green’s function is known analyt-
ically. Such domains include the unit square, the unit disk, or the unit sphere. Importantly, the
formulas for the average MFPT include an additional term, called the interaction energy, which
depends on the mutual positions of the traps. This leads naturally to certain discrete variational
problems whereby the average MFPT is to be minimized with respect to the trap locations.

Section 2 also discusses specific forms of asymptotic MFPT formulas relevant for the unit disk, the
unit square, and the unit sphere. In particular, for the case of N identical traps on a unit sphere, the
traps “repel” in an analogous way to the physical situation of N electrons bound to a sphere. The
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interaction energy for our pattern of traps is a combination of a Coulombic energy, a logarithmic
energy, and an additional logarithmic term. The corresponding global optimization problem that
minimizes the combined interaction energy, and thus the average MFPT, has been discussed in [13]
and the results have been compared with many recent results on the global optimization of the
interaction energy of point particles on the sphere that interact through either purely Coulomb or
logarithmic forces (see [14–18]). An expression for a new interaction energy for a pattern of 2N
traps, which consists of N small traps of a common radius and N large traps of a common radius,
is also derived in Section 2.

In Section 3, the relation is examined between the average MFPT result for an equally spaced
arrangement of identical boundary traps for a unit disk and the corresponding result that can be
obtained from the dilute fraction limit of homogenization theory [25], where the mixed Dirich-
letNeumann boundary condition of the problem (1.1) is replaced by an effective Robin boundary
condition.

The common feature of all formal asymptotic results is the unknown behaviour of higher-order
(error) terms, and hence, the applicability limits of the asymptotic theory. In Section 4, this
issue is studied by comparing asymptotic results for the MFPT and the average MFPT for the
unit disk, unit square, and the unit sphere, with full numerical computations obtained by solving
the underlying PDE (1.1) numerically. For each of these special domains, the Neumann Green’s
function required to evaluate the terms in the asymptotic expansions of the MFPT is known
analytically. Although the asymptotic theory of [12, 13] for the MFPT was developed in the limit
of asymptotically small trap radii, and under the assumption that the traps are well-separated, in
Section 4 we show upon comparison with full numerical results that the asymptotic results reliably
predict the MFPT to within 1% accuracy when ε is only moderately small and for traps that may
be rather close to each other. This close agreement between asymptotic and numerical results at
finite, and not necessarily asymptotically small, values of the trap size ε illustrates one of the often
key benefits of a systematic asymptotic analysis.

The approximation quality of the asymptotic MFPT solution in the vicinity of a trap is examined
through the comparison with numerical results in Section 4.3.

Another goal of this paper is to compute some optimal arrangements of traps on the surface of
the unit sphere. The problem of the global optimization of the locations of surface-bound particles
interacting under various types of forces has been actively studied (cf. [14–18]). In the context of
the narrow escape problem the third term in the asymptotic expansion as ε → 0 of the average
MFPT depends on the global configuration of traps on the surface of the sphere. The associated
problem of minimizing the average MFPT leads to a new class of weighted discrete variational
problems with an interaction energy that has not been studied in the classical works of [14–18]. In
Section 5 we present optimization results for the new interaction energy for a pattern of N identical
traps and for a pattern of 2N traps, which consists of N small traps of a common radius and N
large traps of a common radius. By using scaling laws valid for large N for the minimal-energy
configurations, trap fragmentation effects on the average MFPT are studied.

2 Asymptotic Formulas for the Mean First Passage Times

The current section outlines the method of matched asymptotic expansions to calculate the asymp-
totic MFPT v(x) for the narrow escape problem in two- and three-dimensional domains. The
corresponding asymptotic formulas for the MFPT and the average MFPT are given in general, as
well as for some specific domains. For specific details, see [12,13].

Consider a small trap centered at a point xj on the domain boundary. In terms of the local
coordinate y = ε−1(x− xj), the expansion of the inner solution near this jth trap has the form

v(x) ≡ w(y) = w0 + w1 + w2 + . . . , (2.1)
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where wq for q = 0, 1, ... are proportional to either powers of ε or terms of the form εp log ε, p ∈ Z,
starting from an appropriate term. In particular, for Ω ∈ R3, w0 = O(ε−1), w1 = O(log ε),
w2 = O(ε0), etc. For domains in R2, w0 = O(log ε), w1 = O(ε0), w2 = O (−1/ log ε), etc.

In the outer region, defined at O(1) distances from the traps, the outer expansion has the form

v(x) = v0 + v1 + v2 + . . . . (2.2)

Then, the two expansions are substituted into the PDE (1.1) and, upon equating comparable terms
in ε, linear boundary value problems for vq and wq, q = 0, 1, ... are obtained. Finally, unknown
constants in the functions vq and wq are determined in a systematic manner by imposing the
matching condition that

v0(x) + v1(x) + . . . ∼ w0(y) + w1(y) + . . . .

In this condition the left- and right-hand sides of this expression must agree as x → xj and as
y = ε−1(x− xj) →∞, respectively.

A key feature in the analysis is that the solution to the outer problems for the correction terms
vq for q ≥ 1 involves the Neumann Green’s function G(x; xj) for the domain Ω with a singularity
at xj ∈ ∂Ω. This Green’s function G(x; ξ) is the unique solution of

4G =
1
|Ω| , x ∈ Ω ; ∂nG = 0 , x ∈ ∂Ω \ {ξ} ;

∫

Ω
Gdx = 0 , (2.3)

with the dominant singularity behaviour

G(x; ξ) = − 1
π

log |x− ξ|+ R(x; ξ) , (2.4)

for a two-dimensional domain, and

G(x; ξ) =
1

2π|x− ξ| + R(x; ξ) , (2.5)

for a three-dimensional domain. In (2.3), ∂n is the normal derivative to ∂Ω, and |Ω| is the measure
(area in R2, volume in R3) of Ω. In (2.4), (2.5), R(x; ξ) is the regular part of the Green’s function.

