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Abstract

The stability of a one-spike solution to a general class of reaction-diffusion (RD) system with both regular and
anomalous diffusion is analyzed. The method of matched asymptotic expansions is used to construct a one-spike
equilibrium solution and to derive a nonlocal eigenvalue problem (NLEP) that determines the stability of this
solution on an O(1) time-scale. For a particular sub-class of the reaction kinetics, it is shown that the discrete
spectrum of this NLEP is determined in terms of the roots of certain simple transcendental equations that involve
two key parameters related to the choice of the nonlinear kinetics. From a rigorous analysis of these transcendental
equations by using a winding number approach and explicit calculations, sufficient conditions are given to predict
the occurrence of Hopf bifurcations of the one-spike solution. Our analysis determines explicitly the number of
possible Hopf bifurcation points as well as providing analytical formulae for them. The analysis is implemented
for the shadow limit of the RD system defined on a finite domain and for a one-spike solution of the RD system on
the infinite line. The theory is illustrated for two specific RD systems. Finally, in parameter ranges for which the
Hopf bifurcation is unique, it is shown that the effect of sub-diffusion is to delay the onset of the Hopf bifurcation.

Key words: matched asymptotic expansions, spikes, nonlocal eigenvalue problem, winding number, Hopf bifurcation,
sub-diffusion.

1 Introduction

In the singularly perturbed limit, many two-component reaction-diffusion (RD) systems allow for the existence of

steady-state, or time-dependent, spatially localized solutions. In this class of solutions, spike patterns are those

where one or both of the solution components concentrate, or localize, at certain points in the domain. For the

situation where only one of the two solution components is localized, the spikes are said to exhibit semistrong

interactions. In this semi-strong interaction limit, over the past decade there have been many studies of the stability

and dynamics of spike-type patterns in a one-dimensional domain for specific reaction-diffusion systems, including

the Gierer-Meinhardt (GM) model (cf. [39], [12], [13], [5], [8], [14], [38], [37], [36], [31], [7]), the Gray-Scott (GS)

model (cf. [3], [4], [20], [15], [31], [1]), the Schnakenberg model (cf. [30],[9]), and more recently, the Brusselator model

(cf. [34]), [35]) and a reaction-diffusion model of urban crime (cf. [17]).

In these studies, a wealth of different analytical techniques have been used such as the method of matched

asymptotic expansions, Lyapanov-Schmidt reductions, geometric singular perturbation theory, the study of nonlocal

eigenvalue problems, and renormalization methods. In a multi-dimensional domain, there is also a growing literature

on the stability and dynamics of localized spots (see [2] and the references therein), but the results and available

analytical techniques are to a large extent rather different in nature than for the 1-D case.

Although there is now much analytical theory for the existence, stability, and dynamics of spike patterns in

specific RD systems in 1-D, much less is known about how the results can extend to more general classes of RD
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systems. In this direction, there have been a few studies on the slow dynamics of pulses in a class of RD systems

(cf. [6], [28], [41]). However, to date, there has been no comprehensive study of the stability of the pulse solutions

in these more general systems. The main technical challenge is that for the stability analysis one must rigorously

analyze the discrete spectrum of the following class of nonlocal eigenvalue problems (NLEP) for Φ(y) on the infinite

line −∞ < y < ∞:

L0Φ− C(λ)a(w)
∫ ∞

−∞
b(w)Φ dy = λΦ , −∞ < y < ∞ ; Φ → 0 as |y| → ∞ . (1.1)

Here w(y) is the homoclinic of w′′−w+Q(w) = 0 for certain Q(w) with Q(0) = Q′(0) = 0, L0Φ = Φ′′−Φ+Q′(w)Φ

is the linearized operator around w, b(w) and a(w) are nonlinear functions with a(0) = b(0) = 0, and C(λ) is a

transcendental function of λ. Since this NLEP is non-self-adjoint and non-local, it is very difficult to find sufficient

conditions for which all discrete eigenvalues of (1.1) satisfy Re(λ) < 0. For simple power nonlinearities where

Q(w) = wp with p ≥ 2, a(w) = wm with m > 0, and b(w) = wr with r > 0, there are some rigorous results for the

spectrum of (1.1) (see the survey [40]), but the theory is intricate and still incomplete.

Within this context, the main goal of this paper is to characterize analytically the stability of a one-spike solution

to a class of reaction-diffusion systems with either regular or sub-diffusion for which the spectrum of the associated

NLEP can be found explicitly. The class of reaction-diffusion systems with regular diffusion that we will consider is

formulated as

vt = ε20vxx − v + g(u)vp , τut = uxx + (ub − u) +
1

ε0
f(u)vr . (1.2)

Here ε0 ≪ 1, ub > 0 is a constant, p ≥ 2, r > 1, and the properties of g(u) and f(u) are given below. Since (1.2) is

posed on an infinite domain, by scaling we can set the diffusivity of u to unity (as we have done). The sub-diffusive

counterpart of (1.2) is

∂γ
t v = ε2γvxx − v + g(u)vp , τ ∂γ

t u = uxx + (ub − u) + ε−γf(u)vr , (1.3)

where the anomaly exponent γ is on the range 0 < γ < 1. In (1.3), the definition of the sub-diffusive operator as

applied to a function h(t) is (see [24])

dγ

dtγ
h(t) ≡ − 1

Γ(−γ)

∫ t

0

h(t)− h(t− ζ)

ζγ+1
dζ , 0 6 γ < 1 . (1.4)

Sub-diffusion has been observed in nature and in particular in biological systems, where diffusion is often hindered

due to crowding effects of the medium. For a survey of anomalous diffusion and fractional calculus see [27], [19],

and [26]. In the study of the stability of spatially uniform equilibria of RD systems with anomalous diffusion, using

both dynamical systems method and Fourier transform analysis, somewhat counter-intuitive stability characteristics

have been reported (cf. [11], [29], [10], [23], [22], [33])). However, much less is known about the stability of localized

structures in the presence of sub-diffusion. For the case of super-diffusion, the stability and dynamics of an interface

with a piecewise linear kinetics has been studied in [21]. More closely related to this work is the recent study of the

stability and dynamics of spike patterns for a sub-diffusive GM model (cf. [24]) where g(u) = u−q and f(u) = u−s

in (1.3).

In this paper we show that the spectrum of the NLEP associated with (1.2) can be determined explicitly for the

sub-range of exponents where p = 2r − 3 with r > 2. This parameter range was not observed in previous stability

analyses (cf. [39], [5], [38], [37], [13], [36]). Recently, the specific case p = r = 3 was observed and used in [17] to solve

explicitly the NLEP associated with the stability of hot-spot patterns for an RD system of urban crime. For this
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new sub-range p = 2r− 3 of exponents with r > 2, we will derive an explicit transcendental equation for the discrete

eigenvalues λ that governs the stability of a one-spike solution for (1.2) on an O(1) time-scale. From a detailed

analysis of the roots of this transcendental equation by graphical considerations, a winding number approach and

analytical manipulations, we will obtain an explicit and rigorous stability theory for one-spike equilibrium solutions

of (1.2) for general f(u) and g(u). It is then shown that this stability analysis is easily extended to incorporate the

effect of sub-diffusion in (1.3).

We remark that for a one-spike solution to (1.2) on the infinite line, the translation-invariance mode λ = 0 is

always an eigenvalue in the spectrum of the linearization. This is the only “small” eigenvalue in the spectrum of

the linearization. As such, our NLEP stability theory will completely determine the linearized stability properties

of a one-spike equilibrium solution for (1.2) on the infinite line. However, in the more general context of one- or

multi-spike patterns on a finite domain, a separate analysis is typically required to determine additional stability

thresholds regarding the small eigenvalues of order O(ε20) in the spectrum of the linearization. Explicit calculations

of these small eigenvalues, and their associated stability thresholds, have been done for some specific RD systems

such as the GM (cf. [13]), the GS (cf. [16]), and the Brusselator (cf. [34]) RD models. However, such results are not

currently available for general RD systems. The exponent set restriction p = 2r− 3 and r > 2 in (1.2), which allows

for an explicitly solvable NLEP, does not aid in the calculation of the small eigenvalues associated with a multi-spike

pattern of (1.2) on a finite domain.

In previous studies for the GM RD model, either a functional-analytic approach coupled to a numerical dis-

cretization of a BVP (cf. [37]) or an approach based on numerical computations of certain complicated hypergeo-

metric functions (cf. [8]) was used to determine the spectrum of the NLEP and the Hopf bifurcation threshold for

τ . To date, as discussed in §6 of [37], with the exception of the GM shadow problem (cf. [38]), there have been no

rigorous results (without computer assistance) proving the existence of a unique Hopf bifurcation threshold for the

GM model. For the specific case p = 2r − 3 and r > 2 of the GM model, for which the spectrum of the NLEP is

explicitly available, our theory is able to provide rigorous results for the uniqueness of the Hopf bifurcation threshold.

In addition, our results prove the uniqueness of the Hopf bifurcation threshold for the more general system (1.2)

under certain conditions on f and g.

The outline of this paper is as follows: In §2 we analyze the existence of a one-spike solution to (1.2) in the

corresponding shadow limit where the RD system reduces to a PDE coupled to an ODE (see [38] for the shadow GM

system). We then derive an NLEP that determines the stability of this solution on an O(1) time-scale. In contrast

to the case of a one-spike solution on the infinite line where λ = 0 is in the spectrum of the linearization, the shadow

problem admits an exponentially small in ǫ0 eigenvalue not captured by NLEP theory. As such, our NLEP analysis

only provides conditions to ensure the metastability of a one-spike solution of the shadow problem. In §2.1 we show

that the discrete spectrum of the associated NLEP is explicitly available for the special case where p = 2r − 3 and

r > 2. In §2.2 rigorous metastability and instability results are given, and an explicit formulae for the unique Hopf

bifurcation threshold of τ is provided. The theory is illustrated for two specific RD systems in §2.3. In §2.4 it is

shown how to easily extend these results to the case of sub-diffusion. In §3 we extend the analysis of §2 to consider

the existence and stability of a one-spike solution to (1.2) on the infinite line. The stability analysis is undertaken for

the case p = 2r− 3 for which the NLEP is solvable. Rigorous and explicit results are given to predict the occurrence

of Hopf bifurcations in terms of the bifurcation parameter τ for general f(u) and g(u). Finally a brief concluding

discussion is given in §4.
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2 NLEP Stability Theory for the Shadow System

In this section, we consider the limiting system obtained by letting D → ∞ in the following class of reaction-diffusion

system defined on a finite domain:

vt = ε20vxx − v + g(u)vp , |x| ≤ 1 ; vx = 0 on x = ±1 , (2.1a)

τut = Duxx + (ub − u) +
1

ε0
f(u)vr ; |x| ≤ 1 ; ux = 0 on x = ±1 . (2.1b)

Without loss of generality we have taken the domain to have length two. The limiting system for D → ∞, called

the shadow system, is the nonlocal problem for v = v(x, t) and u = u(t) given by (see [38], [12] for the shadow GM

system)

vt = ε20vxx − v + g(u)vp , |x| ≤ 1 ; vx = 0 on x = ±1 , (2.2a)

τ
du

dt
= −(u− ub) +

1

2ε0
f(u)

∫ 1

−1

vr dx . (2.2b)

The sub-diffusive counterpart of this shadow problem is

∂γ
t v = ε2γvxx − v + g(u)vp , |x| ≤ 1 ; vx = 0 on x = ±1 , (2.3a)

τ
dγu

dtγ
= −(u− ub) +

1

2εγ
f(u)

∫ 1

−1

vr dx , (2.3b)

where the fractional time-derivatives are defined by (1.4).

In this section we study the metastability properties of a one-spike equilibrium solution centered at x = 0 to

(2.2). The theory is then extended to treat the sub-diffusive shadow problem (2.3). It is readily shown that this

equilibrium solution of (2.2) is given asymptotically for ε0 → 0 by

ve ∼ g
−1/(p−1)
0 w (x/ε0) , ue ∼ U0 , (2.4)

where w(y) > 0 is the unique homoclinic solution of

w′′ − w + wp = 0 , −∞ < y < ∞ ; w → 0 as |y| → ∞ ; w′(0) = 0 , w(0) > 0 , (2.5a)

which is given explicitly by (cf. [5])

w(y) =

{(

p+ 1

2

)

sech2
(

(p− 1)

2
y

)}1/(p−1)

. (2.5b)

In addition, we readily obtain from the steady-state of (2.2b) that U0 satisfies the nonlinear algebraic equation

U0 − ub =
f0 br

2g
r/(p−1)
0

, f0 ≡ f(U0) , g0 ≡ g(U0) , br ≡
∫ ∞

−∞
wr dy . (2.6)
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Remark 2.1 The problem of determining the existence of a one-spike equilibrium solution to (2.2) is reduced to the

problem of determining the solution structure to the nonlinear algebraic problem (2.6) for different functions f(u)

and g(u). This problem may have multiple solutions, a unique solution, or no solution, depending on the range of

parameters and the choices of the kinetics f(u) and g(u). Explicit examples of the theory are given below in §2.3.

