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An Asymptotic Analysis of Localized 3-D Spot Patterns for the Gierer-Meinhardt Model:
Existence, Linear Stability and Slow Dynamics

Daniel Gomez *, Michael J. Ward T, and Juncheng Wei i

Abstract. Localized spot patterns, where one or more solution components concentrates at certain points in the domain, are
a common class of localized pattern for reaction-diffusion systems, and they arise in a wide range of modeling
scenarios. Although there is a rather well-developed theoretical understanding for this class of localized pattern in
one and two space dimensions, a theoretical study of such patterns in a 3-D setting is, largely, a new frontier. In an
arbitrary bounded 3-D domain, the existence, linear stability, and slow dynamics of localized multi-spot patterns
is analyzed for the well-known singularly perturbed Gierer-Meinhardt (GM) activator-inhibitor system in the limit
of a small activator diffusivity €2 < 1. Our main focus is to classify the different types of multi-spot patterns, and
predict their linear stability properties, for different asymptotic ranges of the inhibitor diffusivity D. For the range
D = O(¢7') > 1, although both symmetric and asymmetric quasi-equilibrium spot patterns can be constructed,
the asymmetric patterns are shown to be always unstable. On this range of D, it is shown that symmetric spot
patterns can undergo either competition instabilities or a Hopf bifurcation, leading to spot annihilation or temporal
spot amplitude oscillations, respectively. For D = O(1), only symmetric spot quasi-equilibria exist and they are
linearly stable on O(1) time intervals. On this range, it is shown that the spot locations evolve slowly on an O(e™?)
time scale towards their equilibrium locations according to an ODE gradient flow, which is determined by a discrete
energy involving the reduced-wave Green’s function. The central role of the far-field behaviour of a certain core
problem, which characterizes the profile of a localized spot, for the construction of quasi-equilibria in the D = O(1)
and D = O(e™') regimes, and in establishing some of their linear stability properties, is emphasized. Finally, for
the range D = O(e?), it is shown that spot quasi-equilibria can undergo a peanut-splitting instability, which leads
to a cascade of spot self-replication events. Predictions of the linear stability theory are all illustrated with full PDE
numerical simulations of the GM model.

1. Introduction. As initiated by the pioneering work of Turing [16], there have been many studies de-
termining the conditions for the onset of instabilities of spatially homogeneous patterns in reaction-diffusion
(RD) systems. However, in the limit of a large diffusivity ratio, certain two-component RD systems admit
spatially localized solutions that exhibit a wide range of different solution behavior, and have applications to
biological pattern formation. In this broad context, we will analyze certain “far-from-equilibrium patterns”
(cf. [13]) in a 3-D setting for the well-known Gierer-Meinhardt two-component reaction-diffusion model,
which has been used as prototypical system to model pattern formation in developmental biology (cf. [7],
[11], [12], [25)).

In dimensionless form, the singularly perturbed Gierer-Meinhardt (GM) RD model (cf. [25]) is

2
(1.1) vt:52Av—v+U—, Tur = DAu—u+e 2%, zeQ; Opv =0pu=0, x¢€d,
U

where Q C R3? is a bounded domain, ¢ < 1, and v and u denote the activator and inhibitor fields,
respectively. While the shadow limit in which D — oo has been extensively studied (cf. [23], [25], [22]),
there have relatively few studies of localized RD patterns in 3-D with a finite inhibitor diffusivity D (see
[2], [5], [10], [19] and some references therein). Our focus will be to analyze the existence, linear stability,
and slow dynamics of localized N-spot patterns for (1.1).
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For 3-D spot patterns, a related analysis of localized spot patterns for the singularly perturbed Schnaken-
berg RD model was peformed using asymptotic methods in [19]. Although our current study is heavily
influenced by [19], our results for the GM model offer some new insights into the structure of localized
spot solutions for RD systems in three-dimensions. In particular, one of our key findings is the existence
of two regimes, the D = O(1) and D = O(e~!) regimes, for which localized patterns can be constructed
in the GM-model. In contrast, for the 3-D Schnakenberg model, localized spot solutions occur only in the
D = O(e7 ') parameter regime [19]. Our analysis traces this distinction back to the specific property of the
far-field behaviour of the appropriate core problem, characterizing the local behaviour of a spot, for the
GM-model. By numerically solving the core problem for the GM model, we formulate a conjecture regard-
ing the far-field limiting behaviour of the solution to the core problem. With the numerically established
properties of the core problem, strong localized perturbation theory (cf. [20]) is used to construct N-spot
quasi-equilibrium solutions to (1.1), to study their linear stability, and to determine their slow-dynamics.
We now give a more detailed outline of this paper.

