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Localized spatial patterns commonly occur for various classes of linear and nonlinear diffusive processes. In particular,

localized spot patterns, where the solution concentrates at discrete points in the domain, occur in the nonlinear reaction-

diffusion (RD) modeling of diverse phenomena such as chemical patterns, biological morphogenesis, and the spatial distribution

of urban crime. In a 2-D spatial domain we survey some recent and new results for the existence, linear stability, and slow

dynamics of localized spot patterns by using the Brusselator RD model as the prototypical example. In the context of linear

diffusive systems with localized solution behavior, we will discuss some previous results for the determination of the mean

first capture time for a Brownian particle in a 2-D domain with localized traps, and the determination of the persistence

threshold of a species in a 2-D landscape with patchy food resources. Common features in the analysis of all of these spatially

localized patterns are emphasized, including the key role of certain matrices involving various Green’s functions, and the

derivation and study of new classes of interacting particle systems and discrete variational problems arising from various

asymptotic reductions. The mathematical tools include matched asymptotic analysis based on strong localized perturbation

theory, spectral analysis, the analysis of nonlocal eigenvalue problems, and bifurcation theory. Some specific open problems

are highlighted and, more broadly, we will discuss a few new research frontiers for the analysis of localized patterns in

multi-dimensional domains.
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1 Introduction

The method of matched asymptotic expansions is a well-known and powerful systematic analytical method for asymptot-
ically calculating solutions to singularly perturbed PDEs. It has been successfully used in a wide variety of applications
(cf. [40]). In this article we consider some singularly perturbed linear and nonlinear diffusive processes that have spatially
localized “defects” in 2-D domains. This type of perturbation, which has a large magnitude but small spatial extent,
is called a strong localized perturbation (cf. [100], [99]). It may be contrasted with a weak perturbation, which is of
small magnitude but may have large extent. Strong localized perturbations are singular perturbations in the sense that
they produce large, but localized, changes in the solutions of the problems in which they occur. As such, the perturbed
solutions can be constructed by a matched asymptotic analysis, which matches an inner solution defined near the strong
perturbation to an outer solution defined in the region away from the defect. This matching procedure is facilitated using
Dirac masses, and as a result certain Green’s functions feature prominently in the analysis.

For strong localized perturbation PDE problems in a 2-D domain, a direct and naive asymptotic expansion of the
solution often leads to infinite logarithmic series in powers of ν = −1/ log ǫ, where ǫ is a small positive parameter.
However, since ν → 0 very slowly as ǫ decreases, unless many coefficients in the infinite logarithmic series can be obtained
analytically, the resulting low order truncation of this series will typically not be very accurate unless ǫ is very small. As
such, it is desirable to devise a hybrid asymptotic-numerical method for these problems that has the effect of “summing”
any infinite logarithmic series. Such a method was introduced in [99] for calculating eigenvalues for the Laplacian in a
planar 2-D domain containing small holes. As discussed in detail below, the goal of this article is to survey how a similar
theoretical framework can be used in a nonlinear context of analyzing localized spot patterns for certain reaction-diffusion
(RD) systems in the singular limit of a large diffusivity ratio.
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Localized spatio-temporal patterns are well-known to occur in a wide variety of experimental settings ([53], [23], [2],
[96], [47]). A detailed survey of localized pattern formation, with applications to chemical physics, is given in [96]. For
a recent comprehensive survey of localized patterns leading to snaking-type bifurcation diagrams in various applications
see [47]. Localized patterns are “far-from-equilibrium” structures [67], and are not typically amenable to study through
a conventional Turing-type stability analysis [95].
In the context of two-component RD systems, the 2-D numerical PDE computations of [71] using the simple Gray-Scott

kinetics revealed a surprisingly large variety of very complex spatio-temporal localized patterns including, self-replicating
spot patterns, stripe patterns, and labyrinthian space-filling curves (see also [64], [65]). This pioneering numerical study
of [71] provided one key impetus for the development of a theoretical understanding of some of the dynamical behaviors
and instabilities of localized patterns in two-component RD systems in the “far-from-equilibrium” regime. Although the
specific 2-D patterns observed in [71] are still largely intractable to a detailed mathematical analysis, over the past 20
years there have been many theoretical studies for the existence, linear stability, and dynamics of localized patterns in the
so-called “semi-strong” regime, which is based on assuming a large diffusivity ratio between the solution components. In
this semi-strong regime, there is now a rather extensive literature for the analysis of 1-D patterns for various specific RD
systems arising in different contexts (see [27], [26], [97], [28], [85], [102], [41], [46], and [66], and the references therein).
In contrast to the rather well-studied 1-D problem, there have been far fewer studies of the existence, linear stability, and

dynamics of localized spot patterns for two-component RD systems in the semi-strong regime in several space dimensions.
One key challenge for the development of this theory in 2-D domains is that the relevant asymptotic parameter is
ν = −1/ log ǫ, where ǫ−2 ≫ 1 is the diffusivity ratio. In order to accurately resolve interactions between localized spots
that are only logarithmically weak, a hybrid asymptotic-numerical approach, based on ideas originating in the strong
localized perturbation theory of [99] and [100], was first developed in [44] to analyze the existence, linear stability, and
slow dynamics of localized spot patterns for the Schnakenberg RD system. This hybrid approach has subsequently been
extended to analyze localized spot patterns for RD systems arising in concrete applications, including the Gray-Scott
RD model of chemical physics [18], a RD model for hot-spots of urban crime [46], and a RD model for the initiation of
plant root hair cells mediated by the plant hormone auxin [3]. We remark that a different type of hybrid asymptotic-
numerical approach has recently been developed in [60] and [61] for analyzing localized patterns with thin interfaces for
the Gierer-Meinhardt model with activator saturation.
In this article we survey and present some new results for the analysis of spatially localized spot patterns for RD systems

in 2-D domains in the large diffusivity limit. Certain key aspects of this methodology use ideas from strong localized
perturbation theory in order to develop a hybrid asymptotic-numerical framework. To more readily illustrate this theory,
we will focus almost exclusively on the well-known Brusselator RD model, as formulated in [74]. This prototypical RD
system has been a well-studied model for analyzing various aspects of weakly nonlinear patterns in RD systems (cf. [11]).
In a 2-D bounded domain Ω, the Brusselator has the form

Vσ = ǫ20∆V + Ef − (B + 1)V + UV 2 , Uσ = D∆U +BV − UV 2 ; σ > 0 , x ∈ Ω , (1.1)

where ∂nU = ∂nV = 0 on ∂Ω. In (1.1) we allow the feed-rate Ef to be spatially-dependent. In contrast to performing a
conventional weakly nonlinear analysis of pattern formation from a spatially homogeneous background state as a parameter
in the reaction-kinetics crosses through a bifurcation value (cf. [95], [11]), we will instead survey and present some new
results for localized spot patterns of (1.1) that occur in the large diffusivity ratio limit ǫ0 → 0. As shown in [81] and [89],
localized spot patterns for (1.1) occur when Ef = O(ǫ0), so that we introduce a constant E0 by Ef = ǫ0E0E(x). We then
define the new variables V = E0v/ǫ0, U = ǫ0Bu/E0, and σ = t/(B + 1), so that (1.1) becomes

vt = ǫ2∆v + ǫ2E − v + fuv2 , τut = D∆u+
1

ǫ2
(

v − uv2
)

; t > 0 , x ∈ Ω , (1.2)

where E = E(x) = O(1), and ∂nu = ∂nv = 0 on ∂Ω. In (1.2) the positive parameters are

f ≡ B

B + 1
< 1 , τ ≡ (B + 1)2

E2
0

, D ≡ D(B + 1)

E2
0

, ǫ ≡ ǫ0√
B + 1

. (1.3)

When ǫ ≪ 1, (1.2) is a large-aspect ratio system, and so the dispersion relation obtained from linearizing around the
spatially uniform state for (1.2) has a wide band of unstable modes (cf. [81]). Starting from an initial random perturbation
of this spatially homogeneous steady state, the full numerical PDE computation of (1.2) on the unit sphere, performed
originally in [81] and reproduced in Fig. 1, shows the transient formation of a localized spot pattern.
Mathematically, a spot pattern for (1.2) in the 2-D domain Ω is a spatial pattern where v is concentrated as ǫ → 0 near

certain discrete points in Ω, which can evolve dynamically in time. Qualitatively, in this semi-strong regime where ǫ ≪ 1
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(a) m(v) = 0.113, M(v) = 0.114 (b) m(v) = 0.114, M(v) = 0.115 (c) m(v) = 0.114, M(v) = 0.115

(d) m(v) = 0.112, M(v) = 0.113 (e) m(v) = 0.0804, M(v) = 0.176 (f) m(v) = 0.0301, M(v) = 0.407

Figure 1. Numerical PDE simulations of (1.2) on the unit sphere for f = 0.8, ǫ = 0.075, D = 0.2, τ = 1/f2, and E = 4. The
initial condition was a 2% random perturbation from the spatially uniform state. A Turing stability analysis around the spatially
uniform state predicts a wide band of unstable modes. The numerical results shows an intricate transient process leading to the
formation of 8 localized spots when t ≈ 70.3 (last frame). The indicated times are: T = 0.281 (top left); T = 0.703 (top middle);
T = 2.81 (top right); T = 7.03 (bottom left); T = 28.1 (bottom middle); T = 70.3 (bottom right). Here m(v) and M(v) indicate
the minimum and maximum value of v, respectively, for the computed solution. Figure reproduced from [81].

and D = O(1), localized spots interact with each other through the coupling induced by a global diffusion field, which
depends on the domain shape. This “particle + field” interaction is distinctly different from the study of spot dynamics in
the weak-interaction regime D = O(ǫ2), where spots interact with each other via their far-field, or “tail”, behavior. The
study of such weakly interacting spots for a few specific systems is given in [30]. A comprehensive and rigorous theory
characterizing the dynamics of weakly interacting spots in any space dimension is given in [111]. Our study herein will
focus on the semi-strong regime.
In different parameter regimes, spot patterns for (1.2) can exhibit three distinct types of fast O(1) time-scale linear

instabilities: temporal oscillations of the spot amplitudes, instabilities of the spot amplitudes due to competition effects,
and shape-deforming instabilities of the spot profile. In the absence of any of these instabilities, spot patterns for (1.2) will
evolve slowly as t increases to some equilibrium configuration over the asymptotically long time scale t = O(ǫ−2). In §2 we
survey some linear stability and slow dynamics results for localized spot patterns for (1.2) that have been obtained in [81],
[89], and [93] from a hybrid asymptotic-numerical theory that accounts for all powers of the logarithmic gauge ν. In §3, we
announce some new linear stability results of [17] for localized spot patterns that are based on analyzing various nonlocal
eigenvalue problems (NLEPs) that arise for the distinguished limiting regime where D = O(ν−1). These new results, given
in Proposition 3 of §3.1, in §3.2 and in §3.3, are derived in detail in [17]. Although conventional NLEP stability theory,
developed in [103], [104], [105], [106], [107], [109] for other RD models, only determines leading-order-in-ν stability
thresholds, this theory does provide rigorous stability results. One such result is given in Proposition 2 of §3.1. However,
our primary focus in §3 is to extend this conventional NLEP framework, so as to determine a more accurate two-term
asymptotic approximation for certain stability thresholds, and to overcome the limitation of conventional NLEP theory
for analyzing Hopf bifurcations of the spot amplitudes. This latter issue will be discussed in §3.2.

We remark that our NLEP analysis only characterizes instabilities on an O(1) time-scale. There are possibly other
stability thresholds associated with the small eigenvalues of order O(ǫ2) in the spectrum of the linearization, which we
do not consider. Unstable eigenvalues of this type correspond to instabilities in the steady-state spot locations, but they
are weak instabilities in that they are only realized on long O(ǫ−2) time-scales. For certain RD systems, such as the
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three-component Fitzhugh Nagumo model studied in [98], and the Schnakenberg-type system studied in [110], a drift
bifurcation, resulting from a Hopf bifurcation of the small eigenvalues, has been shown to lead to spot dynamics that
exhibit highly intricate oscillatory-type motion in planar domains. For the Brusselator (1.2), instabilities in the amplitudes
of the spots, as governed by the NLEP, or shape-deforming instabilities of the spot profile, are the dominant instabilities
on the range τ ≪ O(ǫ−2) where we focus our analysis. No Hopf bifurcations of the translation mode can occur for our
2-D Brusselator model (1.2) for this range of τ .
In a 1-D setting, there have been many studies of NLEPs characterizing the linear stability on an O(1) time-scale of

spike patterns for two-component RD systems in the semi-strong regime (cf. [27], [26], [102], [90], [46], [97] see also the
references therein). One of the key differences between NLEPs in this 1-D setting for spike stability and our 2-D setting for
spot stability, is that for the 2-D problem the multiplier of the nonlocal term in the conventional NLEP theory is typically
either a bilinear or biquadratic function of the eigenvalue parameter, owing to the fact that stability thresholds occur in
2-D in the D = O(ν−1) regime, where the Green’s function can be approximated. For multiple-spike patterns on a finite
1-D domain, this NLEP multiplier typically has a rather intricate dependence on λ. However, in our 2-D setting, discrete
eigenvalues of the NLEP cannot be reduced to the study of the roots of certain hypergeometric functions (cf. [97]) as in
the 1-D case, owing to the fact that the 2-D spot profile is not known analytically. As such, NLEP studies in 1-D and in
2-D are largely rather different, with the 2-D case relying more heavily on a functional-analytic framework since solutions
in terms of special functions are not available. We further remark that 1-D NLEP analysis has been used to study the
transverse stability of a 1-D homoclinic stripe (cf. [28], [41], [60]). The breakup of the stripe, as characterized by unstable
eigenvalues of the NLEP for a particular transverse wavenumber, is a key mechanism through which localized spots in
2-D are created. Finally, we mention that, in 1-D, instabilities resulting from the small eigenvalues in the linearization
have been studied by extending the SLEP method, as developed in [68] and [69] for analyzing the linear stability of
transition-layer solutions, to spike-type patterns (see [43] and the references in [97] and [102].)
In §4, we survey some previous results for two distinct linear singularly perturbed eigenvalue problems. The first problem,

studied in §4.1, is related to the mean first capture time for a Brownian particle in a 2-D domain with small traps [45].
The second problem, with links to ecology and re-visited in §4.2 (cf. [55]), involves determining and then optimizing the
persistence threshold for a species in a 2-D landscape with spatially localized food resources. These two specific problems
are only two representative linear PDE problems with localized patterns. Other applications, not discussed herein, include
mean first passage time problems in biophysics [79] and ecology [51], and narrow escape problems, where a Brownian
particle can escape a bounded domain through small windows on the boundary (cf. [36], [82], [73], [20]).
Although the specific results in §4 have appeared previously, they are re-interpreted here so as to clearly exhibit the

common elements between the analysis of spot patterns for (1.2) and the study of eigenvalue problems in singularly
perturbed domains. All of the problems considered herein involve logarithmic interactions between localized structures.
One particularly notable common feature in these problems is the role of certain matrices involving various Green’s
functions, and the derivation and study of new classes of interacting particle systems and discrete variational problems
arising from the strong localized perturbation analysis. Some specific open problems in these areas will be highlighted.
Finally, with a broader perspective, in §5 we briefly discuss a few new research frontiers for the analysis of localized
patterns in multi-dimensional domains.

2 Localized Spot Patterns in 2-D: Existence, Linear Stability, and Slow Dynamics

In this section we survey some results for the existence, linear stability, and slow dynamics of localized spot patterns for
(1.2). The hybrid analysis in this section provides an asymptotic theory that is accurate to all orders in ν.

Spatial patterns for which v concentrates as ǫ → 0 at a discrete set of points x1, . . . ,xN in Ω are called spot patterns.
To characterize such spot patterns in the limit ǫ → 0, strong localized perturbation theory is used to first construct a
quasi-equilibrium N -spot pattern, resulting from neglecting the time-dependence in (1.2) and seeking an approximation
of the solution to the steady-state problem for a given prescribed spatial configuration x1, . . . ,xN of the spot centers, with
|xi − xj | = O(1) for i 6= j. In this article, unless otherwise noted, our O(1) symbol means “strict” O(1), so that |xi − xj |
is bounded away from zero. Through a linear stability analysis, in certain parameter regimes such quasi-equilibrium
patterns are known to be linearly stable on O(1) time-intervals (cf. [81], [89], [93]). In such parameter regimes, spot
patterns exhibit slow dynamics, evolving over asymptotically long time scales of order t = O(ǫ−2). This slow motion is
characterized by a differential algebraic system (DAE) of ODEs for the evolution of the spot centers, as derived through
a higher-order asymptotic construction.
The asymptotic analysis for the existence, linear stability, and slow dynamics of such localized 2-D spot patterns in 2-D

was initially performed for the Schnakenberg model in [44], and subsequently for the Gray-Scott [18] and the Brusselator
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models (cf. [81], [89], [93]). Our goal here is to only highlight the methodology and some of the main results, focusing on
the Brusselator model, and to outline some interesting open problems for the analysis of these 2-D spot patterns.

For simplicity, we will outline the use of strong localized perturbation theory to construct an N -spot quasi-equilibrium
pattern for (1.2) for the special case of a constant feed-rate where E(x) ≡ 1 in (1.2). For ǫ → 0, we have v = O(1) in
the core of the spot, where |x − xj | = O(ǫ), and v ∼ ǫ2 away from the spot centers where |x − xj | = O(1). In the core
of each spot, and to leading-order in ǫ, u and v are determined by a locally radially symmetric BVP defined in terms of
ρ ≡ ǫ−1|x − xj |, where the local inhibitor field has an imposed logarithmic behavior as ρ → ∞. In the limit ǫ → 0, the
effect of the localized spots on the global inhibitor field u in (1.2) is to introduce a sum of Dirac-delta “forces” where the
strength of the “force” induced by the spot at xj is proportional to its source strength Sj , which is a parameter to be
determined. In this way, the global inhibitor field u is represented as a superposition of Neumann Green’s functions on Ω.
Then, by asymptotically matching the local and global solutions for the inhibitor field, a nonlinear algebraic system for
the source strengths S1, . . . , SN is derived for a given spatial configuration x1, . . . ,xN of the spot centers.

