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Abstract

The stability of a one-spike solution to a general class of reaction-diffusion (RD) system with both regular and
anomalous diffusion is analyzed. The method of matched asymptotic expansions is used to construct a one-spike
equilibrium solution and to derive a nonlocal eigenvalue problem (NLEP) that determines the stability of this
solution on an O(1) time-scale. For a particular sub-class of the reaction kinetics, it is shown that the discrete
spectrum of this NLEP is determined in terms of the roots of certain simple transcendental equations that involve
two key parameters related to the choice of the nonlinear kinetics. From a rigorous analysis of these transcendental
equations by using a winding number approach and explicit calculations, sufficient conditions are given to predict
the occurrence of Hopf bifurcations of the one-spike solution. Our analysis determines explicitly the number of
possible Hopf bifurcation points as well as providing analytical formulae for them. The analysis is implemented
for the shadow limit of the RD system defined on a finite domain and for a one-spike solution of the RD system on
the infinite line. The theory is illustrated for two specific RD systems. Finally, in parameter ranges for which the
Hopf bifurcation is unique, it is shown that the effect of sub-diffusion is to delay the onset of the Hopf bifurcation.

Key words: matched asymptotic expansions, spikes, nonlocal eigenvalue problem, winding number, Hopf bifurcation,
sub-diffusion.

1 Introduction

In the singularly perturbed limit, many two-component reaction-diffusion (RD) systems allow for the existence of
steady-state, or time-dependent, spatially localized solutions. In this class of solutions, spike patterns are those
where one or both of the solution components concentrate, or localize, at certain points in the domain. For the
situation where only one of the two solution components is localized, the spikes are said to exhibit semistrong
interactions. In this semi-strong interaction limit, over the past decade there have been many studies of the stability
and dynamics of spike-type patterns in a one-dimensional domain for specific reaction-diffusion systems, including
the Gierer-Meinhardt (GM) model (cf. [39], [12], [13], [5], [8], [14], [38], [37], [36], [31], [7]), the Gray-Scott (GS)
model (cf. [3], [4], [20], [15], [31], [1]), the Schnakenberg model (cf. [30],[9]), and more recently, the Brusselator model
(cf. [34]), [35]) and a reaction-diffusion model of urban crime (cf. [17]).

In these studies, a wealth of different analytical techniques have been used such as the method of matched
asymptotic expansions, Lyapanov-Schmidt reductions, geometric singular perturbation theory, the study of nonlocal
eigenvalue problems, and renormalization methods. In a multi-dimensional domain, there is also a growing literature
on the stability and dynamics of localized spots (see [2] and the references therein), but the results and available
analytical techniques are to a large extent rather different in nature than for the 1-D case.

Although there is now much analytical theory for the existence, stability, and dynamics of spike patterns in

specific RD systems in 1-D, much less is known about how the results can extend to more general classes of RD



systems. In this direction, there have been a few studies on the slow dynamics of pulses in a class of RD systems
(cf. [6], [28], [41]). However, to date, there has been no comprehensive study of the stability of the pulse solutions
in these more general systems. The main technical challenge is that for the stability analysis one must rigorously
analyze the discrete spectrum of the following class of nonlocal eigenvalue problems (NLEP) for ®(y) on the infinite
line —o0 < y < o0:

L0<I>—C()\)a(w)/ b(w)®dy = AP, —00 <y < 00} ®—0 as |yl — 0. (1.1)

Here w(y) is the homoclinic of w” —w + Q(w) = 0 for certain Q(w) with Q(0) = Q’(0) =0, Ly® = " — >+ Q' (w)®
is the linearized operator around w, b(w) and a(w) are nonlinear functions with a(0) = b(0) = 0, and C()) is a
transcendental function of . Since this NLEP is non-self-adjoint and non-local, it is very difficult to find sufficient
conditions for which all discrete eigenvalues of (1.1) satisfy Re(A) < 0. For simple power nonlinearities where
Q(w) = wP with p > 2, a(w) = w™ with m > 0, and b(w) = w” with r > 0, there are some rigorous results for the
spectrum of (1.1) (see the survey [40]), but the theory is intricate and still incomplete.

Within this context, the main goal of this paper is to characterize analytically the stability of a one-spike solution
to a class of reaction-diffusion systems with either regular or sub-diffusion for which the spectrum of the associated
NLEP can be found explicitly. The class of reaction-diffusion systems with regular diffusion that we will consider is
formulated as

1
Vg = €500 — v + g(u)v? TUp = Uy + (Up — u) + a—f(u)vr . (1.2)
0

Here gp < 1, up > 0 is a constant, p > 2, r > 1, and the properties of g(u) and f(u) are given below. Since (1.2) is
posed on an infinite domain, by scaling we can set the diffusivity of u to unity (as we have done). The sub-diffusive

counterpart of (1.2) is
0] v = ey — v + g(u)o?, T U = Upy + (up —u) +e 7 fu)o", (1.3)

where the anomaly exponent 7 is on the range 0 < v < 1. In (1.3), the definition of the sub-diffusive operator as

applied to a function h(t) is (see [24])

d” B 1 P h(t) — h(t — )
0=y [, e

Sub-diffusion has been observed in nature and in particular in biological systems, where diffusion is often hindered

0<y<1. (1.4)

due to crowding effects of the medium. For a survey of anomalous diffusion and fractional calculus see [27], [19],
and [26]. In the study of the stability of spatially uniform equilibria of RD systems with anomalous diffusion, using
both dynamical systems method and Fourier transform analysis, somewhat counter-intuitive stability characteristics
have been reported (cf. [11], [29], [10], [23], [22], [33])). However, much less is known about the stability of localized
structures in the presence of sub-diffusion. For the case of super-diffusion, the stability and dynamics of an interface
with a piecewise linear kinetics has been studied in [21]. More closely related to this work is the recent study of the
stability and dynamics of spike patterns for a sub-diffusive GM model (cf. [24]) where g(u) = v~ % and f(u) = u~*
in (1.3).

In this paper we show that the spectrum of the NLEP associated with (1.2) can be determined explicitly for the
sub-range of exponents where p = 2r — 3 with r > 2. This parameter range was not observed in previous stability
analyses (cf. [39], [5], [38], [37], [13], [36]). Recently, the specific case p = r = 3 was observed and used in [17] to solve
explicitly the NLEP associated with the stability of hot-spot patterns for an RD system of urban crime. For this



new sub-range p = 2r — 3 of exponents with r > 2, we will derive an explicit transcendental equation for the discrete
eigenvalues A that governs the stability of a one-spike solution for (1.2) on an O(1) time-scale. From a detailed
analysis of the roots of this transcendental equation by graphical considerations, a winding number approach and
analytical manipulations, we will obtain an explicit and rigorous stability theory for one-spike equilibrium solutions
of (1.2) for general f(u) and g(u). It is then shown that this stability analysis is easily extended to incorporate the
effect of sub-diffusion in (1.3).

We remark that for a one-spike solution to (1.2) on the infinite line, the translation-invariance mode A\ = 0 is
always an eigenvalue in the spectrum of the linearization. This is the only “small” eigenvalue in the spectrum of
the linearization. As such, our NLEP stability theory will completely determine the linearized stability properties
of a one-spike equilibrium solution for (1.2) on the infinite line. However, in the more general context of one- or
multi-spike patterns on a finite domain, a separate analysis is typically required to determine additional stability
thresholds regarding the small eigenvalues of order O(g2) in the spectrum of the linearization. Explicit calculations
of these small eigenvalues, and their associated stability thresholds, have been done for some specific RD systems
such as the GM (cf. [13]), the GS (cf. [16]), and the Brusselator (cf. [34]) RD models. However, such results are not
currently available for general RD systems. The exponent set restriction p = 2r — 3 and r > 2 in (1.2), which allows
for an explicitly solvable NLEP, does not aid in the calculation of the small eigenvalues associated with a multi-spike
pattern of (1.2) on a finite domain.

In previous studies for the GM RD model, either a functional-analytic approach coupled to a numerical dis-
cretization of a BVP (cf. [37]) or an approach based on numerical computations of certain complicated hypergeo-
metric functions (cf. [8]) was used to determine the spectrum of the NLEP and the Hopf bifurcation threshold for
7. To date, as discussed in §6 of [37], with the exception of the GM shadow problem (cf. [38]), there have been no
rigorous results (without computer assistance) proving the existence of a unique Hopf bifurcation threshold for the
GM model. For the specific case p = 2r — 3 and r > 2 of the GM model, for which the spectrum of the NLEP is
explicitly available, our theory is able to provide rigorous results for the uniqueness of the Hopf bifurcation threshold.
In addition, our results prove the uniqueness of the Hopf bifurcation threshold for the more general system (1.2)
under certain conditions on f and g.

The outline of this paper is as follows: In §2 we analyze the existence of a one-spike solution to (1.2) in the
corresponding shadow limit where the RD system reduces to a PDE coupled to an ODE (see [38] for the shadow GM
system). We then derive an NLEP that determines the stability of this solution on an O(1) time-scale. In contrast
to the case of a one-spike solution on the infinite line where A = 0 is in the spectrum of the linearization, the shadow
problem admits an exponentially small in €, eigenvalue not captured by NLEP theory. As such, our NLEP analysis
only provides conditions to ensure the metastability of a one-spike solution of the shadow problem. In §2.1 we show
that the discrete spectrum of the associated NLEP is explicitly available for the special case where p = 2r — 3 and
r > 2. In §2.2 rigorous metastability and instability results are given, and an explicit formulae for the unique Hopf
bifurcation threshold of 7 is provided. The theory is illustrated for two specific RD systems in §2.3. In §2.4 it is
shown how to easily extend these results to the case of sub-diffusion. In §3 we extend the analysis of §2 to consider
the existence and stability of a one-spike solution to (1.2) on the infinite line. The stability analysis is undertaken for
the case p = 2r — 3 for which the NLEP is solvable. Rigorous and explicit results are given to predict the occurrence
of Hopf bifurcations in terms of the bifurcation parameter 7 for general f(u) and g(u). Finally a brief concluding

discussion is given in §4.



2 NLEP Stability Theory for the Shadow System

In this section, we consider the limiting system obtained by letting D — oo in the following class of reaction-diffusion

system defined on a finite domain:

V= E3VLz — U+ g(u)o? lz] <1; vy =0 on x==I1, (2.1a)

1
Tut:Dum—F(ub—u)—&—%f(u)vr; lz] <1; ur; =0 on x==l1. (2.1b)

Without loss of generality we have taken the domain to have length two. The limiting system for D — oo, called
the shadow system, is the nonlocal problem for v = v(x,t) and u = u(t) given by (see [38], [12] for the shadow GM

system)

V= ERVpe — v + g(u)v? lz] < 1; vy, =0 on xz==I1, (2.2a)
du 1 !

— = —(u— — "dx. 2.2b

G =~ w) + g p) [ s (2.2b)

The sub-diffusive counterpart of this shadow problem is

v = Mgy — v+ g(u)o?, lz] <1; v, =0 on z==l1, (2.3a)
d'u 1 v
T :—(u—ub)—i—@f(u)/_lv dx , (2.3b)

where the fractional time-derivatives are defined by (1.4).
In this section we study the metastability properties of a one-spike equilibrium solution centered at x = 0 to
(2.2). The theory is then extended to treat the sub-diffusive shadow problem (2.3). It is readily shown that this

equilibrium solution of (2.2) is given asymptotically for g — 0 by
ve~ go VP w (w)e0) . we ~ U, (2.4)

where w(y) > 0 is the unique homoclinic solution of

w' —w+uwP =0, —oco<y<oo; w—0 as |y = oo; w'(0)=0, w(0)>0, (2.5a)

which is given explicitly by (cf. [5])

w(y) = {(”;1) sech? ((7’;1) y) }W_l) . (2.5b)

In addition, we readily obtain from the steady-state of (2.2b) that Uy satisfies the nonlinear algebraic equation

fObT

Uo—up = =1’
2g0/ 1)

fo= f(Uo), g0 = g(Uy), b, = / w" dy . (2.6)

— 00



Remark 2.1 The problem of determining the existence of a one-spike equilibrium solution to (2.2) is reduced to the
problem of determining the solution structure to the nonlinear algebraic problem (2.6) for different functions f(u)
and g(u). This problem may have multiple solutions, a unique solution, or no solution, depending on the range of

parameters and the choices of the kinetics f(u) and g(u). Explicit ezamples of the theory are given below in §2.3.