In the limit € — 0, in §2 we construct N-spot quasi-equilibrium solutions to (1.1). To do so, we first
formulate an appropriate core problem for a localized spot, from which we numerically compute certain
key properties of its far field behaviour. Using the method of matched asymptotic expansions, we then
establish two distinguished regimes for the inhibitor diffusivity D, the D = O(1) and D = O(¢~!) regimes,
for which N-spot quasi-equilibria exist. By formulating and analyzing a nonlinear algebraic system, we
then demonstrate that only symmetric patterns can be constructed in the D = O(1) regime, whereas both
symmetric and asymmetric patterns can be constructed in the D = O(e~!) regime.

In §3 we study the linear stability on an O(1) time scale of the N-spot quasi-equilibria constructed
in §2. More specifically, we use the method of matched asymptotic expansions to reduce a linearized
eigenvalue problem to a single globally coupled eigenvalue problem. We determine that the symmetric
quasi-equilibrium patterns analyzed in §2 are always linearly stable in the D = O(1) regime but that
they may undergo both Hopf and competition instabilities in the D = O(e~!) regime. Furthermore, we
demonstrate that the asymmetric patterns studied in §2 for the D = O(e~!) regime are always unstable.
Our stability predictions are then illustrated in §5 where the finite element software FlexPDE6 [6] is used
to perform full numerical simulations of (1.1) for select parameter values.

For localized patterns that are linearly stable on O(1) time-scales, in §4 we analyze the slow dynamics
of localized spot patterns for the GM model in the D = O(1) and D = O(e~!) regimes. When D = O(e™ 1),
we show that the ODE gradient-flow type system characterizing slow spot dynamics for the GM model is
the same, apart from only a difference in time-scale, as that derived for the 3-D Schakenberg model in [19].

In §6 we analyze the GM model in the weak interaction limit, defined by D = O(£?), where localized
spots interact weakly through exponentially small terms. In this regime, (1.1) can be reduced to a modified
core problem from which we numerically calculate quasi-equilibria and determine their linear stability
properties. Unlike in the D = O(1) and D = O(c~!) regimes, we establish that spot solutions in the
D = O(e?) regime can undergo peanut-splitting instabilities. By performing full numerical simulations
using FlexPDEG [6], we demonstrate that these instabilities lead to a cascade of spot self-replication events
in 3-D. Although spike self-replication for the 1-D GM model have been studied previously in the weak
interaction regime D = O(g?) (cf. [4], [8], [13]), spot self-replication for the 3-D GM model has not previously
been reported.

In §7 we briefly consider the generalized GM system characterized by different exponent sets for the
nonlinear kinetics. We numerically verify that the far-field behaviour associated with the new core problem
for the generalized GM system has the same qualitative properties as for the classical GM model (1.1).
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This directly implies that many of the qualitative results derived for (1.1) in §2—4 still hold in this more
general setting. Finally, in §8 we summarize our findings and highlight some key open problems for future
research. In particular, for the other prototypical RD systems in Table 1 of §8, in Figure 13 below we show
numerical results for the far-field behavior of the core solution that characterizes the local profile of a spot.
The implication of this behavior on the existence of localized multi-spot patterns in the D = O(1) regime
for these other RD models is discussed.

2. Asymptotic Construction of an N-Spot Quasi-Equilibrium Solution. In this section we asymp-
totically construct an N-spot quasi-equilibrium solution where the activator is concentrated at N spec-
ified points that are well-separated in the sense that z1,...,2y € Q, |z; — ;| = O(1) for i # j, and
dist(x;,0Q) = O(1) for i = 1,...,N. In particular, we first outline the relevant core problem and de-
scribe some of its properties using asymptotic and numerical calculations. Then, the method of matched
asymptotic expansions is used to derive a nonlinear algebraic system whose solution determines the quasi-
equilibrium pattern. A key feature of this nonlinear system, in contrast to that derived in [19] for the 3-D
Schnakenberg model, is that it supports different solutions depending on whether D = O(1) or D = O(e71).
More specifically, we will show that the D = O(1) regime admits only spot quasi-equilibria that are sym-
metric to leading order, whereas the D = O(e~!) regime admits both symmetric and asymmetric N-spot
quasi-equilibria.