To determine the metastability properties of this solution for the regular diffusion problem (2.2), we look for a

localized eigenfunction in the form

v = ve + eλtΦ(x/ε0) , u = ue + eλtη ,

where η is a constant. By linearizing (2.2), we obtain that

L0Φ+
g′0

g
p/(p−1)
0

wpη = λΦ , −∞ < y < ∞ ; Φ → 0 as |y| → ∞ , (2.7a)

(1 + τλ)η =
1

2ε0

[

f ′
0η

(∫ 1

−1

vre dx

)

+ rf0

(∫ 1

−1

vr−1
e Φ(x/ε0) dx

)]

, (2.7b)

where L0 is the local operator defined by

L0Φ ≡ Φ′′ − Φ+ pwp−1Φ . (2.8)

Next, we substitute ve from (2.4) into the two integrals in (2.7b), and then solve (2.7b) for η. Upon substituting

the result for η into (2.7a) we obtain, after re-expressing the result using (2.6), the following nonlocal eigenvalue

problem (NLEP) governing O(1) time-scale instabilities of the shadow problem (2.2).

Principal Result 2.1 For 0 < ε0 ≪ 1, the linearized metastability properties of the one-spike equilibrium solution

of the shadow problem (2.2) is determined by the spectrum of the NLEP

L0Φ− χwp

(
∫∞
−∞ wr−1Φ dy
∫∞
−∞ wr dy

)

= λΦ , −∞ < y < ∞ ; Φ → 0 as |y| → ∞ . (2.9a)

Here L0 is the local operator, as defined in (2.8), and the multiplier χ of the nonlocal term is given by

χ =
rg′0
g0

[

f ′
0

f0
− (1 + τλ)

U0 − ub

]−1

. (2.9b)

Remark 2.2 The continuous spectrum for (2.9a) consists of the portion λ < −1 of the negative real axis. A one-

spike solution to the shadow problem (2.2) is metastable, i.e. is linearly stable on an O(1) time-scale, provided that

all discrete eigenvalues of the NLEP (2.9) satisfy Re(λ) ≤ 0. A rigorous analysis of the spectrum of the NLEP is

very difficult owing to the fact that it is non-self-adjoint and that χ also depends on λ. Rigorous results for the

spectrum of the NLEP associated with the GM model corresponding to g(u) = u−q and f(u) = u−s for specific ranges

of the exponents p and r were given in [39], [38], [37], and [13]. However, to date, there are no rigorous results

for the spectrum of (2.9) for arbitrary exponents p > 1 and r > 1. Although the NLEP determines O(1) time-scale

instabilities, there is also the possibility of a very weak translational instability resulting from an exponentially small
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eigenvalue of the form λ = O(e−c/ε0), where c > 0. This eigenvalue arises from the interaction of the tail of the

spike with the boundaries of the domain (see [12] for an analysis of these instabilities for the shadow GM model).

We will not consider these instabilities here. Thus, if all discrete eigenvalues of the NLEP (2.9) satisfy Re(λ) ≤ 0,

we say that the one-spike solution is stable on an O(1) time-scale, or equivalently, is metastable.

Next, we show that the NLEP in (2.9) is explicitly solvable when p = 2r−3 and r > 2. This fact was not observed

in the previous stability analyses. For this sub-range of exponents, we will derive a transcendental equation for the

discrete eigenvalues of (2.9). The resulting equation is then readily analyzed to provide detailed metastability and

instability results for a one-spike equilibrium solution of the shadow problem (2.2).

2.1 An Explicitly Solvable NLEP Problem

Lemma 2.1 (From [18]): Consider the local eigenvalue problem L0φl = νφl on R for φl ∈ H1(R). This problem

admits the eigenvalues ν0 > 0, ν1 = 0, and νj < 0 for j > 1. The eigenvalue ν0 is simple, and the corresponding

eigenfunction φl0 has one sign.

Thus, there is exactly one unstable eigenvalue ν0 > 0 for the infinite-line local eigenvalue problem. By solving

this local eigenvalue problem in terms of certain hypergeometric functions, a more explicit result for the spectrum

of L0 was obtained in [5].

Lemma 2.2 (From [5]): Let J = J(p) be a positive integer such that J < (p+ 1)/(p− 1) ≤ J + 1. Then, for

φl ∈ H1(R), the local eigenvalue problem L0φl = νφl on R has J + 1 discrete eigenvalues given by

νj =
1

4
[(p+ 1)− j(p− 1)]

2 − 1 , j = 0, . . . , J . (2.10)

The continuous spectrum of L0 lies in the range −∞ < ν < −1, with ν real.

This result is Proposition 5.6 of [5]. Notice that ν0 > 0, ν1 = 0, and νj ∈ (−1, 0) for 2 ≤ j ≤ J . However, when

p ≥ 3, then J = 1, and there are no discrete eigenvalues in the interval (−1, 0).

For the special case where p = 2r − 3 and r > 2, we now show that φl0 ≡ wr−1 is the principal eigenfunction of

L0 associated with the unique positive eigenvalue ν0 = β ≡ r2 − 2r.

Lemma 2.3 Let w satisfy w′′ − w + wp = 0 with p > 1, and let L0 be the local operator L0φ ≡ φ′′ − φ + pwp−1φ.

Then, when p = 2r − 3 and r > 2, we have

L0w
r−1 = βwr−1 , β ≡ r2 − 2r > 0 . (2.11)

Proof: We use w′′ = w − wp and (w′)2 = w2 − 2wp+1/(p+ 1) to calculate

L0w
r−1 =

(

wr−1
)′′ − wr−1 + pwp+r−2 ,

= (r − 1)(r − 2)wr−3(w′)2 + (r − 1)wr−2w′′ − wr−1 + pwp+r−2 ,

= (r − 1)(r − 2)wr−3

(

w2 − 2

p+ 1
wp+1

)

+ (r − 1)wr−2 (w − wp)− wr−1 + pwp+r−2 ,

= wr−1
(

r2 − 2r
)

+ wr+p−2

(

p− (r − 1)− 2(r − 1)(r − 2)

p+ 1

)

.

Therefore, L0w
r−1 = (r2 − 2r)wr−1 when the factor multiplying wr+p−2 vanishes. This implies that p(p + 1) =

(r − 1) [2(r − 2) + (p+ 1)], which can be factored as (p− (2r − 3)) (p− (1− r)) = 0. Therefore, p = 2r − 3 or

p = 1− r. Since p > 1 is needed, the only relevant root is p = 2r − 3 for r > 2. �
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Remark 2.3 In the analysis of [17] of the stability of hot-spot patterns for a reaction-diffusion model of urban crime

it was observed for p = 3 that L0w
2 = 3w2. This identity, which allowed for an explicit determination of the spectrum

of an NLEP in [17], corresponds to the special case r = 3 in Lemma 2.3. Therefore, our result in Lemma 2.3 is a

generalization of this result of [17].

Remark 2.4 Since the derivation of the result in Lemma 2.3 relies on the determination of an explicit first integral

of the ground-state problem w′′ − w + wp = 0, this result is essentially a 1-D result and cannot be extended to the

study of radially symmetric homoclinic spots of ∆w−w+wp = 0 in two spatial dimensions. However, the framework

of Lemma 2.3 can be extended to treat non power-law nonlinearities. In particular, upon replacing vp and vr in

(1.2) with more general functions Q(v) and h(v), the resulting NLEP is explicitly solvable provided that a certain

differential relation between Q(v) and h(v) is satisfied. Details of this extension are given in [32].

By using the identity (2.11), we now show that the discrete spectrum of the NLEP in Principal Result 2.1 can

be found explicitly.

Lemma 2.4 Let p = 2r − 3 and r > 2, so that p > 1, and consider the NLEP

L0Φ− χwp

∫∞
−∞ wr−1Φ dy
∫∞
−∞ wr dy

= λΦ , −∞ < y < ∞ ; Φ → 0 , |y| → ∞ , (2.12)

with χ = χ(λ). Then, for eigenfunctions Φ for which
∫∞
−∞ wr−1Φ dy 6= 0, the discrete eigenvalues must satisfy the

transcendental equation

λ = β −
(r

2

)

χ . (2.13)

The remaining eigenfunctions Φ, for which
∫∞
−∞ wr−1Φ dy = 0, are simply the eigenfunctions of L0 corresponding to

the zero eigenvalue and any negative real eigenvalues.

Proof: To establish (2.13) we use Green’s identity on wr−1 and Φ. Since L0 is self-adjoint, we integrate by parts

and use the decay at infinity to conclude that
∫∞
−∞

(

wr−1L0Φ− ΦL0w
r−1
)

dy = 0. From (2.11) and (2.12) with

p = 2r − 3 we then calculate that

0 =

∫ ∞

−∞

(

wr−1L0Φ− ΦL0w
r−1
)

dy =

(

χ

∫∞
−∞ w3r−4 dy
∫∞
−∞ wr dy

+ λ− β

)

∫ ∞

−∞
wr−1Φ dy .

Therefore, for eigenfunctions for which
∫∞
−∞ wr−1Φ dy 6= 0, we get

λ = β − χ

∫∞
−∞ w3r−4 dy
∫∞
−∞ wr dy

. (2.14)

To calculate the integral ratio in (2.14), we multiply w′′ −w+w2r−3 = 0 by wr−1 and we multiply L0w
r−1 = βwr−1

by w. Upon subtracting the resulting two expressions we obtain

w
(

wr−1
)′′ − wr−1w′′ + (2r − 4)w3r−4 = βwr .

Upon integrating this expression over −∞ < y < ∞ and using w → 0 as |y| → ∞, we obtain that (2r −
4)
∫∞
−∞ w3r−4 dy = β

∫∞
−∞ wr dy. Therefore, since β = r2 − 2r, the integral ratio in (2.14) is simply

∫∞
−∞ w3r−4 dy =

(

∫∞
−∞ wr dy

)

(r/2). This yields (2.13).
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Next, consider the eigenfunctions for which
∫∞
−∞ wr−1Φ dy = 0. From (2.12), the facts that wr−1 is the unique

and one-signed principal eigenfunction of L0, and that any eigenfunctions of the self-adjoint operator L0 must be

orthogonal, it follows that these other eigenfunctions must belong to the set eigenfunctions of L0 corresponding to

the zero eigenvalue and any negative real eigenvalues of L0. �

This result shows that when p = 2r − 3 and r > 2, the zero eigenvalue and any negative real eigenvalues of L0

remain at fixed locations in Re(λ) ≤ 0 independent of the multiplier χ of the nonlocal term. Therefore, to analyze

whether (2.12) has any eigenvalues in Re(λ) > 0, we only need to analyze the roots of (2.13).

2.2 NLEP Stability Theory for the Shadow Problem: Regular Diffusion

For the explicitly solvable case of the NLEP where p = 2r − 3 and r > 2, we obtain that the discrete eigenvalues of

the NLEP (2.9) are the roots of (2.13) where χ is given in (2.9b). By using the expressions (2.9b) for χ and (2.6) for

U0, we can write (2.13) more conveniently as follows:

Principal Result 2.2 For p = 2r − 3 and r > 2, the discrete eigenvalues λ of the NLEP in Principal Result 2.1

are the roots of the transcendental equation

2 (1 + τλ) = G(λ) ≡ d0 −
d1

β − λ
, (2.15a)

where d0 and d1 are defined by

d0 =
f ′
0br

g
r/(2r−4)
0

, d1 =

(

r2g′0
2g0

)

(

f0br

g
r/(2r−4)
0

)

. (2.15b)

Here β = r2 − 2r > 0.

Remark 2.5 In terms of d0 and d1, the multiplier χ of the NLEP in (2.9a) is

χ =
2d1

r [d0 − 2(1 + τλ)]
. (2.16)

Notice that for the parameter range where d0 > 2, the multiplier χ of the NLEP is not analytic in Re(λ) > 0, but

rather has a simple pole at λ = (d0 − 2)/(2τ) > 0.

By determining conditions for which (2.15a) has real positive roots, we readily obtain some simple sufficient

conditions, valid for any τ ≥ 0, for the instability of the equilibrium spike solution. Below, we shall refer to the roots

of (2.15a) and the eigenvalues of the NLEP in Principal Result 2.1 interchangeably.

Principal Result 2.3 Suppose that either

(I) d1 < 0 and G(0) < 2 ; or (II) d1 > 0 and G(0) > 2 ; or (III) d1 > 0 and d0 < 2 . (2.17)

Then, for any τ > 0, (2.15a) has at least one root with λ > 0 and λ real. Thus, the NLEP has at least one unstable

real eigenvalue and the equilibrium spike solution for (2.2) is unstable.