To determine the metastability properties of this solution for the regular diffusion problem (2.2), we look for a

localized eigenfunction in the form

v =1, 4+ M (z/e0) , u = u, + e,

where 7 is a constant. By linearizing (2.2), we obtain that

/
LMD—I—%wT’n:)\QL —00 <y < 00; ®—0 as |yl — oo, (2.7a)
90

(1+7\)n = % {f{m (/11 vl d:v> +7fo (/11 vl D (2/20) da:ﬂ , (2.7b)

where Lg is the local operator defined by
Lo® =3 — &+ puP'®. (2.8)

Next, we substitute v, from (2.4) into the two integrals in (2.7b), and then solve (2.7b) for . Upon substituting
the result for 7 into (2.7a) we obtain, after re-expressing the result using (2.6), the following nonlocal eigenvalue

problem (NLEP) governing O(1) time-scale instabilities of the shadow problem (2.2).

Principal Result 2.1 For 0 < g9 < 1, the linearized metastability properties of the one-spike equilibrium solution
of the shadow problem (2.2) is determined by the spectrum of the NLEP

. [Z owrledy B _
Lo® —yw? | —%——— | = AP, —c0o<y<oo; -0 as |y — 0. (2.9a)
o wrdy

Here Ly is the local operator, as defined in (2.8), and the multiplier x of the nonlocal term is given by

:r%[f(’)_ (1+m)}—1

- LTTY (2.9b)

fo Up—up

Remark 2.2 The continuous spectrum for (2.9a) consists of the portion A < —1 of the negative real axis. A one-
spike solution to the shadow problem (2.2) is metastable, i.e. is linearly stable on an O(1) time-scale, provided that
all discrete eigenvalues of the NLEP (2.9) satisfy Re(\) < 0. A rigorous analysis of the spectrum of the NLEP is
very difficult owing to the fact that it is non-self-adjoint and that x also depends on . Rigorous results for the
spectrum of the NLEP associated with the GM model corresponding to g(u) = u~% and f(u) = u™* for specific ranges
of the exponents p and r were given in [39], [38], [37], and [13]. However, to date, there are no rigorous results
for the spectrum of (2.9) for arbitrary exponents p > 1 and r > 1. Although the NLEP determines O(1) time-scale

instabilities, there is also the possibility of a very weak translational instability resulting from an exponentially small



eigenvalue of the form A = 0(676/50), where ¢ > 0. This eigenvalue arises from the interaction of the tail of the
spike with the boundaries of the domain (see [12] for an analysis of these instabilities for the shadow GM model).
We will not consider these instabilities here. Thus, if all discrete eigenvalues of the NLEP (2.9) satisfy Re(\) <0,

we say that the one-spike solution is stable on an O(1) time-scale, or equivalently, is metastable.

Next, we show that the NLEP in (2.9) is explicitly solvable when p = 2r—3 and r > 2. This fact was not observed
in the previous stability analyses. For this sub-range of exponents, we will derive a transcendental equation for the
discrete eigenvalues of (2.9). The resulting equation is then readily analyzed to provide detailed metastability and

instability results for a one-spike equilibrium solution of the shadow problem (2.2).

2.1 An Explicitly Solvable NLEP Problem

Lemma 2.1 (From [18]): Consider the local eigenvalue problem Lod; = véy on R for ¢, € HY(R). This problem
admits the eigenvalues vg > 0, v1 = 0, and v; < 0 for j > 1. The eigenvalue vy is simple, and the corresponding

etgenfunction ¢ has one sign.

Thus, there is exactly one unstable eigenvalue 1y > 0 for the infinite-line local eigenvalue problem. By solving
this local eigenvalue problem in terms of certain hypergeometric functions, a more explicit result for the spectrum

of Ly was obtained in [5].

Lemma 2.2 (From [5]): Let J = J(p) be a positive integer such that J < (p+1)/(p—1) < J+ 1. Then, for
#1 € HE(R), the local eigenvalue problem Log, = vy on R has J + 1 discrete eigenvalues given by

=g+ ) —jp- 0P -1, =0, (2.10)

The continuous spectrum of Lo lies in the range —oo < v < —1, with v real.

This result is Proposition 5.6 of [5]. Notice that vy > 0, v1 =0, and v; € (—1,0) for 2 < j < J. However, when
p > 3, then J = 1, and there are no discrete eigenvalues in the interval (—1,0).
For the special case where p = 2r — 3 and r > 2, we now show that ¢;g = w"~! is the principal eigenfunction of

Ly associated with the unique positive eigenvalue vy = 8 = r? — 2r.

Lemma 2.3 Let w satisfy w” — w +wP = 0 with p > 1, and let Ly be the local operator Lo¢ = ¢" — ¢ + pwP~Lo.
Then, when p =2r — 3 and r > 2, we have

Low" ' = w1, B=r>—2r>0. (2.11)
Proof: We use w” = w — w? and (w')? = w? — 2wP*1 /(p + 1) to calculate
L()’UJT71 _ (wrfl)” o ,wrfl _’_pprr7‘f27

= (r = 1) = 2w WP + (= a2 — w2,

2
=(r—-1)(r—-2uw > <w2 g 1wp+1> +(r—Dw ™ (w —wP) — w4 pwP T2
p

W (% = 2r) e (p —(r-1)- W) '

r—1

Therefore, Low = (r? — 2r)w"~! when the factor multiplying w"*?~2 vanishes. This implies that p(p + 1) =
(r —1)[2(r —2) + (p+1)], which can be factored as (p — (2r —3)) (p — (1 —r)) = 0. Therefore, p = 2r — 3 or

p=1—r. Since p > 1 is needed, the only relevant root is p = 2r — 3 for r > 2. |



Remark 2.3 In the analysis of [17] of the stability of hot-spot patterns for a reaction-diffusion model of urban crime
it was observed for p = 3 that Low? = 3w?. This identity, which allowed for an explicit determination of the spectrum
of an NLEP in [17], corresponds to the special case r = 3 in Lemma 2.3. Therefore, our result in Lemma 2.3 is a

generalization of this result of [17].

Remark 2.4 Since the derivation of the result in Lemma 2.3 relies on the determination of an explicit first integral
of the ground-state problem w" — w + wP = 0, this result is essentially a 1-D result and cannot be extended to the
study of radially symmetric homoclinic spots of Aw —w+wP = 0 in two spatial dimensions. However, the framework
of Lemma 2.3 can be extended to treat non power-law nonlinearities. In particular, upon replacing vP and v" in
(1.2) with more general functions Q(v) and h(v), the resulting NLEP is explicitly solvable provided that a certain

differential relation between Q(v) and h(v) is satisfied. Details of this extension are given in [32].

By using the identity (2.11), we now show that the discrete spectrum of the NLEP in Principal Result 2.1 can
be found explicitly.

Lemma 2.4 Let p=2r — 3 and r > 2, so that p > 1, and consider the NLEP

ffooo w1 P dy B

LO‘I)*XU)pfoo—d*A(I)a —00 <Y < 0; ®—0, |y — o0, (2.12)
_owhay

with x = x(\). Then, for eigenfunctions ® for which ffooo w"~t® dy # 0, the discrete eigenvalues must satisfy the

transcendental equation
A=p5— (g) X. (2.13)

The remaining eigenfunctions ®, for which ffooo w1l ® dy = 0, are simply the eigenfunctions of Lo corresponding to

the zero eigenvalue and any negative real eigenvalues.

Proof: To establish (2.13) we use Green’s identity on w"~! and ®. Since L is self-adjoint, we integrate by parts
and use the decay at infinity to conclude that [~ (w" 'Ly® — ®Low" ') dy = 0. From (2.11) and (2.12) with
p = 2r — 3 we then calculate that

'S o0 w3r74d 00
0= / (W 'Lo® — @Lowrfl) dy = <Xf_°°y + A= B) / w Tl dy .

e 75 wrdy s
o0

Therefore, for eigenfunctions for which [ w"~'®dy # 0, we get

R L (2.14)

To calculate the integral ratio in (2.14), we multiply w” —w +w?" =3 = 0 by w"~! and we multiply Low" ! = Buw"!

by w. Upon subtracting the resulting two expressions we obtain

w (wr_l)” —w " + (2r — HwP T = pw”.

Upon integrating this expression over —oo < y < oo and using w — 0 as |y| — oo, we obtain that (2r —
4) [F w¥tdy = B [7_w" dy. Therefore, since # =1 — 2r, the integral ratio in (2.14) is simply [~ w® ~*dy =

oo

(ffooo w” dy) (r/2). This yields (2.13).



Next, consider the eigenfunctions for which [*_w" '®dy = 0. From (2.12), the facts that w"~! is the unique
and one-signed principal eigenfunction of Ly, and that any eigenfunctions of the self-adjoint operator Ly must be
orthogonal, it follows that these other eigenfunctions must belong to the set eigenfunctions of Ly corresponding to

the zero eigenvalue and any negative real eigenvalues of L. |

This result shows that when p = 2r — 3 and r > 2, the zero eigenvalue and any negative real eigenvalues of Lg
remain at fixed locations in Re(A) < 0 independent of the multiplier x of the nonlocal term. Therefore, to analyze

whether (2.12) has any eigenvalues in Re(\) > 0, we only need to analyze the roots of (2.13).

2.2 NLEP Stability Theory for the Shadow Problem: Regular Diffusion

For the explicitly solvable case of the NLEP where p = 2r — 3 and r > 2, we obtain that the discrete eigenvalues of
the NLEP (2.9) are the roots of (2.13) where y is given in (2.9b). By using the expressions (2.9b) for x and (2.6) for

Uy, we can write (2.13) more conveniently as follows:

Principal Result 2.2 For p = 2r — 3 and r > 2, the discrete eigenvalues A\ of the NLEP in Principal Result 2.1

are the roots of the transcendental equation

d
2(1+7A) =G(\) =do — 5_1A, (2.15a)
where dy and dy are defined by
f(/)br (T296> fObr
dy = ———, dy = . 2.15b
0 /=1 ! 290 g9 ( )
Here =712 —2r > 0.
Remark 2.5 In terms of dy and dy, the multiplier x of the NLEP in (2.9a) is
2d;
= . 2.16
X7 o — 201+ 7N)] (2.16)

Notice that for the parameter range where dy > 2, the multiplier x of the NLEP is not analytic in Re(\) > 0, but
rather has a simple pole at A = (dy — 2)/(27) > 0.

By determining conditions for which (2.15a) has real positive roots, we readily obtain some simple sufficient
conditions, valid for any 7 > 0, for the instability of the equilibrium spike solution. Below, we shall refer to the roots

of (2.15a) and the eigenvalues of the NLEP in Principal Result 2.1 interchangeably.

Principal Result 2.3 Suppose that either
(I) dy <0 and G(0) < 2; or (II) dy >0 and G(0) > 2; or (III) dy >0 and dy < 2. (2.17)

Then, for any T > 0, (2.15a) has at least one root with X\ > 0 and X real. Thus, the NLEP has at least one unstable

real eigenvalue and the equilibrium spike solution for (2.2) is unstable.