2.1. The Core Problem. A key step in the application of the method of matched asymptotic expansions
to construct multi-spot quasi-equilibrium solutions to (1.1) is the study of radially symmetric solutions to
the core problem

(2.1a) AV -V+UW2=0, AU =-VZ, p>0,
(2.1b) 0,V (0) =0,U(0) =0; Ve O(pte™) and U~ u(S)+S/p, p— oo,

where A, = p~29,, [p*,]. The core problem is obtained by expanding (1.1) in an O(e) of an interior point
¢ € Q and, given a value of S > 0, is to be solved for V.=V (p;S), U = U(p; S), and p = p(S) yielding the
local profile of a single spot concentrated at £ € 2. Moreover, by integrating the second equation in (2.1a)
and using the divergence theorem we determine that S = [ p? [V (p)]? dp.

When S < 1 we deduce from this identity that V = O(+/S). By applying the divergence theorem to
the first equation in (2.1a) we get U = O(v/S), while from (2.1b) we conclude that g = O(+/S). It is then
straightforward to compute the leading order asymptotics

S 5 S
(2.2) V(p;S)N\/;wc(p), UlpiS)~ o[ w8~y for S<1T,

where b = [ p? [we(p))? dp ~ 10.423 and w, > 0 is the unique nontrivial solution to
(2.3) Apwe —we + w2 =0, p>0; O0pwe(0) =0, we =0 as p— 00,

We remark that (2.3) has been well studied, with existence being proved using a constrained variational
method, while its symmetry and decay properties are established by a maximum principle (see for example
Appendix 13.2 of [25]). The limit case S < 1 is related to the shadow limit obtained by taking D — oo,
for which the inhibitor u is spatially constant. In this shadow regime, numerous rigorous and asymptotic
results have previously been obtained (cf. [23], [25], [22]).
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Figure 1: Plots of numerical solutions of the core problem (2.1): (a) u(S) versus S, as well as the (b) activator V
and (c) inhibitor U, at a few select values of S. The value S = S, ~ 0.23865 corresponds to the root of u(S) = 0.

Although the existence of solutions to (2.1) have not been rigorously established, we can use the small S
asymptotics given in (2.2) as an initial guess to numerically path-follow solutions to (2.1) as S is increased.
The results of our numerical computations are shown in Figure 1 where we have plotted wu(S), V(p;9),
and U(p; S) for select values of S > 0. A key feature of the plot of (S) is that it has a zero crossing
at § = 0 and S = S, =~ 0.23865, while it attains a unique maximum on the interval 0 < § < S, at
S = Sait &~ 0.04993. Moreover, our numerical calculations indicate that u”(S) < 0 on 0 < S < S,. The
majority of our subsequent analysis hinges on these numerically determined properties of p(S). We leave
the task of rigorously proving the existence of solutions to (2.1) and establishing the numerically verified
properties of 1(S) as an open problem, which we summarize in the following conjecture:

Conjecture 2.1. There exists a unique value of S, > 0 such that (2.1) admits a ground state solution
with the properties that V.U > 0 in p > 0 and for which u(Sy) = 0. Moreover, u(S) satisfies (S) > 0 and
1’ (S) <0 forall0 < S < S,.

2.2. Derivation of the Nonlinear Algebraic System (NAS). We now proceed with the method of
matched asymptotic expansions to construct quasi-equilibria for (1.1). First we seek an inner solution by
introducing local coordinates y = ¢~ 1(x — x;) near the i*" spot and letting v ~ DV;(y) and u ~ DU;(y) so
that the local steady-state problem for (1.1) becomes

(2.4) AV = Vi+U'VE=0, AU DU +VE=0, yeR3.
In terms of the solution to the core problem (2.1) we determine that
(25) Vi~ Vi(p,Si) + 0D, Ui~ Ulp,Sie) +O(D7'e%),  p=lyl=e |z -z,

where S;. is an unknown constant that depends weakly on €. We remark that the derivation of the next

order term requires that x1,...,zy be allowed to vary on a slow time scale. This higher order analysis is
done in §4 where we derive a system of ODFE’s for the spot locations.
To determine Si., ..., Sne we now derive a nonlinear algebraic system (NAS) by matching inner and

outer solutions for the inhibitor field. As a first step, we calculate in the sense of distributions that
e3v? — 4w D? Z;\le Sie6(z — xj) + O(e?) as e — 0T, In view of this distributional limit, each Sj, for
4
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j =1,..., N, can be interpreted as a spot or source strength. Therefore, in the outer region the inhibitor
satisfies