The following general result characterizes the first correction term in the outer region for the
MFPT v(x) in terms of the Neumann Green’s function, and holds for both two-dimensional and
three-dimensional domains.

Principal Result 2.1: In terms of the Neumann Green’s function, the MFPT in a domain with
N well-separated boundary traps centered at xj ∈ ∂Ω, for j = 1, . . . , N , is given asymptotically for
ε → 0 in the outer region |x− xj | À ε by

v(x) ∼ v̄ +
N∑

j=1

kj G(x;xj) , (2.6)

where kj for j = 1, . . . , N are certain constants that are found upon matching the inner and outer
expansions. In (2.6), v̄ is the average MFPT given by

v̄ =
1
|Ω|

∫

Ω

v(x) dx . (2.7)

Particular forms of the expressions for kj and v̄ depend on the trap sizes, the arrangement of the
traps on the domain boundary, and the domain shape, as described below.
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2.1 Two-Dimensional Domains

Let Ω ⊂ R2 be a domain with a smooth boundary. Suppose that N surface traps of length εlj are
centered at xj for j = 1, . . . , N (cf. Fig. 1a). We define the logarithmic capacitance dj and the
gauge function µj = µj(ε) by

dj =
lj
4

, µj = − 1
log(εdj)

. (2.8)

Define the diagonal matrix M and the symmetric Green’s matrix G by

M = diag(µ1, ..., µN ) , G ≡




R1 G12 · · · G1N

G21 R2 · · · G2N
...

...
. . .

...
GN1 · · · GN,N−1 RN


 ,

where Gij ≡ G(xi;xj), and Ri ≡ R(xi; xi) is the self-interaction term. Also define the vector
e = (1, ..., 1)T and the matrix E = eeT /N .

It can be shown [12] that an asymptotic expansion for the MFPT that accounts for all logarithmic
terms in powers of µj is given by (2.6) with kj = −πAj , where the vector A = (A1, ..., AN )T is the
solution of the linear system

(
I + πM(

I − 1
µ̄

EM)G
)

A =
|Ω|

DπNµ̄
. (2.9)

In (2.9), µ̄ = (1/N)
∑N

j=1 µj . The average MFPT (2.7) is given by

v̄ =
|Ω|

DπNµ̄
+

π

Nµ̄
eTMGA . (2.10)

The formulas above can be adapted to the case where the traps are not well-separated [12]. In
particular, for a cluster of two absorbing windows of a common length εlj with edge separation dis-
tance 2εaj , both windows can be replaced by one effective window with the logarithmic capacitance
dj given by (see equation (2.19) of [12])

dj =
lj
2

(
1 +

2aj

lj

)1/2

. (2.11)

This formula for dj , pertaining to a cluster of two traps, is to replace the formula (2.8) of an
individual trap.

The formulas above can be adapted to the case where the traps are not well-separated by consid-
ering trap cluster capacitances dj , and also to domains with piecewise-smooth boundaries [12].

Explicit formulas for the Neumann Green’s function are known for the special cases when Ω is a
unit disk or a unit square. We now summarize these results.

(1) The Unit Disk

When Ω is the unit disk centered at the origin, the Neumann Green’s function and its regular part
are given explicitly by [19]

G(x;xi) = − 1
π

log |x− xi|+ |x|2
4π

− 1
8π

, R(xi; xi) =
1
8π

, |xi| = 1 . (2.12)
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In the particular case of N absorbing arcs having a common length |∂Ωj | = 2ε, a two-term asymp-
totic result for the average MFPT, obtained by approximating the infinite-logarithmic sum result
from (2.10), is

v̄ ∼ 1
DN


− log

ε

2
+

N

8
− 1

N

N∑

i=1

N∑

j=i+1

log |xi − xj |

 . (2.13)

As an example, in Fig. 2, the MFPT v(x) is plotted for a seven-trap configuration with a common
trap length of 2ε = 0.02.
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Figure 2: Surface and contour plots of the asymptotic MFPT (2.12), (2.13) for a unit disk with
N = 7 traps of a common length 2ε = 0.02.

We remark that the simple result (2.13) in fact sums the infinite logarithmic expansion for the
MFPT for the special case of either exactly two arbitrarily-spaced traps or N equally-spaced traps
on the boundary of the unit disk. This result follows since, for these special arrangements of traps,
the symmetric Green’s matrix G has a cyclic matrix structure [12].

In the case of more than two identical traps which are not equally spaced, one can observe the
difference between the two-term approximation of the average MFPT v̄ given by (2.13) and the full
asymptotic expression (2.10). This is illustrated in Figure 3 where these formulas are compared for
a non-symmetric and a symmetric arrangement of four traps.
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Figure 3: Comparison of the full asymptotic expression (2.10) and the two-term approximation
(2.13) for the average MFPT v̄ in the case of four unevenly spaced traps of size 2ε centered at
θ = π/4, π/2, 3π/4, and 3π/2 (left), and four evenly spaced traps of size 2ε centered at θ = 0, π/2,
π, and 3π/2 (right).
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The minimum of the repulsive logarithmic energy term in (2.13) is evidently attained when the
traps are equally-spaced on the unit circle. For such a symmetric arrangement, and assuming
well-separated traps, a simple calculation yields

v̄ ∼ 1
DN

[
− log

εN

2
+

N

8

]
, v(x) ∼ v̄ − π

DN

N∑

j=1

G(x; xj) . (2.14)

The error in this approximation is of order O(ε log ε), which is transcendentally small in comparison
to any power of −1/ log ε.