For the Brusselator (1.2), in the inner region near the j-th spot we look for a locally radially symmetric solution in
the form v ∼ D1/2vj(ρ) and u ∼ D−1/2uj(ρ). To leading-order, we readily obtain the following radially symmetric core
problem near the j-th spot (cf. [81]):

∆ρvj − vj + fujv
2
j = 0 , ∆ρuj + vj − ujv

2
j = 0 , ρ > 0 ,

u′
j(0) = v′j(0) = 0 ; vj → 0 , uj ∼ Sj log ρ+ χ(Sj) as ρ → ∞ , j = 1, . . . , N ,

(2.1)

where ∆ρ ≡ ∂ρρ + ρ−1∂ρ with y = ǫ−1(x − xj) and ρ ≡ |y|. The central feature of this core problem is that we impose
uj ∼ Sj log ρ as ρ → ∞, so that each localized spot provides a Dirac source-term of strength proportional to the unknown
Sj for the outer solution for u, which is defined in the region away from O(ǫ) neighborhoods near the spots. As such, we
refer to Sj as the source strength of the j-th spot, and it satisfies the integral identity Sj =

∫∞

0

(

v2juj − vj
)

ρ dρ. Since the
core problem (2.1) cannot be solved analytically, the key constant χ(Sj), which also depends on f , must be determined
from a numerical solution to (2.1) by calculating the limiting behavior limρ→∞(uj − Sj log ρ) = χ(Sj).

In the outer region, (1.2) yields that v ∼ ǫ2. To determine the effect of the localized spots on the outer solution for u,
we must estimate the term ǫ−2(v − uv2) in (1.2) in the sense of distributions as ǫ → 0. Upon using v ∼ ǫ2 +D1/2vj and
u ∼ D−1/2uj near the j-th spot, we estimate for ǫ → 0 that

ǫ−2(v − uv2) → 1 +
√
D

N
∑

j=1

(∫

R2

(vj − ujv
2
j ) dy

)

δ(x− xj) = 1− 2π
√
D

N
∑

j=1

Sjδ(x− xj) , (2.2)

where we have used the identity Sj =
∫∞

0

(

v2juj − vj
)

ρ dρ. In this way, the outer, or global, inhibitor field satisfies

D∆u = −1 + 2π
√
D

N
∑

j=1

Sjδ(x− xj) , x ∈ Ω ; ∂nu = 0 , x ∈ ∂Ω , (2.3 a)

subject to the following asymptotic matching conditions, where we have defined ν ≡ −1/ log ǫ ≪ 1 and χ(Sj) ≡ χj :

u ∼ D−1/2 (Sj log |x− xj |+ Sj/ν + χj) as x → xj , j = 1, . . . , N . (2.3 b)

The central feature in (2.3 b) is that the asymptotic matching provides a singularity structure of the form u ∼ Aj log |x−
xj | + Bj , where both the singular part, Aj , and the regular part, Bj , of each singularity condition is prescribed. The
specification of the precise form of the regular part, which involves the key constant χj from the core problem, provides a
constraint to determine Sj . By solving (2.3) exactly for any small fixed ν, we obtain a result that is accurate to all orders
in the small parameter ν. In this way, this construction of a quasi-equilibrium N -spot solution effectively “sums” all the
logarithmic correction terms defined by powers of ν.

To complete the construction, we observe from applying the divergence theorem to (2.3) that 2π
√
D
∑N

j=1 Sj = |Ω|,
where |Ω| is the area of Ω. When this constraint holds, the solution to (2.3) can be written as

u = −2πD−1/2
N
∑

i=1

SiG0(x;xi) + ū , (2.4)
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where ū is an unknown constant, and where G0(x;x0) is the Neumann Green’s function satisfying

∆G0 =
1

|Ω| − δ(x− x0) , x ∈ Ω ; ∂nG0 = 0 , x ∈ ∂Ω ;

∫

Ω

G0 dx = 0 , G0 ∼ − 1

2π
log |x− x0|+R0(x0) +∇xR0(x)|x=x0

· (x− x0) + . . . as x → x0 .

(2.5)

Here R0(x0) is called the regular part of G0 at x = x0, and it is depends on the shape of Ω. By expanding (2.4) as x → xj

and comparing with the required singularity behavior in (2.3 b), we readily derive that S1, . . . , SN and ū must satisfy the
N + 1 nonlinear algebraic equations

Sj + 2πν



SjR0j +

N
∑

j 6=i

SiG0ji



+ νχ(Sj) = νD1/2ū , j = 1, . . . , N ;

N
∑

j=1

Sj =
|Ω|

2π
√
D

, (2.6)

where R0j ≡ R0(xj) and G0ji ≡ G0(xj ;xi). By eliminating ū, we obtain, equivalently, in matrix form that

S+ 2πν (I − E)G0S+ ν (I − E)χ =
|Ω|

2πN
√
D

e , ū =
1

νN
√
D

( |Ω|
2π

√
D

+ 2πνeTG0S+ νeTχ

)

. (2.7 a)

Here (·)T denotes the transpose, I is the N ×N identity matrix, and we have defined

S ≡







S1

...

SN






, χ ≡







χ1

...

χN






, e ≡







1
...

1






, E ≡ 1

N
eeT , (G)0ij ≡

{

R0j i = j

G0(xi;xj) i 6= j
, i, j = 1, . . . , N .

(2.7 b)

Provided that the quasi-equilibrium spot pattern is linearly stable on O(1) time-scales (see §2.1 below), a higher-order
asymptotic analysis, which accounts for O(ǫ) correction terms to the core problem, can be used to derive the slow dynamics
of the spot pattern on the long time scale σ = ǫ2t (cf. [89] and [93]). The collective coordinates characterizing this slow
dynamics are the spot locations x1, . . . ,xN and their corresponding spot source strengths S1, . . . , SN , that both evolve
slowly on the long time-scale σ = ǫ2t. The resulting system for slow spot dynamics is a DAE system of ODEs as given in
equation (3.8) of [93]. We summarize the result here as follows:

Proposition 1 For ǫ → 0, and when there are no O(1) time-scale instabilities of the quasi-equilibrium spot pattern,
then for any τ ≪ O(ǫ−2) the time-dependent spot locations xj, for j = 1, . . . , N , on the slow time-scale σ = ǫ2t for the
Brusselator (1.2) with E ≡ 1 satisfy a DAE system, consisting of the ODE dynamics

dxj

dt
= −2ǫ2πγ(Sj)



Sj∇xR0j +

N
∑

i6=j

Si∇xG0ji



 , j = 1, . . . , N , (2.8 a)

for some γ(Sj) > 0, which is coupled to the constraints for S1, . . . , SN in terms of x1, . . . ,xN given by the roots of the
nonlinear algebraic system

N (S) ≡ S+ 2πν (I − E)G0S+ ν (I − E)χ− |Ω|
2πN

√
D
e = 0 . (2.8 b)

Here ν ≡ −1/ log ǫ, ∇xR0j ≡ ∇xR0(x)|x=xj
, and ∇xG0ji ≡ ∇xG0(x;xi)|x=xj

.

The DAE dynamics (2.8) characterizes slow spot dynamics for the Brusselator (1.2) in a bounded 2-D planar domain
in the absence of any fast O(1) time-scale instabilities of the spot amplitudes. We remark that in the nonlinear algebraic
system (2.7 a), the interaction between the spots is mediated by the Neumann Green’s matrix G0, while the nonlinearities
inherent in the core problem determine both χ(Sj) and γ(Sj) > 0 (see equation (3.8c) of [93]), which depend only on
Sj and the Brusselator parameter f . These quantities are determined numerically in terms of the solution to the core
problem (2.1), and are plotted in Fig. 2.
We remark that (2.8) provides a hybrid asymptotic-numerical description for slow spot dynamics, which is easily

implemented using a DAE solver provided that the Neumann Green’s function and its regular part from (2.5) are known.
When Ω is a disk or rectangle, there are explicit analytical expressions for this Green’s function (cf. [18]).
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Figure 2. Left panel: the function χ(S) in (2.1) for f = 0.2, 0.4, 0.6 and 0.8. The higher (lower) curves correspond to smaller
(larger) values of f . Right panel: γ(S) versus S for a few values of f . The peanut-splitting instability threshold value of S, labeled by
Σ2(f) and analyzed in §2.1, is indicated by the bullet points. For Sj < Σ2(f), the spot pattern is linearly stable to peanut-splitting.

Figure 3. Schematic plot of a 5 spot ring pattern inside a disk.

An analytically tractable case of spot dynamics is for a ring pattern of spots where N -spots are equidistantly placed on
a ring of radius r0, with 0 < r0 < 1, inside the unit disk (see the schematic diagram in Fig. 3). For this spot configuration,
the symmetric Neumann Green’s matrix is also cyclic, and so e is an eigenvector of G0. Since (I −E)e = 0, (2.8 b) admits
a solution of the form S = Sce, where the common spot strength Sc is

Sc =
|Ω|

2π
√
DN

. (2.9)

Moreover, for a ring pattern we have that

∇xR0j +
N
∑

k 6=j

∇xG0jk =
p′(r0)

2N
(cos θj , sin θj)

T , θj =
2πj

N
, j = 1, . . . , N , (2.10)

where xj = r0(cos θj , sin θj)
T . Here p(r0) is given explicitly by (see equation (4.11) of [45])

Ge =
p(r0)

N
e , where p(r0) =

1

2π

[

−N log(NrN−1
0 )−N log(1− r2N0 ) + r20N

2 − 3N2

4

]

. (2.11)

Upon substituting (2.10) and (2.11) into (2.8 a), we obtain the following simple scalar ODE for the ring radius r0:

dr0
dt

= ǫ2γ(Sc)Sc

(

(N − 1)

2r0
− Nr2N−1

0

1− r2N0
− r0N

)

, Sc =
|Ω|

2π
√
DN

. (2.12)

It is readily observed that the dynamics (2.12) has a unique stable steady-state solution r0e in 0 < r0e < 1 for any N > 1.
However, this stability conclusion for any N does not pertain to perturbations in the spot locations that deviate from a
common ring radius. In fact, the study of this latter linear stability problem is an open problem (see below) and shares
some common features with the well-known Thomson’s Heptagon problem [9] for vortex dynamics.

Results similar to Proposition 1 have been derived in 2-D planar domains for the Schnakenberg [44] and the Gray-Scott



8 M. J. Ward

models [18]. Leading-order results for large D were derived in [42] for the 2-D Gierer-Meinhardt model. More recently,
in [89] slow spot dynamics has been analyzed for the Brusselator (1.2) when posed on the boundary of the unit sphere.
Although the leading-order core problem (2.1) is still valid, as it is defined locally on the tangent plane to the sphere at
x = xj , the higher-order asymptotic analysis for deriving the spot dynamics requires careful analysis of correction terms
due to the non-zero curvature of the sphere. As for the 2-D planar problem, spot interactions are mediated through the
Neumann Green’s function, which for the sphere has the simple explicit form

G0(x;x0) ≡ − 1

2π
log |x− x0|+R0 , R0 =

1

4π
(log 4− 1) . (2.13)

As shown in [89], for ǫ → 0 and when there are no O(1) time-scale instabilities of the quasi-equilibrium spot pattern,
the time-dependent spot locations xj , for j = 1, . . . , N , for the Brusselator (1.2) on the surface of the unit sphere consists
of the slow ODE dynamics

dxj

dt
= −ǫ2γ(Sj) (I − Qj)

N
∑

i=1
i6=j

Sixi

|xi − xj |2
, Qj ≡ xjx

T
j , j = 1, . . . , N , (2.14 a)

coupled to the following nonlinear constraints, which replace (2.8 b):

N (S) ≡ [I − ν (I − E)G0s]S+ ν (I − E)χ− 2√
DN

e = 0 . (2.14 b)

Here ν ≡ −1/ log ǫ, E ≡ N−1eeT and G0s is the N ×N matrix with entries (G0s)ij = log |xi−xj | for i 6= j and (G0s)ii = 0.
In (2.14 a), Qj is a projection matrix that ensures that spots remain on the sphere |xj | = 1.

One key property of the spot dynamics (2.14 a) is that, due to the positivity of γ(S), any two spots that become too
close will be repelled. To see this, suppose that |x1 − x2| = mini6=j |xi − xj |, and that O(ǫ) ≪ |x1 − x2| ≪ 1. Then,
considering only the dynamics of x1 and x2, (2.14 a) yields

dx1

dt
∼ −ǫ2γ(S1) (I − Q1)

S2x2

|x1 − x2|2
,

dx2

dt
∼ −ǫ2γ(S2) (I − Q2)

S1x1

|x1 − x2|2
,

where Q1 ≡ x1x
T
1 and Q2 ≡ x2x

T
2 . Since |x1| = |x2| = 1 for all t, we calculate that

d|x1 − x2|2
dt

= −2
(

xT
2 x

′
1 + xT

1 x
′
2

)

∼ 2ǫ2

|x1 − x2|2
[

S2γ(S1)x
T
2 (I − Q1)x2 + S1γ(S2)x

T
1 (I − Q2)x1

]

, (2.15 a)

=
2ǫ2

|x1 − x2|2
[

S2γ(S1)
(

1− |xT
1 x2|2

)

+ S1γ(S2)
(

1− |xT
1 x2|2

)]

, (2.15 b)

where we have used xT
1 x1 = 1, xT

2 x2 = 1, and xT
2 Q1x2 = xT

1 Q2x1 = |xT
1 x2|2. Since γ(S) > 0 and |xT

1 x2| < 1, the last line

in (2.15) yields that d|x1−x2|
2

dt ∼ b/|x1 − x2|2 > 0 for some b > 0. Thus, two spots that become too close will be repelled.

(d) σ ∞ (d) σ ∞

Figure 4. Schematic plot of steady-state spot configurations of the DAE dynamics (2.14) for the twisted cuboidal N = 8 configu-
ration (left panel), for N = 9 (middle panel), and for N = 10 (right panel). In the left panel the polar axis is drawn as a reference.
(Figure from [38] and [89]).

For spot patterns on the sphere, an interesting open question is to determine stable equilibrium spot configurations
of the DAE dynamics (2.14) that have large basins of attractions for initial conditions. Since two-spot interactions are
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repulsive, we expect that any such steady-state configuration will have spots that are, roughly, equally distributed on the
sphere. For N = 2, . . . , 8 and for N = 9, 10 such equilibria have been classified in [89] and [38] as follows: N = 2: two
antipodal spots; N = 3: three equally-spaced spots on an equator of the sphere; N = 4: four spots centered at the vertices
of a regular tetrahedron; N = 5, 6, 7: an (N − 2) + 2 pattern consisting of a pair of antipodal spots, with the remaining
N − 2 spots equally-spaced on the equatorial mid-plane between the two polar spots; N = 8: a “twisted cuboidal” shape,
consisting of two parallel rings of four equally-spaced spots, symmetrically placed above and below an equator. The spots
are phase shifted by 45◦ between each ring. The perpendicular distance between the two planes is ≈ 1.12924 as compared
to a minimum distance of ≈ 1.1672 between neighboring spots on the same ring, so that the pattern does not form a
true cube; N = 9: pattern with 3 parallel planes of 3 spots each. The spots on the equatorial plane and the other two
planes are 60◦ phase-shifted; N = 10: two polar spots together with two parallel planes with four equally-spaced spots
on each plane, with a 45◦ relative phase-shift of the spots on the two planes. A schematic plot of the steady-state spot
configurations for N = 8, N = 9, and N = 10, is shown in Fig. 4. For N = 2 . . . , 10, stable spot configurations of the
DAE dynamics (2.14) are found to coincide with elliptic Fekete point distributions (cf. [89], [38]), which correspond to
minimizing the discrete logarithmic energy H2 ≡ −∑∑

i6=j log |xi − xj | on the sphere (cf. [50], [75]).

We now list several specific open problems related to the DAE dynamics for the Brusselator in a planar domain (2.8)
and on the sphere (2.14). For the sphere, a few of these were also listed in [38].

• Extend the rigorous numerics methodology of [4] to prove the existence of solutions to the core problem (2.1) and the
behavior of χ(Sj). Similar core problems, but with different nonlinearities, occur for other RD systems, such as the
Gray-Scott model (cf. [18]).

• For a fixed N , numerically determine bifurcation properties of branches of equilibria to the DAE dynamics (2.8) in
simple domains where the Green’s function is analytically available and for (2.14) on the sphere (see Fig. 3–5 of [89]
for the case N = 3, 4 on the sphere).

• For N > 10, and in particular for large values of N , determine whether there is a relationship between the spatial
locations of spot equilibria on the sphere for (2.14) and elliptic Fekete point distributions.

• Analyze the linear stability properties of equilibria of the DAE dynamics. In particular, for a ring pattern of spots, there
should be a maximum number of spots that can be equidistantly placed on a ring before stability is lost (see Fig. 15 of
[44] for a numerical study of this issue for the related Schnakenberg model). Such a threshold, analogous to Thomson’s
Heptagon problem, has been established for the related problem of the stability of Eulerian point vortices on the sphere
(cf. [9]). The analysis of the linear stability of equilibria of the DAE dynamics should provide an alternative method
to analyzing the asymptotically small eigenvalues in the spectrum of the linearization of the Brusselator (1.2) around
a steady-state spot pattern. Such an approach was used to [91] to analyze the small eigenvalues associated with spike
patterns for the 1-D Brusselator model.

• Perform a numerical bifurcation study to examine how solution branches of spot equilibria on the sphere are related to
the weakly nonlinear patterns analyzed in [11] (see also [59]) near a Turing bifurcation of the spatially homogeneous
steady-state of the Brusselator. A possible homotopy parameter for this study is ǫ.

• Characterize DAE spot dynamics in the presence of various types of spatial heterogeneities. In particular, consider the
effect of either spatially inhomogeneous terms in the RD system (1.2), a Robin boundary condition on ∂Ω, or small
obstacles in the domain such as holes, which act as barriers to diffusion or allow material to leave the domain. Some
results in this direction are given in [93].