Proof: The proof is immediate. For (I), since d; < 0, we have that G'(A) > 0 for all A # 8. Then, since
2(1+7A) > G(A) at A =0, and G(\) = 400 as A — 57, by the intermediate value theorem (2.15a) must have a root
in 0 < X< p. For (I), since d; > 0 then G'(\) < 0 for all A # 5. Thus, if G(0) > 2, (2.15a) has a unique positive



root in 0 < A < . For (III), since G(0) < 2 and G'(\) <0 on 0 < A < f3, there is no root to (2.15a) on 0 < A < p.
However, since G(A\) — +o00 as A — BT with G’(\) < 0, (2.15a) must have a positive root in A > 3 for any 7 > 0. B

The next result is for the case di < 0 and G(0) > 2 for two different ranges of dy.

Principal Result 2.4 Suppose that d; < 0, G(0) > 2 and dy < 2. Then, when 7 > 7t > 0, (2.15a) has exactly two
real positive roots located on the sub-range 0 < X\ < 3, while for 0 < T < 7y there are no positive roots to (2.15a) in
A > 0. Here 1y > 0 is given uniquely by

dy dy (2 —do)p

=___% A\ = 1— /1
I S WEA =0t R

<B. (2.18)

Neat, if dy < 0 and dy > 2, so that necessarily G(0) > 2, then (2.15a) has two roots in A > B when 0 < 7 < T4,

where

d d
T+E 71 >\+Eﬂ+ !

TR 14 1+(2—d0)5
- At

2 —dy dy

> 4. (2.19)

For 7y < 7 < 7, (2.15a) has no positive real roots. Finally, for 7 > 7, (2.15a) has two real positive roots on
0<A<p.

Proof: The proof is a simple calculus exercise. We first let 7 > 0 and suppose that d; < 0, G(0) > 2 and dy < 2.
Since d; < 0, then G(\) is an increasing and convex function of A on 0 < A\ < 8, with G(\) — +o00 as A — 7. Since
2(14+7X) < G(N\) at A =0 and 2(1+ 7)) is monotone increasing in 7 for each fixed A > 0, it follows that (2.15a) will
have exactly two real roots in 0 < A < 8 for 7 sufficiently large, and no real roots when 7 is sufficiently small. The

threshold value of 7 occurs when 2(1 + 7X) is tangent to G(A). This condition for tangency is that

di di
2(1+T)\)=do—ﬁ, QTZ—W,
has a solution on 0 < A\ < . Since G(0) = dy — dy/8 > 2, it is readily shown that 0 < A\; < . This yields (2.18).
When dy < 2, we have 2(1 + 7X) > G(A) for all A > 3, and hence (2.15a) has no real roots in A > 3. A graphical
illustration of this result is shown in the left panel of Fig. 1.

Next, we let 7 > 0 and suppose that d; < 0, G(0) > 2 and dy > 2. For 7 = 0 there is a root to (2.15a) located
at A\ =0 +d1/(2—do) > . For 7 > 0 sufficiently small, a new second real positive root to (2.15a) emerges from
A = oo. It is readily shown that two roots merge into a double root on the interval 5 < A < oo at the tangency point
where 7 = 7. At the second tangency point where 7 = 7, > 7, two new real positive roots to (2.15a) on 0 < A <
emerge, and they persist for all 7 with 7 > 7,. A graphical illustration of this result is shown in the right panel of
Fig. 1. ]

Principal Results 2.3 and 2.4 characterize the real positive roots of (2.15a), and suggest that a Hopf bifurcation
may be possible for the case where d; < 0, dyg < 2, and G(0) > 2. More specifically, Principal Result 2.4 suggests that
a complex conjugate pair of eigenvalues merges onto the positive real axis when 7 = 7, > 0, raising the possibility
that a Hopf bifurcation occurred for some 7 = 7y > 0 with 74 < 7.

To investigate this possibility, we first determine whether (2.15a) can have any pure imaginary roots. To this

end, we set A\ = ¢A; and 7 = 7y in (2.15a), where A\; > 0. Upon separating the real and imaginary parts of the
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Figure 1: Left panel: Plot of G(\) (solid curve) and 2(1 + 7X) for 7 = 1.0 (heavy solid line) and for 7 = 0.2 (dotted line) versus A for dg = 1.5,
d1 = —3.0, and 8 = 3.0, for which G(0) = 2.5 > 2. There are two roots to (2.15a) when 7 = 1.0 and none when 7 = 0.2. Right panel: Plot of
G(X) (solid curve) and 2(1 + 7A) for 7 = 1.0 (heavy solid line) and for 7 = 0.1 (dotted line) versus A for dy = 4.0, dy = —1.0, and 3 = 3.0, for
which G(0) ~ 4.33 > 2. There are two roots to (2.15a) when 7 = 1.0 and when 7 = 0.1.

resulting expression, we obtain a pure imaginary complex conjugate pair of eigenvalues when G(0) > 2, d; < 0 and
dy < 2, given by
(2 —do) di G(0) —2
>\ = — 1 = —
25 ) I B B

2.20
Blds —2) 2~ dy (2:20)
Notice that the extra condition dy < 2 is in fact needed. As dy — 27, then A\; — +oo and 75, — 0T. Therefore, in

TH —

the case where G(0) > 2, dy < 0, and dg < 2, we have a pure imaginary complex conjugate pair of roots to (2.15a).

Next, we use a winding number criterion to establish a Hopf bifurcation result and to count precisely the number
N of roots of (2.15a) in Re(A) > 0. We define F(A\) = 2(1 + 7)) — G()A), and note that G(\) has a simple pole in
Re(A\) > 0 at A = 3. Next, we calculate the winding number of F()A) over the counterclockwise contour consisting
of the imaginary axis —¢R < ImA < iR and the semi-circle I'g, given by |A\| = R > 0, for —7/2 < argh < 7/2. For
7 > 0, we have that F(A) ~ 27\ as |A\] = oo on I'g, so that the change in the argument of F over I'p as R — oo is
7. By using the argument principle, together with F()\) = m, we obtain for 7 > 0 that

3 1
N = 3 + - [arg Fp, (2.21)

where [arg F]| r, denotes the change in the argument of F along the semi-infinite imaginary axis I'y = iA;, 0 < Ay < oo,

traversed in the downwards direction. From a direct calculation of (2.21) we obtain the following main result:

Principal Result 2.5 Let N denote the number of roots to (2.15a) in Re(\) > 0. Suppose that di < 0, G(0) > 2,
and dy < 2. Then, N =2 for 7 > 1, and N = 0 for 7 < 1y, where Tp is given in (2.20). Hence, the equilibrium
spike solution for (2.2) undergoes a Hopf bifurcation at 7 = 1. Alternatively, when dy < 0, G(0) > 2 but dy > 2,
there is no Hopf bifurcation and N = 2 for all 7 > 0.

Proof: On T'; we set A = iA; with A; > 0. We use (2.15a) to separate the real and imaginary parts of F(iAr) as

. . d d
.7:(2)\]) = ]:R()\I) +Z.7:[()\1), ]:R()\I) =2—dy+ 52;%, ]:[()\1) =2\ (7’+ M) . (2.22)

We first consider the case dg < 2. Then, for any 7 > 0, we get Fr(A;) = 2 —do > 0 and Fr(A\;) — 27\ as
Ar — 400 so that Fr/Fr — +oo as Ay — +oo. In addition, we calculate Fr(0) =2 —dy+di1/8 =2—-G(0) <0
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and F7(0) = 0. Moreover, for dy < 2, there is a unique point A} in 0 < A; < oo where Fr(A;) = 0, given by
i = B/(G(0) —2)/(2 — dp). At this point we calculate F;(\;) = 2X5(7 — 77), where 7y is given in (2.20). Thus,
Fr(A7) > 0for 7 > 7y and Fr(\7) < 0if 7 < 7. Consequently, [arg F|. = /2 when 7 > 7y and [arg F] = —37/2

when 7 < 7. Thus, from (2.21), we conclude that N =0 for 7 < 77 and N = 2 for 7 > 7p.
Next, we suppose that dg > 2. In this case, Fr(Ar) < 0 for all \; > 0 and Fr(0) = 2—dg+d;/8 < 0. Therefore,
larg F]p, = /2 for all 7 > 0, and (2.21) gives N = 2 for all 7 > 0. [ |

Remark 2.6 For the range dg > 2 and dy < 0, it follows that G(0) > 2 by necessity. For this range, our results
have proved that there are exactly two unstable eigenvalues in Re(\) > 0 for any 7 > 0. For 7 > 0 and sufficiently
small, there are two positive real roots to (2.15a) on the range X > [, with one root tending to +o0o while the other
tending to A\ = B+ dy/(2—do) > B as T — 0T. For 7 > 0 sufficiently large, there are two positive real roots to
(2.15a) on the interval 0 < A < B. For intermediate values of T, Principal Result 2.5 proves that there is a pair of
complex conjugate roots in Re(A) > 0, and that the eigenvalues can never enter the stable left half-plane Re(\) < 0.
We recall from (2.16) that for the range where do > 2, the multiplier x of the NLEP has a simple pole in Re(\) > 0
at A\ = (dy — 2)/(27) > 0.

2.3 Two Examples of the Theory

We now illustrate our main results for two specific RD systems.
GM Model: We first consider the GM model where g(u) = u™9, f(u) = v~ % and u, = 0. Then, from the definitions
of dy and d; in (2.15b), we have

dy = —2s, di = —qr?, B=r%—2r. (2.23)

We remark that the condition G(0) > 2 is equivalent to the usual assumption (cf. [13]) on the GM exponent sets

(p,q,7,s) given by
qr

p—1

—(s4+1) >0 where p=2r—a3. (2.24)

From (2.6) we conclude that there is a unique one-spike solution and that Ug = 2/b,, where ( = qr/(2r —4)—(s+1).
We first suppose that ¢ < 0 so that d; > 0. Then, (II) and (III) of Principal Result 2.3 hold, and hence the
equilibrium spike solution is unstable for all 7 > 0 due to a positive real eigenvalue. From (I) of Principal Result 2.3,
a similar instability occurs for ¢ > 0 but gr/(2r —4) — (s + 1) < 0, so that G(0) < 2.
Next, suppose that ¢ > 0, s > —1 and that the usual assumption (2.24) holds on the GM exponent set (p, g, r, s).
Then, dy < 2, d; < 0, and G(0) > 2, so that Principal Result 2.5 and (2.20) proves that an equilibrium spike solution
to the GM shadow problem with p = 2r — 3 has a Hopf bifurcation when 7 = 7y with A = i\;, where

_ 1+s o — qr B
TH = r(r—2)’ Al ( 2)\/2(1 +5)(r—2) L (2.25)

Since N = 2 for 7 > 7y, we conclude that for 7y < 7 < 7 there is a pair of complex conjugate eigenvalues in

Re(A) > 0 that merge onto the positive real axis at A = A\; when 7 = 7¢. From (2.18) of Principal Result 2.4, we

7L *Tzfr—i - ,w
Tt_?(r2—2r—)\t)27 Ar=(r"—2r) 2(1+S)<1 \/1 o ) (2.26)

For 7 > 7, Principal Result 2.4 shows that there are two real eigenvalues in 0 < A < .

calculate
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Figure 2: Plot of the complex conjugate pair of roots of (2.15a) in the complex A-plane for the GM model with exponent set (p, ¢, 7, s) = (3,2, 3,0).
Left panel: Plot of Im(X) versus Re(A) for 7 on the range 7y < 7 < 7¢. Right panel: plot of Im(X) > 0 versus 7 on the range 7 < 7 < 7. The
endpoints of this curve are given analytically by (2.27).