(2) The unit square

For a unit square Ω ≡ {x = (x1, x2) | 0 ≤ x1, x2 ≤ 1}, the explicit form of the Neumann Green’s
function with an interior singularity was found in [20] by calculating a Fourier series representation
of the solution of (2.3), and using summation formulas to extract both the logarithmic singularity
and its regular part. Upon taking the limit as the singularity ξ approaches a non-corner point of
the domain boundary, one obtains a solution of the form

G(x; ξ) = − 1
π

log |x− ξ|+ R(x; ξ) , (2.15)

where the regular part is given by a rapidly convergent infinite series of the explicit form

R(x; ξ) = − 1
2π

∑∞
n=0 log(|1− qnz+,+||1− qnz+,−||1− qnζ+,+|)

− 1
2π

∑∞
n=0 log(|1− qnζ+,−||1− qnζ−,+||1− qnζ−,−|)

− 1
2π

log |1−z−,−|
r−,− − 1

2π
log |1−z−,+|

r−,+
+ H(x1, ξ1)

− 1
2π

∑∞
n=0 log(|1− qnz−,−||1− qnz−,+|) .

(2.16)

In (2.16), x = (x1, x2), ξ = (ξ1, ξ2), |z| denotes the modulus of a complex number z, and also

H(x1, ξ1) = 1
12 [h(x1 − ξ1) + h(x1 + ξ1)] , h(θ) = 2− 6|θ|+ 3θ2 ,

z±,± = eπr±,± , ζ±,± = eπρ±,± , q = e−2π < 1 ,
r+,± = −|x1 + ξ1|+ i(x2 ± ξ2) , r−,± = −|x1 − ξ1|+ i(x2 ± ξ2) ,
ρ+,± = |x1 + ξ1| − 2 + i(x2 ± ξ2) , ρ−,± = |x1 − ξ1| − 2 + i(x2 ± ξ2) .

A similar result can be given when the trap is centered at one of the corner points of the boundary
of the unit square [12].

2.2 Three-Dimensional Domains: The Unit Sphere

Next, we consider a unit sphere centered at the origin that has N locally circular windows on its
surface. The traps have radii εaj for j = 1, . . . , N and are centered at xj for j = 1, . . . , N with
|xj | = 1. For this case, the quantity that characterizes each trap is its electrostatic capacitance cj ,
which is defined by the following local problem obtained by making a tangent-plane approximation
to the sphere at xj :

uξ1ξ1 + uξ2ξ2 + uξ3,ξ3 = 0 , ξ1 ≥ 0 , −∞ < ξ2 , ξ3 < ∞ ,
u = 1 , on ξ1 = 0 , ξ2

2 + ξ2
3 < a2

j ; uξ1 = 0 , on ξ1 = 0 , ξ2
2 + ξ2

3 > a2
j ,

u ∼ cj/|ξ| , as |ξ| → ∞ ,

(2.17)

where ξ = (ξ1, ξ2, ξ3). For the circular trap case, this is the well-known electrified-disk problem
with capacitance cj = 2aj/π. The capacitance is also known analytically for an elliptical-shaped
window, but for a window of arbitrary shape it must be computed numerically.
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For the unit sphere centered at the origin, the surface Neumann Green’s function satisfying (2.3)
is given explicitly by (cf. [13])

Gs(x; ξ) =
1

2π |x− ξ| +
1
8π

(
|x|2 + 1

)
+

1
4π

log
(

2
1− |x| cos γ + |x− ξ|

)
− 7

10π
, (2.18)

where γ is the angle between the vectors x ∈ Ω and ξ ∈ ∂Ω, defined by |x| cos γ = x · ξ with |ξ| = 1.
The self-interaction term corresponding to (2.18) is simply

R(ξ; ξ) = − 9
20π

. (2.19)

Let c̄ = N−1 (c1 + . . . + cN ) be the average capacitance, and define κj by

κj =
cj

2

[
2 log 2− 3

2
+ log aj

]
.

Then, for ε → 0, the analysis of [13] showed that the asymptotic formula for the MFPT v(x) in
the outer region |x− xj | À O(ε), for j = 1, . . . , N , is given by

v(x) = v̄ − |Ω|
DNc̄

N∑

j=1

cjGs(x;xj) +O(ε log ε) . (2.20)

Correspondingly, the asymptotic average MFPT v̄ is given by

v̄ =
|Ω|

2πεDNc̄


1 + ε log

(
2
ε

) ∑N
j=1 c2

j

2Nc̄
+

2πε

Nc̄
pc(x1, . . . , xN )− ε

Nc̄

N∑

j=1

cjκj +O(ε2 log ε)


 . (2.21)

The O(ε) term in the square bracket in (2.21) depends on the specific arrangement of traps on
the unit sphere through the energy-like function

pc(x1, . . . , xN ) = CTGsC ,

where the capacitance vector C and the Green’s matrix Gs are defined by C = (c1, . . . , cN )T and

Gs ≡




R Gs12 · · · Gs1N

Gs21 R · · · Gs2N
...

...
. . .