Proof: The proof is immediate. For (I), since d1 < 0, we have that G′(λ) > 0 for all λ 6= β. Then, since

2(1+ τλ) > G(λ) at λ = 0, and G(λ) → +∞ as λ → β−, by the intermediate value theorem (2.15a) must have a root

in 0 < λ < β. For (II), since d1 > 0 then G′(λ) < 0 for all λ 6= β. Thus, if G(0) > 2, (2.15a) has a unique positive
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root in 0 < λ < β. For (III), since G(0) < 2 and G′(λ) < 0 on 0 < λ < β, there is no root to (2.15a) on 0 < λ < β.

However, since G(λ) → +∞ as λ → β+ with G′(λ) < 0, (2.15a) must have a positive root in λ > β for any τ > 0. �

The next result is for the case d1 < 0 and G(0) > 2 for two different ranges of d0.

Principal Result 2.4 Suppose that d1 < 0, G(0) > 2 and d0 < 2. Then, when τ > τt > 0, (2.15a) has exactly two

real positive roots located on the sub-range 0 < λ < β, while for 0 < τ < τt there are no positive roots to (2.15a) in

λ > 0. Here τt > 0 is given uniquely by

τt ≡ − d1
2(β − λt)2

, λt ≡ β +
d1

2− d0



1−
√

1 +
(2− d0)β

d1



 < β . (2.18)

Next, if d1 < 0 and d0 > 2, so that necessarily G(0) > 2, then (2.15a) has two roots in λ > β when 0 < τ < τ+,

where

τ+ ≡ − d1
2(β − λ+)2

, λ+ ≡ β +
d1

2− d0



1 +

√

1 +
(2− d0)β

d1



 > β . (2.19)

For τ+ < τ < τt, (2.15a) has no positive real roots. Finally, for τ > τt, (2.15a) has two real positive roots on

0 < λ < β.

Proof: The proof is a simple calculus exercise. We first let τ > 0 and suppose that d1 < 0, G(0) > 2 and d0 < 2.

Since d1 < 0, then G(λ) is an increasing and convex function of λ on 0 < λ < β, with G(λ) → +∞ as λ → β−. Since

2(1+ τλ) < G(λ) at λ = 0 and 2(1+ τλ) is monotone increasing in τ for each fixed λ > 0, it follows that (2.15a) will

have exactly two real roots in 0 < λ < β for τ sufficiently large, and no real roots when τ is sufficiently small. The

threshold value of τ occurs when 2(1 + τλ) is tangent to G(λ). This condition for tangency is that

2(1 + τλ) = d0 −
d1

β − λ
, 2τ = − d1

(β − λ)2
,

has a solution on 0 < λ < β. Since G(0) = d0 − d1/β > 2, it is readily shown that 0 < λt < β. This yields (2.18).

When d0 < 2, we have 2(1 + τλ) > G(λ) for all λ > β, and hence (2.15a) has no real roots in λ > β. A graphical

illustration of this result is shown in the left panel of Fig. 1.

Next, we let τ ≥ 0 and suppose that d1 < 0, G(0) > 2 and d0 > 2. For τ = 0 there is a root to (2.15a) located

at λ = β + d1/(2− d0) > β. For τ > 0 sufficiently small, a new second real positive root to (2.15a) emerges from

λ = ∞. It is readily shown that two roots merge into a double root on the interval β < λ < ∞ at the tangency point

where τ = τ+. At the second tangency point where τ = τt > τ+, two new real positive roots to (2.15a) on 0 < λ < β

emerge, and they persist for all τ with τ > τt. A graphical illustration of this result is shown in the right panel of

Fig. 1. �

Principal Results 2.3 and 2.4 characterize the real positive roots of (2.15a), and suggest that a Hopf bifurcation

may be possible for the case where d1 < 0, d0 < 2, and G(0) > 2. More specifically, Principal Result 2.4 suggests that

a complex conjugate pair of eigenvalues merges onto the positive real axis when τ = τt > 0, raising the possibility

that a Hopf bifurcation occurred for some τ = τH > 0 with τH < τt.

To investigate this possibility, we first determine whether (2.15a) can have any pure imaginary roots. To this

end, we set λ = iλI and τ = τH in (2.15a), where λI > 0. Upon separating the real and imaginary parts of the

9
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Figure 1: Left panel: Plot of G(λ) (solid curve) and 2(1 + τλ) for τ = 1.0 (heavy solid line) and for τ = 0.2 (dotted line) versus λ for d0 = 1.5,
d1 = −3.0, and β = 3.0, for which G(0) = 2.5 > 2. There are two roots to (2.15a) when τ = 1.0 and none when τ = 0.2. Right panel: Plot of
G(λ) (solid curve) and 2(1 + τλ) for τ = 1.0 (heavy solid line) and for τ = 0.1 (dotted line) versus λ for d0 = 4.0, d1 = −1.0, and β = 3.0, for
which G(0) ≈ 4.33 > 2. There are two roots to (2.15a) when τ = 1.0 and when τ = 0.1.

resulting expression, we obtain a pure imaginary complex conjugate pair of eigenvalues when G(0) > 2, d1 < 0 and

d0 < 2, given by

τH =
(2− d0)

2β
, λI = β

√

d1
β(d0 − 2)

− 1 = β

√

G(0)− 2

2− d0
. (2.20)

Notice that the extra condition d0 < 2 is in fact needed. As d0 → 2−, then λI → +∞ and τh → 0+. Therefore, in

the case where G(0) > 2, d1 < 0, and d0 < 2, we have a pure imaginary complex conjugate pair of roots to (2.15a).

Next, we use a winding number criterion to establish a Hopf bifurcation result and to count precisely the number

N of roots of (2.15a) in Re(λ) > 0. We define F(λ) ≡ 2(1 + τλ) − G(λ), and note that G(λ) has a simple pole in

Re(λ) > 0 at λ = β. Next, we calculate the winding number of F(λ) over the counterclockwise contour consisting

of the imaginary axis −iR ≤ Imλ ≤ iR and the semi-circle ΓR, given by |λ| = R > 0, for −π/2 ≤ argλ ≤ π/2. For

τ > 0, we have that F(λ) ∼ 2τλ as |λ| → ∞ on ΓR, so that the change in the argument of F over ΓR as R → ∞ is

π. By using the argument principle, together with F(λ) = F(λ), we obtain for τ > 0 that

N =
3

2
+

1

π
[argF ]ΓI

, (2.21)

where [argF ]ΓI
denotes the change in the argument of F along the semi-infinite imaginary axis ΓI = iλI , 0 ≤ λI < ∞,

traversed in the downwards direction. From a direct calculation of (2.21) we obtain the following main result:

Principal Result 2.5 Let N denote the number of roots to (2.15a) in Re(λ) > 0. Suppose that d1 < 0, G(0) > 2,

and d0 < 2. Then, N = 2 for τ > τH , and N = 0 for τ < τH , where τH is given in (2.20). Hence, the equilibrium

spike solution for (2.2) undergoes a Hopf bifurcation at τ = τH . Alternatively, when d1 < 0, G(0) > 2 but d0 > 2,

there is no Hopf bifurcation and N = 2 for all τ > 0.

Proof: On ΓI we set λ = iλI with λI > 0. We use (2.15a) to separate the real and imaginary parts of F(iλI) as

F(iλI) = FR(λI) + iFI(λI) , FR(λI) = 2− d0 +
d1β

β2 + λ2
I

, FI(λI) = 2λI

(

τ +
d1

2(β2 + λ2
I)

)

. (2.22)

We first consider the case d0 < 2. Then, for any τ > 0, we get FR(λI) → 2 − d0 > 0 and FI(λI) → 2τλI as

λI → +∞ so that FI/FR → +∞ as λI → +∞. In addition, we calculate FR(0) = 2 − d0 + d1/β = 2 − G(0) < 0

10



and FI(0) = 0. Moreover, for d0 < 2, there is a unique point λ∗
I in 0 < λI < ∞ where FR(λI) = 0, given by

λ∗
I = β

√

(G(0)− 2)/(2− d0). At this point we calculate FI(λ
∗
I) = 2λ∗

I(τ − τH), where τH is given in (2.20). Thus,

FI(λ
∗
I) > 0 for τ > τH and FI(λ

∗
I) < 0 if τ < τH . Consequently, [argF ]ΓI

= π/2 when τ > τH and [argF ]ΓI
= −3π/2

when τ < τH . Thus, from (2.21), we conclude that N = 0 for τ < τH and N = 2 for τ > τH .

Next, we suppose that d0 > 2. In this case, FR(λI) < 0 for all λI > 0 and FR(0) = 2− d0+ d1/β < 0. Therefore,

[argF ]ΓI
= π/2 for all τ > 0, and (2.21) gives N = 2 for all τ > 0. �

Remark 2.6 For the range d0 > 2 and d1 < 0, it follows that G(0) > 2 by necessity. For this range, our results

have proved that there are exactly two unstable eigenvalues in Re(λ) > 0 for any τ > 0. For τ > 0 and sufficiently

small, there are two positive real roots to (2.15a) on the range λ > β, with one root tending to +∞ while the other

tending to λ = β + d1/(2− d0) > β as τ → 0+. For τ > 0 sufficiently large, there are two positive real roots to

(2.15a) on the interval 0 < λ < β. For intermediate values of τ , Principal Result 2.5 proves that there is a pair of

complex conjugate roots in Re(λ) > 0, and that the eigenvalues can never enter the stable left half-plane Re(λ) < 0.

We recall from (2.16) that for the range where d0 > 2, the multiplier χ of the NLEP has a simple pole in Re(λ) > 0

at λ = (d0 − 2)/(2τ) > 0.

2.3 Two Examples of the Theory

We now illustrate our main results for two specific RD systems.

GM Model: We first consider the GM model where g(u) = u−q, f(u) = u−s and ub = 0. Then, from the definitions

of d0 and d1 in (2.15b), we have

d0 = −2s , d1 = −qr2 , β = r2 − 2r . (2.23)

We remark that the condition G(0) > 2 is equivalent to the usual assumption (cf. [13]) on the GM exponent sets

(p, q, r, s) given by
qr

p− 1
− (s+ 1) > 0 where p = 2r − 3. (2.24)

From (2.6) we conclude that there is a unique one-spike solution and that U ζ
0 = 2/br, where ζ ≡ qr/(2r − 4)−(s+1).

We first suppose that q < 0 so that d1 > 0. Then, (II) and (III) of Principal Result 2.3 hold, and hence the

equilibrium spike solution is unstable for all τ > 0 due to a positive real eigenvalue. From (I) of Principal Result 2.3,

a similar instability occurs for q > 0 but qr/(2r − 4)− (s+ 1) < 0, so that G(0) < 2.

Next, suppose that q > 0, s > −1 and that the usual assumption (2.24) holds on the GM exponent set (p, q, r, s).

Then, d0 < 2, d1 < 0, and G(0) > 2, so that Principal Result 2.5 and (2.20) proves that an equilibrium spike solution

to the GM shadow problem with p = 2r − 3 has a Hopf bifurcation when τ = τH with λ = iλI , where

τH =
1 + s

r(r − 2)
, λI = r(r − 2)

√

qr

2(1 + s)(r − 2)
− 1 . (2.25)

Since N = 2 for τ > τH , we conclude that for τH < τ < τt there is a pair of complex conjugate eigenvalues in

Re(λ) > 0 that merge onto the positive real axis at λ = λt when τ = τt. From (2.18) of Principal Result 2.4, we

calculate

τt =
qr2

2 (r2 − 2r − λt)
2 , λt = (r2 − 2r)− qr2

2(1 + s)

(

1−
√

1− 2(1 + s)(r − 2)

qr

)

. (2.26)

For τ > τt, Principal Result 2.4 shows that there are two real eigenvalues in 0 < λ < β.
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Figure 2: Plot of the complex conjugate pair of roots of (2.15a) in the complex λ-plane for the GM model with exponent set (p, q, r, s) = (3, 2, 3, 0).
Left panel: Plot of Im(λ) versus Re(λ) for τ on the range τH ≤ τ ≤ τt. Right panel: plot of Im(λ) > 0 versus τ on the range τt ≤ τ ≤ τH . The
endpoints of this curve are given analytically by (2.27).

For the particular exponent set (p, q, r, s) = (3, 2, 3, 0), we calculate from (2.25) and (2.26) that

τH = 1/3 , λIH = 3
√
2 ≈ 4.242 , λt = 3− 9

(

1−
√

2

3

)

≈ 1.348 , τt =
9

(3− λt)2
≈ 3.300 . (2.27)

For this exponent set, in Fig. 2 we plot the numerically computed path of the roots of (2.15a) in the complex λ-plane

on the range τH ≤ τ ≤ τt, and we also plot Im(λ) versus τ on this range. The results in this figure are seen to agree

with (2.27).