N
(2.6) Au— D'y = —47eD Z S;ed(x —x;) + O, x€Q; Ophu=0, x€dN.

j=1

To solve (2.6), we let G(z,&) denote the reduced-wave Green’s function satisfying

AG—-D7'G=—-6(x—¢), xeQ; oG=0, z€09,
(2.7) 1
G(z,8) ~ PP
where R(x, &) is the regular part of G(z,§) as |x —&| — 0 and V; denotes the gradient with respect to the
first argument. The solution to (2.6) can be written as

+R(z,8) + ViR(z;:8) - (x =€),  as z =,

N
(2.8) u~4reD Y " S;G(z, ;) + O(E%).
j=1
Before we begin matching inner and outer expansions to determine Sy, ..., Sy. we first motivate two

distinguished limits for the relative size of D with respect to €. To do so, we note that when D > 1 the
Green’s function satisfying (2.7) has the regular asymptotic expansion

(2.9) G(z,8) ~ DIQ™! + Go(z,8) + O(D™Y),

where Go(z,€) is the Neumann Green’s function satisfying

(2.10a) AG():';Z‘—d(m—g), reQ: 0,Go=0, ze€dQ: /QGod:nzo,
(2.10b) Gol,€) ~ m;_a T Ro(w,€) + ViRy(,6) - (1 —€),  as @€,

and Ro(z,€) is the regular part of Go(x,€) as |z — €| — 0. In summary, for the two ranges of D we have
@) 69~ g {ﬁff;ﬁlj‘};ig,@ fo, Do, EmE0

By matching the p — oo behaviour of U;(p) given by (2.5) with the behaviour of u given by (2.8) as
|z — ;] — 0, we obtain in the two regimes of D that

Sie R(wi, i) + 3254 5G4, 5) D=0(1),

(2.12) p(Sie) = 4me N
SigR0($i7 .’Ez) + Zj;éi SjaGo(xi, :Ej) + D|Q’ Zj:l Sjg , D>1.

From the D > 1 case we see that D = O(¢7!) is a distinguished regime for which the right-hand side
has an O(1) contribution. Defining the vectors S. = (Si,...,Sne)?, u(S:) = (u(S1e), ..., u(Sne))T, and
e=(1,...,1)T, as well as the matrices &y, G, and Gy by

1 R(mi,fbi), 1= Ro(fci,ﬂﬁi)a 1=
2.13 En = —eel ii = , ij = )
(2.13) v=gee (G {G(Jri7xj), i (o) {Go(:ci,:cj), i#]
5
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we obtain from (2.12) that the unknowns Sy, ..., Sy. must satisfy the NAS

(2.14a) w(Se) = 4meGS, , for D=0(1),
47 N Dg
1]

2.3. Symmetric and Asymmetric N-Spot Quasi-Equilibrium. We now determine solutions to the NAS
(2.14) in both the D = O(1) and the D = O(e~!) regimes. In particular, we show that it is possible to
construct symmetric N-spot solutions to (1.1) by finding a solution to the NAS (2.14) with S; = Scce in
both the D = O(1) and D = O(e~!) regimes. Moreover, when D = O(¢~!) we will show that it is possible
to construct asymmetric quasi-equilibria to (1.1) characterized by spots each having one of two strengths.

When D = O(1) the NAS (2.14a) implies that to leading order p(S;c) =0 for alli =1,...,N. From
the properties of p(S) outlined in §2.1 and in particular the plot of u(S) in Figure la, we deduce that
Sie ~ Sy for alli=1,..., N. Thus, to leading order, N-spot quasi-equilibria in the D = O(1) regime have
spots with a common height, which we refer to as a symmetric pattern. By calculating the next order
term using (2.14a) we readily obtain the two term result

(2.14b) w(Se) = KENS: + 4meGoS: for D=¢"1Dy, where k=

4dme S,
(2.15) S. ~ S.e + N,(S*)ge.
We conclude that the configuration z1,...,zy of spots only affects the spot strengths at O(e) through the
Green’s matrix G. Note that if e is an eigenvector of G with eigenvalue gy then the solution to (2.14a) is
Sic = Scce where S, satisfies the scalar equation p(Se:) = 4megoSee-
Next, we consider solutions to the NAS (2.14b) in the D = e~ 1Dy regime. Seeking a solution S, ~
So+¢eS1+ -+ we obtain the leading order problem

(2.16) 1(So) = kKENSo.