...
GsN1 · · · GsN,N−1 R


 , R ≡ R(xj ;xj) = − 9

20π
, Gsij ≡ Gs(xi;xj). (2.22)

The formulas above simplify in the special case of N circular traps of a common radius aj = 1, for
which cj = 2/π for j = 1, ..., N . For this case, a simple calculation shows that the formula (2.21)
for the average MFPT reduces to

v̄ =
|Ω|

4εDN

[
1 +

ε

π
log

(
2
ε

)
+

ε

π

(
−9N

5
+ 2(N − 2) log 2 +

3
2

+
4
N
H(x1, . . . , xN )

)
+O(ε2 log ε)

]
,

(2.23)

where the interaction energy H(x1, . . . , xN ) is defined by

H(x1, . . . , xN ) =
N∑

i=1

N∑

j=i+1

h(xi; xj) , (2.24)
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and the pairwise interaction energy by

h(xi;xj) =
1

|xi − xj | −
1
2

log |xi − xj | − 1
2

log (2 + |xi − xj |) . (2.25)

The total energy (2.24) is a sum of the classical Coulombic and logarithmic discrete energy terms,
and an additional interaction term between particles (traps) located on the sphere.

Now consider another special case where there are two kinds of traps, with radii given by aj = 1
for j = 1, . . . , N and aj = α for j = N + 1, . . . , 2N . Each element of the matrix Gs is still given by
(2.22). The capacitance vector becomes C = (2/π)(1, . . . , 1, α, . . . , α)T , and the average MFPT is
readily found to be

v̄ =
|Ω|

4εDN(1 + α)

[
1 +

ε

π
log

(
2
ε

)(
1 + α2

1 + α

)
+

ε

π

(
S +

4
N(1 + α)

H̃(x1, . . . , xN )
)

+O(ε2 log ε)
]

,

(2.26)

where the constant S is defined by

S = −9
5
N(1 + α) + 2 log 2

(
(N − 2)(1 + α) +

4α

1 + α

)
+

3
2

(
1 + α2

1 + α

)
− α2

1 + α
log α ,

and the interaction energy H̃ is defined by

H̃(x1, . . . , xN ) =
N∑

i=1

N∑

j=i+1

h(xi; xj) + α
N∑

i=1

2N∑

j=N+1

h(xi;xj) + α2
2N∑

i=N+1

2N∑

j=i+1

h(xi; xj) , (2.27)

where h(xi; xj) is given by (2.25).

In Section 5, the interaction energies (2.24) and (2.27) are used to find optimal trap arrange-
ments on the surface of the unit sphere that minimize the interaction energy and, correspondingly,
minimize the average MFPT.

3 Dilute Trap Fraction Limit of Homogenization Theory for the
Unit Disk

Homogenization theory can be used to provide a simplified approximate description of the MFPT
problem (1.1) in the case of a large number of small boundary traps. Within this approach, the
strongly heterogeneous boundary conditions are replaced with an effective boundary condition of
a simpler form, involving parameters that may be theoretically or empirically determined.

Consider a unit disk with a large number of evenly spaced small boundary traps of equal size 2ε.
In [25], it has been shown that in the dilute trap fraction limit, i.e., in the limit of the number
of traps N → +∞, with the total trap length fraction σ = 2εN/(2π) kept constant, the mixed
Dirichlet-Neumann problem (1.1) for the MFPT v(x) can be approximated by a Robin problem for
vh(x) ' v(x) given by

4vh = − 1
D

, r = |x| < 1; ε∂rvh + κvh = 0, r = 1, (3.28)

where the boundary condition factor κ is given by

κ = −πσ

2

(
log

[
sin

(πσ

2

)])−1
.
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The problem (3.28) is radially symmetric; its solution is given by

vh(r) = − 1
4D

(
1− r2 +

2ε

κ

)
. (3.29)

Trough averaging, one obtains

v̄h =
1

8D
+

ε

2κD
=

1
8D

− 1
DN

log
[
sin

(πσ

2

)]
. (3.30)

The homogenization theory prediction of the average MFPT (3.30) can be compared to approxi-
mate solution obtained from the asymptotic theory considered in the current paper. For N equal
evenly spaced traps of size 2ε, it is given by (2.14), which may be written as

v̄as ∼ 1
8D

− 1
DN

log
(πσ

2

)
, (3.31)

and is evidently related to the homogenization result (3.30) through the Taylor series expansion of
the sine when σ is small.

Some comparative results for the average MFPT formulas v̄h (3.30) and v̄as (3.31) are given in
Fig. 4.
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Figure 4: Left figure: the comparison of v̄as and v̄h as functions of N for σ = 0.5. Right figure: the maximal
difference of v̄as and v̄h as functions of N for 0.01 ≤ σ ≤ 0.8.

4 Comparison of the Asymptotic MFPT with Full Numerical Re-
sults

In terms of computational complexity and computational time required for their evaluation, the
asymptotic formulas for the MFPT and the average MFPT presented in Section 2 are fundamentally
superior to those obtained from other approximation techniques, such as full numerical solutions
of the PDE problem (1.1) or Brownian random walk simulations.

The primary limitation of the asymptotic formulas is set by their domain of validity. More
specifically, the general MFPT approximation (2.6) was derived in the limit of small trap size
under the assumption of well-separated small traps, i.e., when the centers of the traps are separated
by O(1) distances. Additionally, since the asymptotic MFPT formulas are singular at the trap
locations, it is important to have an understanding at which minimal distances from traps the
asymptotic formulas are still sufficiently accurate.

In order to test the applicability limits of the asymptotic formulas of Section 2, with respect to
both trap size and trap separation effects, we compare results from the asymptotic theory with
corresponding full numerical results computed from a direct finite-difference numerical solution of
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the boundary value problem (1.1). The comparisons are made for several trap configurations for
both the two and three-dimensional cases.

The Dirichlet-Neumann BVP (1.1) for the Poisson equation was solved using a finite-difference
method employing variable steps in all space directions, and mesh refinement in order to resolve
small traps.