• Derive and analyze DAE dynamics when (1.2) is posed on a closed Riemannian manifold to determine how the local
geometry of the manifold, such as the Gaussian curvature, influences the dynamics. The Neumann Green’s function for
the Laplace-Beltrami operator will be central to this extension, and in general must be computed numerically. However,
recently, explicit formulae for it have been obtained for the torus [33] and for certain cylinders of revolution [29].

2.1 Linear Stability of Quasi-Equilibrium Spot Patterns

Next, we analyze the linear stability on an O(1) time-scale of the N -spot quasi-equilibria for the Brusselator (1.2) when
E(x) ≡ 1. We will show that there are three distinct types of instabilities that can occur in different parameter regimes. The
first type is a peanut-splitting instability, which occurs when the source strength of a particular spot exceeds a threshold,
depending on f , denoted by Σ2(f). This linear instability, which results from a zero-eigenvalue crossing for a locally
non-radially symmetric eigenfunction near the spot, has been shown from full numerical PDE simulations (cf. [81], [93])
to trigger a nonlinear spot self-replication event where the spot splits into two. The two other types of linear instability
mechanisms are instabilities of the spot amplitudes that are associated with locally radially symmetric perturbations near
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the spots. In contrast to peanut-splitting instabilities, the resulting spectral problem governing spot amplitude instabilities
is a globally coupled eigenvalue problem (GCEP) that combines both local behavior near the spots and global information
arising from an eigenvalue parameter-dependent Green’s matrix. A competition instability of the spot amplitudes, due
to a zero-eigenvalue crossing, is a sign-changing linear instability that preserves the average spot amplitude, but which
from full numerical PDE simulations (cf. [81], [93]) is found to ultimately trigger a nonlinear process leading to the
annihilation of one or more spots. The second type of instability is an oscillatory instability of the spot amplitudes, which
occurs through a Hopf bifurcation when a complex conjugate pair of eigenvalues crosses the imaginary axis in the spectral
plane.
We now outline the linear stability analysis of N -spot quasi-equilibria, denoted by ve and ue, when E ≡ 1 in (1.2). We

first introduce the perturbation

v = ve + eλtφ , u = ue + eλtη , (2.16)

into (1.2), where |φ| ≪ 1 and η ≪ 1, to obtain the singularly perturbed eigenvalue problem

ǫ2∆φ− φ+ 2fueveφ+ fv2eη = λφ , x ∈ Ω , ∂nφ = 0 , x ∈ ∂Ω , (2.17 a)

D∆η +
1

ǫ2
(

φ− 2ueveφ− v2eη
)

= τλη , x ∈ Ω , ∂nη = 0 , x ∈ ∂Ω . (2.17 b)

Near the j-th spot centered at xj , we have ve ∼ D1/2vj(ρ) and ue(ρ) ∼ D−1/2uj(ρ), with y = ǫ−1(x − xj) and ρ = |y|,
where vj and uj satisfy the radially symmetric core problem (2.1). Then, we let φ(x) ∼ Φj(y) and η(x) ∼ D−1Nj(y) to
obtain the leading-order local problem

∆yΦj − Φj + 2fujvjΦj + fv2jNj = λΦj , Φj → 0 as |y| → ∞ , (2.18 a)

∆yNj +Φj − 2ujvjΦj − v2jNj = 0 , (2.18 b)

provided that the following consistency condition holds:

τ |λ|ǫ2/D ≪ 1 . (2.19)

Since ǫ ≪ 1, (2.19) will hold for |λ| = O(1) whenever τ ≪ D/ǫ2. For D = O(1), this implies that τ ≪ O(ǫ−2). A
further key point, as discussed in detail below, is that the far-field behavior of Nj in (2.18 b) will depend on the type of
perturbation that is introduced.
To analyze the possibility of a shape-deforming instability near the j-th spot, we let m = 0, 1, 2, . . . and introduce

Φj = Φ̂j(ρ)e
imθ , Nj = N̂j(ρ)e

imθ , y = ρ(cos(θ), sin(θ))T , ρ = |y| . (2.20)

so that (2.18) becomes

LmΦ̂j − Φ̂j + 2fujvjΦ̂j + fv2j N̂j = λΦ̂j , Φ̂j → 0 as |y| → 0 , (2.21 a)

LmN̂j + Φ̂j − 2ujvjΦ̂j − v2j N̂j = 0 , (2.21 b)

where the linear operator Lm is defined by Lmv ≡ vρρ + ρ−1vρ −m2ρ−2v.

We first observe that the m = 1 mode corresponds trivially to translation invariance with (Φ̂j , N̂j) = (u′
j , v

′
j) being

an eigenpair associated with λ = 0 for any S > 0. Numerical computations (not shown) indicate that there is never a
zero-eigenvalue crossing, corresponding to a drift instability, for this mode for any S > 0. We remark that if we were to
consider the range τ = O(ǫ−2), for which (2.19) no longer holds, then the inner problem (2.21 b) would be modified by
adding the term τcλN̂j/D to the right-hand side of (2.21 b) where τc ≡ τǫ2 = O(1). With this modification of the local
eigenvalue problem, a drift instability does occur at some critical value of τc. We do not pursue this here, since when
τ = O(ǫ−2) the amplitudes of the spots will always be unstable on an O(1) time-scale. For the specific Schnakenberg-type
system studied in [110], drift bifurcations were shown to have a lower stability threshold than spot amplitude instabilities,
and this atypical feature was found in [110] to lead to intricate oscillatory dynamics in the trajectory of a spot.

As such, in our study, we will only consider the modes m = 0, 2, 3, . . .. For locally non-radially symmetric perturbations,
where m ≥ 2, the m2N̂j/ρ

2 term in (2.21 b) ensures that we can impose the far-field decay condition

N̂j → 0 as ρ → ∞ . (2.22)

Alternatively, for locally radially symmetric perturbations, where m = 0, we must allow N̂j to grow logarithmically as
ρ → ∞. For this case, the local problems near each spot are coupled together through a global outer problem. As we show
below this m = 0 mode analysis leads to a GCEP governing spot amplitude instabilities.
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Figure 5. Left panel: plot of the principal eigenvalue λmax of (2.21) versus Sj when f = 0.7: m = 2 (heavy solid curve), m = 3
(solid curve), and m = 4 (dotted curve). Right panel: plot of the threshold Sj ≡ Σm versus f corresponding to the threshold
condition λ = 0 for m = 2 (heavy solid curve) and m = 3 (dotted curve). Notice that the peanut-splitting threshold occurs first as
Sj is increased. Computations yield that Σ2(0.3) ≈ 11.89, Σ2(0.4) ≈ 8.21, Σ2(0.5) ≈ 5.96, Σ2(0.6) ≈ 4.41, and Σ2(0.7) ≈ 3.23.

For m = 2, 3, . . ., we let λmax denote the largest eigenvalue of (2.21) subject to (2.22), as Sj is varied. In [81], λmax

was computed numerically from (2.21) and the result is shown in Fig. 5. For each m = 2, 3, . . ., λmax becomes positive
as Sj crosses above the threshold Σm(f). The numerical results of [81] showed that there is an ordering principle with
Σ2(f) < Σ3(f) < Σ4(f) < . . .. In this way, the m = 2 peanut-splitting mode is the first to lose stability as Sj is
increased. Numerical values of Σ2(f) for a few values of f are shown in the caption of Fig. 5. From the full numerical
PDE computations performed in [81] it is conjectured that such a peanut-splitting instability is subcritical, and triggers
a large-scale deformation process leading to spot self-replication.
As an application of the theory, consider a ring-pattern of spots, whereby N -spots are equidistantly-spaced on a ring

concentric within the unit disk. For such a ring pattern, there is a common source-strength solution with Sj = Sc for

j = 1, . . . , N , where Sc = |Ω|/(2π
√
DN) with |Ω| = π from (2.9). By setting Sc = Σ2(f), and solving the resulting

expression for D, we predict that the N -spots will undergo simultaneous spot-splitting events whenever D is decreased
below the spot-splitting threshold Dsplit, defined by

Dsplit ≡
|Ω|2

4π2N2Σ2
2(f)

. (2.23)

For the m = 0 mode we now outline the derivation of the GCEP. Since (2.18) is linear and homogeneous, we write

Φj = cjΦ̃j(ρ) , Nj = cjÑj(ρ) , (2.24)

where cj is a constant to be determined. Then, (2.18) becomes

∆ρΦ̃j − Φ̃j + 2fujvjΦ̃j + fv2j Ñj = λΦ̃j , Φ̃j → 0 as ρ → ∞ , (2.25 a)

∆ρÑj + Φ̃j − 2ujvjΦ̃j − v2j Ñj = 0 , Ñj ∼ log ρ+ B̃j as ρ → ∞ . (2.25 b)

We remark that the far-field logarithmic behavior in (2.25 b) is a normalization condition and uniquely fixes B̃j = B̃j(Sj , λ).
To derive the GCEP we must construct an outer problem for η, and then asymptotically match the behavior η as

x → xj to the far-field behavior of Ñj as ρ → ∞. In this way, we obtain that the outer problem is

∆η − τλ

D
η =

2π

D

N
∑

i=1

ciδ(x− xi) , x ∈ Ω , ∂nη = 0 , x ∈ ∂Ω , (2.26 a)

η ∼ cj
D

[

log |x− xj |+
1

ν
+ B̃j

]

as x → xj , j = 1, . . . , N , (2.26 b)

where ν ≡ −1/ log ǫ. We observe that in (2.26 b) both the singular and regular parts of the singularity structure are
specified. This introduces a constraint, and will lead to the GCEP. The solution to (2.26) is

η = −2π

D

N
∑

i=1

ciGλ(x;xi) , (2.27)
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where the eigenvalue-dependent Green’s function Gλ(x;xi) satisfies

∆Gλ − τλ

D
Gλ = −δ(x− xi) , x ∈ Ω ; ∂nGλ = 0 , x ∈ ∂Ω ;

Gλ ∼ − 1

2π
log |x− xi|+Rλ(xi) + o(1) as x → xi .

(2.28)

By letting x → xj in (2.27) and enforcing the matching condition in (2.26 b), we obtain the homogeneous linear system

−2πν



cjRλj +

N
∑

i6=j

ciGλji



 = cj

(

1 + νB̃j

)

, j = 1, . . . , N . (2.29)

By writing (2.29) in matrix form, it follows that the discrete eigenvalues λ of (2.17) associated with locally radially
symmetric perturbations near the spots satisfy the GCEP (cf. [81], [93])

detM(λ) = 0 , Mc = 0 ; M(λ) ≡ I + 2πνGλ + νB̃ , (2.30 a)

where the symmetric Green’s matrix Gλ and the diagonal matrix B̃ have the matrix entries

(Gλ)ij ≡
{

Rλj i = j

Gλ(xi;xj) i 6= j
, (B̃)ij ≡

{

B̃j i = j

0 i 6= j
, i, j = 1, . . . , N . (2.30 b)

The eigenvalues λ of the GCEP (2.30) in Re(λ) > 0 correspond to instabilities in the amplitudes of the spots, owing to
the fact that the perturbation in v has the form

v = ve +

N
∑

j=1

cjΦ̃j

[

ǫ−1|x− xj |
]

eλt . (2.31)

2.2 The GCEP (2.30) For A Symmetric Configuration of Spots

We now examine the GCEP (2.30) in detail for a special spatial configuration of spots for which e = (1, . . . , 1)T is an
eigenvector of the Neumann Green’s matrix G0, i.e. that

G0e = κ01e , (2.32)

for some κ01. We refer to such spot configurations as “symmetric”, as they are the conceptual analogue of equally-spaced
spike patterns in the 1-D case. For symmetric spot patterns, the nonlinear algebraic system (2.7) characterizing spot quasi-
equilibria admits a common source strength solution with Sj = Sc = |Ω|/(2π

√
DN) for j = 1, . . . , N . A ring-pattern of

spots, where the ring is concentric within the unit disk, is a simple example of a symmetric spot pattern.
For a symmetric spot pattern, where the core problem (2.1) is the same for each spot, the GCEP (2.30) can be simplified

in that from (2.25), B̃j ≡ B̃(Sc, λ) for j = 1, . . . , N . Moreover, when λ = 0 in (2.25), we identify that B̃(Sc, 0) = χ′(Sc),
which is readily verified by differentiating the core problem (2.1) with respect to Sc and comparing with (2.25).

2.2.1 Symmetric Spot Patterns: The Competition Instability Threshold

For symmetric spot patterns, we will first study competition instabilities resulting from zero-eigenvalue crossings. Since
the problem (2.28) for Gλ is not valid when λ = 0, to analyze any instability associated with a zero-eigenvalue crossing
we must reformulate the GCEP (2.30) by first expanding Gλ(x;x0) for small λ as

Gλ ∼ D

|Ω|τλ +G0(x;x0) +O
(

τλ

D

)

, (2.33)

where G0 is the Neumann Green’s function of (2.5). Upon using (2.33), the Green’s matrix Gλ in (2.30 b) becomes

Gλ ∼ DN

|Ω|τλE + G0 +O
(

τλ

D

)

, 0 < |τλ/D| ≪ 1 , (2.34)

where E ≡ eeT /N and the Neumann Green’s matrix G0 are as in (2.7 b). Upon substituting (2.34) into (2.30 a), we get
(

E +
2πντλ

µ
G0

)

c = −τλ

µ

(

1 + νB̃
)

c , where µ ≡ 2πνDN

|Ω| , (2.35)
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and where B̃ = B̃(Sc, λ) is defined by (2.25).

For a symmetric spot pattern, the Neumann Green’s matrix G0 and E have a common eigenspace. Since G0 is symmetric,
then for N ≥ 2, we have

G0e = κ01e , κ01 ≡ R0(x1) +

N
∑

j 6=1

G0(x1;xj) ; G0qj = κ0jqj , where qT
j e = 0 , j = 2, . . . , N , (2.36)

where the qj for j = 2, . . . , N are mutually orthogonal. This shows that there are two possible classes of perturbations
corresponding to zero-eigenvalue crossings. The first type is the synchronous mode, obtained by setting c = e in (2.35),
which leads to the following expression for λ with τ |λ|/D ≪ 1:

1 +
2πντλ

µ
κ01 = −τλ

µ

[

1 + νB̃(Sc, λ)
]

. (2.37)

Since B̃(Sc, λ) = χ′(Sc)+O(λ) as λ → 0, (2.37) shows that there is no zero-eigenvalue crossing for the synchronous mode
c = e. Alternatively, let N ≥ 2 and consider the asynchronous modes c = qj , for j = 2, . . . , N . Then, for τ |λ|/D ≪ 1,
(2.35) yields that

qj [1 + 2πνκ0j + νχ′(Sc)] +O(λ) = 0 , j = 2, . . . , N . (2.38)

By letting λ → 0, we conclude that there exists a zero-eigenvalue crossing for these modes whenever Sc satisfies

χ′(Sc) = −1

ν
− 2πκ0j , j = 2, . . . , N , (2.39)

where κ0j and χ(Sc) are defined by (2.36) and (2.1), respectively. Since there is a common spot source strength Sc =

|Ω|/(2π
√
DN), (2.39) can be viewed as a nonlinear algebraic equation for the threshold valueDjǫ of the inhibitor diffusivity

D at which a zero-eigenvalue crossing occurs. This linear instability is referred to as a “competition” instability since,
owing to the fact that the perturbation mode c = qj satisfies q

T
j e = 0, the sum of the amplitudes of the spots is preserved

(see (2.31)). For ν ≪ 1, we can derive a two-term asymptotic expansion in powers of ν for the threshold Djǫ. To do so, we
first must determine the small S behavior for χ(S) associated with the core problem (2.1). The result is given in Lemma
4 of Appendix A.

From this Lemma, we use (A.1 a) for χ(S) in (2.39), together with Sc = |Ω|/(2π
√
DN), to obtain the following two-term

expansion for the critical values Djǫ, for j = 2, . . . , N , of the inhibitor diffusivity at which a competition instability occurs:

Djǫ =
f2|Ω|2

4b(1− f)N2π2ν
[1 + ν (χ̃1 + 2πκ0j)] +O(ν) . (2.40)

Numerical computations on (2.35) show that the unstable real eigenvalues cross through the origin into the unstable
right-half plane Re(λ) > 0 as D increases above Djǫ. Although this result predicts the zero-eigenvalue crossing accurately,
it does not provide any information about the spectrum of the linearization near the origin near criticality. Such a detailed
result is given below in Proposition 3 of §3.1.

Combining the result in (2.40) with the spot self-replication threshold (2.23), for N ≥ 2 we conclude that whenever
(2.32) holds and τ is sufficiently small, the symmetric spot pattern is linearly stable on an O(1) time-scale when D satisfies

Dsplit < D < Dcomp ; Dcomp ≡ min
2≤j≤N

Djǫ . (2.41)

From (2.40) the upper threshold is set by the smallest eigenvalue of the Green’s matrix G0 in theN−1 dimensional subspace
orthogonal to e. Since Dsplit = O(1) and Dcomp ∼ O(ν−1), the range in (2.41) of linear stability is asymptotically large.