Note that the concavity of (S) (see Figure la) implies the existence of two values 0 < S} < S, < S such
that u(S;) = u(S;). Thus, in addition to the symmetric solutions already encountered in the D = O(1)
regime, we also have the possibility of asymmetric solutions, where the spots can have two different heights.
We first consider symmetric solutions, where to leading order Sg = Sce in which S, satisfies

(2.17) w(Se) = KSe .

The plot of p(S) in Figure la, together with the S < 1 asymptotics given in (2.2), imply that a solution
to (2.17) can be found in the interval 0 < S, < S, for all K > 0. In Figure 3a we illustrate graphically that
the common spot strength S, is obtained by the intersection of x(.S) with the line kS. We refer to Figure
4 for plots of the symmetric solution strengths as a function of k. From (2.14b), the next order correction
S satisfies 4/(S.)81 — kENS1 = 47S.Goe. Left-multiplying this expression by e! to solve for e’'S1, and
recalling the definition &y = N~ lee”, we calculate

47 S,

1 47 S, 1
ENS1 = —ee’S = ——— —eel'Goe = ————ENnGoe,
VB e O = S — N I T (s, — RN
from which S can then be calculated. In summary, a two term asymptotic expansion for the symmetric
solution to (2.14b) is

4meS, K
2.1 ~Seq gy ,
(219 S s (0 e J e

6
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Figure 2: Plots of (a) S;(S,) and (b) S/(S,) for the construction of asymmetric N-spot patterns. (c) Plots of f(S,6)
for select values of § =n/N. For 0 < 6 < 0.5 the function f(S,0) attains an interior minimum in Sc.; < S < Sy.

provided that p/(S.) # 0 (i.e. Se # Seit). Note that p/(S.) — k = 0 is impossible by the following simple
argument. First, for this equality to hold we require that 0 < S < Sgit since otherwise p/(S.) < 0.
Moreover, we can solve (2.17) for s to get u'(S.) — k = S 1g(S.) where g(S) = Sp/(S) — u(S). However,
we calculate ¢'(S) = Sp”(S) < 0 and moreover, using the small S asymptotics found in (2.2) we determine
that g(S) ~ —/S/(4b) < 0 as S — 0T. Therefore, g(S.) < 0 for all 0 < S. < Seis so that p/(S.) < &
holds. Finally, as for the D = O(1) case, if Goe = gooe then the common source values extends to higher
order and we have S. = S..e where S, is the unique solution to the scalar problem

(2'19) N(Scs) = ('% + 47”5900)505 .

Next, we construct asymmetric N-spot configurations. The plot of u(S) indicates that for any value
of S, € (Seit, Sx] there exists a unique value S; = Si(S,) € [0, Serit) satisfying p(S;) = u(Sy). A plot of
S;(Sy) is shown in Figure 2a. Clearly S;(Scrit) = Serit and S;(Sx) = 0. We suppose that to leading order
the N-spot configuration has n large spots of strength S, and N — n small spots of strengths S;. More
specifically, we seek a solution of the form

(2.20) S~ (Sp ..., 808108, ..., 818N,
so that (2.16) reduces to the single scalar nonlinear equation
(2.21) w(Sr) = kf(Sr;n/N), on Seit < Sp < Sk, where f(S;0) =65+ (1—-0)S,(S).

Since p(Serit) — K (Serit; n/N) = 11(Serit) — KSerit and pu(Sy) — Kf(Sx;n/N) = —knS, /N < 0, we obtain by
the intermediate value theorem that there exists at least one solution to (2.21) for any 0 < n < N when

0 < k < ket = p(Serit)/Serit =~ 0.64619.

Next, we calculate

F(s:0) = (1-0) (125 + 81(5)).