4.1 Trap Size Effects

The error terms in the asymptotic expansions for the MFPT v(x) and its average v̄ for both the
two-dimensional and the three-dimensional case are estimated to have the order O(ε log ε) when
ε ¿ 1, as seen from (??), (2.20), (2.21). This provides no information about the precision of the
asymptotic formulas when ε is not small. The goal below is to compare the results of Section 2 for
the MFPT v(x) and the average MFPT v̄ with results obtained from the full numerical solution of
the problem (1.1).

(1) The unit disk

For the unit disk, the following four trap configurations were studied:

• a single trap (arc) of arclength ε;

• two oppositely placed traps each of arclength ε;

• seven equally-spaced traps each of arclength ε;

• a three-trap configuration: two traps of length ε centered at θ = π/2 and 3π/2, and one larger
trap of length 3ε located at θ = π.

For the first three arrangements of traps, the result (2.13), in which ε is replaced by ε/2, determines
v(x) and v̄ with an error that is smaller than any power of −1/ log ε. In order to obtain the same
level of accuracy for the fourth configuration above, one must first solve the linear system (2.9) to
determine the vector A, and then calculate v(x) and v̄ from (2.6), (2.10), and (2.12).

For each of these four trap configurations, it was found that the asymptotic and numerical results
for the average MFPT v̄ are within 1% agreement when the length of the traps is of the order of
one. A sample comparative contour plot of v(x) for the 3-trap configuration (Fig. 5) shows a close
agreement between the asymptotic and numerical results for the MFPT everywhere in the domain
except for a very small region near the traps.
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Figure 5: Comparison of asymptotic (left figure) and numerical (middle figure) predictions for the MFPT
v(x) for a three-trap configuration in the unit disk, with two traps of length ε (centered at θ = π/2 and
θ = 3π/2), and one trap of length 3ε (centered at θ = π). Here ε = 0.06. Right figure: comparison of
asymptotics and numerics along the cross-section x1 = 0.
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The results for the disk are summarized in Fig. 6, where the average MFPT v̄ is plotted as a
function of ε for the one-, two-, three- and seven-trap configurations. In particular, for one trap,
the results are within 5% agreement for a trap length ε . 2, which is roughly 1/3 of the length
of the domain boundary. Similarly, for for seven equally-spaced traps, the results are within 5%
agreement for a trap length ε . 0.35, which is roughly 40% of the length of the domain boundary.
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Figure 6: Left figure: Dependence of the average MFPT v̄ on the trap length ε for one-, two-, three-, and
seven-trap configurations in a unit disk. The curves are the asymptotic formulas, and the crosses are full
numerical results. Right figure: percent difference between asymptotic and numerical results versus ε.

(2) The unit square

For the unit square, the following four trap configurations were considered:

• a single trap of length ε centered at (x1, x2) = (0, 0.5);

• two traps of lengths ε centered at (x1, x2) = (0, 0.5) and (0.5, 0);

• four traps of lengths ε located at each of the centers of the four sides of the square.

The asymptotic MFPT v(x) and the asymptotic average MFPT v̄ were computed from (2.6), (2.15),
and (2.16).

A comparative plot of the MFPT v(x) for the case of two traps of a common length ε = 0.03 is
given in Fig. 7, while the comparisons of the average MFPT v̄ for all three trap configurations are
summarized in Fig. 8. Compared to the situation for the unit disk, the asymptotic results for v and
v̄ for the square domain reliably predict the full numerical values for a slightly smaller range of ε.
For example, for one trap, the 1% agreement between the asymptotic and the numerical solution is
only observed for ε . 0.2 (ε . 0.4 for 5% agreement). For the 4-trap case, we have 1% agreement
when ε . 0.1 (10% trap surface area fraction), and 5% agreement when ε . 0.25 (25% trap surface
area fraction). These results show that one can still reliably use the asymptotic theory at rather
large values of the small parameter ε. The slightly smaller range of validity in ε in comparison
to the case of the unit disk can probably be attributed to the effects of the non-smooth domain
boundary of the square.

(3) The unit sphere

For the unit sphere, we consider the simplest configurations of one, two, and three, equally-spaced
circular traps of radius ε centered on the equator of the unit sphere. A sample comparative contour
plot of the MFPT v(x) in the equatorial cross-section of the sphere for a single trap of radius
ε = 0.2, a = 1, is shown in Fig. 9. As seen from Fig. 10, the 1% agreement between the asymptotic
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Figure 7: Comparison of the asymptotic (left figure) and numerical (middle figure) results for the MFPT
v(x) for two traps of a common length ε = 0.03 for the unit square. Right figure: comparison of asymptotic
and numerical results along the cross-section x2 = 0.5.
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Figure 8: Left figure: Dependence of the average MFPT v̄ on the trap length ε for one-, two-, and four-trap
configurations in a unit square. The curves correspond to the asymptotic results, and the crosses are the full
numerical results. Right figure: percent difference between asymptotic and numerical results.

and the numerical results for the average MFPT v̄ for a single trap is attained for trap radii with
ε . 0.8, which corresponds to a 16% trap surface area fraction.

4.2 Trap Separation Effects

The results (2.10) and (2.21) for the average MFPT in a general 2-D and a spherical 3-D domain,
respectively, are valid under the assumption of “well-separated” boundary traps. To study how the
asymptotic results perform when the traps are not necessarily so well-separated, we compare the
asymptotic and full numerical results for the whole range of two-trap configurations, ranging from
two touching traps to the maximal possible separation distance in each given configuration.

The following comparisons suggest that for the domains considered below, the asymptotic formulas
for the average MFPT are still rather reliable, in the sense of being within 1% of the full numerical
result, even for small separation distances of order O(ε).