2.2.2 Symmetric Spot Patterns: Hopf Bifurcations

Next, we formulate the problem for oscillatory instabilities in the spot amplitudes, arising from a Hopf bifurcation in
the GCEP (2.30) as τ is increased past some threshold. We again consider symmetric patterns for which (2.32) holds, so
that Sj = Sc ≡ |Ω|/(2π

√
DN) and B̃j = B̃(Sc, λ) for j = 1, . . . , N . For symmetric spot patterns we readily obtain from

the GCEP (2.30) that the discrete eigenvalues of the linearization (2.17) are the roots of Cj(λ) = 0, defined by

Cj(λ) ≡ ωλ,j +
1

2πν

[

1 + νB̃(Sc;λ)
]

, j = 1, . . . , N . (2.42 a)
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Here, ωλ,j , for j = 1, . . . , N , are the matrix eigenvalues of the eigenvalue-dependent Green’s matrix Gλ,

Gλe = ωλ,1e , ωλ,1 ≡ Rλ(x1) +
N
∑

j 6=1

Gλ(x1;xj) ; Gλqj = ωλ,jqj , where qT
j e = 0 , j = 2, . . . , N . (2.42 b)

A key remark is that since Gλ has the same eigenspace as G0 given in (2.36), oscillations in the amplitudes of the spots can
either be synchronous (c = e) or asynchronous (c = qj for j = 2, . . . , N). However, due to matrix eigenvalue degeneracy
for Gλ there is typically less than N − 1 distinct asynchronous modes whenever (2.32) holds. To calculate the threshold
τH at which a pair of eigenvalues ±iλI with λI > 0 first crosses the imaginary axis as τ is increased, we can fix D on the
range (2.41) for which the spot pattern is linearly stable to self-replication and competition instabilities, and solve the
system

Re(Cj(iλI)) = 0 , Im(Cj(iλI)) = 0 , j = 1, . . . , N , (2.43)

for λIHj > 0 and τHj using Netwon’s method. The threshold for the synchronous mode corresponds to τH1 while the
thresholds for the asynchronous modes correspond to τHj , for j = 2, . . . , N . Therefore, it follows that if D satisfies (2.41),
the symmetric spot pattern is linearly stable to O(1) time-scale oscillatory instabilities of the spot amplitudes when

τ < τH ≡ min
1≤j≤N

τHj . (2.44)

The simplest implementation of this theory is for a ring-pattern of N spots that is concentric within the unit disk (see
Fig. 3). For this configuration, the symmetric Green’s matrix Gλ is also cyclic, and so we can readily calculate its matrix
spectrum analytically in terms of the first row of Gλ (see §6 of [32]), which we label as

aλ,1 = Rλ(x1) , aλ,j = Gλ(x1;xj) , j = 2, . . . , N . (2.45 a)

The eigenvalue ωλ,1 of Gλ for the synchronous mode, while the other eigenvalues ωλ,j , for j = 2, . . . , N , for the asynchronous
modes are

ωλ,1 =
N
∑

n=1

aλ,n ; ωλ,j =
N−1
∑

n=0

cos

(

2π(j − 1)n

N

)

aλ,n+1 , j = 2, . . . , N . (2.45 b)

Since Gλ is symmetric, we observe that mode degeneracy occurs owing to the fact that ωλ,j = ωλ,N+2−j for j =
2, . . . , ⌈N/2⌉, where the ceiling function ⌈x⌉ is defined as the smallest integer not less than x. When N is even, we

notice that there is an eigenvalue of multiplicity one given by ωλ,N
2
+1 =

∑N−1
n=0 (−1)naλ,n+1. The corresponding eigenvec-

tors for j = 2, . . . , ⌈N/2⌉ are written explicitly in §6 of [32]. By using separation of variables, the first row of the Green’s
matrix can be calculated explicitly for the unit disk in terms of an infinite series (see §6 of [32]).
Numerical realizations of this theory are shown in [93].

Three open problems in this area are the following:
• A key open problem is to develop a weakly nonlinear theory to show that the peanut-splitting linear instability is
a subcritical instability as conjectured from the full PDE simulations in [89] and [93], where spot-splitting behavior
was observed. Develop a similar weakly nonlinear analysis for competition instabilities associated with zero-eigenvalue
crossing to show that these are also subcritical bifurcations (see [89] and [93]).

• In a disk or rectangular domain, where the Green’s function is known explicitly, develop a hybrid asymptotic-numerical
method to couple the slow spot dynamics (2.8) and the GCEP (2.30) so as to predict the occurrence of dynamically
triggered spot amplitude instabilities for an arbitrary configuration of spots, rather than a simple ring-pattern of
spots. Develop an efficient method to predict when the GCEP (2.30) has an eigenvalue in Re(λ) > 0 for an arbitrary
configuration of spots.

• Extend the hybrid approach above to allow for arbitrary 2-D domains where the Green’s functions for the slow dynamics
and the GCEP must be computed simultaneously using fast multipole theory (cf. [48], [49]).

3 NLEP Theory for Spot Patterns in 2-D

In this section we analyze the linear stability of N -spot quasi-equilibria for the distinguished limit D = D0/ν ≫ 1, for
which the GCEP (2.30) reduces to leading order in ν to a nonlocal eigenvalue problem (NLEP). By analyzing the spectrum
of this NLEP we will determine both competition and Hopf stability thresholds on a finite domain, and will study the
linear stability of a periodic pattern of spots where the spots are centered at the lattice points of a Bravais lattice in R

2.
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For the periodic problem we will identify the specific lattice that has an optimal stability property. Some open problems
related to NLEP theory will also be discussed.

3.1 Refined Competition Stability Thresholds

For the distinguished limit D = D0/ν ≫ 1, we first derive an NLEP from the GCEP (2.30) under the assumption that
the spot pattern is symmetric in the sense that (2.32) holds. With D = O(ν−1) it follows that the common spot source
strength solution in (2.9) satisfies Sc = O(ν1/2) ≪ 1. To derive our NLEP we need to re-express Lemma 4, characterizing
the asymptotics of the core problem, as an expansion in ν ≪ 1 rather than S ≪ 1. This result is given in Lemma 5 of
Appendix A
To begin the derivation of the NLEP, in (2.24) and (2.25) we introduce Bj ≡ B̃jcj and expand

Φj ∼ ν (Φj0 + νΦj1 + · · · ) , Nj ∼ Nj0 + νNj1 + · · · , Bj = Bj0 + νBj1 + · · · , cj = ν (cj0 + νcj1 + · · · ) . (3.1)

Upon substituting (3.1) into (2.25), and by using (A.2 a) for the core solution vj and uj , we obtain that

L0Φj0 +
w2

fχ2
0

Nj0 = λΦj0 , Φj0 → 0 as ρ → ∞ ,

∆ρNj0 = 0 , Nj0 ∼ Bj0 as ρ → ∞ ,

(3.2)

where L0Φj0 ≡ ∆ρΦj0 − Φj0 + 2wΦj0. We conclude that Nj0 = Bj0. At next order, we obtain that Nj1 satisfies

∆ρNj1 = −
(

1− 2w

f

)

Φj0 +
w2

f2χ2
0

Nj0 , Nj1 ∼ cj0 log ρ+Bj1 as ρ → ∞ . (3.3)

By using the divergence theorem on (3.3), we obtain that

cj0 =
b

f2χ2
0

Bj0 +

∫ ∞

0

ρ

(

2w

f
− 1

)

Φj0 dρ . (3.4)

Next, we integrate the equation for Φj0 in (3.2) to isolate
∫∞

0
ρΦj0 dρ as

∫ ∞

0

ρΦj0 dρ =
1

λ+ 1

[

2

∫ ∞

0

ρwΦj0 dρ+
b

fχ2
0

Bj0

]

. (3.5)

We then eliminate
∫∞

0
ρΦj0 dρ in (3.4) for cj0. Then, by substituting cj = νcj0 + · · · and Bj = Bj0 + · · · into the GCEP

(2.30), we obtain in vector form that

(I + 2πνGλ)c0 +B0 = 0 , (3.6)

where c0 ≡ (c10, . . . , cN0)
T and B0 ≡ (B10, . . . , BN0)

T , and where for self-consistency we must ensure that νGλ = O(1)
(as shown below). By substituting (3.5) and (3.4) into (3.6), we obtain a matrix expression for B0, which can be written
as

[

b

fχ2
0

(λ+ 1− f)I + f(λ+ 1) (I + 2πνGλ)
−1

]

B0 = −2(λ+ 1− f)

∫ ∞

0

ρwΦ0 dρ , (3.7)

where Φ0 ≡ (Φ10, . . . ,ΦN0)
T . We then use (A.2 b) for χ0, together with S0 = |Ω|/(2πN√

D0), to write

f2χ2
0

b
= D0θ , θ ≡ 4π2N2(1− f)2b

f2|Ω|2 . (3.8)

Upon substituting (3.7) into (3.2) for Φj0, and using (3.8), we obtain the vector NLEP

L0Φ0 −Kw2

∫∞

0
ρwΦ0 dρ

∫∞

0
ρw2 dρ

= λΦ0 , Φ0 → 0 as ρ → ∞ , (3.9 a)

where the matrix K is given by

K ≡ 2(λ+ 1− f)
[

(λ+ 1− f)I +D0θ(λ+ 1) (I + 2πνGλ)
−1
]−1

. (3.9 b)
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To diagonalize the vector NLEP, we introduce the matrix spectrum of the λ-dependent Green’s matrix Gλ as

Gλvj = κjvj , j = 1, . . . , N . (3.10)

In this way, in terms of κj , (3.9) yields the N scalar NLEPs given by

L0Ψ− βj(λ)w
2

∫∞

0
wΨρ dρ

∫∞

0
w2ρ dρ

= λΨ , Ψ → 0 as ρ → ∞ , (3.11 a)

where the N choices of the multiplier βj(λ) of the NLEP are

βj =
2(λ+ 1− f)

(λ+ 1)
(

1 + D0θ
1+2πνκj

)

− f
, j = 1, . . . , N . (3.11 b)

Here D0 = Dν, θ is defined in (3.8), and κj depends on λ through the Green’s matrix Gλ.
We will analyze (3.11) for two different parameter regimes that ensure that νκj = O(1) for at least some j ∈ {1, . . . , N}.

The first regime is the conventional NLEP regime where D = D0/ν and τ = O(1). This regime is studied in this section.
The second, and new, regime is for D = D0/ν but where τ has the anomalous scaling τ = O (ǫ−τc/ν) for some τc > 0.
This second regime is motivated and analyzed in §3.2 below.

For the conventional regime where D = D0/ν and τ = O(1), we readily calculate from (2.28) that for ν ≪ 1

Gλ =
D0

ντλ|Ω| +G0 +O(ν) , Rλ =
D0

ντλ|Ω| +R0 +O(ν) , (3.12)

where G0 is the Neumann Green’s function with regular part R0 from (2.5). Thus, for ν ≪ 1, the Green’s matrix is

Gλ =
D0N

ντλ|Ω| E + G0 +O(ν) , E ≡ 1

N
eeT , (3.13)

where e ≡ (1, . . . , 1)T . Now since Ee = e and Eqj = 0 for j = 2, . . . , N , where qT
j e = 0, the eigenvalues κj of Gλ are

κ1 ∼ D0N/ [ντλ|Ω|] and κj = O(1) for j = 2, . . . , N . This yields that

2πνκ1 ∼ µ

τλ
; 2πνκj = O(ν) , for j = 2, . . . , N , where µ ≡ 2πND0

|Ω| . (3.14)

We refer to the eigenpair κ1 and v1 = e as the synchronous mode, while the other N − 1 eigenpairs κj and vj = qj , with
qT
j e = 0 for j = 2, . . . , N , are referred to as the asynchronous, or competition, modes. We remark that the competition

modes correspond to asynchronous perturbations in the spot amplitudes, as they preserve the sum of the spot amplitudes
owing to the fact that qT

j e = 0, for j = 2, . . . , N .
Upon substituting (3.14) into (3.11), we obtain two distinct multipliers of the NLEP (3.11 a) corresponding to either

asynchronous or synchronous perturbations in the spot amplitudes. They are given, respectively, by

βa ≡ 2(λ+ 1− f)

(λ+ 1) (1 +D0θ)− f
, βs ≡

2(λ+ 1− f)

(λ+ 1)h(τλ)− f
, where h(τλ) ≡ 1 +

D0θτλ

τλ+ µ
, µ ≡ 2πD0N

|Ω| . (3.15)

In [108] and [109] several key rigorous results have been established for the spectrum of NLEPs of the form (3.11 a) for
the case where βj is a bilinear function of λ, i.e. βj = (c̃+ d̃λ)/(ẽ+ f̃λ). More recently in §2 of [94], a rigorous winding
number approach has been developed to determine the number M of unstable eigenvalues of (3.11 a), satisfying Re(λ) > 0,
for different ranges of the parameters in the NLEP with a bilinear multiplier. Since βa in (3.15) is bilinear, these results
can readily be used to analyze the linear stability properties of the asynchronous modes. One such specific result of [94]
that pertains to these asynchronous modes is as follows:

Lemma 1 Consider the NLEP (3.11 a) with a bilinear multiplier βj = (c̃+ d̃λ)/(ẽ+ f̃λ). where c̃ > 0, d̃ > 0, ẽ > 0, and

f̃ > 0 are constants. Then, if ẽ/c̃ < 1 and ẽ/c̃ > f̃/d̃, we have M = 0 and so any discrete eigenvalue of (3.11) satisfies
Re(λ) < 0. In contrast, if ẽ/c̃ > 1 and f̃/d̃ > 1, then M = 1 and so the NLEP has an unstable real positive eigenvalue.

The proof of this result is given in Lemma 1 and Lemma 2 of [94], and is not repeated here. These results are readily
used to obtain the following main linear stability result for the asynchronous modes.

Proposition 2 Let N ≥ 2 and consider the NLEP (3.11 a) for the asynchronous modes where β = βa, as defined in
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(3.15). Then, Re(λ) < 0 if and only if D0 < D0c. When D > D0c, the NLEP (3.11) has a unique positive real eigenvalue.
This critical value D0c, referred to as the competition stability threshold, is D0c = (1− f)/θ, and is given explicitly by

D0c ≡
|Ω|2f2

4π2N2b(1− f)
, where b ≡

∫ ∞

0

ρw2 dρ . (3.16)

Proof: The proof follows by using Lemma 1 with ẽ = 1 +D0θ − f , c̃ = 2(1− f), f̃ = 1 +D0θ, and d̃ = 2. We calculate
that ẽ/c̃ > 1 iff D0θ > 1− f and f̃/d̃ > 1 iff D0θ > 1. Since 0 < f < 1, we conclude that ẽ/c̃ > 1 and f̃/d̃ > 1 both hold
when D0θ > 1− f . The second result of Lemma 1 yields that M = 1 when D0θ > 1− f . Next, we obtain that ẽ/c̃ > f̃/d̃
reduces to f < (1+D0θ)f , which always holds. Therefore, from the first result of Lemma 1 we have M = 0 when ẽ/c̃ < 1,
which yields D0θ < (1− f). Finally, by using (3.8) for θ, the stability threshold D0c = (1− f)/θ is given in (3.16). �

An important observation is that the leading-order competition stability threshold D ∼ D0c/ν for ν ≪ 1 occurs as a
result of a zero-eigenvalue crossing for an N−1 dimensional subspace of asynchronous perturbations in the spot amplitudes
characterized by qT

j e = 0 for j = 2, . . . , N . In this sense, this leading order stability threshold D ∼ D0c/ν is degenerate,
and a higher-order asymptotic analysis is required to unfold this zero-eigenvalue crossing, and in such a way determine
a more refined prediction of the competition instability threshold. In particular, by introducing the de-tuning parameter
D1 by D = D0c/ν +D1 + o(1), the detailed analysis given in [17], originating from [16], determines all of the eigenvalues
λ within a small ball |λ| = O(ν) ≪ 1 near the origin that are associated with asynchronous perturbations in the spot
amplitudes. The main result of [17] (see also [16]), obtained from a rather lengthy higher-order asymptotic analysis
involving the correction terms in the asymptotic expansion in (3.1), is as follows:

Proposition 3 Let ν ≪ 1, N ≥ 2, and suppose that the symmetry condition (2.32) on the spot configuration {x1, . . . ,xN}
holds. Then, for D = D0c/ν +D1 + o(1), the spectrum of the NLEP corresponding to asynchronous perturbations in the
spot amplitudes has discrete eigenvalues λ near the origin, with |λ| = O(ν) ≪ 1, given by

λ = 2ν(1− f)

[

−πκ0j +
D1

2D0c
+

1

2b2(1− f)

∫ ∞

0

ρṽ1p dρ

]

+O(ν2) , (3.17 a)

where ṽ1p is defined in (A.1 d). Here κ0j for j = 2, . . . , N are the eigenvalues of the Neumann Green’s matrix G0 in the
N − 1 dimensional subspace orthogonal to e, i.e.

G0qj = κ0jqj , j = 2, . . . , N , qT
j e = 0 . (3.17 b)

By setting λ = 0 in (3.17 a), Proposition 3 shows that λ = 0 at the (possibly) N − 1 distinct values of D, given by

D ∼ Djǫ ≡
D0c

ν

[

1 + ν

(

2πκ0j −
1

b2(1− f)

∫ ∞

0

ρṽ1p

)]

, j = 2, . . . , N . (3.18)

This result agrees precisely with that derived in (2.40) by identifying a zero-eigenvalue crossing from the nonlinear algebraic
system (2.7). However, the result in Proposition 3 is more refined in that it characterizes all the eigenvalues near the origin
when D ∼ D0c/ν +O(1). Finally, the competition instability threshold, defined by Dcomp = minj Djǫ, is

Dcomp ∼ D0c

ν

[

1 + ν

(

2πκmin − 1

b2(1− f)

∫ ∞

0

ρṽ1p

)]

, κmin ≡ min
j∈{2,...,N}

κ0j . (3.19)

For the asynchronous modes, we have Re(λ) < 0 when D < Dcomp.
The interpretation of these zero-eigenvalue crossings for the asynchronous modes is that they correspond to bifurcation

values of D where asymmetric solution branches of quasi-equilibria, characterized by spots of different source strengths,
bifurcate from the common source strength solution of (2.7). To leading order in ν when D = D0/ν, the emergence of such
asymmetric solution branches is predicted to occur at the common bifurcation point D = D0c/ν, where this leading-order
threshold is in fact independent of whether the symmetry condition (2.32) holds or not. However, the higher-order analysis
of [17], resolving the degeneracy of the leading-order threshold and leading to (3.18), relies crucially on the assumption
(2.32) that e is an eigenvector of G0. In fact, if the spot configuration is such that e is not an eigenvector of G0, then we
conjecture that the inclusion of higher order terms in ν leads to an imperfection sensitivity in the bifurcation structure of
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solutions to the nonlinear algebraic system (2.7). This imperfection sensitivity structure was first identified in [89] in the
context of three localized spots on the sphere (see Fig. 5–6 in [89]).