7
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Figure 3: (a) Illustration of solutions to (2.17) as the intersection between p(S) and kS. There is a unique solution
if K < Ket = p(Serit)/Serit- (b) Ilustration of solutions to (2.21) as the intersection between p(S) and xf(S,0)
where § = n/N denotes the fraction of large spots in an asymmetric pattern. Note that when 6 = 0.2 < 0.5 and
K > Ke1 &2 0.64619 there exist two solutions. (c) Plot of k.2 — ke1 versus n/N. Observe that k.o — ke increases as
the fraction of large spots decreases.

where S}(S) is computed numerically (see Figure 2b). We observe that —1 < S}(S,) < 0 with S)(Serit) = —1
and S}(Sx) = 0. In particular, f(S;n/N) is monotone increasing if §/(1 — 0) = n/(N —n) > 1, while it
attains a local minimum in (Sct, Sx) if n/(IN —n) < 1. A plot of f(S;60) is shown in Figure 2c. In either
case, we deduce that the solution to (2.21) when 0 < k < K1 is unique (see Figure 3b). On the other hand,
when n/(N —n) < 1 we anticipate an additional range of values k. < Kk < K¢ for which (2.21) has two
distinet solutions S < Sy < Sy < S,. Indeed, this threshold can be found by demanding that p(S) and
kf(S;n/N) intersect tangentially. In this way, we find that the threshold k.o can be written as

_ _ u(Sy)
(2.22a) Ke2 = Kea(n/N) = Wv

where S} is the unique solution to
(2.22b) F(SEn/NY(SE) = F1(S5m/N)u(SE)

In Figure 3¢ we plot ke — ke as a function of n/N where we observe that rey > ke With ke — ke — 07
and Keg — K1 — 00 as n/N — 0.5~ and n/N — 0% respectively. Furthermore, in Figure 3b we graphically
illustrate how multiple solutions to (2.21) arise as # = n/N and k are varied. We remark that the condition
n/(N —n) < 1 implies that n < N/2, so that there are more small than large spots. The appearance of
two distinct asymmetric patterns in this regime has a direct analogy to results obtained for the 1-D and
2-D GM model in [21] and [24], respectively. The resulting bifurcation diagrams are shown in Figure 4 for
n/N =0.2,0.4,0.6. We summarize our results for quasi-equilibria in the following proposition.

Proposition 2.1. (Quasi-Equilibria): Let ¢ — 0 and z1,...,xxy € Q be well-separated. Then, the 3-D
GM model (1.1) admits an N -spot quasi-equilibrium solution with inner asymptotics

(2.23) v~ DVi(e o — 2;]), u~ DU;(e o — xy]),

as x — x; for eachi=1,...,N where V; and U; are given by (2.5). When |x — z;| = O(1), the activator is

exponentially small while the inhibitor is given by (2.8). The spot strengths Sic fori=1,..., N completely
8
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Figure 4: Bifurcation diagram illustrating the dependence on x of the common spot strength S. as well as the
asymmetric spot strengths S, and S; or S, and S;. In (a) and (b) we have n/N < 0.5 so that there are more small
spots than large spots in an asymmetric pattern. As a result, we observe that there can be two types of asymmetric
patterns with strengths S, and S; or S, and S;. In (c) the number of large spots exceeds that of small spots and only
one type of asymmetric pattern is possible.

determine the asymptotic solution and there are two distinguished limits. When D = O(1) the spot strengths
satisfy the NAS (2.14a), which has the leading order asymptotics (2.15). In particular, Sic ~ S, so all N-
spot patterns are symmetric to leading order. When D = =1 Dy the spot strengths satisfy the NAS (2.14D).
A symmetric solution with asymptotics (2.18) where S, satisfies (2.17) always exists. Moreover, if

ArND
0< % < kep ~ 0.64619 |

then an asymmetric pattern with n large spots of strength S, € (Scrit, Sx) and N —n small spots of strength

Sy € (0,Scrit) can be found by solving (2.21) for S, and calculating Sy from p(S;) = p(Sy). If, in addition

we have n/(N —n) < 1, then (2.21) admits two solutions on the range

47TNDO
€2

where kea(n/N) is found by solving the system (2.22).

0.64619 ~ k. < < /‘icz(n/N) s

We conclude this section by drawing some connections between multi-spot solutions in the D = O(1)
and D = O(¢~1) regimes. Recalling the definition k = 47N Dy /||, we deduce from (2.17) that

1

N@‘FO(K/_’S), as DO*)OO,

K
(2.24) Se ~ S (1 + 75
providing connections between the symmetric N-spot solutions in the D = O(1) regime as well as in the
D — oo (shadow limit) regimes. The asymmetric solutions predicted for the D = Dg/e regime persist
as Do decreases and it is, therefore, natural to ask what these solutions correspond to in the D = O(1)
regime. From the small S asymptotics (2.2) we note that the NAS (2.14a) does admit an asymmetric
solution, albeit one in which the source strengths of the small spots are of O(e?). Specifically, for a given
integer n in 1 < n < N we can construct a solution where