For the particular exponent set (p,q,r,s) = (3,2,3,0), we calculate from (2.25) and (2.26) that

2 9
TH=1/3,  A\g=3V2~4.242, /\t:3—9<1—\/;>z1.348, thmzs.:&oo. (2.27)
— Nt

For this exponent set, in Fig. 2 we plot the numerically computed path of the roots of (2.15a) in the complex A-plane
on the range 7y < 7 < 71, and we also plot Im(\) versus 7 on this range. The results in this figure are seen to agree
with (2.27).

As a partial confirmation of our analytical theory, we next consider the exponent set (p,q,7,s) = (3,2,3,1) for
which numerical results for the Hopf bifurcation threshold, as computed from a discretization of the associated NLEP,

were given in the fourth row of Table 3 of [38]. From (2.25) and (2.26), our analytical theory predicts that

32 3(v/3-1 9
TH =2/3, AIH = T\[ ~ 2.121, At = % ~ 1.098, T = m ~ 2.488. (2.28)
— At

The numerical results given in the fourth row of Table 3 of [38] closely agree with these values. To further validate
our theory, we numerically solved the full PDE (2.2) for the GM model by using the numerical method described
in [38]. The initial condition for (2.2) was taken to be a 1% perturbation of the quasi-equilibrium solution, so that
v(x,0) = Upw (x/g0) (1 4+ 0.01) and u(0) = Up(1 + 0.01), where Uy = 2/b3. Here w(y) = v/2sech(y) and Uy = 2/bs,
with b3 = v/27m. For g9 = 0.02, in Fig. 3 we plot the numerically computed spike amplitude vy, (t), defined by
vm = v(0,1), versus t for 7 = 0.64 (dotted curve) and for 7 = 0.72 (solid curve). For the smaller value of 7, the
amplitude oscillation decays, whereas an oscillatory instability occurs for the larger value of 7. For 7 = 0.72, the
numerical results yield that the period of the oscillation is approximately 0.32. In comparison, the theoretical result
(2.28) gives a Hopf bifurcation threshold of 77 = 2/3, while the period of small-scale oscillations is 27 /A; g =~ 0.29.

Generalized GS Model: Next, we consider the shadow limit D — 400 for a generalization of the GS model

formulated as

1
vy = 5(2)1)11 — v+ Auv?, Tup = Dugy — (u—1) — —uv?. (2.29)
€0
on |z| < 1. Here A > 0 is a parameter. This corresponds to setting
p=r=23, fu) =—u, g(u) = Au, up, =1, (2.30)
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Figure 3: Plot of the spike amplitude vy, (0) = v(0,t) versus ¢ as numerically computed from the shadow PDE (2.2) with €9 = 0.02 for a GM
model corresponding to setting p =7 =3, g(u) = u~ 2, f(u) = v~ and up = 0 in (2.2). The dotted curve is for 7 = 0.64, while the solid curve is
for 7 = 0.72. The theoretical prediction for the Hopf bifurcation threshold is 7y = 2/3, which is between these two values.

in the shadow problem (2.2). This model is a generalization of the usual GS model with p = r = 2, where pulse
solutions have been analyzed in [3], [4], [20], [15], [31], and [1] (see also the references therein).

For this model, the nonlinear algebraic equation (2.6) for Uy reduces to

b (o)
H(Up) =+ Uy (1 —Up) = 2“47?/2, where b3 = / w?dy = V2r, (2.31)

and w = v/2sech(y) is the homoclinic of w” — w 4+ w® = 0. Since A > 0, we must have 0 < Uy < 1. In addition,
since H(Up) attains it maximum value on 0 < Uy < 1 of 2/(3v/3) when Uy = 1/3, it follows that the graph of
Up versus A has a saddle-node bifurcation structure, with two solutions Uy4+ for Uy when A > A,,, which satisfy

0< Uy <1/3 <Uys < 1. Here, A, is given by

2/3
A = (3\{?) . (2.32)

A plot of the bifurcation diagram of Uy versus A is shown in Fig. 4. In terms of Uy, the amplitude v, (0) of the
spike, as obtained from (2.4), is
v1(0) = \/%, w(0) = V2. (2.33)
We refer to the root Up— on 0 < Up— < 1/3 as generating the “large” amplitude spike, while Upy on 1/3 < Upy < 1
generates the small amplitude spike. This classification follows from (2.33) since v_(0) > v4(0). In summary, there
are two one-spike equilibrium solutions when A > A,,, and none when 0 < A < A,,.
To determine the metastability properties of these solutions, we first identify that 3 = 72 — 3r = 3 and then we

calculate dg and d; from (2.15b) as
b3 2(1 —Uy) 9b3 9(1 —Up) (1—"0y)

do = — = - 0 dy = — =— 0 0) =——. 2.34
’ L4U()]3/2 Uo = ' 2[AU0]3/2 Uo = 90 Uo (2.34)

Since G(0) = (1 —Uy)/Uy < 2 when Uy > 1/3, we conclude from (I) of Principal Result 2.3 that the entire upper
Up+ branch of Fig. 4 is unstable due to a positive real eigenvalue for any 7 > 0. Consequently, the small amplitude

spike for v is unstable for all 7 > 0.
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Figure 4: Plot of the bifurcation diagram of Uy versus A, as given in (2.31), characterizing the solution multiplicity of a one-spike solution for
the generalized GS model (2.30). The upper branch of this curve where 1/3 < Uy < 1 is unstable for all 7 > 0, whereas solutions on the lower
branch, where 0 < Uy < 1/3, undergo a Hopf bifurcation at some 7 = 75 (Up).

In contrast, along the lower Uy_ branch of Fig. 4 where 0 < Uy < 1/3, we have G(0) > 2, dy < 2 and d; < 0.
Therefore, from Principal Results 2.4 and 2.5 we conclude that the one-spike solution is stable on an O(1) time-scale

when 0 < 7 < 7p, and that there is a Hopf bifurcation at 7 = 77 and A = iA;. From (2.20) we obtain

2-do) _ 1 g [ (L=300)
28 30, ! 2

For the range of 7 where 7y < 7 < 7, there is a complex conjugate pair of eigenvalues in Re(A) > 0. These

- (2.35a)

eigenvalues merge onto the real axis at A = A\; when 7 = 7. From (2.18), we obtain that

9 1-—3U,
At =3 2( UO) 3(1 — Uo) ) Tt

9(1 — Uy)

= G oAT (2.35b)

In the left panel of Fig. 5 we use (2.35a) and (2.35b) to plot 7y and 73 versus Uy on the large amplitude spike branch
0 < Uy < 1/3 of Fig. 4. Then, by using (2.31) which relates Uy to A, in the right panel of Fig. 5 we correspondingly

plot 7 and 7 versus A on this solution branch.

21 ] 2uf
21 f . 2
18 : 18+
15 . 15
T L . T L

Figure 5: Plot of the thresholds 7, (dotted curve) and 7y (heavy solid curve), defined in (2.35), versus Up (left panel) and versus A (right panel).
These correspond to the lower branch in Fig. 4. The lower curve is the Hopf bifurcation threshold, and the upper curve is where the complex
conjugate pair of eigenvalues merge onto the positive real axis in the A-plane.
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2.4 NLEP Stability Theory with Sub-Diffusion

In this subsection we study the metastability of a one-spike solution to the sub-diffusive shadow system (2.3). In
the context of fractional differential equations, perturbations of a steady-state solution do not grow exponentially in
time with a constant growth rate. Therefore, the linearized “eigenvalue problem” no longer has its classical meaning.
Instead, it should be regarded as an asymptotic theory of perturbations that evolve exponentially in time to leading
order:

v~ v+ eMp(2), U~ ue + e At) ~ AO XDy 4o (2.36)

In the discussion below A(?) is referred to as the eigenvalue for convenience, yet one must bear in mind that only
at the limit v = 1 does it in fact correspond to the classical notion. Upon substituting (2.36) into (2.3), and then

collecting the leading order terms, we obtain the following expression involving the fractional derivative:

d’ (0 1 by~ e_’\(o)C
S=e Nt LAVt _ / dc. 2.37
7 L S 237

In the limit £ — oo the integral converges if and only if Re(A(?)) > 0, which is rather different from the behaviour
a7

with an integer derivative. With v =1 and A(®) > 0 the derivative =t diverges exponentially at t — oo, and

then the factor exp(—A(9t) makes the expression finite. With v = 1 and A(?) < 0 the factor exp(—\t) diverges

7
exponentially, but the derivative %e)‘(o)t decays exponentially, again resulting in a finite expression. In the sub-

d7

diffusive case with 0 < v < 1 and A(?) > 0 the derivative d?e’\(o)t diverges exponentially at ¢t — oo, and the factor
a7

exp(—A©%) makes the expression finite. However for A(?) < 0 the derivative %e’\(mt decays only algebraically,

and with the exponential factor exp(—)\(o)t) the expression is divergent. Therefore the derivation below is valid for

Re()\(o)) > 0. This nuance adds a certain subtlety to the interpretation of the stability theory, rendering it sufficient

to study the onset of instability, i.e. the limit Re(A\(®)) — 0%, yet impossible to trace eigenvalues in the left half of

the complex plane. This is summarized in the following lemma.

Lemma 2.5 In the limit t = ce~TY > 1 with ¢ — 0 and o ~ O(1) the asymptotic relation

S= e_A(O)t%eA(O)t ~A07 Lo (E’Y(’Y—H)) )

holds if and only if Re(A\(®)) > 0.

Proof: The proof of this result was given in Lemma 3.1 of [24]. We repeat it here for the convenience of the reader.
We integrate (2.37) by parts and let t = O(e~("*1)) > 1 to obtain

NG
TS LA TS S e 2 O
€0 daty (1 —~)e—o0 2] 0
207

A
] —Ee— y(v+1)
r1—-) 51210/0 eeTdE+ 0 (E ) ’

The error order in this expression arises from the algebraic decay of t~7 regardless of the value of A(?). To evaluate
the last integral in this expression we use contour integration. We consider the closed contour consisting of the line

segment from 0 to A(©)¢, an arc of radius R = |/\(O)| t ( corresponding to R — oo at the limit £ — 0 ), the interval
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Figure 6: Closed integration contour in the evaluation of e pre”

(6, R) on the real axis and an arc of radius § — 0 ( J is independent of € ). The contour is depicted in Fig. 6. Upon

using the residue theorem one gets

0)Y arg A
i oMt d g0 MO le_v/ e~ Re’ 1= gg
£—0 dtv I'l—») R—0 0

arg A(©) 0 R
—101 7 / e 0" et 1=M0 g 4 / eSe7de b ~ A7 10 (w”*”),
0 s
where the first integral exists if and only if Re(A(?)) > 0. |

Remark 2.7 Since v < y(v+1) for any 0 < v < 1, the asymptotic estimate above for the time scale t = (9(5’(”“1))
shows that S ~ X7 provided that A satisfies Re(\?)) > 0 and is not too close to the origin in the sense that
|)\(0)| must satisfy |/\(0)| ~ O (e) or larger.