As a partial confirmation of our analytical theory, we next consider the exponent set (p, q, r, s) = (3, 2, 3, 1) for

which numerical results for the Hopf bifurcation threshold, as computed from a discretization of the associated NLEP,

were given in the fourth row of Table 3 of [38]. From (2.25) and (2.26), our analytical theory predicts that

τH = 2/3 , λIH =
3
√
2

2
≈ 2.121 , λt =

3(
√
3− 1)

3
≈ 1.098 , τt =

9

(3− λt)2
≈ 2.488 . (2.28)

The numerical results given in the fourth row of Table 3 of [38] closely agree with these values. To further validate

our theory, we numerically solved the full PDE (2.2) for the GM model by using the numerical method described

in [38]. The initial condition for (2.2) was taken to be a 1% perturbation of the quasi-equilibrium solution, so that

v(x, 0) = U0w (x/ε0) (1 + 0.01) and u(0) = U0(1 + 0.01), where U0 = 2/b3. Here w(y) =
√
2sech(y) and U0 = 2/b3,

with b3 =
√
2π. For ε0 = 0.02, in Fig. 3 we plot the numerically computed spike amplitude vm(t), defined by

vm = v(0, t), versus t for τ = 0.64 (dotted curve) and for τ = 0.72 (solid curve). For the smaller value of τ , the

amplitude oscillation decays, whereas an oscillatory instability occurs for the larger value of τ . For τ = 0.72, the

numerical results yield that the period of the oscillation is approximately 0.32. In comparison, the theoretical result

(2.28) gives a Hopf bifurcation threshold of τH = 2/3, while the period of small-scale oscillations is 2π/λIH ≈ 0.29.

Generalized GS Model: Next, we consider the shadow limit D → +∞ for a generalization of the GS model

formulated as

vt = ε20vxx − v +Auv3 , τut = Duxx − (u− 1)− 1

ε0
uv3 . (2.29)

on |x| < 1. Here A > 0 is a parameter. This corresponds to setting

p = r = 3 , f(u) = −u , g(u) = Au , ub = 1 , (2.30)
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Figure 3: Plot of the spike amplitude vm(0) = v(0, t) versus t as numerically computed from the shadow PDE (2.2) with ε0 = 0.02 for a GM

model corresponding to setting p = r = 3, g(u) = u−2, f(u) = u−1 and ub = 0 in (2.2). The dotted curve is for τ = 0.64, while the solid curve is
for τ = 0.72. The theoretical prediction for the Hopf bifurcation threshold is τH = 2/3, which is between these two values.

in the shadow problem (2.2). This model is a generalization of the usual GS model with p = r = 2, where pulse

solutions have been analyzed in [3], [4], [20], [15], [31], and [1] (see also the references therein).

For this model, the nonlinear algebraic equation (2.6) for U0 reduces to

H(U0) ≡
√

U0 (1− U0) =
b3

2A3/2
, where b3 ≡

∫ ∞

−∞
w3 dy =

√
2π , (2.31)

and w =
√
2sech(y) is the homoclinic of w′′ − w + w3 = 0. Since A > 0, we must have 0 < U0 < 1. In addition,

since H(U0) attains it maximum value on 0 < U0 < 1 of 2/(3
√
3) when U0 = 1/3, it follows that the graph of

U0 versus A has a saddle-node bifurcation structure, with two solutions U0± for U0 when A > Am, which satisfy

0 < U0− < 1/3 < U0+ < 1. Here, Am is given by

Am =

(

3
√
6π

4

)2/3

. (2.32)

A plot of the bifurcation diagram of U0 versus A is shown in Fig. 4. In terms of U0±, the amplitude v±(0) of the

spike, as obtained from (2.4), is

v±(0) =
w(0)
√

AU0±
, w(0) =

√
2 . (2.33)

We refer to the root U0− on 0 < U0− < 1/3 as generating the “large” amplitude spike, while U0+ on 1/3 < U0+ < 1

generates the small amplitude spike. This classification follows from (2.33) since v−(0) > v+(0). In summary, there

are two one-spike equilibrium solutions when A > Am, and none when 0 < A < Am.

To determine the metastability properties of these solutions, we first identify that β = r2 − 3r = 3 and then we

calculate d0 and d1 from (2.15b) as

d0 = − b3

[AU0]
3/2

= −2(1− U0)

U0
< 0 , d1 = − 9b3

2 [AU0]
3/2

= −9(1− U0)

U0
< 0 , G(0) = (1− U0)

U0
. (2.34)

Since G(0) = (1− U0)/U0 < 2 when U0 > 1/3, we conclude from (I) of Principal Result 2.3 that the entire upper

U0+ branch of Fig. 4 is unstable due to a positive real eigenvalue for any τ > 0. Consequently, the small amplitude

spike for v is unstable for all τ > 0.
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Figure 4: Plot of the bifurcation diagram of U0 versus A, as given in (2.31), characterizing the solution multiplicity of a one-spike solution for
the generalized GS model (2.30). The upper branch of this curve where 1/3 < U0 < 1 is unstable for all τ > 0, whereas solutions on the lower
branch, where 0 < U0 < 1/3, undergo a Hopf bifurcation at some τ = τH(U0).

In contrast, along the lower U0− branch of Fig. 4 where 0 < U0 < 1/3, we have G(0) > 2, d0 < 2 and d1 < 0.

Therefore, from Principal Results 2.4 and 2.5 we conclude that the one-spike solution is stable on an O(1) time-scale

when 0 < τ < τH , and that there is a Hopf bifurcation at τ = τH and λ = iλI . From (2.20) we obtain

τH =
(2− d0)

2β
=

1

3U0
, λI = 3

√

(1− 3U0)

2
. (2.35a)

For the range of τ where τH < τ < τt, there is a complex conjugate pair of eigenvalues in Re(λ) > 0. These

eigenvalues merge onto the real axis at λ = λt when τ = τt. From (2.18), we obtain that

λt = 3− 9

2
(1− U0)

(

1−
√

1− 3U0

3(1− U0)

)

, τt =
9(1− U0)

2U0(3− λt)2
. (2.35b)

In the left panel of Fig. 5 we use (2.35a) and (2.35b) to plot τH and τt versus U0 on the large amplitude spike branch

0 < U0 < 1/3 of Fig. 4. Then, by using (2.31) which relates U0 to A, in the right panel of Fig. 5 we correspondingly

plot τH and τt versus A on this solution branch.
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Figure 5: Plot of the thresholds τt (dotted curve) and τH (heavy solid curve), defined in (2.35), versus U0 (left panel) and versus A (right panel).
These correspond to the lower branch in Fig. 4. The lower curve is the Hopf bifurcation threshold, and the upper curve is where the complex
conjugate pair of eigenvalues merge onto the positive real axis in the λ-plane.
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2.4 NLEP Stability Theory with Sub-Diffusion

In this subsection we study the metastability of a one-spike solution to the sub-diffusive shadow system (2.3). In

the context of fractional differential equations, perturbations of a steady-state solution do not grow exponentially in

time with a constant growth rate. Therefore, the linearized “eigenvalue problem” no longer has its classical meaning.

Instead, it should be regarded as an asymptotic theory of perturbations that evolve exponentially in time to leading

order:

v ∼ ve + eλtφ(x) , u ∼ ue + eλtη ; λ(t) ∼ λ(0) + εγλ(1)(t) + · · · . (2.36)

In the discussion below λ(0) is referred to as the eigenvalue for convenience, yet one must bear in mind that only

at the limit γ = 1 does it in fact correspond to the classical notion. Upon substituting (2.36) into (2.3), and then

collecting the leading order terms, we obtain the following expression involving the fractional derivative:

S ≡ e−λ(0)t d
γ

dtγ
eλ

(0)t = − 1

Γ(−γ)

∫ t

0

1− e−λ(0)ζ

ζγ+1
dζ . (2.37)

In the limit t −→ ∞ the integral converges if and only if Re(λ(0)) > 0, which is rather different from the behaviour

with an integer derivative. With γ = 1 and λ(0) > 0 the derivative
dγ

dtγ
eλ

(0)t diverges exponentially at t −→ ∞, and

then the factor exp(−λ(0)t) makes the expression finite. With γ = 1 and λ(0) < 0 the factor exp(−λ(0)t) diverges

exponentially, but the derivative
dγ

dtγ
eλ

(0)t decays exponentially, again resulting in a finite expression. In the sub-

diffusive case with 0 < γ < 1 and λ(0) > 0 the derivative
dγ

dtγ
eλ

(0)t diverges exponentially at t −→ ∞, and the factor

exp(−λ(0)t) makes the expression finite. However for λ(0) < 0 the derivative
dγ

dtγ
eλ

(0)t decays only algebraically,

and with the exponential factor exp(−λ(0)t) the expression is divergent. Therefore the derivation below is valid for

Re(λ(0)) > 0. This nuance adds a certain subtlety to the interpretation of the stability theory, rendering it sufficient

to study the onset of instability, i.e. the limit Re(λ(0)) −→ 0+, yet impossible to trace eigenvalues in the left half of

the complex plane. This is summarized in the following lemma.

Lemma 2.5 In the limit t = σε−(γ+1) ≫ 1 with ε −→ 0 and σ ∼ O(1) the asymptotic relation

S ≡ e−λ(0)t d
γ

dtγ
eλ

(0)t ∼ λ(0)γ +O
(

εγ(γ+1)
)

,

holds if and only if Re(λ(0)) > 0.

Proof: The proof of this result was given in Lemma 3.1 of [24]. We repeat it here for the convenience of the reader.

We integrate (2.37) by parts and let t = O(ε−(γ+1)) ≫ 1 to obtain

lim
ε−→0

e−λ(0)t d
γ

dtγ
eλ

(0)t = − 1

Γ(1− γ)
lim
ε−→0

{

1− e−λ(0)t

tγ
− λ(0)

∫ t

0

e−λ(0)ζζ−γdζ

}

∼

λ(0)γ

Γ(1− γ)
lim
ε−→0

∫ λ(0)t

0

e−ξξ−γdξ +O
(

εγ(γ+1)
)

.

The error order in this expression arises from the algebraic decay of t−γ regardless of the value of λ(0). To evaluate

the last integral in this expression we use contour integration. We consider the closed contour consisting of the line

segment from 0 to λ(0)t, an arc of radius R ≡
∣

∣λ(0)
∣

∣ t ( corresponding to R −→ ∞ at the limit ε −→ 0 ), the interval
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Figure 6: Closed integration contour in the evaluation of e−λ(0)t dγ

dtγ
eλ

(0)t

(δ,R) on the real axis and an arc of radius δ −→ 0 ( δ is independent of ε ). The contour is depicted in Fig. 6. Upon

using the residue theorem one gets

lim
ε−→0

e−λ(0)t d
γ

dtγ
eλ

(0)t =
λ(0)γ

Γ(1− γ)
lim

R−→∞
δ−→0

{

ıR1−γ

∫ arg λ(0)

0

e−Reıθeı(1−γ)θdθ

−ıδ1−γ

∫ arg λ(0)

0

e−δeıθeı(1−γ)θdθ +

∫ R

δ

e−ξξ−γdξ

}

∼ λ(0)γ +O
(

εγ(γ+1)
)

,

where the first integral exists if and only if Re(λ(0)) > 0. �

Remark 2.7 Since γ < γ(γ+1) for any 0 < γ 6 1, the asymptotic estimate above for the time scale t = O(ε−(γ+1))

shows that S ∼ λ(0)γ provided that λ(0) satisfies Re(λ(0)) > 0 and is not too close to the origin in the sense that
∣

∣λ(0)
∣

∣ must satisfy
∣

∣λ(0)
∣

∣ ∼ O (ε) or larger.

From this Lemma, it follows that the spectrum of the NLEP associated with the shadow problem (2.3) is de-

termined by the roots of (2.15a) where λ is now replaced by λ(0)γ . By using the mapping λ(0)γ = λ, the previous

results for the roots of (2.15a) given in Principal Results 2.3–2.5 can be used to infer metastability or instability for

the sub-diffusive case. More specifically, writing λ = |λ| exp(ıφ) with φ = arg λ ∈ (−π, π], the map λ(0)γ = λ yields

that

λ(0) = |λ|1/γeıφ/γ , (2.38)

where the constraint −π < φ/γ 6 π must hold in order to remain on the principal branch in the λ(0) plane. Recall

from Lemma 2.5, that the derivation of the NLEP for the sub-diffusive shadow problem required that Re(λ(0)) > 0

and |λ(0)| ≫ O(ε). Therefore, in terms of the spectral λ plane associated with the regular NLEP, the sub-diffusive

system will be unstable if the regular NLEP has an eigenvalue in the wedge-shaped region with cutout near the origin

defined by

−πγ

2
6 φ 6

πγ

2
, |λ| ≫ O(ε) . (2.39)

This subset of the right half-plane Re(λ) > 0 is shown in Fig. 7. We refer to the set (2.39) as the wedge of instability

of the sub-diffusive NLEP. This wedge becomes narrower as γ decreases, and concentrates on the positive real axis

in the λ-plane as γ → 0+.
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Re(λ)

Im
(λ
)

|λ| ∼ o(ε)

πγ/2

πγ

0

0

Figure 7: Admissibility and instability region in the λ plane ( shaded ) corresponding to the asymptotics validity constraint |λ| ∼ O(ε) or larger.
The dashed lines show the region conforming to the principal branch.