(2.25) Se~ (Sxy- 8%, 628n11.0,---,628Nn0)T .
9

)+(9(/<;2), as Dy — 0; Se
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By using the small S asymptotic expansion for p(S) given in (2.2), we obtain from (2.14a) that
2

(2.26) Sio=b 478> Glxsz;)| .  i=n+1,...,N.
j=1

We observe that in order to support N — n spots of strength O(e?), we require at least one spot of strength
O(1). Setting D = Dy/e, we use the large D asymptotics for G(z,§) in (2.9) to reduce (2.26) to

47 DonS, \ 2
9.27 Sig~ b2 AT DOnSANT N,
’ 12

Alternatively, by taking x < 1 in the NAS (2.14b) for the D = Dy/e regime, we conclude that S, ~ S, and
Sy ~ b(knS,/N)% Since kn/N = 4wDon/|9)|, as obtained from (2.14b), we confirm that the asymmetric

patterns in the D = Dg/e regime lead to an asymmetric pattern consisting of spots of strength O(1) and
O(£?) in the D = O(1) regime.

3. Linear Stability. Let (vg4e,uqe) be an N-spot quasi-equilibrium solution as constructed in §2. We
will analyze instabilities for quasi-equilibria that occur on O(1) time-scales. To do so, we substitute

(31) v= ’qu + eAt(b? u = uqe + €>\t¢,
into (1.1) and, upon linearizing, we obtain the eigenvalue problem
2 2qu Ut?e 9
(3.2) 5A¢—¢+T¢—u7w:)\¢, DAY — 1) + 26 vgep = TAY
qe qge

where 9,6 = 9,7 = 0 on 9. In the inner region near the j* spot, we introduce a local expansion in terms
of the associated Legendre polynomials P/"(cos#) of degree [ =0,2,3,..., and order m =0,1,...,[

(3.3) 6~ c; DP(cos0)™ Dy (p), 1~ ¢; DF"(cos 0)e ™ W, (p)

where p = e~z — z;|, and (0, ¢) € (0,7) x [0,27). Suppressing subscripts for the moment, and assuming

that e27\/D < 1, we obtain the leading order inner problem

I(1+1) 2V V2 I(1+1)
p2 ®7¢+7¢7W\I}:)\¢’ AP\IJ* p2

with the boundary conditions ®(0) = ¥/(0) = 0, and ® — 0 as p — oo. Here (V,U) satisfy the core

problem (2.1). The behaviour of ¥ as p — oo depends on the parameter [. More specifically, we have that

(3.4a) A, — U+2Ve =0, p>0,

B\,S)+p7t, for 1=0,
(3.4b) v {p—(1/2+w) ’ for >0, s

where 7; = (/3 +1(l+ 1) and B(\,S) is a constant. Here we have normalized ¥ by fixing to unity the

multiplicative factor in the decay rate in (3.4b). Next, we introduce the Green’s function Gj(p, p) solving

l(I+1) 2 _ . _ 1 (p/p)", 0<p<p,
3.5 A,Gp — Gy =-p d(p—p), givenby Gi(p,p)= =9 .
(3.5) P 02 (p=7) X2 2vvpp | (p/p)", p>p,

10
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when [ > 0. For [ = 0 the same expression applies, but an arbitrary constant may be added. For convenience
we fix this constant to be zero. In terms of this Green’s function we can solve for ¥ explicitly in (3.4a) as

B(\,S), for =0,

(3.6) v = 2/000 Gi(p, ﬁ)V(ﬁ)(I)(ﬁ)ﬁz dp + {0’ for [ >0.

Upon substituting this expression into (3.4a) we obtain the nonlocal spectral problems
V2

(3.7a) ///()(ID:)@—FB()\,S)W, for 1=0; MP =\D, for [>0.

Here the integro-differential operator .#; is defined for every [ > 0 by

1(1+1) 2V 217
-+ D
p2 + U U2

(3.70) M = D, / " G, V(D)2 (3)7 dp.