We suggest four specific open problems:

• For a given domain shape Ω, numerically identify both quasi-equilibrium and steady-state spot configurations for which
the symmetric condition (2.32) holds. Recall that steady-state spot patterns are equilibria of the DAE system (2.8).

• For any N ≥ 2, analyze the local imperfection sensitivity of solution branches to (2.7) for D = D0c/ν +O(1) when the
symmetry condition (2.32) fails to hold. Analyze the linear stability of these branches from NLEP theory.

• For the case where (2.32) holds, develop a weakly nonlinear theory for competition instabilities to show that they
correspond to subcritical bifurcations. Full numerical computations (cf. [93]) have shown that this linear instability
mechanism triggers a nonlinear process through which spots are annihilated in finite time.

• Extend the methodology of [17] for calculating refined thresholds for competition instabilities to other RD systems
with localized spot solutions, such as the Gray-Scott, Schnakenberg, and Gierer-Meinhardt RD systems.

3.2 Hopf Bifurcation Threshold

In this sub-section we analyze the spectrum of the NLEP (3.11 a) for the synchronous mode where the multiplier βs is
given in (3.15). We first observe that for τ ≪ 1, we have βs = 2+O(τ), so that by Theorem 3.7 of [108] we have Re(λ) < 0.
Therefore, the synchronous mode is linearly stable for all D0 when τ ≪ 1. Secondly, we observe from (3.15) that βs = 2
when λ = 0, which yields the null-solution Ψ = 0. Therefore, λ = 0 can never be an eigenvalue of the NLEP (3.11) for the
synchronous mode for any parameter values. As such, it is natural to seek Hopf bifurcation threshold values for τ where
a complex conjugate pair of eigenvalues enter Re(λ) > 0 through the imaginary axis as τ is increased. We remark that
for the synchronous mode, the multiplier βs is a biquadratic function of λ, for which only a few rigorous results on the
NLEP spectrum are available (see Principal Result 4.5 of [81]). Since these results do not provide sharp bounds for the
parameter space where a Hopf bifurcation occurs (see Principal Result 4.7 of [81]), we will proceed below by seeking a
new parameterization of the Hopf threshold.
First, we readily observe that the discrete eigenvalues of (3.11 a) with multiplier βs are the roots λ of g(λ) = 0, where

g(λ) ≡ (λ+ 1)h(τλ)− f

2(λ+ 1− f)
−F(λ) , F(λ) ≡

∫∞

0
w
[

(L0 − λ)
−1

w2
]

ρ dρ
∫∞

0
w2ρ dρ

, (3.20)

where h(τλ) is given in (3.15). We now look for a purely complex root λ = iλI to g(iλI) = 0 by decomposing F(iλI) into
real and imaginary parts as F(iλI) = FR(λI) + iFI(λI), where

FR(λI) ≡
∫∞

0
ρwL0

[

L2
0 + λ2

I

]−1
w2 dρ

∫∞

0
ρw2 dρ

, FI(λI) ≡ λI

∫∞

0
ρw
[

L2
0 + λ2

I

]−1
w2 dρ

∫∞

0
ρw2 dρ

. (3.21)

By setting g(iλI) = 0 and separating (3.20) into real and imaginary parts, and solving for τ and D0, we obtain after
some lengthy but straightforward algebraic manipulations an implicitly-defined parameterization, with parameter λI , of
any Hopf bifurcation curve τ = τH(D0). This parameterization has the form

D0θ =
z2R + z2I

zI
,

τ

µ
=

zI
λIzR

, (3.22 a)

where µ = 2πND0/|Ω|. Here zI and zR are defined by

zR =
kI − λIkR − λIf

1 + λ2
I

, zI =
kR + λIkI − λ2

I − (1− f)

1 + λ2
I

, (3.22 b)

in terms of kR and kI given by

kR = 2(1− f)FR(λI)− 2λIFI(λI) , kI = 2λIFR(λI) + 2(1− f)FI(λI) . (3.22 c)

By varying λI on 0 < λI < ∞, and numerically computing FR and FI from (3.21), we obtain a Hopf bifurcation curve in
the τ/µ versus D0/D0c parameter plane, where D0c ≡ (1− f)/θ. This is shown in Fig. 6(a) for f = 0.5. The corresponding
eigenvalue, denoted by λIH is plotted versus D0/D0c in Fig. 6(b). By specifying N and |Ω|, and using µ = 2πND0/|Ω|,
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the curve in Fig. 6(a) determines τH . From Fig. 6(a), we observe that there is a unique Hopf bifurcation threshold τH for
the synchronous mode only on the range D0 > D0c. However, it is only on this range of D0 that a competition instability
associated with the asynchronous modes always occurs for any τ > 0. Our numerical results shown in Fig. 6 also suggest
that τH → +∞ and λIH → 0+ as D0 → D+

0c.
To determine the scaling of the Hopf bifurcation threshold as D → D+

0c from above, we first need to recall the following
properties of FR and FI as λI → 0 as rigorously established in [101]:

FR(λI) ∼ 1− κcλ
2
I + · · · , as λI → 0+ ; F ′

R(λI) < 0 for λI > 0 ; FR(∞) = 0 , (3.23 a)

FI(λI) ∼ λI/2 , as λI → 0+ ; FI(λI) > 0 for λI > 0 ; FI(∞) = 0 , (3.23 b)

where κc ≡
∫∞

0
ρ (w + ρw′/2)

2
dρ/

∫∞

0
ρw2 dρ ≈ 0.436. This numerical result for κc was obtained by numerically computing

the ground-state solution w from (A.1 c) and using a numerical quadrature. By substituting (3.23) into (3.22 a), and
defining µ0 ≡ 2πND0c/|Ω|, we readily derive the limiting asymptotics

λIH ∼
√

D0

D0c
− 1

(

1

(1− f)2
− 2κc

)−1/2

, τH ∼ µ0(1− f)
(

D0

D0c
− 1
)

(

1

(1− f)2
− 2κc

)

, as D0 → D+
0c . (3.24)

Since 0 < f < 1 and 2κc < 1, we remark that the expression above for λIH is well-defined.
Since our parameterization of the Hopf threshold has shown that there is no Hopf bifurcation threshold value of τ for

the range D0 < D0c, we conclude that the synchronous mode is linearly stable when D0 < D0c for any τ > 0. Since
the asynchronous modes are also linearly stable when D0 < D0c from Proposition 2, it follows that for any τ > 0 with
τ = O(1) an N -spot quasi-equilibrium pattern is linearly stable on the parameter regime D = D0/ν ≫ 1, whenever
D0 < D0c, where D0c is given in (3.16). This implies that on D0 < D0c and when τ = O(1), an N -spot quasi-equilibrium
pattern will exhibit slow spot dynamics over the long t = O(ǫ−2) time-scale towards some steady-state spot configuration.
Recall that this slow spot dynamics was characterized by Proposition 1.
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Figure 6. Plot of the Hopf bifurcation threshold τH/µ (left panel) and imaginary eigenvalue λIH (right panel) versus D0/D0c

when f = 0.5 for the synchronous mode of instability for the Brusselator, as obtained from (3.22). There is no Hopf threshold for
D0/D0c < 1, and τH → +∞ while λIH → 0+ as D0/D0c → 1+. The inserts validate the asymptotic results of (3.24) (dashed curves)
for τH/µ and λIH as D0/D0c → 1+.

Although, for τ = O(1), there is no synchronous oscillatory instability of the spot amplitudes for an N -spot quasi-
equilibrium pattern on the parameter range D0 < D0c where the asynchronous mode is linearly stable, the result in (3.24)
that τH → +∞ as D0 → D+

0c suggests that we revisit the NLEP analysis allowing for τ ≫ 1. By examining a modified
NLEP problem we will show that, in fact, there is a Hopf bifurcation when D < D0c for which τH ≫ 1 as ǫ → 0.
With this motivation, we now consider the new limiting regime where τ ≫ 1, in such a way that |τλν/D0| ≫ 1. To

analyze this regime, we first reformulate the NLEP (3.11) by observing that its discrete spectra are the union of the roots
λ of gj(λ) = 0, for j = 1, . . . , N , where

gj(λ) ≡
1

2
+

(λ+ 1)

2 (λ+ 1− f)

D0(1− f)

D0c(1 + 2πνκj)
−F(λ) , F(λ) ≡

∫∞

0
w
[

(L0 − λ)
−1

w2
]

ρ dρ
∫∞

0
w2ρ dρ

. (3.25)

Here κj for j = 1, . . . , N , which depend on λ, are the eigenvalues of the Green’s matrix Gλ in (3.10).



20 M. J. Ward

In the limit |τλν/D0| ≫ 1, the Green’s function Gλ(x;x0) of (2.28) decays rapidly away from x0 so that, except within
a thin boundary layer near ∂Ω, it is well-approximated by the free-space Green’s function given by

Gλ(x;x0) ∼
1

2π
K0 (θλ|x− x0|) , θλ ≡

√

τλν/D0 . (3.26)

Here the principal branch of the square root is specified to ensure that Gλ(x;x0) decays exponentially away from x0. By
using the local behavior of the modified Bessel function K0(z) ∼ − log z + log 2− γe +O(z2 log z), where γe ≈ 0.57721 . . .
is Euler’s constant, we calculate that the regular part of Gλ at x0, defined in (2.28), is simply

Rλ ≡ 1

2π

(

−1

2
log (ντλ) + log

(

2
√
D0

)

− γe

)

. (3.27)

When |θλ| ≫ 1, the off-diagonal entries of the Green’s matrix Gλ are exponentially small and can be neglected. Therefore,
for |θλ| ≫ 1, we have Gλ ∼ RλI, so that (3.10) yields the common matrix eigenvalue κj ∼ Rλ for j = 1, . . . , N . This
shows that in the regime |θλ| ≫ 1, any temporal oscillations of the spot amplitudes cannot be classified as being either
synchronous or asynchronous. More specifically, since Gλ is, asymptotically, a multiple of the identity, the perturbations
of the spot amplitudes, characterized by the eigenvectors vj for j = 1, . . . , N of Gλ, now span all of RN .

A key observation is that we can enforce νκj = O(1) in (3.25) when θλ ≫ 1 by introducing a positive exponent τc > 0
together with an anomalous re-scaling of τ in terms of ǫ, of the form

τ ≡ ǫ−τc/ν . (3.28)

To ensure that the consistency condition (2.19) holds, we must require that τc is not too large, so that ǫ2−τcλ/D0 ≪ 1.
By using the scaling (3.28) in (3.27), we get in terms of Euler’s constant γe that

2πνκj = −τc
2

+ νK0 , K0 ≡ −1

2
log λ+ log

(

2
√

D0

)

− γe . (3.29)

By substituting (3.29) into (3.25) we obtain that the gj(λ), for j = 1, . . . , N , reduce to the common “modified” NLEP

gc(λ) ≡
1

2
+

(λ+ 1)

2D0c (λ+ 1− f)

D0(1− f)
(

1− τc
2 + νK0

) −F(λ) , F(λ) ≡
∫∞

0
w
[

(L0 − λ)
−1

w2
]

ρ dρ
∫∞

0
w2ρ dρ

. (3.30)

In this parameter regime, where |θλ| ≫ 1, the discrete eigenvalues of the NLEP (3.11) are the roots λ of gc(λ) = 0.

We now determine a Hopf bifurcation threshold value of τc by seeking a pure imaginary pair of roots to (3.30) with
λ = iλI and λI ≪ 1. By setting gc(iλI) = 0, and separating the resulting expression into real and imaginary parts, we
can obtain asymptotic expansions for τc and λI upon using the local behavior F(iλI) ∼ 1+ iλI/2−κcλ

2
I + · · · for λI ≪ 1

from (3.23). After some algebraic manipulations, we obtain the following main result:

Proposition 4 Consider an N -spot quasi-equilibrium pattern for the Brusselator (1.2) when D = D0/ν and D0 < D0c,
where D0c is the competition instability threshold defined in (3.16). Then, for ν ≪ 1 the NLEP (3.11) has a Hopf
bifurcation, corresponding to temporal oscillations in the spot amplitudes, when τ = τH and λ = ±iλI , where

τH ∼ 1

ν
ǫ−τc , τc = 2

(

1− D0

D0c

)

− ν log ν + ν
(

2 log
(

2
√

D0

)

− 2γe − log λI0

)

+O(ν2) ,

λ ∼ iνλI0 +O(ν3) , λI0 ≡ πD0c

4D0
(1− f) .

(3.31)

We now make some remarks on this main result. We first observe that since D0 < D0c, we have for ν ≪ 1 that
0 < τc < 2, and so with λ = O(ν) it follows that the consistency condition (2.19) always holds. Secondly, we observe that
in the regime D0 < D0c where the anomalous scaling (3.28) applies, the Hopf bifurcation threshold depends only on the
number of spots and is independent of their spatial locations. This feature was also shown to hold in the limit ν ≪ 1 for
the conventional NLEP analysis in the regime D0 > D0c and τ = O(1), where (3.22) holds. Finally, we remark that our
analysis is not uniformly valid in the limit D0 → D+

0c where τc → 0+. It is only in the thin transition regime, for which
D0/D0c − 1 ≪ 1, where the spatial configuration of spots is important for determining the Hopf bifurcation threshold.
To study this transition regime, it is convenient to set gj(iλI) = 0 in (3.25) and solve for κj . This yields that the Hopf
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bifurcation threshold is τH = minj τHj , where τHj and λIj are the roots of the complex-valued system

κj +
1

2πν

[

1− D0(1− f)

2D0c

(λ+ 1)

(λ+ 1− f) (F(iλI)− 1/2)

]

= 0 , j = 1, . . . , N . (3.32)

Here κj for j = 1, . . . , N are the eigenvalues of the Green’s matrix Gλ, which depends on the configuration of spots.
Numerical results for the Hopf bifurcation from this formulation are shown in [93].

3.3 Periodic Spot Patterns

In this sub-section we highlight some results for the linear stability of steady-state periodic spot patterns for the Brusselator
(1.2) when the spots are centered in the limit ǫ → 0 at the lattice points of a general oblique Bravais lattice Λ with fixed
area |Ω| of the primitive cell of the lattice. To leading order in ν = −1/ log ǫ, the linearization of the steady-state periodic
spot pattern has a zero eigenvalue when D = D0c/ν, where

D0c ≡
f2|Ω|2

4π2b(1− f)
, b ≡

∫ ∞

0

ρw2 dρ , (3.33)

and where w(ρ) is the ground-state satisfying (A.1 c) . This leading-order threshold depends only on the area |Ω| of the
primitive cell, and is independent of the specific lattice Λ. Analogous to that analyzed in §3.1 for spot patterns on a finite
domain, this zero eigenvalue corresponds to a competition instability of the spot amplitudes.

Before giving the main linear stability result, and discussing our criterion to identify the optimal lattice, we outline
a few basic facts regarding Bravais lattices and their duals and we introduce some terminology. Let lll1 and lll2 denote
two linearly independent vectors in R

2, with angle θ between them, where for convenience lll1 is aligned with the positive
x1-axis. The Bravais lattice Λ is defined in terms of these generators lll1 and lll2 by

Λ =
{

mlll1 + nlll2

∣

∣

∣ m, n ∈ Z

}

, (3.34)

where Z denotes the set of integers. The primitive cell is the parallelogram obtained by lll1 and lll2 of area |lll1 × lll2|. The
Wigner-Seitz (WS) or Voronoi cell centered at a given lattice point of Λ consists of all points in the plane that are closer
to this point than to any other lattice point. The WS cell is a convex polygon with the same area of the primitive cell,
and the union of the WS cells tile all of R2, i.e. R

2 =
⋃

z∈Λ(z +Ω), where Ω is the fundamental WS cell centered at the
origin x = 0. In Fig. 7 we give a schematic plot of the union of the WS cells for a specific Bravais lattice.

Figure 7. WS cells for an oblique Bravais lattice with generators lll1 = (1, 0), lll2 = (cot θ, 1), and θ = 74◦, so that |Ω| = 1. These
cells tile R

2. The boundary of the WS cells generically (except for the square) consist of three pairs of parallel lines of equal length.

Following [8], we define the reciprocal or dual lattice Λ⋆ in terms of the two independent vectors ddd1 and ddd2, which are
obtained from the lattice Λ by requiring that

dddi · lllj = δij , (3.35)

where δij is the Kronecker symbol. The reciprocal lattice Λ⋆ is defined by

Λ⋆ =
{

mddd1 + nddd2

∣

∣

∣ m, n ∈ Z

}

. (3.36)

The first Brillouin zone, labeled by ΩB , is defined as the WS cell centered at the origin in the reciprocal space.
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In our linear stability analysis below for periodic spot patterns for the Brusselator (1.2), we require some properties of
the regular part Rb0(kkk) of the Bloch Green’s function Gb0(x) for the Laplacian, which for kkk/(2π) ∈ ΩB\{0} satisfies

∆Gb0 = −δ(x) ; Gb0(x+ lll) = e−ikkk·lll Gb0(x) , lll ∈ Λ . (3.37 a)

In terms of Gb0, the regular part Rb0(kkk) of this Bloch Green’s function is defined by

Rb0(kkk) ≡ lim
x→0

(

Gb0(x) +
1

2π
log |x|

)

. (3.37 b)

The following results, as established in Lemmas 2.1 and 2.2 of [37], provide two key properties of Rb0(kkk).

Lemma 2 The regular part Rb0(kkk) of the Bloch Green’s function Gb0(x) satisfying (3.37 a) is real-valued for |kkk| 6= 0.

Lemma 3 For |kkk| → 0, the regular part Rb0(kkk) has the singular asymptotic behavior

Rb0(kkk) ∼
1

kkkTQkkk
= O(|Q1/2kkk|−2) ≫ 1 , as |kkk| → 0 , (3.38)

where Q is a positive-definite matrix defined in terms of the lattice generators.