From this Lemma, it follows that the spectrum of the NLEP associated with the shadow problem (2.3) is de-
termined by the roots of (2.15a) where X is now replaced by A0 By using the mapping MO7 = X the previous
results for the roots of (2.15a) given in Principal Results 2.3-2.5 can be used to infer metastability or instability for
the sub-diffusive case. More specifically, writing A = || exp(1¢) with ¢ = arg A € (—m, 7|, the map AOY = X yields
that

A0) — |)\|1/761¢/w7 (2.38)

where the constraint —m < ¢/v < 7 must hold in order to remain on the principal branch in the A plane. Recall
from Lemma 2.5, that the derivation of the NLEP for the sub-diffusive shadow problem required that Re(A(®)) > 0
and [A(9] > O(e). Therefore, in terms of the spectral A plane associated with the regular NLEP, the sub-diffusive
system will be unstable if the regular NLEP has an eigenvalue in the wedge-shaped region with cutout near the origin
defined by

<o N> 0. (2.39)

This subset of the right half-plane Re(\) > 0 is shown in Fig. 7. We refer to the set (2.39) as the wedge of instability
of the sub-diffusive NLEP. This wedge becomes narrower as v decreases, and concentrates on the positive real axis

in the A-plane as v — 0.
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Figure 7: Admissibility and instability region in the A plane ( shaded ) corresponding to the asymptotics validity constraint [A| ~ O(e) or larger.
The dashed lines show the region conforming to the principal branch.

A simple consequence of this result is that if the regular NLEP admits a positive real eigenvalue \* > 0, then
this eigenvalue must lie in the wedge of instability for the sub-diffusive NLEP for any 0 < v < 1. Such an eigenvalue
A0 = (X\)1/7 > 0 then yields an exponentially growing perturbation ( to leading order ) to the one-spike equilibrium
solution of (2.3). Consequently, Principal Results 2.3 and 2.4 also apply to the sub-diffusive case.

Principal Result 2.6 Under the conditions of Principal Results 2.3 and 2.4, there is an exponentially growing

perturbation to the one-spike equilibrium solution of the sub-diffusive shadow problem (2.3).

Next, we consider Hopf bifurcations associated with the sub-diffusive shadow problem (2.3). The key observation
is that an unstable eigenvalue of the regular NLEP only generates an instability for the sub-diffusive NLEP when
it lies within the wedge of instability (2.39). This wedge of instability becomes narrower as the anomaly exponent
v decreases. The anomaly dependent Hopf threshold, labelled by 7g.,, is computed numerically from the implicit
condition that

arg A = , (2.40)

™
2
which involves the eigenvalue path A = A(7) of the roots of (2.15a) with Re(A\) > 0 and Im(\) > 0. The condition
(2.40) corresponds to the minimum value of 7 for which this eigenvalue path enters the wedge of instability of the
sub-diffusive NLEP shown in Fig. 7. In this sense, it follows that the perturbation of a one-spike solution for the
sub-diffusive shadow model (2.3) is oscillatory at a larger value of 7 than for the case of regular diffusion. In this

sense, the effect of sub-diffusion is to stabilize the one-spike solution. This leads to the following result.

Principal Result 2.7 Suppose that the assumptions dy < 2, d; < 0 and G(0) > 2, of Principal Result 2.5 hold.
Then, for all v in 0 <~y < 1, the Hopf bifurcation threshold Ty~ for the sub-diffusive NLEP must lie in the interval
TH < Ty < Ty. Here Ty is the Hopf bifurcation threshold for the reqular diffusion case, as given in (2.20), and 7
is the value of T, as given in (2.18), where the complex conjugate eigenvalue pair for the regular NLEP merge onto
the positive real axis. In particular, Thy — T as v — 17 and Tyy — 7 as v —> 07 In addition, if the path
A = X7) of the complex eigenvalue in the first quadrant Re(A) > 0, Im(X) > 0 for the reqular NLEP is such that

Re(X) (Im(X)) increases (decreases) monotonically as T increases, then Th~ increases as vy decreases.

The proof of this result follows immediately from the concept of the wedge of instability of the sub-diffusive
NLEP together with our explicit results in Principal Results 2.3-2.5 for the the behaviour of the roots of (2.15a) in
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the right half-plane Re(\) > 0 as a function of 7.

In particular, consider the GM and generalized GS models studied in §2.3. For the generalized GS model with
sub-diffusion, we conclude that the Hopf bifurcation threshold 7z~ must lie between the two curves in Fig. 5 for any
anomaly index . Moreover, for the sub-diffusive GM model with s > —1 and ¢ > 0, the Hopf bifurcation threshold

must be in the interval 74 < Tg < 7¢, where 75 and 7; are given in (2.25) and (2.26), respectively.

3 A One-Spike Solution on the Infinite Line

For g9 — 0, we use the method of matched asymptotic expansions to construct a steady-state one-spike solution
to (1.2), centered at x = 0, on the infinite line. Since the asymptotic construction is standard we will only briefly
highlight the main steps of the analysis.

In the inner region near x = 0, we introduce the new variables y, V', and U, by

y=1x/eo, V(y) =v(eoy), U(y) = u(eoy) -

Upon expanding U = Uy +eoU; + -+ and V =V +&V4 + - - -, and substituting into (1.2), we obtain that Uy must

be a constant and that V; satisfies
Vo = Vo+gV¥ =0, —-oco<y<oo, (3.1)

where go = g(Up). When g > 0, there is a unique positive homoclinic solution for Vg given explicitly by

A0 ——n) (32)
90

where w(y) is the homoclinic satisfying (2.5).
In the outer region, defined for |x| > O(g(), we obtain to all orders in gy that v = 0 and that the nonlinear term

in the u-equation of (1.2) can be represented in terms of a Dirac mass as

e F (" > fo ( | wwr dy) () = 2005y

= -0
. /@D

where we have defined b, = ffooo w"dy and fo = f(Up). In this way, we obtain that the leading-order outer solution

for u satisfies

b
umf(ufub):ffoié(glc)7 —00 < < 00} u—u, as |z| — 0.
r/(p—1)
90
The solution for u can be written as
fO br
u=up+ =Sy G(z),
90

where G(z) is the Green’s function G(z) satisfying
Gow —G=—6(x), —oc0o<z<00; G—0 as |z] = o0, (3.3)

which is given explicitly by G(z) = e~1#l/2,
Then, to match inner and outer solutions for u we must set Uy = «(0), which yields a nonlinear algebraic equation
for Uy given by

fObr

= W7 fo=f(U), 90 = 9(Uo) , br = / w"dy. (3.4)

— 00

Uo — up
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We summarize the construction of the steady-state one-spike solution for (1.2) as follows:

Principal Result 3.1 For ey — 0, a one-spike equilibrium solution to (1.2), which we label by ve(z) and ue(x), is

given asymptotically by

’ULEN;U)I u(x) ~u o G(z)
e( ) gé/(p_l) ( /50) 5 e( ) b+ (UO b) G(O) 5 (35)

where Uy is a solution to the nonlinear algebraic equation (3.4) and where G(x) = ée“””‘ is the Green’s function

satisfying (3.3). This construction is valid provided that go = g(Up) > 0.

To analyze the linearized stability of this one-spike solution we set
v="1v, +eMNo, u=u, + e, (3.6)

Upon substituting (3.6) into (1.2) and linearizing, we obtain the eigenvalue problem

€000 — &+ pg(u)vE ' + g (ue)vln = Ao, (3.7a)
Nex — (1L +7A)N = —551 [f’(ue)vgr] + Tf(ue)vg_1¢] . (3.7b)

Since v, is localized near x = 0, we look for a localized eigenfunction for ¢(z) in the form ¢ = ®(y) where y = x/ey.

Upon using v, ~ gofl/(pfl)w and u. ~ Uy for z = O(ep), we obtain from (3.7a) that ®(y) satisfies

Lo® + 907 wPn(0) =A®, —oo<y<oo; ®—0 as |yl — o0. (3.8)

Here we have labelled g, = ¢’(Up). In addition, Lg is the local operator defined by (2.8).

To derive our NLEP we must calculate n(0) in (3.8). Since ¢ is localized near © = 0, then for ¢g — 0 the

right-hand side of (3.7b) can be calculated in the sense of distributions by using u. ~ Up and ve ~ g, V=1 as

B o 0 ! oo r o0 _
o [F (el + o] 1¢J%[’Zﬁ(2f‘i>/ wy+ s [ 1‘1’@] @),
90 —oo 90 —©

where we have defined f = f'(Up). In this way, we obtain that the outer approximation for 7 satisfies

n(0) f} b, 7 f o
nmm_(l‘FT)\)n:—%(S(l')—W/o(pil) w e dy ) 6(x), —oo<z <00, (3.9a)
90 9o -
n—0 as |z] = o0. (3.9b)

We represent the solution to (3.9) in terms of the A-dependent Green’s function G () satisfying

Groz — (1+7ANG\ = =d(z), —o0<z<00; Gyx—0 as |z|]— oo, (3.10a)
which has the explicit solution

1
O () — el 3.10b
o) = S AT (3-10b)
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provided that we take the principal branch of the square root function to guarantee that Re (m) > 0 and,
hence, ensure decay of G (z) as |z| — oo for any complex .
In terms of Gx(z), the solution to (3.9) is
n(x) = %G,\(x) + % </ w' o dy) Gi(z). (3.11)
9o 90 -
We then set # = 0 in (3.11) and solve for n(0). Finally, upon substituting n(0) into (3.8) and re-writing the resulting

expression by using (3.4), we obtain an NLEP for ®(y). The result is summarized as follows:

Principal Result 3.2 For 0 < g9 < 1, the stability of the one-spike steady-state solution of Principal Result 3.1 is
determined by the spectrum of the NLEP (2.9a), where the multiplier of the nonlocal term is given by

rgo [ £ 1 GO
_ 1J0 |J0 . 3.12
X go [fo  Us—upy GA(0) (8.122)

In this expression, the ratio of the two Green’s functions at x = 0 is simply

G(0) _ -
O VI+TA. (3.12b)

3.1 NLEP Stability Theory with Regular Diffusion

In this section we obtain explicit stability results for the NLEP of Principal Result 3.2 for the explicitly solvable case
where p = 2r — 3 and r > 2. For this case, we need only analyze the roots of (2.13) where x(\) is defined in (3.12a).

By using (3.12a) for x and (3.4) for Uy, we can write (2.13) more conveniently in the following form:
Principal Result 3.3 For p = 2r — 3 and r > 2, the discrete eigenvalues A of the NLEP in Principal Result 3.2

are the roots of the transcendental equation

21+ 7A=G(\) =dy— % : (3.13)

where 3 = r% —2r > 0. Here dy and dy are defined in (2.15b). In (3.13), /1 + T denotes the principal branch of
the square root. In terms of dy and dy, the multiplier x of the NLEP in Principal Result 3.2 is

2 dy
= | — . 3.14
X r(dO—Q\/l—i—T)\) ( )
When do > 2, this multiplier has a simple pole at A = 7' (=1 + d3/4), which lies in Re(\) > 0.

Remark 3.1 The transcendental equation (3.13) has precisely the same form as for the one-spike case for the shadow
problem given in (2.15a), provided that we simply replace v/1+ 7 in (3.13) with (1 4+ TX).

We first determine sufficient conditions for instability by characterizing the roots of (3.13) on the positive real
axis. Since the proofs of these results parallel that of Principal Results 2.3 and 2.4 for the shadow problem (2.2),
they are omitted.

Principal Result 3.4 Suppose that either
(I) di <0 and G(0) < 2; or (II) dy >0 and G(0) > 2; or (III) dy >0 and dy <2. (3.15)
Then, for any T > 0, (3.18) has at least one root with A > 0 and X real. Thus, the NLEP of Principal Result 3.2 has

at least one unstable real eigenvalue and the equilibrium spike solution for (1.2) is unstable.
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Principal Result 3.5 Suppose that di < 0, G(0) > 2 and dg < 2. Then, when T > 0 is sufficiently large, (3.13)
has two real positive roots in 0 < X\ < 8, while for T > 0 sufficiently small (3.13) has no positive real roots. Next, if
dy <0 and dy > 2, so that necessarily G(0) > 2, then (3.13) has two real roots in X > B when 7 > 0 is sufficiently

small, and two real roots in 0 < A < 8 when T > 0 is sufficiently large.