(1) The unit square

For the unit square, two configurations were considered. In the first configuration, two identical
traps of length ε were located on adjacent sides, centered at a point at a distance L from the corner
(ε/2 ≤ L ≤ 1−ε/2, see Fig. 7). In the second configuration, two identical traps were symmetrically
located on one side of the square, at a distance L between their centers (ε ≤ L ≤ 1− ε).

For traps of length ε = 0.05, a plot of the numerical and asymptotic average MFPT and their
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Figure 9: Comparison of asymptotic (left figure) and numerical (middle figure) results for the MFPT v(x)
for one trap of radius ε = 0.2, on the boundary of the unit sphere. Right figure: comparison of asymptotic
and numerical results along the line x2 = x3 = 0
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Figure 10: Left figure: Dependence of the average MFPT v̄ on the common trap radius ε for one, two, and
three traps that are equally-spaced on the equator of the unit sphere. The curves correspond to the asymp-
totic results, and the crosses to full numerical results. Right figure: percent difference between asymptotic
and numerical results.

relative difference is shown in Fig. 11. For traps located on one side of the square the agreement
between the asymptotic and numerical results is within 1% for all values of L. For traps located
on adjacent sides of the square, the asymptotic result overshoots by approximately 6% when the
traps are touching at the origin, but is within approximately 2% of the full numerical results when
each trap is centered at a distance 0.05 from the origin.

(2) The unit sphere and the unit disk.

As shown in Fig. 12, a very good agreement between the asymptotic and numerical results for
the average MFPT is also observed for the case of two arbitrarily-spaced traps on the surface of
the unit disk or unit sphere. For the unit disk, traps of arclength ε = 0.05 were chosen. For the
unit sphere, we chose circular traps of radius ε = 0.2 located on the equator. For all separation
distances, ranging from touching traps to traps on opposite sides of a diameter, the discrepancy
between the asymptotic and numerical results is well within 1% for both domains.
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Figure 11: Left figure: Effect of trap separation in the unit square: comparison of the asymptotic and
numerical results for the average MFPT v̄ for two traps of sizes ε = 0.05. The percent difference is shown
in the right figure. (i) Average MFPT for two traps located on adjacent sides, as a function of the distance
from the corner. (ii) Average MFPT for two traps located symmetrically on one side, as a function of the
distance between traps.
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Figure 12: Left figure: Effect of trap separation in the unit disk (i) and the unit sphere (ii). Comparison of
asymptotic and numerical results for the MFPT v̄. Unit disk: two traps of arclength ε = 0.05. Unit sphere:
two circular traps of radius ε = 0.2 located on the equator. The right figure shows the percent difference
between the asymptotic and numerical results.
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4.3 Asymptotic Approximation Near Traps

The asymptotic formulas for MFPT v(x) derived in Section 2 are valid when the MFPT is measured
sufficiently far from the trap. It is clear that close to traps, the situation must be different, since
the Green’s functions in formula (2.6) are always singular: v(x) → −∞ at x → xj . In particular,
v(x) ∼ log |x − xj | in two dimensions, and as v(x) ∼ |x − xj |−1 in three dimensions. In contrast,
for the solutions of the problem (1.1) we must have v(x) → 0 as x → xj .

We now consider an example that illustrates the quality of the asymptotic approximation close
to a trap in a unit disk. Let the disk have a single boundary trap of the size 2ε, centered at
x1 = (−1, 0). The difference of the numerical and the asymptotic MFPT (2.6) is shown in Fig. 13
for a large trap of size 2ε = 0.4. Similar but smaller scale error behavior is observed on for smaller
values of ε, as seen, for instance, in Fig. 5).
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Figure 13: Comparison of asymptotic and numerical results for the MFPT v(x), for a unit disk with one
trap of arclength 2ε = 0.4. Top left: plot of vnum(x) − vas(x) in the disk. Top right: comparison near the
trap, along the radius x ≤ 0, y = 0.

As a measure of the quality of the asymptotic approximation near a trap, define the largest
distance from the trap center to a point in the disk for which the relative difference between the
numerical and asymptotic MFPT is 100a percent:

Xa(ε) = max
D
{|x− x1| : x ∈ Ω, vas(x) < (1− a)vnum(x)}; lim

ε→0
Xa(ε) = 0.

As seen in Fig. 14, the dependence of Xa on ε is close to linear, for a wide range of ε. Xa(ε) ' k(a)ε.
In particular, k(0.02) ' 2.6584, k(0.05) ' 1.9875, k(0.1) ' 1.6265, k(0.15) ' 1.4622, k(0.2) '
1.3668, which is consistent with the natural expectation that lima→0 k(a) = +∞, lima→1 k(a) = 0.
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Figure 14: Left figure: the relative error measure Xa(ε). Right figure: plots of Xa(ε) for a = 0.05, 0.1,
0.15, 0.2 (top to bottom). [Numerical computations were performed for the step δε = 0.001 in ε. Observed
oscillations are a numerical phenomenon which vanishes as δε → 0.]
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5 Optimal Location of Traps on the Unit Sphere

We now determine the optimal arrangements of N traps on the boundary of a given domain Ω that
minimize the average MFPT v̄. In [12,13], it was shown that such optimal trap arrangements also
maximize the principal eigenvalue of the Laplacian in the corresponding domain with traps, thus
maximizing the diffusion rate from a domain with small holes on an otherwise reflecting boundary.
Here the attention is restricted to the sphere, which is a fundamental domain both from the point
of view of applications and the complexity of numerical optimization. Indeed, boundary traps
on the surface of two-dimensional domains correspond physically to slit-like holes extended in the
invariant direction on the surface of three-dimensional cylinders. Location optimization for such
traps can involve permutations, but is otherwise much simpler than that for a sphere.