In [17] (see also [16]) the spectrum of the linearization of a periodic steady-state pattern for the Brusselator (1.2) was
analyzed when D is near the critical threshold D0c/ν. Upon introducing the de-tuning parameter D1 by

D =
D0c

ν
+D1 + o(1) ,

we use the method of matched asymptotic expansions to calculate the steady-state solution in the fundamental WS cell.
This solution is then extended periodically to the entire lattice. Upon linearizing (1.2) around this periodic solution, and
letting ǫ → 0, it follows that the eigenfunction Ψ for the perturbation in the long-range solution component u satisfies
an elliptic PDE with coefficients that are spatially periodic on the lattice. Therefore, by the Floquet-Bloch theorem
this eigenfunction must satisfy the quasi-periodic boundary conditions Ψ(x + lll) = e−ikkk·lllΨ(x) for lll ∈ Λ, x ∈ R

2 and
kkk/(2π) ∈ ΩB\{0}. From a detailed characterization of the fundamental WS cell (see §2 in [37]), this quasi-periodicity
condition can be used to formulate a boundary operator Pk on the boundary ∂Ω of the WS cell (see equation (2.35) of
[37]). Then, from imposing a solvability condition on the correction terms to the leading-order NLEP problem, similar
to that in the derivation of Proposition 3, we can explicitly determine the continuous band of spectrum lying within an
O(ν) ball of the origin in the spectral plane when D = D0c/ν +D1. This band of spectrum is real-valued and depends on
the regular part Rb0(kkk) of the Bloch Green’s function for the Laplacian as well as the de-tuning parameter D1.

In this way, from our combination of singular perturbation analysis, Floquet-Bloch theory, and NLEP theory, the
following main result characterizing this band of spectra was derived in Proposition 5.1 of [17] (see also [16]):

O(ν) ball near λ = 0

|k| ≪ 1

λedge
continous spectrum Re(λ)

Im(λ)

Figure 8. The continuous band of spectra near the origin when D = D0c/ν +D1 (see (3.39)).

Proposition 5 In the limit ǫ → 0, consider a steady-state periodic pattern of spots for the Brusselator (1.2) where the
spots are centered at the lattice points of a Bravais lattice Λ where the fundamental WS cell Ω has area |Ω|. Then, for
D = D0c/ν +D1, where D0c is given in (3.33), the portion of the continuous spectrum of the linearization that satisfies
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|λ| ≤ O(ν) ≪ 1, is given by

λ = 2(1− f)ν

[

−πRb0 +
D1

2D0c
+

1

2b2(1− f)

∫ ∞

0

ρṽ1p dρ

]

+O(ν2) , (3.39)

where ṽ1p is defined in (A.1 d). Here Rb0 = Rb0(kkk) is the regular part of the Bloch Green’s function Gb0, satisfying (3.37 a),
with kkk/(2π) ∈ ΩB\{0}.

Since Rb0(kkk) is real-valued from Lemma 2, this result shows that the band of spectrum satisfying |λ| = O(ν) ≪ 1
when D = D0c/ν + O(1) is also real-valued. Thus, to determine the stability threshold for a given lattice Λ, we need
only locate the right-most edge of the band as kkk/(2π) is varied in the first Brillouin zone of the reciprocal lattice, and
ensure that this leading edge satisfies λ < 0. Although (3.39) is not uniformly valid as kkk → 0, owing to the fact that
Rb0 = O(|Q1/2kkk|−2) → +∞ as |kkk| → 0 from Lemma 3, we observe that λ < 0 for O(ν1/2) ≪ |kkk| ≪ 1. Therefore,
long-wavelength perturbations do not determine the stability threshold. For a schematic plot of the spectrum near the
origin see Fig. 8.
We conclude from (3.39) that a periodic pattern of spots on a fixed lattice Λ is linearly stable on O(1) time-scales when

D1 < D⋆
1 ≡ D0c

[

2πR⋆
b0 −

1

b2(1− f)

∫ ∞

0

ρṽ1p dρ

]

, R⋆
b0 ≡ min

kkk/(2π)∈ΩB

Rb0(kkk) . (3.40)

Then, for a fixed area |Ω| of the WS cell, we define the optimal lattice Λ as the one that maximizes D⋆
1 , thereby maximizing

the range of D for which the periodic spot pattern is linearly stable. This leads to the following result:

Proposition 6 The optimal arrangement of a periodic pattern of spots for the Brusselator (1.2) is the one for which
R⋆

b0 is maximized over the class of Bravais lattices (3.34) with fixed area |Ω| of the primitive cell. A two-term asymptotic
expansion for this optimal stability threshold for D is

Doptim ∼ D0c

ν

[

1 + ν

(

2πmax
Λ

R⋆
b0 −

1

b2(1− f)

∫ ∞

0

ρṽ1p dρ

)]

, R⋆
b0 ≡ min

kkk/(2π)∈ΩB

Rb0(kkk) , (3.41)

where D0c is given in (3.33). Here Rb0(kkk) satisfies (3.37 a), ṽ1p is defined in (A.1 d), and b ≡
∫∞

0
w2ρ dρ where w(ρ) > 0

is the ground-state solution of (A.1 c).

In order to numerically identify the optimal lattice, an explicit and rapidly converging infinite series representation for
Rb0(kkk) is required. This was done in §6 of [37], based on an Ewald-type summation procedure resulting from the Poisson
summation formula, as motivated by [8]. From §6 of [37], we have

Rb0(kkk) =
∑

ddd∈Λ∗

exp

(

−|2πddd− kkk|2
4η2

)

1

|2πddd− kkk|2 +
∑

lll∈Λ

lll6=0

eikkk·lll Fsing(lll)−
γe
4π

− log η

2π
, (3.42)

where Fsing(lll) = E1(|lll|2η2)/(4π), E1(z) =
∫∞

z
t−1e−t dt is the exponential integral (cf. §5.1.1 of [1]), and γe is Euler’s

constant. Here η > 0 is an Ewald cut-off parameter, used to ensure rapid convergence of the two infinite sums in (3.42)
over the lattice and its dual. This rapidly converging infinite series representation was used in [37] to readily calculate
the minimum value R⋆

b0 of Rb0(kkk) over the first Brillouin zone.
Then, by using the explicit representation (3.42) of Rb0(kkk) in [37] (see Fig. 5 and Fig. 7 in [37]), a numerical sweep in

kkk/(2π) over the first Brillouin zone together with a sweep over the class of Bravais lattices with |Ω| = 1, has identified
that R⋆

b0 is maximized for a regular hexagonal lattice. With this numerical procedure, we identify that it is the hexagonal
lattice that has an optimum stability threshold, in the sense that for such a lattice the periodic spot pattern is linearly
stable for the largest range of D.

This approach to identify optimal lattice arrangements of spots was developed in [37] for the Gierer-Meinhardt,
Schnakenberg, and Gray-Scott models. Results similar to Propositions 5 and 6, but with other model-dependent ob-
jective functions to optimize involving both the regular parts of the Bloch Green’s function and the periodic Green’s
function, were derived in [37] for the Gray-Scott, Schnakenberg, and Gierer-Meinhardt RD models. For each of these RD
models, by performing this optimization procedure numerically it was established that the regular hexagonal lattice has
the optimal stability threshold. The extension of this method to the Brusselator (see [16] and [17]) is more involved as
the underlying NLEP has two nonlocal terms, one of which must be eliminated in a self-consistent way.

Three specific open problems in this area are the following:
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• Establish analytically, rather than numerically, that over the class of Bravais lattices with fixed area |Ω| = 1 of the
primitive cell, R⋆

b0 is maximized for a regular hexagon.
• Extend the NLEP stability analysis for periodic patterns to consider a honeycomb-type periodic arrangement of localized
spots. Does such a lattice offer a larger stability threshold for D?

• For a periodic pattern of spots on a Bravais lattice, analyze the small eigenvalues of O(ǫ2) in the spectrum of the
linearization and identify the corresponding optimal lattice. For this analysis we require an explicit representation for
a new type of Bloch-Green’s function having a dipole singularity.

4 Two Specific Applications of Strong Localized Perturbation Theory

In this section we discuss two related problems in 2-D where strong localized perturbation theory has been applied to
resolve the effect of small traps or patches for a linear scalar PDE.

4.1 Eigenvalue Problem in a 2-D Domain with Traps

We now show a clear analogy between the GCEP (2.30) for spot patterns of the Brusselator (1.2) and the problem in
[45] (see also [99] and [22]) of calculating the lowest eigenvalue of the Laplacian in a bounded planar 2-D domain Ω with
a reflecting outer boundary that is perturbed by the presence of N small holes, or traps, of a common radius ǫ in the
interior of Ω. The eigenvalue problem for the case of N such localized traps is formulated as

∆u+ λu = 0 , x ∈ Ω\Ωp ;

∫

Ω\Ωp

u2 dx = 1 , (4.1 a)

∂nu = 0 , x ∈ ∂Ω ; u = 0 , x ∈ ∂Ωp ≡ ∪N
i=1∂Ωǫi . (4.1 b)

Here Ωp = ∪N
i=1Ωǫi is a collection of N small interior holes or traps Ωǫi , for i = 1, . . . , N , of an assumed common shape,

with radius ǫ, centered at xi for i = 1, . . . , N , with |xi − xj | = O(1) for i 6= j as ǫ → 0.
The objective in [45] was to determine an asymptotic expansion of the lowest eigenvalue λ0 of (4.1), which must tend

to zero as ǫ → 0. This lowest eigenvalue determines the average mean first capture time v̄ for a Brownian particle, with
diffusivity D, to become absorbed at one of the N traps (cf. [82], [73]). In particular, for ǫ → 0, we have (cf. [73])

v̄ ∼ 1

Dλ0
. (4.2)

The asymptotic methodology of [45] to determine an approximation λ∗
0 to λ0 that accounts for all logarithmic terms

in the asymptotic expansion, as initiated in [99], is closely related to the approach used in §2.1 to derive the GCEP
(2.30) governing the linear stability of N -spot quasi-equilibria for the Brusselator (1.2). We only briefly highlight this
methodology and some results from it here.
In the inner region near the j-th trap Ωǫj , the canonical local problem is to solve

∆yvc = 0 , y /∈ Ω0 ; vc = 0 , y ∈ ∂Ω0 , (4.3 a)

vc ∼ log |y| − log d+ o(1) , as |y| → ∞ , (4.3 b)

where y ≡ ǫ−1(x−xj) and Ω0 ≡ ǫ−1Ωǫj . In (4.3 b), the constant d depends on the shape of Ω0 and is called the logarithmic
capacitance of Ω0 (cf. [76]). Since it is known analytically only for a few simple shapes (cf. [76], [99], [51]), d must in
general be computed numerically (cf. [24]). In terms of some unknown constant Sj , the inner solution for (4.1) near the
j-th trap is u ∼ Sjvc(y), where ν ≡ −1/ log(ǫd). By asymptotically matching the far-field behavior of this inner solution
we can readily obtain a singularity condition for the outer solution to (4.1).

As shown in [45] (see also [99] and [100]), we have that λ0(ǫ) = λ∗
0(ν) + O(σ), where σ ≪ νm for any m > 0. Here

λ∗
0(ν) is the lowest eigenvalue of the outer problem with singularity conditions

∆u∗ + λ∗
0u

∗ = 0 , x ∈ Ω\{x1, . . . ,xN} ;
∫

Ω

(u∗)
2
dx = 1 ; ∂nu

∗ = 0 , x ∈ ∂Ω , (4.4 a)

u∗ ∼ Sj log |x− xj |+ Sj/ν , as x → xj , for j = 1, . . . , N , (4.4 b)

where Sj , for j = 1, . . . , N , and λ∗
0 is to be found. In comparison with the derivation of the GCEP (2.30) for the stability

of spot patterns, (4.3) and (4.4) replace (2.25) and (2.26), respectively.
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To represent the solution to (4.4) we introduce the Helmholtz Green’s function, Gh(x;x0), and its regular part, Rh(x0),
satisfying

∆Gh + λ∗
0Gh = −δ(x− x0) , x ∈ Ω ; ∂nGh = 0 , x ∈ ∂Ω , (4.5 a)

Gh(x;x0) ∼ − 1

2π
log |x− x0|+Rh(x0) + o(1) , as x → x0 . (4.5 b)

In terms of this Helmholtz Green’s function, we have u∗ = −2π
∑N

i=1 SiGh(x;xi), and from the singularity conditions in
(4.4 b) we obtain the homogeneous matrix system

(I + 2πνGh)S = 0 , (4.6)

where S ≡ (S1, . . . , SN )T . Here λ∗
0 is a root of det(I+2πνGh) = 0, where Gh is the Helmholtz Green’s function defined by

(Gh)ij ≡
{

Rh(xj) i = j

Gh(xi;xj) i 6= j
. (4.7)

To obtain a two-term expansion for the lowest eigenvalue λ∗
0 ≪ 1, we use the small λ∗

0 asymptotics of (4.5) to obtain

Gh ∼ − N

|Ω|λ∗
0

E + G0 +O(λ∗
0) , where E ≡ 1

N
eeT , e ≡ (1, . . . , 1)T , (4.8)

and G0 is the Neumann Green’s matrix of (2.7 b). Upon substituting (4.8) into (4.6), and introducing σ∗ by

λ∗
0 ≡ 2πNν

|Ω| σ∗ , (4.9)

we obtain the matrix eigenvalue problem
[

I + 2πνG0 +O(ν2)
]−1 ES = σ∗S . (4.10)

By calculating the approximate inverse for ν ≪ 1 in (4.10), we obtain that

ES− 2πνG0ES+O(ν2) = σ∗S . (4.11)

Since Ee = e, we readily obtain that σ∗ = 1 + νσ∗
1 + · · · and S = e+ νS1 + · · · , where

(E − I)S1 = f ≡ σ∗
1e+ 2πG0Ee . (4.12)

From the Fredholm alternative, we require that eT f = 0. Upon using Ee = e and eT e = N , this gives σ∗
1 = −2πN−1eTG0e,

which yields a two-term expansion for σ∗ and λ∗
0. The result, given in equation (2.24) of [45], is summarized as follows:

Proposition 7 Let λ0 be the smallest eigenvalue of (4.1) when Ω has N small traps of radius O(ǫ) ≪ 1 of a common
shape centered at x1, . . . ,xN with |xi − xj | = O(1) as ǫ → 0. Then, for ǫ → 0, a two-term expansion for λ0 is

λ0 ∼ λ∗
0 =

2πNν

|Ω| − 4π2ν2

|Ω| p(x1, . . . ,xN ) +O(ν3) , where p(x1, . . . ,xN ) ≡ eTG0e . (4.13)

Here G0 is the Neumann Green’s matrix in (2.7 b), and ν ≡ −1/ log(ǫd), where d is the common logarithmic capacitance
of the traps, as defined by (4.3).

For a fixed N , an interesting optimization problem is to determine the spatial configuration of traps that minimize
p(x1, . . . ,xN ). Such a configuration of traps minimizes the average mean first capture time v̄ of a Brownian particle with
diffusivity D, given for ǫ → 0 by v̄ ∼ 1/ (Dλ∗

0). When Ω is the unit disk, for which G0 can be calculated explicitly, it
was shown in [45] that this problem of minimizing v̄ is equivalent to the discrete variational problem of minimizing the
function Hball(x1, . . . ,xN ) defined by

Hball(x1, . . . ,xN ) = −
N
∑

j=1

N
∑

k=1

k 6=j

log |xj − xk| −
N
∑

j=1

N
∑

k=1

log |1− xj x̄k|+N
N
∑

j=1

|xj |2 , |xj | < 1 , (4.14)

for xj 6= xk when j 6= k, and where x̄k denotes the complex conjugate of xk.
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The minimization of (4.14) is a challenging numerical problem for large N owing to the existence of a large number of
local minima with nearly identical energies. If one instead considers a restricted optimization problem whereby N traps
are equally-spaced on a ring of radius r0 concentric within the unit disk, we can readily calculate that (cf. [45])

λ∗
0 = 2Nν − 4πν2p(r0) +O(ν3) ; p(r0) ≡

1

2π

[

−N log
(

NrN−1
0

)

−N log
(

1− r2N0
]

+ r20N
2 − 3N2

4

]

. (4.15)

For such a ring-pattern of N traps, the optimal trap configuration that minimizes the average MFPT is the one that
minimizes p(r0) on 0 < r0 < 1. Upon comparing (4.15) with (2.11) and (2.12), we observe that the optimal ring radius of
traps is identical to the equilibrium ring radius for a ring-pattern of spots for the Brusselator (1.2).
We remark that a result analogous to (4.13) can be derived for the related singularly perturbed eigenvalue problem

where N locally circular traps of a common radius ǫ are centered at xj for j = 1, . . . , N on the surface of the unit sphere,
for which |xj | = 1 (cf. [22]). Since the curvature of the sphere provides only a negligible O(ǫ) correction to the solution
in the inner region near each trap, the two-term asymptotics for the lowest eigenvalue is obtained by using (2.13) for the
Neumann Green’s function on the sphere in (4.13), together with d = 1 and |Ω| = 4π. In this way, the following result
was derived in equation (4.17) of [22]:

Proposition 8 Let λ0 be the smallest eigenvalue of the Laplacian on the surface Ω of the unit sphere, when Ω has N
small locally circular traps of a common radius ǫ centered at x1, . . . ,xN with |xi − xj | = O(1) as ǫ → 0. Then, for ǫ → 0
a two-term expansion for λ0 is

λ0 ∼ λ∗
0 =

νN

2
+ ν2

[

−N2

4
(2 log 2− 1)− p(x1, . . . ,xN )

]

+O(ν3) , (4.16 a)

where ν ≡ −1/ log ǫ and p(x1, . . . ,xN ) is the discrete logarithmic energy on the sphere, defined by

p(x1, . . . ,xN ) ≡ −
N
∑

i=1

N
∑

j>i

log |xj − xi| . (4.16 b)

This result shows that the optimal configuration {x1, . . . ,xN} of the centers of the traps that minimizes the expected
mean first capture time for a Brownian particle on the surface of the unit sphere is at the so-called elliptic Fekete points
that minimize the discrete logarithmic energy p(x1, . . . ,xN ). This well-known discrete variational problem has a long
history in approximation theory (cf. [50], [75]). As discussed at the end of §2, this optimization problem is closely related
to the problem of identifying stable equilibria for N -spot patterns for the Brusselator (1.2) on the unit sphere.