A simple consequence of this result is that if the regular NLEP admits a positive real eigenvalue λ∗ > 0, then

this eigenvalue must lie in the wedge of instability for the sub-diffusive NLEP for any 0 < γ < 1. Such an eigenvalue

λ(0) = (λ∗)1/γ > 0 then yields an exponentially growing perturbation ( to leading order ) to the one-spike equilibrium

solution of (2.3). Consequently, Principal Results 2.3 and 2.4 also apply to the sub-diffusive case.

Principal Result 2.6 Under the conditions of Principal Results 2.3 and 2.4, there is an exponentially growing

perturbation to the one-spike equilibrium solution of the sub-diffusive shadow problem (2.3).

Next, we consider Hopf bifurcations associated with the sub-diffusive shadow problem (2.3). The key observation

is that an unstable eigenvalue of the regular NLEP only generates an instability for the sub-diffusive NLEP when

it lies within the wedge of instability (2.39). This wedge of instability becomes narrower as the anomaly exponent

γ decreases. The anomaly dependent Hopf threshold, labelled by τHγ , is computed numerically from the implicit

condition that

arg λ =
πγ

2
, (2.40)

which involves the eigenvalue path λ = λ(τ) of the roots of (2.15a) with Re(λ) > 0 and Im(λ) > 0. The condition

(2.40) corresponds to the minimum value of τ for which this eigenvalue path enters the wedge of instability of the

sub-diffusive NLEP shown in Fig. 7. In this sense, it follows that the perturbation of a one-spike solution for the

sub-diffusive shadow model (2.3) is oscillatory at a larger value of τ than for the case of regular diffusion. In this

sense, the effect of sub-diffusion is to stabilize the one-spike solution. This leads to the following result.

Principal Result 2.7 Suppose that the assumptions d0 < 2, d1 < 0 and G(0) > 2, of Principal Result 2.5 hold.

Then, for all γ in 0 < γ < 1, the Hopf bifurcation threshold τHγ for the sub-diffusive NLEP must lie in the interval

τH < τHγ < τt. Here τH is the Hopf bifurcation threshold for the regular diffusion case, as given in (2.20), and τt

is the value of τ , as given in (2.18), where the complex conjugate eigenvalue pair for the regular NLEP merge onto

the positive real axis. In particular, τHγ −→ τH as γ −→ 1− and τHγ −→ τt as γ −→ 0+. In addition, if the path

λ = λ(τ) of the complex eigenvalue in the first quadrant Re(λ) > 0, Im(λ) > 0 for the regular NLEP is such that

Re(λ) (Im(λ)) increases (decreases) monotonically as τ increases, then τHγ increases as γ decreases.

The proof of this result follows immediately from the concept of the wedge of instability of the sub-diffusive

NLEP together with our explicit results in Principal Results 2.3–2.5 for the the behaviour of the roots of (2.15a) in
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the right half-plane Re(λ) > 0 as a function of τ .

In particular, consider the GM and generalized GS models studied in §2.3. For the generalized GS model with

sub-diffusion, we conclude that the Hopf bifurcation threshold τHγ must lie between the two curves in Fig. 5 for any

anomaly index γ. Moreover, for the sub-diffusive GM model with s > −1 and q > 0, the Hopf bifurcation threshold

must be in the interval τH < τHγ < τt, where τH and τt are given in (2.25) and (2.26), respectively.

3 A One-Spike Solution on the Infinite Line

For ε0 → 0, we use the method of matched asymptotic expansions to construct a steady-state one-spike solution

to (1.2), centered at x = 0, on the infinite line. Since the asymptotic construction is standard we will only briefly

highlight the main steps of the analysis.

In the inner region near x = 0, we introduce the new variables y, V , and U , by

y = x/ε0 , V (y) = v(ε0y) , U(y) = u(ε0y) .

Upon expanding U = U0 + ε0U1 + · · · and V = V0 + ε0V1 + · · · , and substituting into (1.2), we obtain that U0 must

be a constant and that V0 satisfies

V ′′
0 − V0 + g0V

p
0 = 0 , −∞ < y < ∞ , (3.1)

where g0 ≡ g(U0). When g0 > 0, there is a unique positive homoclinic solution for V0 given explicitly by

V0(y) =
1

g
1/(p−1)
0

w(y) , (3.2)

where w(y) is the homoclinic satisfying (2.5).

In the outer region, defined for |x| ≫ O(ε0), we obtain to all orders in ε0 that v = 0 and that the nonlinear term

in the u-equation of (1.2) can be represented in terms of a Dirac mass as

ε−1
0 f(u)vr → f0

(∫ ∞

−∞
[V0(y)]

r
dy

)

δ(x) =
f0 br

g
r/(p−1)
0

δ(x) ,

where we have defined br ≡
∫∞
−∞ wrdy and f0 ≡ f(U0). In this way, we obtain that the leading-order outer solution

for u satisfies

uxx − (u− ub) = − f0 br

g
r/(p−1)
0

δ(x) , −∞ < x < ∞ ; u → ub as |x| → ∞ .

The solution for u can be written as

u = ub +
f0 br

g
r/(p−1)
0

G(x) ,

where G(x) is the Green’s function G(x) satisfying

Gxx −G = −δ(x) , −∞ < x < ∞ ; G → 0 as |x| → ∞ , (3.3)

which is given explicitly by G(x) = e−|x|/2.

Then, to match inner and outer solutions for u we must set U0 = u(0), which yields a nonlinear algebraic equation

for U0 given by

U0 − ub =
f0 br

2 g
r/(p−1)
0

, f0 ≡ f(U0) , g0 ≡ g(U0) , br ≡
∫ ∞

−∞
wr dy . (3.4)
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We summarize the construction of the steady-state one-spike solution for (1.2) as follows:

Principal Result 3.1 For ε0 → 0, a one-spike equilibrium solution to (1.2), which we label by ve(x) and ue(x), is

given asymptotically by

ve(x) ∼
1

g
1/(p−1)
0

w (x/ε0) , ue(x) ∼ ub + (U0 − ub)
G(x)

G(0)
, (3.5)

where U0 is a solution to the nonlinear algebraic equation (3.4) and where G(x) = 1
2e

−|x| is the Green’s function

satisfying (3.3). This construction is valid provided that g0 ≡ g(U0) > 0.

To analyze the linearized stability of this one-spike solution we set

v = ve + eλtφ , u = ue + eλtη . (3.6)

Upon substituting (3.6) into (1.2) and linearizing, we obtain the eigenvalue problem

ε20φxx − φ+ pg(ue)v
p−1
e φ+ g′(ue)v

p
eη = λφ , (3.7a)

ηxx − (1 + τλ)η = −ε−1
0

[

f ′(ue)v
r
eη + rf(ue)v

r−1
e φ

]

. (3.7b)

Since ve is localized near x = 0, we look for a localized eigenfunction for φ(x) in the form φ = Φ(y) where y = x/ε0.

Upon using ve ∼ g
−1/(p−1)
0 w and ue ∼ U0 for x = O(ε0), we obtain from (3.7a) that Φ(y) satisfies

L0Φ+
g′0

g
p/(p−1)
0

wpη(0) = λΦ , −∞ < y < ∞ ; Φ → 0 as |y| → ∞ . (3.8)

Here we have labelled g′0 ≡ g′(U0). In addition, L0 is the local operator defined by (2.8).

To derive our NLEP we must calculate η(0) in (3.8). Since φ is localized near x = 0, then for ε0 → 0 the

right-hand side of (3.7b) can be calculated in the sense of distributions by using ue ∼ U0 and ve ∼ g
−1/(p−1)
0 w as

ε−1
0

[

f ′(ue)v
r
eη + f(ue)rv

r−1
e φ

]

→
[

η(0)f ′
0

g
r/(p−1)
0

∫ ∞

−∞
wr dy +

rf0

g
(r−1)/(p−1)
0

∫ ∞

−∞
wr−1Φ dy

]

δ(x) ,

where we have defined f ′
0 ≡ f ′(U0). In this way, we obtain that the outer approximation for η satisfies

ηxx − (1 + τλ) η = −η(0)f ′
0 br

g
r/(p−1)
0

δ(x)− rf0

g
(r−1)/(p−1)
0

(∫ ∞

−∞
wr−1Φ dy

)

δ(x) , −∞ < x < ∞ , (3.9a)

η → 0 as |x| → ∞ . (3.9b)

We represent the solution to (3.9) in terms of the λ-dependent Green’s function Gλ(x) satisfying

Gλxx − (1 + τλ)Gλ = −δ(x) , −∞ < x < ∞ ; Gλ → 0 as |x| → ∞ , (3.10a)

which has the explicit solution

Gλ(x) =
1

2
√
1 + τλ

e−|x|
√
1+τλ , (3.10b)
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provided that we take the principal branch of the square root function to guarantee that Re
(√

1 + τλ
)

> 0 and,

hence, ensure decay of Gλ(x) as |x| → ∞ for any complex λ.

In terms of Gλ(x), the solution to (3.9) is

η(x) =
η(0)f ′

0 br

g
r/(p−1)
0

Gλ(x) +
rf0

g
(r−1)/(p−1)
0

(∫ ∞

−∞
wr−1Φ dy

)

Gλ(x) . (3.11)

We then set x = 0 in (3.11) and solve for η(0). Finally, upon substituting η(0) into (3.8) and re-writing the resulting

expression by using (3.4), we obtain an NLEP for Φ(y). The result is summarized as follows:

Principal Result 3.2 For 0 < ε0 ≪ 1, the stability of the one-spike steady-state solution of Principal Result 3.1 is

determined by the spectrum of the NLEP (2.9a), where the multiplier of the nonlocal term is given by

χ =
rg′0
g0

[

f ′
0

f0
− 1

U0 − ub

G(0)

Gλ(0)

]−1

. (3.12a)

In this expression, the ratio of the two Green’s functions at x = 0 is simply

G(0)

Gλ(0)
=

√
1 + τλ . (3.12b)

3.1 NLEP Stability Theory with Regular Diffusion

In this section we obtain explicit stability results for the NLEP of Principal Result 3.2 for the explicitly solvable case

where p = 2r− 3 and r > 2. For this case, we need only analyze the roots of (2.13) where χ(λ) is defined in (3.12a).

By using (3.12a) for χ and (3.4) for U0, we can write (2.13) more conveniently in the following form:

Principal Result 3.3 For p = 2r − 3 and r > 2, the discrete eigenvalues λ of the NLEP in Principal Result 3.2

are the roots of the transcendental equation

2
√
1 + τλ = G(λ) ≡ d0 −

d1
β − λ

, (3.13)

where β = r2 − 2r > 0. Here d0 and d1 are defined in (2.15b). In (3.13),
√
1 + τλ denotes the principal branch of

the square root. In terms of d0 and d1, the multiplier χ of the NLEP in Principal Result 3.2 is

χ =
2

r

(

d1

d0 − 2
√
1 + τλ

)

. (3.14)

When d0 > 2, this multiplier has a simple pole at λ = τ−1
(

−1 + d20/4
)

, which lies in Re(λ) > 0.

Remark 3.1 The transcendental equation (3.13) has precisely the same form as for the one-spike case for the shadow

problem given in (2.15a), provided that we simply replace
√
1 + τλ in (3.13) with (1 + τλ).

We first determine sufficient conditions for instability by characterizing the roots of (3.13) on the positive real

axis. Since the proofs of these results parallel that of Principal Results 2.3 and 2.4 for the shadow problem (2.2),

they are omitted.

Principal Result 3.4 Suppose that either

(I) d1 < 0 and G(0) < 2 ; or (II) d1 > 0 and G(0) > 2 ; or (III) d1 > 0 and d0 < 2 . (3.15)

Then, for any τ > 0, (3.13) has at least one root with λ > 0 and λ real. Thus, the NLEP of Principal Result 3.2 has

at least one unstable real eigenvalue and the equilibrium spike solution for (1.2) is unstable.

20



Principal Result 3.5 Suppose that d1 < 0, G(0) > 2 and d0 < 2. Then, when τ > 0 is sufficiently large, (3.13)

has two real positive roots in 0 < λ < β, while for τ > 0 sufficiently small (3.13) has no positive real roots. Next, if

d1 < 0 and d0 > 2, so that necessarily G(0) > 2, then (3.13) has two real roots in λ > β when τ > 0 is sufficiently

small, and two real roots in 0 < λ < β when τ > 0 is sufficiently large.