Next, we count the number N of roots of (3.13) in Re(\) > 0. We define F(A\) = 2y/1+7X — G()\), where G()\)
has a simple pole in Re(\) > 0 at A = 5. We take the counterclockwise contour consisting of the imaginary axis
—iR < Im\ < iR and the semi-circle I'g, given by |A| = R > 0, for —7/2 < argh < w/2. For 7 > 0, we have that
F(X) ~ 2v/7X as |\| = 0o on T'g, so that the change in the argument of F over I'g as R — oo is 7/2. By using the
argument principle, together with F(X) = F()), we obtain for 7 > 0 that

5 1
N = 1 + - larg Flp, (3.16)

where [arg F]| r, denotes the change in the argument of F along the semi-infinite imaginary axis I'y = iA;, 0 < Ay < oo,
traversed in the downwards direction. Now along the imaginary axis A = i\; for A; > 0, we can readily separate
F(iAr) in terms of real and imaginary parts as F(iAr) = Fr(Ar) + iFr(Ar), to obtain that

8
B2 427

diAg

Fr(Ar) = Ky (TAr) —do + ey

Fr(Ar) = K_(7A1) + (3.17a)

where we have defined K (¢) by
1/2
Ka(@Q=va [T+ £1] " (3.17b)

For any 7 > 0, we have that Fr ~ /27A; and F; ~ /27X as A\; — +00, so that arg (F(iA;)) — 7/4 as A\ — +o0.
Alternatively, for A\; = 0, we obtain
Fr(0)=2-G(0),  F;(0)=0. (3.18)

For 7 > 0, we calculate that

d N 2408
TAI\FR(A»L) = TIC+(TA[) 7(62 n AI)Q .

By using these preliminary results, we can calculate [arg }—h‘p and thus obtain N from (3.16). Our first result is

(3.19)

as follows:

Principal Result 3.6 Let di < 0 and G(0) > 2, and let N denote the number of roots to (3.13) in Re(X) > 0.
Then, for all T > 0, we have either N = 0 or N = 2. Moreover, if dy < 2, then N =2 for 7> 1 and N = 0 for
T 1.

Proof: Since d; < 0 and K/, (¢) > 0, then from (3.19) we conclude that %}'R()\I) > 0. Next, since G(0) > 2,
we have from (3.18) that Fz(0) < 0, while Fr(+00) = +o0o0. Therefore, there exists a unique root A} > 0, with
A} = Aj(7), for which Fr(A;) = 0. It then follows that [arg F] = 3m/4 if F;(\}) > 0 and [arg F]p, = —57/4
if Fr(A5) > 0. We conclude from (3.16) that either N = 2 or N = 0 depending on whether F;(A}) is positive or
negative, respectively. To determine whether N = 0 or N = 2, we must calculate the root A} to Fr(A;) = 0. From

using (3.17a) for Fr(Ar), we obtain that A} is the unique root of

i

IC+(T>\[) = R(}\[) = dO — m .

(3.20)
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Suppose that dy < 2, d; < 0, and G(0) > 2. Then, for 7 < 1, (3.20) has a root with A} ~ A;o = O(1), where Ao

satisfies

di8

2—d —— =0, 3.21
so that
sy v — o [ (G(0) —2)
A(0) = Ao =By —— a

For 7 < 1, we conclude from (3.17a) that Fr(Aro) = diXro/(B8% + A3,) + O(r%) < 0. Therefore, N = 0 when
7 < 1. Alternatively, for 7 > 1, the unique root of (3.20) satisfies A} ~ Aroo/7, where A is the unique root of
K+ (A1so) = G(0) > 2. From (3.17a), we conclude that F;(\}) ~ K_(A1ao) + O(771) > 0. We conclude that N = 2
when 7 > 1. ]

Remark 3.2 For the case where dy < 0, G(0) > 2 and dy < 2, Principal Result 3.6 proves the existence of a value of
7 for which a one-spike solution of (1.2) undergoes a Hopf bifurcation. Under these conditions on dy and di, N =0
form <1, and N = 2 for 7 > 1. respectively. Therefore, by continuity of the path of eigenvalues as a function of T,

there must be a value Tgr of T for which (3.13) has a complex conjugate pair of roots X = +i\; with Ay > 0.

The next result gives a sufficient condition for the existence of a unique value 7y > 0 of 7 for which (3.13) has
a complex conjugate pair of roots. These roots cross transversally into Re(\) > 0 when 7 > 7. This leads to a

rigorous Hopf bifurcation result for one-spike solutions of (1.2).

Principal Result 3.7 Suppose that di <0, dy < 2 and 2 < G(0) < 4 — dy where G(0) = dy — d1/B. Then, there is
a unique value T = 7 > 0 at which the NLEP of Principal Result 3.2 undergoes a Hopf bifurcation. The one-spike

solution is spectrally stable if 0 < T < T and is spectrally unstable if T > Tp.

Proof: We write Fr in (3.17a) as Fr(Ar;7). Since G(0) > 2 and d; < 0, then as shown in the proof of Principal
Result 3.6, there is a unique root A3(7) to Fr = 0, so that Fr(A5(7);7) = 0. At this root, we define N(1) =
Fr(X5(7);7). In the proof of Principal Result 3.6 we showed that N'(7) < 0 for 0 < 7 < 1 when dy < 2, and
N (1) = 400 as T — +00. We will now show that N’(7) > 0 for all 7 > 0 when dy < 2 and 2 < G(0) < 4 — dy. Such
a monotonicity result would establish the existence of a unique Hopf bifurcation value 75 > 0 at which A(7g) = 0,
with N(7) > 0 for 7 > 75 and N(7) < 0 for 0 < 7 < 7. Therefore, N = 2 when 7 > 75 and N = 0 when
0 < 7 < 7g. Thus, to complete the proof we need only find sufficient conditions that guarantee that N”(7) > 0 for
all 7.
To determine the sign of N’(7), we set %]—'R()\j (1);7) =0, and then use (3.17a) for Fg to get
dFr/dr —NIK

A= — = :
T dFpfdhr 7K —2dy BN (B2 + (A5)2) 2

Then, we use (3.17a) for F; to calculate N'(7) = Ay'dF;/dA; + dF/dr. After a short calculation, we obtain

Cdi (B2 + A7) [K A (B2 — A7) +2B8MTK ]

N'(r) = LB + M) =215

(3.22)

Ar=Ar

Since dy < 0 and K/, > 0, a sufficient condition to ensure that N’(7) > 0 for all 7 > 0 is that A\j(7) < § for all 7 > 0.
Since A} (7) < 0, this condition holds for all 7 > 0 when A\}(0) < 8. Finally, we recall from (3.21) that when d; < 0
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and dy < 2 we have (A\5(0))* 4 82 = d13/(do — 2) > 0. Therefore, \5(0) < 8 when dy3/(do — 2) < 232. This implies
that G(0) = dy — dy1/8 < 4 — dy. This completes the proof of the result. [ ]

Remark 3.3 The previous NLEP stability analyses for the GM and GS models have not been successful in providing
a rigorous proof for the existence of a unique Hopf bifurcation value of T (see §6 of [37]). Only for the special case of
the shadow GM system is such a result available for certain exponent sets of the GM nonlinearities (cf. [38]). Our
Principal Result 3.7 provides sufficient conditions on the nonlinearities f(u) and g(u) for the uniqueness of the Hopf
bifurcation point for a one-spike solution of the general system (1.2) for the case p = 2r — 3 and r > 2 for which the
associated NLEP is explicitly solvable.

We remark that the proof of Principal Result 3.7 does not require detailed knowledge of the functions K1 (¢) with
¢ = 7A;. It only requires that K. > 0 and that £4(0) = 2.

Principal Result 3.7 provides sufficient conditions on dy and d; for the existence of a unique Hopf bifurcation
point. However, by using detailed properties of the functions K, we now show that the conditions in Principal
Result 3.7 are in fact not necessary, and that a unique Hopf bifurcation point occurs for any G(0) with G(0) > 2.

Our result is as follows:

Principal Result 3.8 Suppose that dy < 0, dy < 2 and G(0) > 2. Then, the NLEP of Principal Result 3.2 undergoes

a Hopf bifurcation at 7 = 7 > 0, where

2
TH = % A, where A=p—- % , (3.23a)
and where & is the smallest root of the quadratic equation
M(€) = (d —4) & — (df +28dody) € +26%d] =0, (3.23b)

on the interval € > B2. In terms of this root, the corresponding eigenvalue is X = i\ry, where

/\IH = \/f — ﬂQ . (3.23C)

For the special case dy = 0, Tg is given explicitly by

2 2

c c
14+ — 14—
+2+c +4

1
TH — —
5

, c=— > (3.24a)

while the corresponding eigenvalue is A = iAry, where
/ 2
Arg =064/ 1——. (3.24b)
BTH

Proof: In (3.17a), we set Fr = Fr = 0 to obtain

\/5[\/6+1}1/2:d0—%, \/5[\/&—1]1/2:—6112’; a=1+72)2,  ¢£=p2+ A2, (3.25)

Upon dividing the resulting two expressions we get

<ﬁ+1)”2_ L+va _ B dog
va-1) =

)\[T )\I dl)\] ’
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which reduces to
dog

Va+1=T1A, where AEB—d
1

(3.26)

Since the first equation of (3.25) is v/2[\/a + 1]1/2 = —dy A/, we obtain from using (3.26) that V27 AY? = —d; A/¢.
Upon solving for 7, and recalling that A = 8 — do&/d, we obtain

di . A (B do
r=sea=g (G ) 20

which is (3.23a). Equation (3.27) determines 7 in terms of . To obtain the quadratic equation (3.23b) for £, we

square and add the two expressions in (3.25) to obtain

N [(do - M>2 + d%] : (3.28)

4 3 €

Then, by using /a = —1 + 74, A2 = ¢ — 52, and (3.27) for 7 in terms of A, (3.28) becomes

A%d3 1[d2A? &3
e =il e o)

Upon solving for A% and recalling that A = 3 — do&/d;, we obtain

i 2= A? = (B — do&/dv)?
?-l-f—ﬂ— _(ﬁ_ 06/1) :
1
By rewriting this last expression we conclude that & > 32 must be a root of the quadratic equation of (3.23b).
We must now carefully examine the roots of M(§) = 0 when dy < 2, d; < 0, and G(0) = do — dy1/S > 2. There
are three sub-cases that must be considered: Case 1: |dg| < 2; Case 2: dy = —2; Case 3: dy < —2. For each of these

cases we calculate that

M(B%) = (d = 4)8* — (di + 2Bdodr) B° + 26%d5 (3.29a)
£ 2dody ,
——at 5" (G - 200+ ) = 5 (0O - 1) (3.20b)

Since G(0) > 2, we conclude that M(82) > 0.

For Case I where |dy| < 2, we have that M(§) — —oc as & — Fo00. Therefore, by the intermediate value theorem
there exists a unique root £ to M(£) = 0 in 32 < £ < oo, while the other root is in —oo < & < 82, Since £ = 32+ A2,
the relevant root is £_. Next, we must show that A = 8 — do&_/d; > 0, so that 77 > 0 from (3.23a). If 0 < dy < 2,
then A > 0 since dyp > 0, (- > 0 and d; < 0. For —2 < dy < 0, we use G(0) > 2 to obtain d; /5 < dy — 2. Therefore,
since dy < 0 and £_ > 0, we estimate —do&_/dy > —dp&—_/(B(do — 2). By using this inequality we obtain

do&— dof—  _ do(é- —B%) +2p°
— Tl > [ — = >0,

A=p Bldy —2) B2 — do)

since —2 < dy < 0 and £_ > 2. Therefore, when |do| < 2, (3.23b) has a unique root in ¢ > 32, for which 7 > 0 in
(3.23a).