Our discussion here has only focused on the 2-D problem. We remark that the extension of (4.1) to the 3-D context
leads to different scaling laws for the lowest eigenvalue (cf. [70], [99], [21]).

A few specific open problems for the 2-D case are the following:

• In the unit disk, determine the optimal spatial configuration of N ≫ 1 circular traps, valid in the dilute fraction
limit Nπǫ2/|Ω| ≪ 1, that globally minimizes the discrete energy Hball in (4.14). Determine rigorously, following a
similar framework as in [7], a scaling law valid for N ≫ 1 for the optimal energy Hball. In particular, does the optimal
arrangement of the centers of the traps have a hexagonal lattice structure in the interior of the unit disk, together with
a boundary layer near the rim of the disk?

• By computing the Neumann Green’s matrix G0 numerically using fast-multipole methods (cf. [48]), use the two-term
asymptotics (4.13) to investigate optimal trap configurations in other planar domains or on closed manifolds.

• For the unit sphere, study the relationship between elliptic Fekete point distributions and stable equilibria of the DAE
system (2.14) governing slow spot dynamics in the Brusselator (1.2).

4.2 The Persistence Threshold Problem in a Patchy 2-D Landscape

In [55] strong localized perturbation theory was used to analyze the persistence threshold for the diffusive logistic model
in a 2-D planar domain with spatially localized food resources, referred to here as patches. We now highlight a few results
of [55] and suggest some open problems.
The diffusive logistic model describing the evolution of a population with density u(x, t) with constant diffusivity
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D = 1/λ > 0 throughout some habitat represented by a bounded domain Ω ⊂ R
2, is formulated as [86]

ut = ∆u+ λu [mǫ(x)− u] , x ∈ Ω ∈ R
2 ; ∂nu = 0 , x ∈ ∂Ω ; u(x, 0) = u0(x) ≥ 0 , x ∈ Ω . (4.17)

With the Neumann boundary condition on ∂Ω we assume that there is no population flux either into, or out of, the
domain. The “habitat” function mǫ(x), specified in detail below, represents the growth rate for the species and models
the available food resources. In favorable parts of the habitat we have mǫ(x) > 0, while in unfavorable parts mǫ(x) < 0,
with

∫

Ω
mǫ(x) dx representing the total amount of resources available in the spatially heterogeneous environment.

To study the stability of the extinct solution u = 0, we set u = φ(x)e−σt in (4.17) and linearize to get

∆φ+ λmǫ(x)φ = −σφ , x ∈ Ω; ∂nφ = 0 , x ∈ ∂Ω . (4.18)

The threshold value of λ for species persistence is determined by finding the first zero-eigenvalue crossing in σ for (4.18).
This persistence threshold is characterized by the first eigenpair (λ1, φ1) of the indefinite weight eigenvalue problem

∆φ+ λmǫ(x)φ = 0 , x ∈ Ω ; ∂nφ = 0 , x ∈ ∂Ω . (4.19)

We refer to λ1 > 0 as the positive principal eigenvalue of (4.19) if the corresponding eigenfunction φ1 satisfies φ1 > 0 in Ω. It
is well-known that there is a unique positive principal eigenvalue λ1 iff

∫

Ω
mǫ dx < 0 and the set Ω+ ≡ {x ∈ Ω ; mǫ(x) > 0}

has positive measure (cf. [10], [35], [84]).
The positive principal eigenvalue λ1 is the persistence threshold for the specifies, in that if λ < λ1, then for (4.17) it

follows that u(x, t) → 0 uniformly in Ω̄ for all non-negative initial data, so that the population tends to extinction. In
contrast, if λ > λ1, then u(x, t) → u∗(x) uniformly in Ω̄ as t → ∞, where u∗ is the unique positive steady-state solution
of (4.17), and so the species will persist (cf. [12], [13] and the monograph [15]).
A key problem, originally posed in [12] and [14], is to determine among all habit functions mǫ(x) for which a persistence

threshold exists, which such mǫ(x) yields the smallest λ1 for a fixed amount of total resources
∫

Ω
mǫ dx. For (4.18) in R

2

it was proved in Theorem 1.1 of [57] that the optimal mǫ(x) is piecewise continuous. For the 1-D analogue of (4.18) it
was proved in Theorem 1.2 of [57] that the optimal mǫ(x) consists of a single favorable habitat attached to one of the
two endpoints of the interval. Related results in a cylindrical domain are given in [39].

In [55] a restricted optimization problem for (4.18) was analyzed in which mǫ(x) was taken to be piecewise constant
and localized within N small circular patches of radii O(ǫ), each of which is centered either inside Ω or on ∂Ω. A spatially
uniform background habit −mb was prescribed. The domain boundary ∂Ω was assumed to be piecewise differentiable, with
a finite numbers of corners, each with a non-zero contact angle. Our piecewise continuous form for mǫ(x), specified in detail
below, is motivated by the optimality result of Theorem 1.1 of [57], and the more local result of [80], which establishes that
a sufficiently small optimum favorable habitat must be a circular disk. In the formulation of [55], ΩI ≡ {x1, . . . ,xN} ∩Ω
is the set of the centers of the interior patches and ΩB ≡ {x1, . . . ,xN} ∩ ∂Ω is the set of the centers of the boundary
patches, where we assume that |xi − xj | = O(1) for i 6= j and dist(xj , ∂Ω) ≫ O(ǫ) for xj ∈ ΩI . For each patch, we
associate an angle παj denoting the angular fraction of a small circular patch that is contained within Ω. In particular,
αj = 2 when xj = ΩI , αj = 1 when xj ∈ ΩB and xj is a point where ∂Ω is smooth, and αj = 1/2 when xj ∈ ∂Ω is at a
corner point of ∂Ω where the two (one-sided) tangent lines to the boundary intersect at a π/2 contact angle (see Fig. 9).
With this notation, the piecewise constant habitat function m = mǫ(x) in (4.19) is specified in terms of constants mb and
mj for j = 1, . . . , N by

m = mǫ(x) ≡







mj/ǫ
2 , x ∈ Ωǫj , j = 1, . . . , N ,

−mb , x ∈ Ω\⋃n
j=1 Ωǫj ,

(4.20)

where Ωǫj ≡ {x | |x− xj | ≤ ǫρj ∩ Ω}. To specify that the j-th patch is a favorable or unfavorable habitat we set mj > 0
or mj < 0, respectively. In terms of mǫ(x), the criterion of [10], [35], and [84] for the existence of a persistence threshold
is that mJ > 0 for some J ∈ {1, . . . , N}, and that

∫

Ω
mǫ(x) dx < 0. For ǫ ≪ 1, this second condition is satisfied when

∫

Ω

mε dx = −mb|Ω|+
π

2

N
∑

j=1

αjmjρ
2
j +O(ǫ2) < 0 , (4.21)

where |Ω| is the area of Ω. A schematic plot of a domain Ω having both interior and boundary patches is shown in Fig. 9.
In [55] strong localized perturbation theory was used to derive a two-term asymptotic expansion for the persistence

threshold λ1 in powers of ν = −1/ log ǫ for ǫ ≪ 1. This result involves both the Neumann Green’s function G0, defined in
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Figure 9. Schematic plot of a 2-D domain Ω with localized strongly favorable (+) or unfavorable (−) habitats, or patches, as given
by (4.20). The interior patches are small circular disks. On the domain boundary, the patches are the portions of circular disks that
lie within the domain. The unfavorable boundary habitat in the lower left corner of this figure is at a π/2 corner of ∂Ω.

(2.5), and the surface Neumann Green’s function G0s(x;x0), defined for x0 ∈ ∂Ω, by

∆G0s =
1

|Ω| , x ∈ Ω ; ∂nG0s = 0 , x ∈ ∂Ω\{x0} ;
∫

Ω

G0s dx = 0 , (4.22 a)

G0s(x;x0) ∼ − 1

α0π
log |x− x0|+R0s(x0) , as x → x0 ∈ ∂Ω . (4.22 b)

Here R0s(x0) is the regular part of the surface Neumann Green’s function at x = x0. The second-term in the asymptotic
expansion of λ1 given below in (4.24) is written in terms of a modified Green’s function Gm(x;xj) depending on whether
xj is in the interior or on the boundary of Ω. We define G0m by

G0m(x;xj) ≡







G0(x;xj) , xj ∈ Ω ,

G0s(x;xj) , xj ∈ ∂Ω ,
(4.23 a)

where G0(x;xj) is the Neumann Green’s function of (2.5). The local singular behavior of G0m(x;xj), given by

G0m(x;xj) ∼ − 1

αjπ
log |x− xj |+R0m(xj) , as x → xj , R0m(xj) ≡







R0(xj) , xj ∈ Ω ,

R0s(xj) , xj ∈ ∂Ω ,
(4.23 b)

gives the regular part R0m(xj) of G0m. The two-term asymptotics for λ1 (see Principal Result 3.1 of [55]) is as follows:

Proposition 9 Consider the habit function mǫ(x) of (4.20), and assume that mJ > 0 for some J ∈ {1, . . . , N} and that
(4.21) holds. In the limit ǫ → 0 of small patch radius, the positive principal eigenvalue λ1 of (4.19) has the asymptotics

λ1 = µ0ν + µ1ν
2 +O(ν3) ; µ1 ≡ −µ0ν

2

(

κt (πG0m − P)κ

κtκ
+

1

4

)

, (4.24)

where ν ≡ −1/ log ǫ. Here µ0 > 0 is the first positive root of B(µ0) = 0, where B(µ0) is defined by

B(µ0) ≡ −mb|Ω|+ π

N
∑

j=1

αjmjρ
2
j

2−mjρ2jµ0
. (4.25)

In (4.24), κ = (κ1, . . . , κN )t, where κj is defined by κj ≡ √
αjmjρ

2
j/
(

2−mjρ
2
jµ0

)

, while G0m and P are the N × N
matrices with matrix entries defined by

(G0m)ij =
√
αiαjG0mij , i 6= j ; (G0m)jj = αjR0mjj ; (P)ij = 0 , i 6= j ; (P)jj = log ρj . (4.26)

Since
∫

Ω
mǫ dx < 0 from (4.21), we have B(0) < 0 together with B(µ0) → +∞ as µ0 → 2/(mJρ

2
J) from below, where

mJρ
2
J ≡ max

mj>0
{mjρ

2
j | j = 1, . . . , N } . (4.27)
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Then, since B′(µ0) > 0 on 0 < µ0 < 2/(mJρ
2
J ), we must have a unique root µ0 = µ⋆

0 on 0 < µ0 < 2/(mJρ
2
J) to B(µ0) = 0.

This root provides the leading-order term in the asymptotic expansion of the positive principal eigenvalue of (4.19).
In [55] the effect of fragmentation and the location of favorable habitats on the coefficients µ0 and µ1 in the asymptotic

expansion of the persistence threshold λ1 was analyzed under the assumption that
∫

Ω
mǫ dx in (4.21) is fixed, so that

there is a prescribed amount of resources. More specifically, the goal in [55] was to determine the patch configuration that
minimizes µ0, or in certain degenerate situations, minimizes the coefficient µ1 in (4.24), under the constraint that

−mb|Ω|+
π

2

N
∑

j=1

αjmjρ
2
j +O(ǫ2) =

∫

Ω

mǫ dx = −K , (4.28)

for some fixed constant K > 0. For the case of exactly one favorable habitat, the following result was obtained in [55]:

Proposition 10 For a favorable habitat of area πǫ2, λ1 is always smaller for a boundary patch than for an interior patch.
For a domain boundary with corners, λ1 is minimized when the boundary patch is centered at the corner with the smallest
corner contact angle πα1, as opposed to a patch on the smooth part of the boundary, only if α1 < 1. For a domain with
smooth boundary, for which α1 = 1 for any x1 ∈ ∂Ω, λ1 in (4.24) is minimized when the center x1 of the boundary patch
is located at the global maximum of the regular part R0s(x1) of the surface Neumann Green’s function of (4.22) on ∂Ω.

This result shows that the movement of a single favorable habitat to the boundary of the domain is advantageous for
the persistence of the species.
A related question is to study the effect of the fragmentation of resources on the leading-order term µ0 for the persistence

threshold in (4.24). More specifically, suppose that the i-th patch, of radius ǫρi and growth rate mi > 0 is split into two
distinct patches, one with radius ǫρj and growth rate mj > 0, and the other with radius ǫρk and growth rate mk > 0,
while maintaining miρ

2
i = mjρ

2
j +mkρ

2
k so that the constraint (4.28) holds. We assume that αi = αj = αk, so that we

are either splitting an interior patch into two interior patches, or a boundary patch into two boundary patches, with each
boundary patch centered at either a smooth point of ∂Ω or at a corner point of ∂Ω with the same contact angle. As shown
in [55], the effect of such a fragmentation leads to the following qualitative result:

Proposition 11 The fragmentation of one favorable interior habitat into two separate favorable interior habitats is not
advantageous for species persistence. Similarly, the fragmentation of a favorable boundary habitat into two favorable
boundary habitats with each either centered at either a smooth point of ∂Ω, or at a corner point of ∂Ω with the same
contact angle, is not advantageous. Finally, the fragmentation of an unfavorable habitat into two separate unfavorable
habitats increases the persistence threshold λ1, and thereby is not favorable to species persistence.

By combining these two results in Propositions 10 and 11 it follows that, given some fixed amount of favorable resources
to distribute, the optimal strategy is to clump them all together at a point on the boundary of the domain, and more
specifically at the corner point of the boundary (if any are present) with the smallest contact angle less than π degrees.
This will ensure that the value of µ0, and consequently the leading-order term for λ1, is as small as possible.

A further qualitative result in [55] addresses whether it is advantageous to fragment a single interior favorable habitat
into a smaller interior favorable habit together with a favorable boundary habitat. The effect on λ1 of this action involves
a trade-off in the sense that the fragmentation of a favorable interior habitat into two favorable interior habitats will
increase the persistence threshold λ1, but the relocation of a favorable interior habitat to the boundary decreases λ1. To
study the effect of this action, we let i index the original interior habitat, and let j and k index the new smaller interior
habitat and new boundary habitat, respectively. We then minimize µ0 maintaining the constraint

miρ
2
i = mjρ

2
j +

αk

2
mkρ

2
k , (4.29)

with αi = αj = 2, and αk < 2, so that (4.28) holds. In [55] the following qualitative result was obtained:

Proposition 12 The fragmentation of one favorable interior habitat into a new smaller interior favorable habitat together
with a favorable boundary habitat is advantageous for species persistence when the boundary habitat is sufficiently strong
in the sense that

mkρ
2
k >

4

2− αk
mjρ

2
j > 0 . (4.30)

Fragmenting the favorable interior habitat is not advantageous when the new boundary habitat is too weak in the sense
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that

0 < mkρ
2
k < mjρ

2
j . (4.31)

Finally, the clumping of a favorable boundary habitat and an unfavorable interior habitat into one single interior habitat
is not advantageous for species persistence when the resulting interior habitat is still unfavorable.

These three qualitative results in Propositions 10 – 12 obtained from optimizing the leading-order coefficient µ0 in the
asymptotic expansion of the persistence threshold are illustrated numerically in [55]. In certain degenerate situations, the
optimization of the persistence threshold involves µ1, which involves the spatial locations of the patches.

Three open problems in this direction are the following:

• Provide a rigorous derivation of the asymptotic expansion of the persistence threshold λ in (4.24) of Proposition 9 by
using a variational framework and gamma convergence theory similar to that used in [19] to analyze bubble solutions
for the Cahn-Hillard equation of phase transition theory.

• Analyze the persistence threshold in our 2-D patchy landscape with a partially open domain boundary modeled by a
Robin boundary condition. Some results in this direction are given in [52].

• Extend the analysis above for the persistence threshold of a single species to that for multiple interacting species, such as
competing species or predator-prey interactions. With predator-prey interactions we expect that a partial fragmentation
of the prey habitat can be beneficial to species persistence.

5 Perspective and New Frontiers

In this article we have surveyed the development of a singular perturbation methodology for analyzing the existence,
linear stability, and dynamics of 2-D localized spot patterns for nonlinear RD systems in the large diffusivity ratio limit.
Although this strong localized perturbation theory has has been illustrated only for the Brusselator RD model (1.2),
the framework of the methodology readily applies to other RD systems in the singular limit. Several new results for the
linear stability of spot patterns for the Brusselator have been presented in §3. In §4 we have also re-visited two linear
PDE eigenvalues problems with localized solution behavior, and have shown how the analysis of one of these problems,
originating in [99] and [100], has some clear common elements with the analysis of localized spot patterns. Some specific
open problems in these areas have been discussed. In this concluding section, we adopt a broader perspective and briefly
discuss three new research frontiers, with diverse applications, for the analysis of localized patterns.