Next, we count the number N of roots of (3.13) in Re(λ) > 0. We define F(λ) ≡ 2
√
1 + τλ − G(λ), where G(λ)

has a simple pole in Re(λ) > 0 at λ = β. We take the counterclockwise contour consisting of the imaginary axis

−iR ≤ Imλ ≤ iR and the semi-circle ΓR, given by |λ| = R > 0, for −π/2 ≤ argλ ≤ π/2. For τ > 0, we have that

F(λ) ∼ 2
√
τλ as |λ| → ∞ on ΓR, so that the change in the argument of F over ΓR as R → ∞ is π/2. By using the

argument principle, together with F(λ) = F(λ), we obtain for τ > 0 that

N =
5

4
+

1

π
[argF ]ΓI

, (3.16)

where [argF ]ΓI
denotes the change in the argument of F along the semi-infinite imaginary axis ΓI = iλI , 0 ≤ λI < ∞,

traversed in the downwards direction. Now along the imaginary axis λ = iλI for λI > 0, we can readily separate

F(iλI) in terms of real and imaginary parts as F(iλI) = FR(λI) + iFI(λI), to obtain that

FR(λI) = K+(τλI)− d0 +
d1β

β2 + λ2
I

, FI(λI) = K−(τλI) +
d1λI

β2 + λ2
I

, (3.17a)

where we have defined K±(ζ) by

K±(ζ) =
√
2
[

√

1 + ζ2 ± 1
]1/2

. (3.17b)

For any τ > 0, we have that FR ∼
√
2τλI and FI ∼

√
2τλI as λI → +∞, so that arg (F(iλI)) → π/4 as λI → +∞.

Alternatively, for λI = 0, we obtain

FR(0) = 2− G(0) , FI(0) = 0 . (3.18)

For τ > 0, we calculate that
d

dλI
FR(λi) = τK′

+(τλI)−
2d1λIβ

(β2 + λI)2
. (3.19)

By using these preliminary results, we can calculate [argF ]ΓI
, and thus obtain N from (3.16). Our first result is

as follows:

Principal Result 3.6 Let d1 < 0 and G(0) > 2, and let N denote the number of roots to (3.13) in Re(λ) > 0.

Then, for all τ > 0, we have either N = 0 or N = 2. Moreover, if d0 < 2, then N = 2 for τ ≫ 1 and N = 0 for

τ ≪ 1.

Proof: Since d1 < 0 and K′
+(ζ) > 0, then from (3.19) we conclude that d

dλI
FR(λI) > 0. Next, since G(0) > 2,

we have from (3.18) that FR(0) < 0, while FR(+∞) = +∞. Therefore, there exists a unique root λ∗
I > 0, with

λ∗
I = λ∗

I(τ), for which FR(λ
∗
I) = 0. It then follows that [argF ]ΓI

= 3π/4 if FI(λ
∗
I) > 0 and [argF ]ΓI

= −5π/4

if FI(λ
∗
I) > 0. We conclude from (3.16) that either N = 2 or N = 0 depending on whether FI(λ

∗
I) is positive or

negative, respectively. To determine whether N = 0 or N = 2, we must calculate the root λ∗
I to FR(λI) = 0. From

using (3.17a) for FR(λI), we obtain that λ∗
I is the unique root of

K+(τλI) = R(λI) ≡ d0 −
d1β

β2 + λ2
I

. (3.20)
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Suppose that d0 < 2, d1 < 0, and G(0) > 2. Then, for τ ≪ 1, (3.20) has a root with λ∗
I ∼ λI0 = O(1), where λI0

satisfies

2− d0 +
d1β

β2 + λ2
I0

= 0 , (3.21)

so that

λ∗
I(0) = λI0 ≡ β

√

(G(0)− 2)

2− d0
.

For τ ≪ 1, we conclude from (3.17a) that FI(λI0) = d1λI0/(β
2 + λ2

I0) + O(τ2) < 0. Therefore, N = 0 when

τ ≪ 1. Alternatively, for τ ≫ 1, the unique root of (3.20) satisfies λ∗
I ∼ λI∞/τ , where λI∞ is the unique root of

K+(λI∞) = G(0) > 2. From (3.17a), we conclude that FI(λ
∗
I) ∼ K−(λI∞) +O(τ−1) > 0. We conclude that N = 2

when τ ≫ 1. �

Remark 3.2 For the case where d1 < 0, G(0) > 2 and d0 < 2, Principal Result 3.6 proves the existence of a value of

τ for which a one-spike solution of (1.2) undergoes a Hopf bifurcation. Under these conditions on d0 and d1, N = 0

for τ ≪ 1, and N = 2 for τ ≫ 1. respectively. Therefore, by continuity of the path of eigenvalues as a function of τ ,

there must be a value τH of τ for which (3.13) has a complex conjugate pair of roots λ = ±iλI with λI > 0.

The next result gives a sufficient condition for the existence of a unique value τH > 0 of τ for which (3.13) has

a complex conjugate pair of roots. These roots cross transversally into Re(λ) > 0 when τ > τH . This leads to a

rigorous Hopf bifurcation result for one-spike solutions of (1.2).

Principal Result 3.7 Suppose that d1 < 0, d0 < 2 and 2 < G(0) < 4− d0 where G(0) = d0 − d1/β. Then, there is

a unique value τ = τH > 0 at which the NLEP of Principal Result 3.2 undergoes a Hopf bifurcation. The one-spike

solution is spectrally stable if 0 < τ < τH and is spectrally unstable if τ > τH .

Proof: We write FR in (3.17a) as FR(λI ; τ). Since G(0) > 2 and d1 < 0, then as shown in the proof of Principal

Result 3.6, there is a unique root λ∗
I(τ) to FR = 0, so that FR(λ

∗
I(τ); τ) = 0. At this root, we define N (τ) ≡

FI(λ
∗
I(τ); τ). In the proof of Principal Result 3.6 we showed that N (τ) < 0 for 0 < τ ≪ 1 when d0 < 2, and

N (τ) → +∞ as τ → +∞. We will now show that N ′(τ) > 0 for all τ > 0 when d0 < 2 and 2 < G(0) < 4− d0. Such

a monotonicity result would establish the existence of a unique Hopf bifurcation value τH > 0 at which N (τH) = 0,

with N (τ) > 0 for τ > τH and N (τ) < 0 for 0 < τ < τH . Therefore, N = 2 when τ > τH and N = 0 when

0 < τ < τH . Thus, to complete the proof we need only find sufficient conditions that guarantee that N ′(τ) > 0 for

all τ .

To determine the sign of N ′(τ), we set d
dτFR(λ

∗
I(τ); τ) = 0, and then use (3.17a) for FR to get

λ∗
I = − dFR/dτ

dFR/dλI
=

−λ∗
IK′

+

τK′
+ − 2d1βλ∗

I (β
2 + (λ∗

I)
2)

−2 .

Then, we use (3.17a) for FI to calculate N ′(τ) = λ∗′
I dFI/dλI + dFI/dτ . After a short calculation, we obtain

N ′(τ) = −d1
(

β2 + λ2
I

) [

K′
+λI

(

β2 − λ2
I

)

+ 2βλ2
IK′

−
]

τK′
+(β

2 + λI)2 − 2d1βλI

∣

∣

∣

λI=λ∗

I

. (3.22)

Since d1 < 0 and K′
± > 0, a sufficient condition to ensure that N ′(τ) > 0 for all τ > 0 is that λ∗

I(τ) < β for all τ > 0.

Since λ∗′
I (τ) < 0, this condition holds for all τ > 0 when λ∗

I(0) < β. Finally, we recall from (3.21) that when d1 < 0
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and d0 < 2 we have (λ∗
I(0))

2
+ β2 = d1β/(d0 − 2) > 0. Therefore, λ∗

I(0) < β when d1β/(d0 − 2) ≤ 2β2. This implies

that G(0) = d0 − d1/β < 4− d0. This completes the proof of the result. �

Remark 3.3 The previous NLEP stability analyses for the GM and GS models have not been successful in providing

a rigorous proof for the existence of a unique Hopf bifurcation value of τ (see §6 of [37]). Only for the special case of

the shadow GM system is such a result available for certain exponent sets of the GM nonlinearities (cf. [38]). Our

Principal Result 3.7 provides sufficient conditions on the nonlinearities f(u) and g(u) for the uniqueness of the Hopf

bifurcation point for a one-spike solution of the general system (1.2) for the case p = 2r− 3 and r > 2 for which the

associated NLEP is explicitly solvable.

We remark that the proof of Principal Result 3.7 does not require detailed knowledge of the functions K±(ζ) with

ζ = τλI . It only requires that K′
± > 0 and that K+(0) = 2.

Principal Result 3.7 provides sufficient conditions on d0 and d1 for the existence of a unique Hopf bifurcation

point. However, by using detailed properties of the functions K±, we now show that the conditions in Principal

Result 3.7 are in fact not necessary, and that a unique Hopf bifurcation point occurs for any G(0) with G(0) > 2.

Our result is as follows:

Principal Result 3.8 Suppose that d1 < 0, d0 < 2 and G(0) > 2. Then, the NLEP of Principal Result 3.2 undergoes

a Hopf bifurcation at τ = τH > 0, where

τH =
d21
2ξ2

A , where A ≡ β − d0ξ

d1
, (3.23a)

and where ξ is the smallest root of the quadratic equation

M(ξ) ≡
(

d20 − 4
)

ξ2 −
(

d21 + 2βd0d1
)

ξ + 2β2d21 = 0 , (3.23b)

on the interval ξ > β2. In terms of this root, the corresponding eigenvalue is λ = iλIH , where

λIH =
√

ξ − β2 . (3.23c)

For the special case d0 = 0, τH is given explicitly by

τH =
1

β

[

1 +
c2

2
+ c

√

1 +
c2

4

]

, c ≡ − d1

2β
√
2
>

1√
2
, (3.24a)

while the corresponding eigenvalue is λ = iλIH , where

λIH = β

√

1− 2

βτH
. (3.24b)

Proof: In (3.17a), we set FR = FI = 0 to obtain

√
2
[√

a+ 1
]1/2

= d0 −
d1β

ξ
,

√
2
[√

a− 1
]1/2

= −d1λI

ξ
; a ≡ 1 + τ2λ2

I , ξ ≡ β2 + λ2
I . (3.25)

Upon dividing the resulting two expressions we get

(√
a+ 1√
a− 1

)1/2

=
1 +

√
a

λIτ
=

β

λI
− d0ξ

d1λI
,
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which reduces to
√
a+ 1 = τA , where A ≡ β − d0ξ

d1
. (3.26)

Since the first equation of (3.25) is
√
2 [
√
a+ 1]

1/2
= −d1A/ξ, we obtain from using (3.26) that

√
2τA1/2 = −d1A/ξ.

Upon solving for τ , and recalling that A ≡ β − d0ξ/d1, we obtain

τ =
d21
2ξ2

A =
d21
2

(

β

ξ2
− d0

ξd1

)

, (3.27)

which is (3.23a). Equation (3.27) determines τ in terms of ξ. To obtain the quadratic equation (3.23b) for ξ, we

square and add the two expressions in (3.25) to obtain

√
a =

1

4

[

(

d0 −
d1β

ξ

)2

+
d21λ

2
I

ξ2

]

. (3.28)

Then, by using
√
a = −1 + τA, λ2

I = ξ − β2, and (3.27) for τ in terms of A, (3.28) becomes

A2d21
2ξ2

− 1 =
1

4

[

d21A
2

ξ2
+

d21
ξ2
(

ξ − β2
)

]

.

Upon solving for A2 and recalling that A = β − d0ξ/d1, we obtain

4ξ2

d21
+ ξ − β2 = A2 = (β − d0ξ/d1)

2
.

By rewriting this last expression we conclude that ξ > β2 must be a root of the quadratic equation of (3.23b).

We must now carefully examine the roots of M(ξ) = 0 when d0 < 2, d1 < 0, and G(0) = d0 − d1/β > 2. There

are three sub-cases that must be considered: Case 1: |d0| < 2; Case 2: d0 = −2; Case 3: d0 < −2. For each of these

cases we calculate that

M(β2) = (d20 − 4)β4 −
(

d21 + 2βd0d1
)

β2 + 2β2d21 (3.29a)

= −4β4 + β4

(

d21
β2

− 2d0d1
β

+ d20

)

= β4
(

[G(0)]2 − 4
)

. (3.29b)

Since G(0) > 2, we conclude that M(β2) > 0.