Consider N traps located on a unit sphere. In order to optimize the average MFPT v̄ in (2.21),
one has to find coordinates of N repelling particles on the sphere, which correspond to the global
minimum of the interaction term pc(x1, . . . , xN ) in (2.21). One thus has a global optimization
problem for a function of 2N variables (e.g., spherical angles).

Many global optimization techniques have recently been developed, including methods for non-
smooth optimization, optimization in bounded and unbounded domains, and optimization subject
to constraints. For low-dimensional problems, exact methods are available, whereas for higher-
dimensional problems one is usually restricted to using partly heuristic numerical optimization
algorithms. For a review of continuous global optimization algorithms and software, see [21,22].

For the computations below, the dynamical systems-based optimization method (DSO), and the
extended cutting angle method (ECAM) from the open software library GANSO [23], were used.
These algorithms proved to be stable and sufficiently fast for not-very-large numbers of traps
(N . 25).

5.1 N Identical Traps

For N traps of a common radius ε on the unit sphere, it is convenient to use spherical coordinates
xj = (1, θj , φj), for j = 1, . . . , N , where θj is the azimuthal angle, and φj is the polar angle.
To minimize the average MFPT v̄, one has to find a global minimum of the interaction energy
H(x1, . . . , xN ) of (2.24) in a hypercube 0 ≤ θj ≤ π, 0 ≤ φj < 2π in 2N dimensions. We remark
that by fixing the position of the first trap to be at the north pole (θ1, φ1) = (0, 0) and by setting
φ2 = 0, the dimension of the problem is reduced to 2N − 3.

Coordinates for optimal spherical arrangements for 3 ≤ N ≤ 20 and interaction energy values for
3 ≤ N ≤ 65 have been numerically computed in [13] by using both the DSO and ECAM methods.
For N = 2, 3, traps are located on an equator; for N = 4, they are in the vertices of a regular
tetrahedron; for N = 5, 6, 7 two traps occupy poles, and the other N − 2 lie on the equator. The
majority of configurations of N > 7 traps do not exhibit an obvious symmetry.

Sample minimal energy trap configurations are shown in Fig. 15 for N = 4, 7, and 16, traps.

5.2 Optimal Locations of a Pattern With Two Kinds of Traps

Now consider a 2N -trap configuration, with N traps having radius ε and the other N traps having
radius αε, α > 1. The asymptotic average MFPT for such a configuration is given by (2.26). This
formula depends on the trap locations through the interaction energy H̃ as given in (2.27).

When α is large the energy H̃ depends significantly on the locations of the large traps, and much
more weakly on the locations of the small traps. This is because the “repelling force” between any
two traps is proportional to their radii. This yields a harder global optimization problem, with
multiple local minima that have very close values of the energy, yet rather different locations of
the small traps. Sample configurations for α = 10 are given in Figs. 16, 17, and 18. The global
minimum values were the same for both ECAM and DSO methods.
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(a) N = 4 (b) N = 7

(c) N = 16

Figure 15: Minimal energy spherical trap configurations for N = 4, 7, 16 idential traps.

(a) 2N = 4 (b) 2N = 6

Figure 16: Minimal energy spherical trap configurations for 2N traps of two kinds with N = 2, 3.
The radius ratio of the traps is α = 10. Larger traps are shown in red, smaller in black.
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In particular, for 2N = 4, the resulting configuration is a distorted tetrahedron, with two large
traps tending to occupy the poles as α increases (see Fig. 16a.) For 2N = 6, the large traps are
close to the vertices of an equilateral triangle on the equator (see Fig. 16b.) For 2N = 8, the
global minimum is given by a symmetric configuration with H̃ = −163.61503. However, several
local minima close to the global minimum were found using the ECAM algorithm, for example,
with energies H̃ = (−162.50234,−162.46460). These local minima correspond to non-symmetric
arrangements (Fig. 17).

For 2N = 10, the global minimum is given by H̃ = −198.80759. The ECAM optimization method
also gives two nearby local minima with H̃ = (−198.36939,−197.76083). In each of these three
configurations, the five large traps are found to be close to the simple optimal configuration of five
identical traps on the sphere, where two traps are at the poles, and the remaining traps occupy the
three vertices of an equilateral triangle on the equator (see Fig. 18).

(a) Global minimum (b) Local minimum 1

(c) Local minimum 2

Figure 17: Spherical trap configurations for 2N = 8 traps of two kinds with radius ratio α = 10.
The larger traps are shown in red, the smaller traps in black. (a) The configuration corresponding
to the global minimum of the average MFPT v̄; (b), (c) these configurations correspond to nearby
local minima of v̄ with H̃ = (−198.36939,−197.76083).

5.3 Fragmentation Effects. The Case of N >> 1 Traps

In order to study fragmentation effects, we consider N identical traps of radius ε. We denote
the percentage surface area fraction of traps by 100f , where f ≡ Nπε2/4π = Nε2/4. Plots of
v̄(N) for several fixed values of f are given in Fig. 19, using the numerically computed values of
the interaction energy H for optimal spherical trap arrangements (N = 3, ..., 65). All curves are
decreasing functions. This confirms the expectation that in order to minimize v̄ using traps of a

19



(a) Global minimum (b) Local minimum 1

(c) Local minimum 2

Figure 18: Spherical trap configurations for 2N = 10 traps of two kinds with radius ratio α = 10.
The larger traps are shown in red, the smaller traps in black. (a) The configuration corresponding
to the global minimum of the average MFPT v̄; (b), (c) these configurations correspond to nearby
local minima of v̄ with H̃ = (−198.36939,−197.76083).
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fixed trap surface area fraction it is preferable to have many smaller traps equi-distributed over the
surface of the sphere rather than have a small number of larger traps that cover the sphere only
sparsely.
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Figure 19: Trap fragmentation effects. The average spherical MFPT v̄ (2.23) versus N (number of traps)
for a fixed trap surface area percentage. Curves for f = 0.1%, 0.2%, 0.3%, 0.5%, 1%, 2.2%, 4%, 10% (top to
bottom).