5.1 Coupled Bulk-Cell Models

One new frontier is the formulation and analysis of PDE models involving the interaction of spatially localized com-
partments or “cells” that communicate with each other via a signaling molecule that diffuses in the extracellular space
between the segregated dynamically active units. In biology, this type of chemical signaling is believed to occur between
colonies of the social amoebae Dictyostelium discoideum in low nutrient environments where cAMP is released into the
medium where it diffuses and acts on each separate colony (cf. [34], [83]) and in groups of starving yeast cells that
communicate through the diffusible chemical Acetaldehyde [25]. In chemical physics, catalyst-loaded small particles im-
mersed in a Belousov-Zhabotinsky (BZ) reaction-mixture exhibit collective chemical oscillations triggered by two bulk
diffusing species, that are produced on each particle and diffuse in the bulk mixture (cf. [83], [87], [88]). In each of these
specific applications, groups of cells or localized units can exhibit sustained temporally synchronous oscillations that are
triggered by the intercellular communication. In contrast to oscillator problems where synchronized oscillations occur by
the entrainment of phase and frequencies of individually oscillating elements, the onset of synchronized oscillations for
these collections of cells is characterized by a bifurcation, whereby individual cells in a quiescent state become oscillatory
and synchronized from the effect of the bulk diffusing species.
A coupled cell-bulk PDE model to study the interaction between N dynamically active localized cells and a single bulk

diffusible signaling species in a bounded 2-D domain, inspired by the modeling framework of [62] and [63], was formulated
in [32]. In non-dimensional form, the model of [32] involves the dimensionless bulk concentration field U , which satisfies

τUt = D∆U − U , x ∈ Ω\ ∪N
j=1 Ωǫj ; ∂nU = 0 , x ∈ ∂Ω ,

ǫD∂nj
U = d1U − d2u

1
j , x ∈ ∂Ωǫj , j = 1, . . . , N ,

(5.1 a)

where the j-th cell Ωǫj is assumed to be a disk of radius ǫ ≪ 1 centered at some xj ∈ Ω. For each j = 1, . . . , N , (5.1 a) is
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Figure 10. Schematic diagram showing the intracellular reactions and external bulk diffusion of the signal. The small shaded
regions are the signaling compartments or cells (Figure from [32]).

coupled to the intracellular dynamics by

duj

dt
= Fj(uj) +

e1
ǫτ

∫

∂Ωǫj

(

d1U − d2u
1
j

)

ds , j = 1, . . . , N , where e1 ≡ (1, 0, . . . , 0)T . (5.1 b)

Here uj = (u1
j , . . . , u

n
j )

T is the dimensionless mass of the n species inside the j-th cell, and Fj(uj) is the vector nonlinearity
modeling the reaction dynamics within the j-th cell Ωǫj . In (5.1 a), ∂nj

is the outer normal to boundary of the j-th cell,
which points inside the bulk region. By specifying this form for e1 in (5.1 b), in our model the cells can release only a
single specific signaling molecule into the bulk region. A schematic illustration is shown in Fig. 10. The key parameters in
the model are the dimensionless bulk diffusivity D, the time-scale parameter τ , measuring the intracellular reaction rate
to the rate of the bulk degradation process, and the dimensionless permeabilities d1 and d2, assumed to be the same for
each cell.

In the small cell limit ǫ → 0, in [32] strong localized perturbation theory was used to formulate a nonlinear algebraic
system for the steady-state solution and to derive a new class of globally coupled eigenvalue problem (GCEP), with a
similar form to that for localized spot patterns, governing the linear stability of any steady-state solution. Similar to the
analysis of spot patterns for the Brusselator, the linear stability problem involves an eigenvalue-dependent Green’s matrix,
which effectively couples the N cells. This linear stability framework of [32] was implemented for Sel’kov intracellular
kinetics where it was shown that triggered synchronous oscillations due to a Hopf bifurcation can occur for a ring-shaped
pattern of identical cells inside the unit disk. The analysis revealed a diffusion-sensing behavior, whereby oscillations could
be triggered only when the cells were sufficiently clustered. For the large diffusivity limit D ≫ 1, in [32] it was shown
that (5.1) exhibits quorum-sensing behavior, whereby a Hopf bifurcation leading to synchronous oscillations only occurs
when the number of cells N exceeds a threshold, with this threshold depending on the permeabilities d1 and d2.

There are many open-ended directions related to coupled bulk-cell models of the class (5.1), and its extensions, that
warrant further study. We only mention three of these here (see [32] for a more detailed discussion). For (5.1), the use of
fast numerical algorithms of potential theory (cf. [48]) to compute the eigenvalue-dependent Green’s matrix would likely
allow for the construction of chimera-type patterns whereby only distinct groups of cells in relatively close proximity
undergo synchronous oscillations, with the other cells remaining in a quiescent state. Secondly, it would be interesting to
extend the linear stability analysis to analyze large-scale oscillatory dynamics for (5.1). Furthermore, by extending (5.1) to
allow for two bulk diffusing species, it should be possible to fully explore the idea originating in [78] that Turing patterns
can occur when the two species have identical diffusivities, but are coupled together through small signaling cells.

5.2 3-D Spot Patterns and 3-D Mean First Capture Time Problems

A second new research frontier is to analyze the existence, stability, and dynamics of localized spot patterns for singularly
perturbed RD systems in 3-D spatial domains. The first study of this type was presented in [92] for a limiting form of
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the 3-D Schnakenberg model, which is given in dimensionless and re-scaled form by

vt = ε2∆v − v + uv2 , x ∈ Ω ∈ R
3 ; ∂nv = 0 , x ∈ ∂Ω , (5.2 a)

ε3ut =
D

ε
∆u+A− uv2

ε3
, x ∈ Ω ; ∂nu = 0 , x ∈ ∂Ω . (5.2 b)

By constructing N -spot quasi-equilibria using strong localized perturbation theory in terms of a new type of local spot core
problem, and then analyzing the linear stability of spot patterns to either competition or peanut-splitting instabilities, it
was shown in [92] that an N -spot quasi-equilibrium pattern, with N ≥ 2, is linearly stable on an O(1) time-scale iff

Scomp < Sc < Σ2 ; Sc ≡
A|Ω|

4πN
√
D

, Scomp ≈ 4.52 Σ2 ≈ 20.16 , (5.3)

where Σ2 is the peanut-splitting threshold for a localized spot. In contrast to the case of 2-D spot patterns, for 3-D spot
patterns of (5.2) there is an asymptotically common spot source strength with Sj = Sc + O(ǫ). We remark that Σ2 is
independent of the parameters A and D since the inner problem near a spot is independent of A, and the diffusivity D
can be eliminated through a re-scaling of u and v near the spot. The eigenvalue problem governing shape deformations
of the spot profile is a purely local problem, with a decay condition at infinity, that involves only the common spot
source strength Sc. The computations in §3.2 of [92] show that it is the peanut-splitting mode that goes unstable first
as Sc crosses above Σ2 ≈ 20.16. We further remark that the competition instability threshold Scomp is another universal
constant, independent of A and D. This follows from the fact that due to the assumed D/ǫ scaling for the inhibitor
diffusivity in (5.2 b), the eigenfunction component for the inhibitor field is, to leading order, a universal constant (see §3.1
of [92] for details).

With regards to slow spot dynamics for (5.2) in 3-D, when (5.3) for Sc is satisfied, then to leading-order in ǫ the spot
locations xj , for j = 1 . . . , N , evolve slowly by the gradient flow (see equation (4.18) of [92])

dxj

dt
∼ −ε3γ∇xj

H(x1, . . . ,xN ) , j = 1, . . . , N , H(x1, . . . ,xN ) ≡ eTG0e , (5.4)

for some γ = γ(Sc) > 0 (see Lemma 4.1 of [92]). Here e ≡ (1, . . . , 1)T , and G0 is the 3-D Neumann Green’s matrix obtained
by solving (2.5) for Ω ∈ R

3. Since γ(Sc) > 0, it readily can be shown from (5.4) that two spots that are sufficiently close
together will repel.

The result (5.4) shows that linearly stable fixed points of the spot dynamics (5.4) coincide with local minima of the
discrete energy H. We remark that for the singularly perturbed eigenvalue problem (4.1) posed in a bounded 3-D domain
with N small spherical traps Ωǫ,j of radius ǫ centered at x1, . . . ,xN , it was shown in [21] that the global minimum of H
also provides the optimal spatial configuration of localized traps that minimizes the expected mean first capture time of a
Brownian particle in Ω\∪N

j=1Ωǫj . The discrete variational problem of seeking both local minima and a global minimum of
H when xj ∈ Ω, for j = 1, . . . , N , is an extension of the well-known and classical Fekete point problems of [50] and [75].
For the unit sphere, where the Neumann Green’s matrix is known analytically, global minima of H have been computed
for 2 ≤ N ≤ 20 (cf. [21], [92]). It is an open problem to investigate optimal configurations for larger values of N and
to obtain a scaling law for the corresponding optimal discrete energy as N → ∞. Since the number of local minima
of H is expected to explode as N becomes large, the gradient dynamics (5.4) predicts that there will be many linearly
stable equilibrium spot configurations. However, it is likely that the majority of these equilibria will have small basins of
attraction for initial conditions. It would be worthwhile to explore these issues numerically, and to extend the analysis
of [92] to other RD systems, such as the 3-D Brusselator model, so as to obtain a more comprehensive theory for spot
patterns in a 3-D setting.

We remark that the assumed scaling of D/ǫ for the inhibitor diffusivity in (5.2 b) appears somewhat artificial, in that
perhaps spot patterns in 3-D can still exist when the ǫ is removed, so that the inhibitor diffusivity is D = O(1). However,
for this latter case, numerical evidence from full PDE simulations (not shown) suggests that, with this smaller inhibitor
diffusivity, v concentrates on 2-D surfaces rather than at discrete points. It would be interesting to investigate this issue
analytically.

Finally, we briefly discuss a new discrete variational problem that has recently been derived in [56] for the well-known
biophysical problem of [6] of analyzing how diffusing ligands bind to cell surface receptors on a spherical surface of radius
R0. In this application, ligands are modeled as point Brownian particles with diffusivity D0 that are trapped upon first
contact with any one of N non-overlapping disk-shaped surface receptors of radius a0, with a0 ≪ R0. The steady-state
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ligand concentration u(x) satisfies

∆u = 0 , |x| ≥ R0 ; u ∼ 1− C/|x| , as |x| → ∞ , (5.5 a)

u = 0 , x ∈ ∂Ωa , ∂nu = 0 , x ∈ ∂Ωr . (5.5 b)

Here ∂Ωa denotes the union of the N , non-overlapping, locally circular cell surface receptor traps of a common radius
a0 ≪ R0 centered at some xj , for j = 1, . . . , N , with |xj | = R0, while ∂Ωr is the non-binding, or reflecting, portion of the
the surface of the sphere. The key biophysical quantity for (5.5) is the flux J of ligands to the surface receptors, defined by
J ≡

∫

∂Ωa
D0ur

∣

∣

r=R0

ds. From the divergence theorem, J = 4πD0C, where C is defined by (5.5). By using strong localized

perturbation theory, the analysis in [56] showed that

1

C
=

π

NσR0

[

1 +
σ

π

(

log
(

2e−3/2σ
)

+
4

N
Hs(y1, . . . ,yN )

)

+O
(

σ2 log
(σ

2

))

]

. (5.6 a)

Here σ ≡ a0/R0 and the discrete energy Hs(y1, . . . ,yN ), with yj = xj/R0, representing interactions between localized
cell surface receptors, is defined in terms of a positive, convex, two-particle interaction energy g(µ) by

Hs(y1, . . . ,yN ) ≡
N
∑

j=1

N
∑

k=j+1

g(|yj − yk|) , where g(µ) ≡ 1

µ
+

1

2
log

(

µ

2 + µ

)

. (5.6 b)

We remark that the derivation of (5.6) relies heavily on the availability of an explicit formula for a surface Green’s
function (cf. [56]). For a fixed N , a key question is to determine the trap configuration that globally minimizes Hs,
thereby maximizing both C and the flux of ligands. For large N , such optimal trap configurations should be uniformly
distributed over the spherical surface, and the formal analysis in [56] predicts that the optimal energy Hs,opt for N → ∞
has the form

Hs,opt ∼
N2

4
− d1N

3/2 +
1

8
N logN + d2N + d3N

1/2 + · · · , (5.7)

where d1 ≈ 0.55230, d2 ≈ 1/8, and d3 ≈ 1/4. The substitution of (5.7) into (5.6 a) yields the new scaling law (cf. [56])

1

C
∼ 1

R0

[

1 +
πσ

4f
+

πσ

4f

(

−8d1
π

√

f +
σ

π
log
(

β
√

f
)

+
2d3σ

2

π
√
f

)]

, (5.8)

where β ≡ 4e−3/2e4d2 . This result is asymptotically valid provided that the trap surface area fraction f ≡ Nπσ2/(4π)
satisfies f = O(−σ2 log σ) ≪ 1. We remark that the first two terms in (5.8), yielding C ≈ R0Nσ/(Nσ + π), is the
well-known Berg-Purcell formula [6] derived previously only formally, with the remaining terms in (5.8) providing new
correction terms.
An open problem is to give a rigorous derivation of both (5.6) and the optimal energy expansion (5.7) for N ≫ 1. An

extension of the analysis of [56] to non-spherical cell surfaces would also be worthwhile.

5.3 Coupled Bulk-Surface Models

A third new research direction involves analyzing classes of RD models that result from the coupling of a passive 3-D
bulk diffusion process to a 2-D surface reaction-diffusion process, due to chemical exchanges between the bulk and the
surface. These coupled models arise in many applications, such as in receptor-binding models related to the initiation of
biological cell-division (cf. [72], [54], [31]), the GTPase cycle in cell signaling [77], biological morphogenesis [58], and in
the determination of the mean first capture time for a Brownian particle in a domain with either interior or boundary
traps that diffuses in the bulk but that can intermittently bind with the surface (cf. [5]).

The general form of such coupled bulk-surface diffusion models is as follows: Let Ω be a bounded 3-D domain with
smooth boundary ∂Ω ∈ R

2. When there are both nonlinear reactions and diffusion on the surface ∂Ω, we have

ut = Du∆su+ f(u, v)− cu , vt = Dv∆sv + g(u, v)− cv , x ∈ ∂Ω , (5.9 a)

where ∆s is the Laplace-Beltrami operator for ∂Ω. This surface RD system is coupled to a passive bulk diffusion process

Ut = DU∆U − σUU +MU (x) , Vt = DV ∆V − σV V +MV (x) , x ∈ Ω , (5.9 b)

via a coupling

DU∂nU = cu , DV ∂nV = cv , x ∈ ∂Ω , (5.9 c)
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where ∂n is the outward normal to ∂Ω. The simplest type of exchange process between the bulk and the surface is to
assume a linear coupling where cu ≡ k1u− k2U and cv ≡ k3v − k4V for some constants ki > 0 for i = 1, . . . , 4. In (5.9 a),
MU (x) and MV (x) model the bulk production of signaling proteins that can diffuse to the surface and initiate reactions.

One key open direction is to analyze, in various asymptotic limits, how bulk diffusion influences the existence and
stability of surface-bound patterns. In the singular limit where Dv ≪ 1 and Du = O(1), such a study would involve the
analysis of new classes of nonlocal eigenvalue problems (NLEPs). In addition, in the limit DU ≫ 1 and DV ≫ 1 of large
bulk diffusivities, new types of nonlocal PDE-ODE shadow problems arise. Finally, in the case when there is no surface
diffusion Du = Dv = 0, and when MU = MV = 0, an interesting open problem is to develop a weakly nonlinear theory to
characterize either symmetry breaking or Hopf bifurcations from a background state. The novelty of this analysis for this
latter problem is that the linearized problem has a Steklov structure where the eigenvalue parameter appears in both the
differential operator and in the boundary condition. Although a linear stability analysis has been done in [77] and [54]
for some specific models, and in [58] in a much more general context, the development of a weakly nonlinear analysis to
characterize the local branching behavior of solutions near bifurcation points is an open problem.

Appendix A Asymptotics of the Core Problem

The following result for the asymptotics of the core problem (2.1) when S ≪ 1, as derived in §4.1 of [81], is needed in
§2.2.1 to determine an asymptotic approximation for the competition stability threshold associated with a zero-eigenvalue
crossing:

Lemma 4 In the limit S → 0, a two-term expansion for the solution to the core problem (2.1) is

v ∼ S
[

ṽ0 + S2ṽ1 +O(S4)
]

, u ∼ 1

S

[

ũ0 + S2ũ1 +O(S4)
]

, χ(S) ∼ χ̃0

S
+ Sχ̃1 +O(S3) , (A.1 a)

where

ṽ0 =
1

fχ̃0
w , ṽ1 = − χ̃1

fχ̃2
0

w − 1

χ̃3
0f

3
ṽ1p , ũ0 =

b(1− f)

f2
, ũ1 = χ̃1 +

1

χ̃0f2
ũ1p . (A.1 b)

Here b ≡
∫∞

0
ρw2 dρ, and w(ρ) is the unique ground-state solution satisfying

∆ρw − w + w2 = 0 , 0 < ρ < ∞ ; w(0) > 0 , w′(0) = 0 ; w → 0 as ρ → ∞ . (A.1 c)

In (A.1 b), ṽ1p and ũ1p are defined uniquely by the linear BVPs

L0ṽ1p = w2ũ1p , ∆ũ1p = w2 − fw ,

ṽ1p → 0 as ρ → ∞ , ũ1p ∼ b(1− f) log ρ+ o(1) as ρ → ∞ ,
(A.1 d)

where the operator L0 is defined by L0 ≡ ∆ρ − 1 + 2w, with ∆ρ ≡ ∂ρρ + ρ−1∂ρ. Moreover, χ̃0 and χ̃1 are defined by

χ̃0 =
b(1− f)

f2
, χ̃1 = − 1

b2(1− f)

∫ ∞

0

ρ ṽ1p dρ . (A.1 e)

In §3.1, we need to re-express Lemma 4 as an expansion in ν ≪ 1 rather than S ≪ 1. The result is as follows:

Lemma 5 For S ∼ ν1/2(S0 + νS1 +O(ν2)), a two-term expansion for the solution to the core problem (2.1) is

v ∼ ν1/2
(

ṽ0 + νṽ1 +O(ν2)
)

, u ∼ ν−1/2
(

ũ0 + νũ1 +O(ν2)
)

, χ(S) ∼ ν−1/2
(

χ0 + νχ1 +O(ν2)
)

, (A.2 a)

where ṽ0, ũ0, ṽ1, and ũ1 are defined as in (A.1 b), but where χ̃0 and χ̃1 in those expressions are replaced by χ0 and χ1,
as given by

χ0 =
b(1− f)

f2S0
, χ1 = − (1− f)b

f2

(

S1

S2
0

)

− S0

b2(1− f)

∫ ∞

0

ρ ṽ1p dρ . (A.2 b)
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