For the degenerate Case II where dy = —2, we have M(£) = —(d3 — 43d1)¢ + 2%d3. Since d; < 0, then
M(€) — —o00 as € — +oo, while M(5?) > 0 from (3.29b). Therefore, the unique root ¢ = 28%d;/(dy — 43) to
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M(&) =0is in € > 2. At this root we calculate A as

doé 2¢

2
A=p-2E gt S0

45 45 "

since d; < 0. Thus, 77 > 0 in (3.23a).
Finally, we consider Case III where dy < —2. This case is more delicate since M(§) — 400 as { — 400 and
M(?) > 0. Therefore, the behaviour of the roots in & > 32 is not immediately clear. However, we now show that
M(&.) < 0 where & = d13/dy is the unique root of A = 0. For £ < £. we have A > 0, while for ¢ > &., we have
A < 0. We readily find that & > 32 since dg — dy /B > 2. To establish the sign of M(£.) we calculate
d2 2
M(&) = (d —4) ;f — (di + 2dod1 ) — = 15
0
Adip®  dip _ dip® [dz 4 dldo]
d? do d? B

Since dy —dy /8 > 2 and dy < 0, we have —dpdy/f < do (2 — dp). By using this estimate in the last expression above,

+ 26%d7

- 8-

we obtain 7252 25
M(E) < X [dg — 4 +2dy — df] = (110 [2do — 4] .

Thus, since dy < 0, we have M(&.) < 0. By the intermediate value theorem, it follows that M(£) = 0 must have
two real roots &4, which satisfy 82 < €. < & and &. < €. However, since A > 0 for £ = ¢ < &, and A < 0 for
& =&4 > &, only the smaller of the two roots yields a 7 > 0 from (3.23a). Therefore, the smaller root _ gives the
Hopf bifurcation, and this root determines A; as A\j = m .

This completes the proof of (3.23).

For the special case where dy = 0, M(&) = 0 has a unique root in & > 32 given by

& B

§=co++/c1, Co=—"g" c1 = 64+ 5 - (3.30)

Then, from (3.27) with dg = 0, we get

d2 1 2 d2

co ++/c1 G —C1
Since ¢ — ¢1 = —32d? /2, we obtain
2 2 \?| g4 242 g2 22 1 d2 d d2
_4p o a.,r 1+— +’B = |l ey 1 s
2 \p2dz) |32 2 64 3 | 168 26v2 328
This last expression is equivalent to (3.24a). [ |

Remark 3.4 Recall from Principal Result 3.5 that for the case where dy < 0 and dy > 2, so that necessarily G(0) > 2
we have N = 2 when both 7 < 1 and T > 1. However, the behaviour of the eigenvalues for intermediate values of T
is unclear, since Principal Result 3.6 only proves that either N =0 or N = 2. This leaves open the possibility that at
some intermediate range of values of T a pair of complex conjugate eigenvalues can cross into the negative half-plane
Re(\) < 0, and then only re-appear in Re(\) > 0 at some sufficiently large value of 7. Our last result below, given in
Principal Result 3.9, rules out this possibility when dy > do. > 2, where do. is some explicit threshold. It also gives
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a range of values of dyg > 2 that gquarantee that a stabilization of the spike will occur for some intermediate range of

value of 7.

Principal Result 3.9 Suppose that dy < 0 and that dy > do. > 2, where dg. is given by

. d? d?
doe = min (doc1, doc2) doc1 = + \/8+ W ; docz = |4+ W (3.31)

Then, for any T > 0, there are exactly two eigenvalues in Re(\) > 0. Hence, the NLEP of Principal Result 3.2 does

not admit a Hopf bifurcation, and a one-spike solution to (1.2) is spectrally unstable for all T > 0. Moreover, on the

. d | 3d2
2 < dy < domy = min(doer, dogr) . dom = ﬁ +4/4+ ﬁ , (3.32)

there are exactly two Hopf bifurcation values of T, labelled by Tp— and T4, with T— < Ty. The spike is spectrally

range

unstable when 0 < 7 < Ty and when T > Ty, but is stable on the intermediate range T— < 7 < Th4. Finally, if
dop < do < doe1 then the quadratic M(€) = 0 has two real Toots 1, but they both satisfy £+ < 0, and so are not in

the region & > 2. Hence in this range of dy there are no Hopf bifurcations.

Proof: We first show from the winding number criterion leading to (3.16) that N = 2 when dy > dge2, where doeo
is defined in (3.31). To obtain this result, it is sufficient to show that F; > 0 at the root of Fr = 0 when dy > dpe2.
We first set Fr =0 in (3.17a) to get

ﬁ[\/aﬂ]”ﬂdof% where a=1+72)2 and ¢=p82+ A2, (3.33)

From (3.33) we calculate

2
\/&:A——l, where A= do—M
2 3
We can then evaluate F; in (3.17a) at this root of Fr to get
1/2 dir di\1 9 1/2
Fr=V2[Ja-1]"" + EESvie H(A) + FEFSE where H(A) = (4% —4)'". (3.34)

We note that H(2) = 0 and H'(A) > 0 for A > 2. In addition, for dy > 2 and d; < 0, we have A > dy > 2 for all

& > 32. Therefore, since d; < 0, we calculate a lower bound for F; as

(cl2—4)1/2+al—1

Fr > H(do) +dq max 25

Al
>0 B2+ A2
We conclude that F; > 0 at the root of Fr = 0, when dy is sufficiently large, so that (d2 —4)"/? > —d;/(2). This
yields that NV = 2 for any 7 > 0 when dg > dyes.
To obtain the second result that N = 2 when dy > do.1, where dy. is defined in (3.31), we proceed by examining
the roots of the quadratic polynomial M(£) = 0 given in (3.23b) on the range ¢ > 32 when dy > 2. When dy > 2,
we have M — +00 as £ — oo and M(3?) > 0 from (3.29b). Therefore, a sufficient condition for M > 0 on ¢ > /32

is that the discriminant associated with the polynomial is negative, i.e. that

(d2 + 2Bdyds)” — 852d2 (d2 —4) < 0.
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A simple calculation from this inequality yields that dy > do.1 where do.; is defined in (3.31).

The last step of the proof is to determine sufficient conditions for which M(£) = 0 has two roots in £ > 2. Since
dp > 0 and dy < 0, then A > 0 in (3.23a), and so these roots determine two Hopf bifurcation points 7y and 7g4
with 77— < 7y4+. A necessary and sufficient condition for this is that the discriminant associated with the quadratic

is positive, and that the minimum point of M (&) versus ¢ occurs in the region £ > 32. This occurs when both
(42 +2Bdydy)” — 8322 (d2 —4) >0 and  d% +28dods > 25% (d3 — 4) (3.35)

hold simultaneously. A simple manipulation of these inequalities yields 2 < dy < do,, = min(dog, doc1), where dog
is defined in (3.32).
[}

Next, we illustrate Principal Result 3.9 graphically by plotting the regions in the parameter space dy > 2 versus
t = —d;/(28) where we can guarantee the number of Hopf bifurcation points. In terms of ¢ we have from (3.31) and
(3.32) that

d061:t+\/8+2t2, dOCQZ\/4+t27 dog =t+ V4 +3t2. (336)

We first consider the range ¢ < —2. On this range, it is readily shown that doy > dp.1 and dgee > dpe1. Therefore,
when ¢ < —2, we conclude that if dy > dy.1 there are no Hopf bifurcations, while for 2 < dy < dy.1 we have two Hopf
bifurcation points. The curve dy = dg.; for t < —2 is where M(£) = 0 has a double root in the region & > 32. Next,
consider the range —2 < ¢t < 0. A simple calculation shows that dp.; < dge2 for —2 < t < tg, whereas dyes < dge1 on
ty <t <0. Here t, = —/2(v/2 — 1) = —0.910. In addition, we readily calculate that dogy < 2 on —2 < ¢ < 0. Thus,
on —2 <t <0, where dog < 2 < dy < do1 it follows that M(€) = 0 has two real roots, with neither in the region
¢ > (% For dy > min(d.1,de2), there are no Hopf bifurcations. We conclude that there are no Hopf bifurcations
possible in the region where —2 < ¢t < 0. These considerations yield the phase diagram of Fig. 8 characterizing Hopf

bifurcations in the entire parameter plane dy > 2 versus t = —d; /(28) < 0.

T
24 B
d()
22 B
2.0 L .
—4.0 -3.0 -2.0 -1.0 0.0
—dy/(25)
Figure 8: Plot of the region in the dy > 2 versus t = —d; /(2/) parameter illustrating Principal Result 3.9. For t < —2, there are no Hopf bifurcation

points above the heavy solid curve, and two Hopf bifurcation points below the heavy solid curve. The heavy solid curve is doe1 = t + V/8 + 2t2.
For —2 < t < 0, there are no Hopf bifurcation points for any do > 2. It is only the region 2 < dyp < dpc1 and t < —2 where a one-spike solution
will be stable only on some intermediate range 0 < 7 < 7 < T4 < o0.

Remark 3.5 The parameter plane shown in Fig. 8 predicts either zero or two Hopf bifurcation points in the entire

parameter plane where dg > 2 and di < 0. To use this result for arbitrary kinetics f and g, we need only solve the
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nonlinear algebraic problem (3.4) for Uy, and then compute dy and dy in terms of Uy from (2.15b). If dy > 2 and

d1 < 0, this determines a point in the parameter space of Fig. 8.

3.2 Two Examples of the Theory

Since the instability results for eigenvalues on the positive real axis for the infinite line problem are essentially the
same as for the shadow system studied in §2.2, we will only illustrate the Hopf bifurcation results contained in
Principal Results 3.8 and 3.9.

GM Model: Consider a one-spike solution on the infinite line for the GM model where g(u) = u™9, f(u) = v~ * and
up = 0. Then, dy = —2s, d; = —qr?, and 3 = r? — 2r, as were given in (2.23).

For the special case s = 0, for which dg = 0, then 7 is given by (3.24) where we identify ¢ as

c=—22 (3.37)

2v/2(r — 2)

In particular, for the GM exponent set (p,q,7,s) = (3,2,3,0), we calculate from (3.24) and (3.37) that

1 2
TH = —= [13 +3\/ﬁ} ~2.114, Ar = 3\/1—7z 2.482.
12 3t

More generally, fixing p =r = 3 and s = 0, a plot of 7y versus ¢ is shown by the heavy solid curve in Fig. 9.

11.0 T
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10 .
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Figure 9: Plot of 7y versus g for the GM model with p = r = 3 and for s = 1 (dotted curve) and for s = 0 (heavy solid curve). For s = 0 and
s =1, 7 is calculated from (3.24) and (3.23), respectively

Next, consider the GM exponent set (p,q,r,s) = (3,2,3,1). For this set, the Hopf bifurcation threshold for
a one-spike solution on a finite domain was computed using the full numerical approach of [37], and is shown in
Fig. 4 of [37]. The y-intercept of this plot of [37] is the corresponding result for our infinite-line problem. For the
exponent set (p,q,r,s) = (3,2,3,1), for which dy = —2, the quadratic polynomial M(&) = 0 in (3.23b) degenerates
to a straight line, and we calculate that & = 23%d;/(d; — 48) = 54/5. We calculate from (3.23) that 77 = 2.5 and
Ar =3/ V/5 & 1.34 in agreement with the results given on the y-intercept of Fig. 4 of [37]. More generally, the dotted
curve of Fig. 9 is a plot of 7y versus ¢ for the exponent set (p,q,r,s) = (3,4, 3,1), as obtained from (3.23).