An approximate scaling law for the interaction energy H(x1, . . . , xN ) of (2.24), for N identical
optimally distributed traps on a unit sphere (N À 1), was derived in [13], and is given by

H ≈ F(N) =
N2

2
(1− log 2) + b1N

3/2 + b2N log N + b3N + b4N
1/2 + b5 log N + b6 , (5.32)

b1 ≈ −0.5668 , b2 ≈ 0.0628 , b3 ≈ −0.8420 ,
b4 ≈ 3.8894 , b5 ≈ −1.3512 , b6 ≈ −2.4523 .

(5.33)

By using (5.32) in the expression for the average MFPT v̄ as given in (2.23), one obtains in terms
of the trap surface area fraction f that

v̄ ∼ |Ω|
8D
√

fN

[
1−

√
f/N

π
log

(
4f

N

)
+

2
√

fN

π

(
1
5

+
4b1√
N

)]
. (5.34)

Here it is required that the third term in (5.34) is asymptotically smaller than the second term.
Thus, the approximation (5.34) holds for N À 1 when the trap area fraction satisfies f ¿ O(ε).

6 Discussion

The MFPT v(x) required for a Brownian particle starting at an arbitrary location x to leave a
two-dimensional or a three-dimensional domain Ω with boundary traps satisfies a boundary value
problem (1.1) for the linear Poisson equation with mixed Dirichlet-Neumann boundary conditions.

Asymptotic results were presented for the MFPT v(x) for a 2-D domain and for the unit sphere.
These asymptotic formulas have been derived under the assumption of well-separated small traps
(trap size ∼ ε ¿ diam (Ω)). By computing full numerical solutions of the PDE (1.1), it was shown
for certain two-dimensional domains and for the unit sphere that the asymptotic theory of [12]
and [13] provide very reliable approximations to the average MFPT for a rather wide range of
trap sizes. In particular, for the case of one trap of size ε, it was shown that the asymptotic and
numerical values of the average MFPT v̄ agree within 1% for the unit disk when ε . 1.25, for the
unit square when ε . 0.2, and for the unit sphere when ε . 0.8. This close agreement between
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asymptotic and numerical results at finite, but not necessarily asymptotically small, values of the
trap size ε illustrates one of the often key benefits of developing a theory based on asymptotic
analysis.

With regards to the effect of trap separation, the validity limits of the asymptotic formulas were
also tested using comparisons with full numerical solution for the case of two identical traps on
the boundary of the the unit disk, the unit square, and the unit sphere. It was shown that for
all configurations, the asymptotic and numerical values of v̄ remain within 1% agreement for both
large and small trap separations, even to the point when the traps touch.

Due to its essentially singular form, the quality of the asymptotic MFPT approximation deterio-
rates when domain points close to the traps are chosen. However, as shown in Section 4.3 for a unit
disk, this error can be controlled. In particular, the distance from the trap where any given relative
error occurs decreases as ε → 0. The same can be shown for the rectangular and the spherical
domain.

The asymptotic results for the MFPT for the unit sphere involve a higher-order term that de-
pends on the global configuration of the traps. This term, referred to as the “interaction energy”,
involves a sum of two classical discrete energy functions: the logarithmic energy and the Coulomb
energy, together with an additional logarithmic term. The optimal point of this interaction energy
corresponds to the minimum value of the average MFPT v̄. This interaction energy was optimized
for N equal traps, and for a pattern of 2N traps consisting of N small traps and N much larger
traps.

The computed optimal spherical trap configurations for 3 ≤ N ≤ 65 equal traps were used in the
formula for the average MFPT v̄ to study trap fragmentation effects. Results confirm that for a
fixed surface area fraction of traps f , within the computed range of N , faster escape is achieved
for the case where N small traps are equi-distributed over the surface of the sphere rather than
placing a few large traps on the sphere.

There are two directions that warrant further study. Firstly, the asymptotic theory relies on
detailed knowledge of the Neumann Green’s function and its regular part. For an arbitrary 2-D
domain, it would be worthwhile to develop a hybrid asymptotic-numerical method for the calcula-
tion of the average MFPT that combines the asymptotic theory with fast-multipole methods such
as in [24] to calculate the Neumann Green’s function. For an arbitrary 3-D domain with smooth
boundary, it is relatively straightforward to derive a three-term asymptotic for the average MFPT
similar to that for the sphere given in (2.21). However, to evaluate the coefficients in this formula
one would have to determine numerically the Neumann Green’s function and its regular part for
an arbitrary 3-D domain with a Dirac source term on the boundary. The development of reliable
numerical methods to compute this Green’s function is an open problem.

A second open problem is to further study the relationship between the asymptotic theory in
the limit of a large number of traps and results that can be obtained from the dilute trap fraction
limit of homogenization theory. In particular, for the unit sphere, can one systematically derive, by
using the large N limit of our asymptotic theory with localized traps, a simple mixed Robin type
boundary condition ∂nv + κv = 0, for some computable constant κ, which yields the same average
MFPT? For a unit disk, this relation is discussed in Section 3. For the unit sphere, work in this
direction is in progress.
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