For Case I where |d0| < 2, we have that M(ξ) → −∞ as ξ → ±∞. Therefore, by the intermediate value theorem

there exists a unique root ξ− to M(ξ) = 0 in β2 < ξ < ∞, while the other root is in −∞ < ξ < β2. Since ξ = β2+λ2
I ,

the relevant root is ξ−. Next, we must show that A = β − d0ξ−/d1 > 0, so that τH > 0 from (3.23a). If 0 < d0 < 2,

then A > 0 since d0 > 0, ξ− > 0 and d1 < 0. For −2 < d0 < 0, we use G(0) > 2 to obtain d1/β < d0 − 2. Therefore,

since d0 < 0 and ξ− > 0, we estimate −d0ξ−/d1 > −d0ξ−/(β(d0 − 2). By using this inequality we obtain

A = β − d0ξ−
d1

> β − d0ξ−
β(d0 − 2)

=
d0(ξ− − β2) + 2β2

β(2− d0)
> 0 ,

since −2 < d0 < 0 and ξ− > β2. Therefore, when |d0| < 2, (3.23b) has a unique root in ξ > β2, for which τH > 0 in

(3.23a).

For the degenerate Case II where d0 = −2, we have M(ξ) = −(d21 − 4βd1)ξ + 2β2d21. Since d1 < 0, then

M(ξ) → −∞ as ξ → +∞, while M(β2) > 0 from (3.29b). Therefore, the unique root ξ = 2β2d1/(d1 − 4β) to
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M(ξ) = 0 is in ξ > β2. At this root we calculate A as

A = β − d0ξ

d1
= β +

2ξ

d1
= β +

4β2

d1 − 4β
=

βd1
d1 − 4β

> 0

since d1 < 0. Thus, τH > 0 in (3.23a).

Finally, we consider Case III where d0 < −2. This case is more delicate since M(ξ) → +∞ as ξ → +∞ and

M(β2) > 0. Therefore, the behaviour of the roots in ξ > β2 is not immediately clear. However, we now show that

M(ξc) < 0 where ξc ≡ d1β/d0 is the unique root of A = 0. For ξ < ξc we have A > 0, while for ξ > ξc, we have

A < 0. We readily find that ξc > β2 since d0 − d1/β > 2. To establish the sign of M(ξc) we calculate

M(ξc) =
(

d20 − 4
) d21β

2

d20
−
(

d21 + 2d0d1β
) d1β

d0
+ 2β2d21 ,

= d21β
2 − 4d21β

2

d20
− d31β

d0
=

d21β
2

d20

[

d20 − 4− d1d0
β

]

.

Since d0−d1/β > 2 and d0 < 0, we have −d0d1/β < d0 (2− d0). By using this estimate in the last expression above,

we obtain

M(ξc) <
d21β

2

d20

[

d20 − 4 + 2d0 − d20
]

=
d21β

2

d20
[2d0 − 4] .

Thus, since d0 < 0, we have M(ξc) < 0. By the intermediate value theorem, it follows that M(ξ) = 0 must have

two real roots ξ±, which satisfy β2 < ξ− < ξc and ξc < ξ+. However, since A > 0 for ξ = ξ− < ξc and A < 0 for

ξ = ξ+ > ξc, only the smaller of the two roots yields a τH > 0 from (3.23a). Therefore, the smaller root ξ− gives the

Hopf bifurcation, and this root determines λI as λI =
√

ξ− − β2.

This completes the proof of (3.23).

For the special case where d0 = 0, M(ξ) = 0 has a unique root in ξ > β2 given by

ξ = c0 +
√
c1 , c0 = −d21

8
, c1 =

d41
64

+
β2d21
2

. (3.30)

Then, from (3.27) with d0 = 0, we get

τ =
d21β

2

(

1

c0 +
√
c1

)2

=
d21β

2(c20 − c1)

(

c20 + c1 − 2c0
√
c1
)

.

Since c20 − c1 = −β2d21/2, we obtain

τ =
d21β

2

(

2

β2d21

)2
[

d41
32

+
β2d21
2

+
d21
4

√

d41
64

+
β2d21
2

]

=
1

β





d21
16β2

+ 1− d1

2β
√
2

√

1 +
d21

32β2



 .

This last expression is equivalent to (3.24a). �

Remark 3.4 Recall from Principal Result 3.5 that for the case where d1 < 0 and d0 > 2, so that necessarily G(0) > 2,

we have N = 2 when both τ ≪ 1 and τ ≫ 1. However, the behaviour of the eigenvalues for intermediate values of τ

is unclear, since Principal Result 3.6 only proves that either N = 0 or N = 2. This leaves open the possibility that at

some intermediate range of values of τ a pair of complex conjugate eigenvalues can cross into the negative half-plane

Re(λ) < 0, and then only re-appear in Re(λ) > 0 at some sufficiently large value of τ . Our last result below, given in

Principal Result 3.9, rules out this possibility when d0 > d0c > 2, where d0c is some explicit threshold. It also gives
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a range of values of d0 > 2 that guarantee that a stabilization of the spike will occur for some intermediate range of

value of τ .

Principal Result 3.9 Suppose that d1 < 0 and that d0 > d0c > 2, where d0c is given by

d0c = min (d0c1, d0c2) , d0c1 ≡ d1
2β

+

√

8 +
d21
2β2

, d0c2 ≡
√

4 +
d21
4β2

. (3.31)

Then, for any τ > 0, there are exactly two eigenvalues in Re(λ) > 0. Hence, the NLEP of Principal Result 3.2 does

not admit a Hopf bifurcation, and a one-spike solution to (1.2) is spectrally unstable for all τ > 0. Moreover, on the

range

2 < d0 < d0m ≡ min(d0c1, d0H) , d0H ≡ d1
2β

+

√

4 +
3d21
4β2

, (3.32)

there are exactly two Hopf bifurcation values of τ , labelled by τH− and τH+, with τH− < τH+. The spike is spectrally

unstable when 0 < τ < τH− and when τ > τH+, but is stable on the intermediate range τH− < τ < τH+. Finally, if

d0H < d0 < d0c1 then the quadratic M(ξ) = 0 has two real roots ξ±, but they both satisfy ξ± < 0, and so are not in

the region ξ > β2. Hence in this range of d0 there are no Hopf bifurcations.

Proof: We first show from the winding number criterion leading to (3.16) that N = 2 when d0 > d0c2, where d0c2

is defined in (3.31). To obtain this result, it is sufficient to show that FI > 0 at the root of FR = 0 when d0 > d0c2.

We first set FR = 0 in (3.17a) to get

√
2
[√

a+ 1
]1/2

= d0 −
d1β

ξ
, where a ≡ 1 + τ2λ2

I and ξ ≡ β2 + λ2
I . (3.33)

From (3.33) we calculate
√
a =

A2

2
− 1 , where A ≡ d0 −

d1β

ξ
.

We can then evaluate FI in (3.17a) at this root of FR to get

FI =
√
2
[√

a− 1
]1/2

+
d1λI

β2 + λ2
I

= H(A) +
d1λI

β2 + λ2
I

, where H(A) ≡
(

A2 − 4
)1/2

. (3.34)

We note that H(2) = 0 and H′(A) > 0 for A > 2. In addition, for d0 > 2 and d1 < 0, we have A > d0 > 2 for all

ξ > β2. Therefore, since d1 < 0, we calculate a lower bound for FI as

FI ≥ H(d0) + d1 max
λI>0

λI

β2 + λ2
I

=
(

d20 − 4
)1/2

+
d1
2β

.

We conclude that FI > 0 at the root of FR = 0, when d0 is sufficiently large, so that (d20 − 4)1/2 > −d1/(2β). This

yields that N = 2 for any τ > 0 when d0 > d0c2.

To obtain the second result that N = 2 when d0 > d0c1, where d0c1 is defined in (3.31), we proceed by examining

the roots of the quadratic polynomial M(ξ) = 0 given in (3.23b) on the range ξ > β2 when d0 > 2. When d0 > 2,

we have M → +∞ as ξ → ∞ and M(β2) > 0 from (3.29b). Therefore, a sufficient condition for M > 0 on ξ > β2

is that the discriminant associated with the polynomial is negative, i.e. that

(

d21 + 2βd1d2
)2 − 8β2d21

(

d20 − 4
)

< 0 .
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A simple calculation from this inequality yields that d0 > d0c1 where d0c1 is defined in (3.31).

The last step of the proof is to determine sufficient conditions for which M(ξ) = 0 has two roots in ξ > β2. Since

d0 > 0 and d1 < 0, then A > 0 in (3.23a), and so these roots determine two Hopf bifurcation points τH− and τH+

with τH− < τH+. A necessary and sufficient condition for this is that the discriminant associated with the quadratic

is positive, and that the minimum point of M(ξ) versus ξ occurs in the region ξ > β2. This occurs when both

(

d21 + 2βd1d2
)2 − 8β2d21

(

d20 − 4
)

> 0 and d21 + 2βd0d1 > 2β2
(

d20 − 4
)

(3.35)

hold simultaneously. A simple manipulation of these inequalities yields 2 < d0 < d0m ≡ min(d0H , d0c1), where d0H

is defined in (3.32).

�.

Next, we illustrate Principal Result 3.9 graphically by plotting the regions in the parameter space d0 > 2 versus

t ≡ −d1/(2β) where we can guarantee the number of Hopf bifurcation points. In terms of t we have from (3.31) and

(3.32) that

d0c1 = t+
√

8 + 2t2 , d0c2 =
√

4 + t2 , d0H = t+
√

4 + 3t2 . (3.36)

We first consider the range t < −2. On this range, it is readily shown that d0H > d0c1 and d0c2 > d0c1. Therefore,

when t < −2, we conclude that if d0 > d0c1 there are no Hopf bifurcations, while for 2 < d0 < d0c1 we have two Hopf

bifurcation points. The curve d0 = d0c1 for t < −2 is where M(ξ) = 0 has a double root in the region ξ > β2. Next,

consider the range −2 < t < 0. A simple calculation shows that d0c1 < d0c2 for −2 < t < ts, whereas d0c2 < d0c1 on

ts < t < 0. Here ts = −
√

2(
√
2− 1) ≈ −0.910. In addition, we readily calculate that d0H < 2 on −2 < t < 0. Thus,

on −2 < t < 0, where d0H < 2 < d0 < d0c1 it follows that M(ξ) = 0 has two real roots, with neither in the region

ξ > β2. For d0 > min(dc1, dc2), there are no Hopf bifurcations. We conclude that there are no Hopf bifurcations

possible in the region where −2 < t < 0. These considerations yield the phase diagram of Fig. 8 characterizing Hopf

bifurcations in the entire parameter plane d0 > 2 versus t ≡ −d1/(2β) < 0.

2.0

2.2

2.4

−4.0 −3.0 −2.0 −1.0 0.0

d0

−d1/(2β)

Figure 8: Plot of the region in the d0 > 2 versus t ≡ −d1/(2β) parameter illustrating Principal Result 3.9. For t < −2, there are no Hopf bifurcation

points above the heavy solid curve, and two Hopf bifurcation points below the heavy solid curve. The heavy solid curve is d0c1 = t +
√
8 + 2t2.

For −2 < t < 0, there are no Hopf bifurcation points for any d0 > 2. It is only the region 2 < d0 < d0c1 and t < −2 where a one-spike solution
will be stable only on some intermediate range 0 < τH− < τ < τH+ < ∞.

Remark 3.5 The parameter plane shown in Fig. 8 predicts either zero or two Hopf bifurcation points in the entire

parameter plane where d0 > 2 and d1 < 0. To use this result for arbitrary kinetics f and g, we need only solve the
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nonlinear algebraic problem (3.4) for U0, and then compute d0 and d1 in terms of U0 from (2.15b). If d0 > 2 and

d1 < 0, this determines a point in the parameter space of Fig. 8.

3.2 Two Examples of the Theory

Since the instability results for eigenvalues on the positive real axis for the infinite line problem are essentially the

same as for the shadow system studied in §2.2, we will only illustrate the Hopf bifurcation results contained in

Principal Results 3.8 and 3.9.

GM Model: Consider a one-spike solution on the infinite line for the GM model where g(u) = u−q, f(u) = u−s and

ub = 0. Then, d0 = −2s, d1 = −qr2, and β = r2 − 2r, as were given in (2.23).

For the special case s = 0, for which d0 = 0, then τ is given by (3.24) where we identify c as

c =
qr

2
√
2(r − 2)

. (3.37)

In particular, for the GM exponent set (p, q, r, s) = (3, 2, 3, 0), we calculate from (3.24) and (3.37) that

τH =
1

12

[

13 + 3
√
17
]

≈ 2.114 , λI = 3

√

1− 2

3τH
≈ 2.482 .

More generally, fixing p = r = 3 and s = 0, a plot of τH versus q is shown by the heavy solid curve in Fig. 9.
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Figure 9: Plot of τH versus q for the GM model with p = r = 3 and for s = 1 (dotted curve) and for s = 0 (heavy solid curve). For s = 0 and
s = 1, τ is calculated from (3.24) and (3.23), respectively

.