To illustrate the use of Fig. 8, we consider the GM model with exponent set (p,q,r,s) with p = 2r — 3, r > 2,
qg>0and s < —1. Since dy = —2s and d; = —qr?, we conclude that dy > 2 and d; < 0. If —2 < d;/(28) < 0, then
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we predict that there are no Hopf bifurcations for any 7 > 0, and the spike is always unstable. This inequality holds
when g < 4(r — 2)/r. Next, suppose that ¢ > 4(r — 2)/r. Then, we obtain that there are no Hopf Bifurcations when

qr 1 q?r?
S<Tir—y  2\8tap oo
and that there are two Hopf bifurcations when
qr 1 q?r?
S L . ~1. .
-2 3 8+2(7’—2)2<8< (3.38)

For the range of s in (3.38) and for ¢ > 4(r — 2)/r, a one-spike solution will be stable only on some intermediate
range of 7.
Generalized GS Model: Next, we consider the generalized GS model (1.2) for which

p=r=23, fu) =—u, g(u) = Au, up,=1. (3.39)

To construct the one-spike equilibrium solution on the infinite line we must calculate Uy from (3.4). In this way,
we find that Uy, on 0 < Uy < 1, again satisfies (2.31) when A > A,,, where A,, is defined in (2.32). The graph of
Uy versus A has a saddle-node bifurcation structure, with two solutions Ups for Uy on 0 < Up— < 1/3 < Upy < 1
when A > A,, (see Fig. 4).

For the stability analysis, we identify 8 = 72 — 3r = 3, and calculate dy and d; from (2.15b) as

_2(1-Uoy) _ 91 -Uo) _(1-U)
Us <0, dy = i <0, G(0) = 0o (3.40)

Since G(0) = (1 — Uy)/Up < 2 when Uy > 1/3, we conclude from (I) of Principal Result 3.4 that on the entire upper

do =

branch 1/3 < Uy < 1 the spike is unstable due to a positive real eigenvalue for any 7 > 0.

On the lower branch, where 0 < Uy < 1/3, a one-spike solution undergoes a Hopf bifurcation at some unique
T =71 > 0. Since dy = —2(1 — Up)/Up and 0 < Uy < 1/3, we conclude that dy < —4, d; < 0, and G(0) > 2 on this
branch. Consequently, Case III in the proof of Principal Result 3.8 applies, and M(§) = 0 in (3.23b) has two positive
roots in & > 32, with the smaller root corresponding to the Hopf bifurcation point. By using (3.40) in (3.23), and
calculating the smallest root of M(§) = 0, we obtain for each Uy in 0 < Uy < 1/3 that

_SI1-Upf* (3 2 _ (=00 (189 [/189\* /(1 200)
e 2U§ <§2 9§> ’ = 2(1-2U) | 4 \/( 4 ) 1458((1_(]0)2) : (3.41)

In Fig. 10 we plot 7 versus Uy on 0 < Uy < 1/3 and versus A where A > A,,. At the saddle node bifurcation point
where Uy = 1/3 and A = A,, ~ 3.218, we calculate 77 = 2 from (3.41).

3.3 NLEP Stability Theory with Sub-Diffusion

Finally, we remark that completely analogous results to those in §2.4 for the sub-diffusive shadow problem hold for
the sub-diffusive infinite-line problem (1.3).

More specifically, to analyze the stability of a one-spike solution for (1.3) we simply replace A in (3.13) with
AO7 = X We recall from §2.4 that an instability for the sub-diffusive problem can only occur when the roots of

(3.13) are in the wedge of instability defined by (see Fig. 7)

— 5 <arg()) <

™

= > 00, (3.42)
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Figure 10: Plot of the Hopf bifurcation threshold 7y for the generalized GS model versus Uy (left panel) and versus A (right panel), corresponding
to the lower branch 0 < Uy < 1/3 of Fig. 4. Here 7y is given in (3.41),

where the anomaly exponent v is on the range 0 < v < 1.

As such, we conclude that if the regular NLEP admits a positive real eigenvalue A* > 0, then this eigenvalue
must lie in the wedge of instability for the sub-diffusive NLEP for any v in 0 < v < 1. Such an eigenvalue
A0 = ()\*)1/ 7 > 0 yields an exponentially growing perturbation (to leading order) to the one-spike equilibrium
solution of (1.3). Consequently, the instability results of Principal Results 3.4 and 3.5, which result from a positive
real eigenvalue of the regular diffusion NLEP, still hold for the sub-diffusion problem for all v in 0 < v < 1. We

summarize this result as follows:

Principal Result 3.10 Suppose that either

(I) dy <0 and G(0) < 2; or (II) dy >0 and G(0) > 2; or (III) dy >0 and do < 2.

Then, for any T > 0, there is an exponentially growing perturbation to the one-spike equilibrium solution of the
sub-diffusive system (1.3). Similarly, when dq <0, G(0) > 2, and dy < 2, the one-spike equilibrium solution of (1.3)

is unstable when T > 0 is sufficiently large.

shite

Next, we consider Hopf bifurcations associated with the sub-diffusive RD system (1.3) under the conditions that
dy < 0,dy < 2and G(0) > 2. For this parameter range, Principal Result 3.8 proves that the regular diffusion problem
undergoes a Hopf bifurcation at a unique value 7 = 75 > 0, and by Principal Result 3.5 there are two positive real
eigenvalues for the regular NLEP when 7 > 1. More specifically, there are two positive real roots of (3.13) for
T > 74, where 7; > 0 is the unique value of 7 at which 2v/1 + 7 and G()\) in (3.13) intersect tangentially at some
A = Ay > 0. The key observation is that an unstable eigenvalue of the regular NLEP only generates an instability
for the sub-diffusive NLEP when it lies within the wedge of instability (3.42). This wedge of instability becomes
narrower as -y decreases, and concentrates on the positive real axis in the A\-plane as v — 0. The anomaly-dependent

Hopf bifurcation threshold, labelled by 77, is computed numerically from the implicit condition that

arg \ = %7 , (3.43)

which involves the eigenvalue path A\ = A\(7) of the roots of (3.13) with Re(A) > 0 and Im(\) > 0. This condition
(3.43) corresponds to when this eigenvalue path intersects the edge of the wedge of instability shown in Fig. 7. In
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Figure 11: Hopf bifurcation for the GM model corresponding to setting p = r = 3, g(u) = v~ 2, f(u) = v ' and up = 0 in (1.2) and (1.3).
Left panel: the plot of the path A(7) (solid curve) of the complex conjugate eigenvalue pair for the NLEP with regular diffusion on the range
7 < T < 7¢. The wedge of instability for the sub-diffusive problem when v = 1/3 lies between the two heavy solid lines. For values of 7 for which
A(7) is inside this wedge, the one-spike solution for the sub-diffusive GM model has an oscillatory instability. Right panel: the Hopf bifurcation
threshold 7~ versus v corresponding to when the path A(7) intersects the edge of the wedge of instability.

this sense, we conclude that the sub-diffusive RD system (1.3) undergoes an oscillatory instability at a larger value

of 7 than for the case of regular diffusion. We summarize this result as follows:

Principal Result 3.11 Suppose that dy < 2, di < 0 and G(0) > 2. Then, for all v in 0 < v < 1, the Hopf
bifurcation threshold Ty~ for the sub-diffusive NLEP satisfies Ty < Ty < T¢. Here Ty is the Hopf bifurcation
threshold for the reqular diffusion case, as given by Principal Result 3.8, and 1y is the value of T, where the complex

conjugate eigenvalue path for the reqular NLEP merge onto the positive real azis.

In addition, suppose that the eigenvalue path for the regular NLEP in the first quadrant Im(\) > 0 and Re(\) > 0
is monotonic in the sense that Re(\) increases monotonically while Im()) decreases monotonically as 7 increases.
Then, the Hopf bifurcation threshold 7z for the sub-diffusive NLEP increases as v decreases.

In Fig. 11 we illustrate Principal Result 3.11 for the GM model corresponding to setting p = r = 3, g(u) = u=2,
f(u) =u"1 and u, = 0 in (1.2) and (1.3). For this example dy = —2, d; = —18, and G(0) = 4 > 2. In the left panel
of Fig. 11 we plot the path A(7) of the complex conjugate eigenvalue pair for the NLEP with regular diffusion on the
range 7 < T < T, as computed from (3.13). We calculate 73 ~ 10.68 and from Principal Result 3.8 we get 7y = 2.5.
In Fig. 11, we also plot the wedge of instability for the sub-diffusive problem when v = 1/3. For this example, the
eigenvalue path of the regular NLEP is monotonic in the sense described above, so that 75, increases as v decreases.
This Hopf bifurcation threshold of the sub-diffusive problem is shown in the right panel of Fig. 11.

The analysis for the case dy > 2 and d; < 0 is more intricate. Recall that the Hopf bifurcation result for the
regular NLEP was given in Principal Result 3.9. In particular, when dy satisfies (3.32), the regular NLEP has two
Hopf bifurcation thresholds 77+ > 0 with a one-spike solution being stable on the intermediate range 7y < 7 < 74,
and unstable otherwise. However, since an unstable eigenvalue of the regular NLEP only generates an instability for
the sub-diffusive problem when it lies within the wedge of instability (3.42), it follows for any + in 0 < v < 1 that

this intermediate stability zone in 7 will be larger for the sub-diffusive problem.

31



4 Discussion

We have studied the existence and linearized stability of a one-spike equilibrium solution to the class of RD systems
(1.2) on the infinite-line. A similar analysis has been done for the corresponding shadow system (2.2). For arbitrary
p>2and r > 11in (1.2) and (2.2), the problem of the existence of a one-spike solution was reduced to the study
of the scalar nonlinear algebraic equation (3.4) and (2.6), respectively. To determine the linearized stability of the
one-spike solutions, we used the method of matched asymptotic expansions to derive a nonlocal eigenvalue problem
(NLEP). For the special case where p = 2r —3 and r > 2, we showed that the spectrum of this NLEP can be reduced
to the study of the roots of a rather simple transcendental equation involving 7, r, and two key parameters dy and
d; related to the specific choices of the kinetic functions of the nonlinearities f(u) and g(u) in (1.2) and (2.2).
From an analysis of these transcendental equations by using a winding number approach together with detailed
analytical calculations, explicit stability and instability results were obtained in terms of ranges of the two parameters
dy, dy, and the reaction-time constant 7. Most notably, in certain parameter regimes of dy and d; our theory provides
sufficient conditions for the existence of a unique Hopf bifurcation value of 7, as well as a simple analytical formula
to calculate this threshold. The theory was illustrated for the GM model and for a generalization of the GS model.
There are several related problems that can be investigated within the simple framework afforded by an explicitly
solvable NLEP. The first problem is to characterize analytically the slow dynamics and stability of a two-spike
pattern on the infinite line for the regular diffusion problem (1.2) and its sub-diffusive counterpart (1.3). For the
case p = 2r — 3 with r > 2, for which the associated NLEP is explicitly solvable, it should be possible to provide an
explicit theory characterizing both competition and oscillatory instabilities of the two-spike pattern. Results in this
direction are given in [25]. A second open problem is to investigate delayed bifurcation effects for the stability of
pulses due to either the slow drift of the pulse locations or due to slowly varying extrinsic control parameters, such
as 7 or the length of the domain. Finally, as mentioned in Remark 2.4, it would be interesting to investigate whether
more general non power-law nonlinearities can also lead to an explicitly solvable NLEP. Results in this direction are

given in [32].
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