Next, consider the GM exponent set (p, q, r, s) = (3, 2, 3, 1). For this set, the Hopf bifurcation threshold for

a one-spike solution on a finite domain was computed using the full numerical approach of [37], and is shown in

Fig. 4 of [37]. The y-intercept of this plot of [37] is the corresponding result for our infinite-line problem. For the

exponent set (p, q, r, s) = (3, 2, 3, 1), for which d0 = −2, the quadratic polynomial M(ξ) = 0 in (3.23b) degenerates

to a straight line, and we calculate that ξ = 2β2d1/(d1 − 4β) = 54/5. We calculate from (3.23) that τH = 2.5 and

λI = 3/
√
5 ≈ 1.34 in agreement with the results given on the y-intercept of Fig. 4 of [37]. More generally, the dotted

curve of Fig. 9 is a plot of τH versus q for the exponent set (p, q, r, s) = (3, q, 3, 1), as obtained from (3.23).

To illustrate the use of Fig. 8, we consider the GM model with exponent set (p, q, r, s) with p = 2r − 3, r > 2,

q > 0 and s < −1. Since d0 = −2s and d1 = −qr2, we conclude that d0 > 2 and d1 < 0. If −2 < d1/(2β) < 0, then
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we predict that there are no Hopf bifurcations for any τ > 0, and the spike is always unstable. This inequality holds

when q < 4(r − 2)/r. Next, suppose that q > 4(r − 2)/r. Then, we obtain that there are no Hopf Bifurcations when

s < − qr

4(r − 2)
− 1

2

√

8 +
q2r2

2(r − 2)2
,

and that there are two Hopf bifurcations when

− qr

4(r − 2)
− 1

2

√

8 +
q2r2

2(r − 2)2
< s < −1 . (3.38)

For the range of s in (3.38) and for q > 4(r − 2)/r, a one-spike solution will be stable only on some intermediate

range of τ .

Generalized GS Model: Next, we consider the generalized GS model (1.2) for which

p = r = 3 , f(u) = −u , g(u) = Au , ub = 1 . (3.39)

To construct the one-spike equilibrium solution on the infinite line we must calculate U0 from (3.4). In this way,

we find that U0, on 0 < U0 < 1, again satisfies (2.31) when A > Am, where Am is defined in (2.32). The graph of

U0 versus A has a saddle-node bifurcation structure, with two solutions U0± for U0 on 0 < U0− < 1/3 < U0+ < 1

when A > Am (see Fig. 4).

For the stability analysis, we identify β = r2 − 3r = 3, and calculate d0 and d1 from (2.15b) as

d0 = −2(1− U0)

U0
< 0 , d1 = −9(1− U0)

U0
< 0 , G(0) = (1− U0)

U0
. (3.40)

Since G(0) = (1− U0)/U0 < 2 when U0 > 1/3, we conclude from (I) of Principal Result 3.4 that on the entire upper

branch 1/3 < U0 < 1 the spike is unstable due to a positive real eigenvalue for any τ > 0.

On the lower branch, where 0 < U0 < 1/3, a one-spike solution undergoes a Hopf bifurcation at some unique

τ = τH > 0. Since d0 = −2(1− U0)/U0 and 0 < U0 < 1/3, we conclude that d0 < −4, d1 < 0, and G(0) > 2 on this

branch. Consequently, Case III in the proof of Principal Result 3.8 applies, and M(ξ) = 0 in (3.23b) has two positive

roots in ξ > β2, with the smaller root corresponding to the Hopf bifurcation point. By using (3.40) in (3.23), and

calculating the smallest root of M(ξ) = 0, we obtain for each U0 in 0 < U0 < 1/3 that

τH =
81(1− U0)

2

2U2
0

(

3

ξ2
− 2

9ξ

)

, ξ =
(1− U0)

2

2(1− 2U0)





189

4
−
√

(

189

4

)2

− 1458

(

(1− 2U0)

(1− U0)2

)



 . (3.41)

In Fig. 10 we plot τH versus U0 on 0 < U0 < 1/3 and versus A where A > Am. At the saddle node bifurcation point

where U0 = 1/3 and A = Am ≈ 3.218, we calculate τH = 2 from (3.41).

3.3 NLEP Stability Theory with Sub-Diffusion

Finally, we remark that completely analogous results to those in §2.4 for the sub-diffusive shadow problem hold for

the sub-diffusive infinite-line problem (1.3).

More specifically, to analyze the stability of a one-spike solution for (1.3) we simply replace λ in (3.13) with

λ(0)γ = λ. We recall from §2.4 that an instability for the sub-diffusive problem can only occur when the roots of

(3.13) are in the wedge of instability defined by (see Fig. 7)

−πγ

2
6 arg(λ) 6

πγ

2
, |λ| ≫ O(ε) , (3.42)

29



20

40

60

80

100

120

0.05 0.10 0.15 0.20 0.25 0.30

τ

U0

20

40

60

80

100

120

3.2 3.5 3.8 4.1 4.4 4.7 5.0

τ

A

Figure 10: Plot of the Hopf bifurcation threshold τH for the generalized GS model versus U0 (left panel) and versus A (right panel), corresponding
to the lower branch 0 < U0 < 1/3 of Fig. 4. Here τH is given in (3.41),

where the anomaly exponent γ is on the range 0 < γ < 1.

As such, we conclude that if the regular NLEP admits a positive real eigenvalue λ∗ > 0, then this eigenvalue

must lie in the wedge of instability for the sub-diffusive NLEP for any γ in 0 < γ < 1. Such an eigenvalue

λ(0) = (λ∗)1/γ > 0 yields an exponentially growing perturbation (to leading order) to the one-spike equilibrium

solution of (1.3). Consequently, the instability results of Principal Results 3.4 and 3.5, which result from a positive

real eigenvalue of the regular diffusion NLEP, still hold for the sub-diffusion problem for all γ in 0 < γ < 1. We

summarize this result as follows:

Principal Result 3.10 Suppose that either

(I) d1 < 0 and G(0) < 2 ; or (II) d1 > 0 and G(0) > 2 ; or (III) d1 > 0 and d0 < 2 .

Then, for any τ > 0, there is an exponentially growing perturbation to the one-spike equilibrium solution of the

sub-diffusive system (1.3). Similarly, when d1 < 0, G(0) > 2, and d0 < 2, the one-spike equilibrium solution of (1.3)

is unstable when τ > 0 is sufficiently large.

shite

Next, we consider Hopf bifurcations associated with the sub-diffusive RD system (1.3) under the conditions that

d1 < 0, d0 < 2 and G(0) > 2. For this parameter range, Principal Result 3.8 proves that the regular diffusion problem

undergoes a Hopf bifurcation at a unique value τ = τH > 0, and by Principal Result 3.5 there are two positive real

eigenvalues for the regular NLEP when τ ≫ 1. More specifically, there are two positive real roots of (3.13) for

τ > τt, where τt > 0 is the unique value of τ at which 2
√
1 + τλ and G(λ) in (3.13) intersect tangentially at some

λ = λt > 0. The key observation is that an unstable eigenvalue of the regular NLEP only generates an instability

for the sub-diffusive NLEP when it lies within the wedge of instability (3.42). This wedge of instability becomes

narrower as γ decreases, and concentrates on the positive real axis in the λ-plane as γ → 0. The anomaly-dependent

Hopf bifurcation threshold, labelled by τHγ , is computed numerically from the implicit condition that

arg λ =
πγ

2
, (3.43)

which involves the eigenvalue path λ = λ(τ) of the roots of (3.13) with Re(λ) > 0 and Im(λ) > 0. This condition

(3.43) corresponds to when this eigenvalue path intersects the edge of the wedge of instability shown in Fig. 7. In
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Figure 11: Hopf bifurcation for the GM model corresponding to setting p = r = 3, g(u) = u−2, f(u) = u−1 and ub = 0 in (1.2) and (1.3).
Left panel: the plot of the path λ(τ) (solid curve) of the complex conjugate eigenvalue pair for the NLEP with regular diffusion on the range
τH < τ < τt. The wedge of instability for the sub-diffusive problem when γ = 1/3 lies between the two heavy solid lines. For values of τ for which
λ(τ) is inside this wedge, the one-spike solution for the sub-diffusive GM model has an oscillatory instability. Right panel: the Hopf bifurcation
threshold τHγ versus γ corresponding to when the path λ(τ) intersects the edge of the wedge of instability.

this sense, we conclude that the sub-diffusive RD system (1.3) undergoes an oscillatory instability at a larger value

of τ than for the case of regular diffusion. We summarize this result as follows:

Principal Result 3.11 Suppose that d0 < 2, d1 < 0 and G(0) > 2. Then, for all γ in 0 < γ < 1, the Hopf

bifurcation threshold τHγ for the sub-diffusive NLEP satisfies τH < τHγ < τt. Here τH is the Hopf bifurcation

threshold for the regular diffusion case, as given by Principal Result 3.8, and τt is the value of τ , where the complex

conjugate eigenvalue path for the regular NLEP merge onto the positive real axis.

In addition, suppose that the eigenvalue path for the regular NLEP in the first quadrant Im(λ) > 0 and Re(λ) > 0

is monotonic in the sense that Re(λ) increases monotonically while Im(λ) decreases monotonically as τ increases.

Then, the Hopf bifurcation threshold τHγ for the sub-diffusive NLEP increases as γ decreases.

In Fig. 11 we illustrate Principal Result 3.11 for the GM model corresponding to setting p = r = 3, g(u) = u−2,

f(u) = u−1 and ub = 0 in (1.2) and (1.3). For this example d0 = −2, d1 = −18, and G(0) = 4 > 2. In the left panel

of Fig. 11 we plot the path λ(τ) of the complex conjugate eigenvalue pair for the NLEP with regular diffusion on the

range τH < τ < τt, as computed from (3.13). We calculate τt ≈ 10.68 and from Principal Result 3.8 we get τH = 2.5.

In Fig. 11, we also plot the wedge of instability for the sub-diffusive problem when γ = 1/3. For this example, the

eigenvalue path of the regular NLEP is monotonic in the sense described above, so that τHγ increases as γ decreases.

This Hopf bifurcation threshold of the sub-diffusive problem is shown in the right panel of Fig. 11.

The analysis for the case d0 > 2 and d1 < 0 is more intricate. Recall that the Hopf bifurcation result for the

regular NLEP was given in Principal Result 3.9. In particular, when d0 satisfies (3.32), the regular NLEP has two

Hopf bifurcation thresholds τH± > 0 with a one-spike solution being stable on the intermediate range τH− < τ < τH+,

and unstable otherwise. However, since an unstable eigenvalue of the regular NLEP only generates an instability for

the sub-diffusive problem when it lies within the wedge of instability (3.42), it follows for any γ in 0 < γ < 1 that

this intermediate stability zone in τ will be larger for the sub-diffusive problem.
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4 Discussion

We have studied the existence and linearized stability of a one-spike equilibrium solution to the class of RD systems

(1.2) on the infinite-line. A similar analysis has been done for the corresponding shadow system (2.2). For arbitrary

p ≥ 2 and r > 1 in (1.2) and (2.2), the problem of the existence of a one-spike solution was reduced to the study

of the scalar nonlinear algebraic equation (3.4) and (2.6), respectively. To determine the linearized stability of the

one-spike solutions, we used the method of matched asymptotic expansions to derive a nonlocal eigenvalue problem

(NLEP). For the special case where p = 2r−3 and r > 2, we showed that the spectrum of this NLEP can be reduced

to the study of the roots of a rather simple transcendental equation involving τ , r, and two key parameters d0 and

d1 related to the specific choices of the kinetic functions of the nonlinearities f(u) and g(u) in (1.2) and (2.2).

From an analysis of these transcendental equations by using a winding number approach together with detailed

analytical calculations, explicit stability and instability results were obtained in terms of ranges of the two parameters

d0, d1, and the reaction-time constant τ . Most notably, in certain parameter regimes of d0 and d1 our theory provides

sufficient conditions for the existence of a unique Hopf bifurcation value of τ , as well as a simple analytical formula

to calculate this threshold. The theory was illustrated for the GM model and for a generalization of the GS model.

There are several related problems that can be investigated within the simple framework afforded by an explicitly

solvable NLEP. The first problem is to characterize analytically the slow dynamics and stability of a two-spike

pattern on the infinite line for the regular diffusion problem (1.2) and its sub-diffusive counterpart (1.3). For the

case p = 2r − 3 with r > 2, for which the associated NLEP is explicitly solvable, it should be possible to provide an

explicit theory characterizing both competition and oscillatory instabilities of the two-spike pattern. Results in this

direction are given in [25]. A second open problem is to investigate delayed bifurcation effects for the stability of

pulses due to either the slow drift of the pulse locations or due to slowly varying extrinsic control parameters, such

as τ or the length of the domain. Finally, as mentioned in Remark 2.4, it would be interesting to investigate whether

more general non power-law nonlinearities can also lead to an explicitly solvable NLEP. Results in this direction are

given in [32].
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