A key difference between the [ = 0 and [ > 0 linear stability problems is the appearance of an unknown
constant B(A,S) in the [ = 0 equation. This unknown constant is determined by matching the far-field
behaviour of the inner inhibitor expansion with the outer solution. In this sense, we expect that B(\,.S)
will encapsulate global contributions from all spots, so that instabilities for the mode | = 0 are due to
the interactions between spots. In contrast, the absence of an unknown constant for instabilities for the
I > 0 modes indicates that these instabilities are localized, and that the weak effect of any interactions
between spots occurs only through higher order terms. In this way, instabilities for modes with [ > 0 are
determined solely by the spectrum of the operator .#;. In Figure 5a we plot the numerically-computed
dominant eigenvalue of .#; for | = 0,2,3 as well as the sub dominant eigenvalue for [ = 0 for 0 < § < 5.
This spectrum is calculated from the discretization of .#; obtained by truncating the infinite domain to
0 < p < L, with L > 1, and using a finite difference approximation for spatial derivatives combined with
a trapezoidal rule discretization of the integral terms. The [ = 1 mode always admits a zero eigenvalue,
as this simply reflects the translation invariance of the inner problem. Indeed, these instabilities will be
briefly considered in Section 4 where we consider the slow dynamics of quasi-equilibrium spot patterns.
From Figure 5a we observe that the dominant eigenvalues of . for [ = 2, 3 satisfy Re(\) < 0 (numerically
we observe the same for larger values of [). Therefore, since the modes [ > 1 are always linearly stable, for
the 3-D GM model there will be no peanut-splitting or spot self-replication instabilities such as observed
for the 3-D Schnakenberg model in [19]. In the next subsection we will focus on analyzing instabilities
associated with [ = 0 mode, which involves a global coupling between localized spots.

3.1. Competition and Hopf Instabilities for the [ = 0 Mode. ;From (3.7a) we observe that A is in the
spectrum of .# if and only if B(A, S) = 0. Assuming that B(\,S) # 0 we can then solve for ® in (3.7a) as
(3.8) ® = B\, S) (o — \)"H(V?/U?).

Upon substituting (3.8) into the expression (3.6) for ¥ when | = 0, we let p — oo and use Go(p,p) ~ 1/p
as p — 00, as obtained from (3.5), to deduce the far-field behaviour

2B [
(3.9) U~ B+ " V(dly — NNV U pPdp, as p— 0.
0
11

This manuscript is for review purposes only.



306

308
309
310
311
312
313

314

316

318

Real Part of Dominant Eigenvalues of A1, BlA ., S)

o5

o4

oz

o0

—0.4

o.10 D15 0.20

Figure 5: (a) Spectrum of the operator .#; defined in (3.7b). The dashed blue line indicates the eigenvalue with
second largest real part for [ = 0. Notice that the dominant eigenvalue of .#( is zero when S = S.i; =~ 0.04993,
corresponding to the maximum of u(S) (see Figure 1a). (b) Plot of B(A,S). The dashed line black indicates the
largest positive eigenvalue of .#,(S) and also corresponds to the contour B(A,S) = 0. We observe that B(A,S) is
both continuous and negative for S > St &~ 0.04993.

We compare this expression with the normalized decay condition on ¥ in (3.4b) for [ = 0 to conclude that

1
(3.10) B(A,S) = 2f0<>o V(dly — N L(V2 /U p2dp

We now solve the outer problem and through a matching condition derive an algebraic equation for the
eigenvalue A. Since the interaction of spots will be important for analyzing instabilities for the [ = 0 mode,
we re-introduce the subscript j to label the spot. First, since 0,¥; ~ —p~2 as p — o0, as obtained from
(3.4b) for [ = 0, an application of the divergence theorem to A,¥; = —2V;®; yields that fooo Vj@jp2 dp =
1/2. Next, by using vge ~ DVj(p) and ¢ ~ ¢;D®;(p) for |z — x;| = O(e) as obtained from (2.23) and (3.3),
respectively, we calculate in the sense of distributions for € — 0 that

N o N
26 2v4ep — 8meD? Z ¢j (/ V;®,p? dp) §(x — x;) = dweD? Z cio(x — xj) .
0

j=1 j=1

Therefore, by using this distributional limit in the equation for v in (3.2), the outer problem for 1 is

(14 7)) al
(3.11) Aw—Twz—élﬂeDché(az—xj), x € Oy =0, x€dd.
j=1
The solution to (3.11) is represented as
N
(3.12) ) =4meD Y ¢;GNa, 7))
j=1

12
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where G*(x, £) is the eigenvalue-dependent Green’s function satisfying

(3.13) )
A A
G*(z,§) il — €| + R (z,€) +0(1), as = —€&.

Here Rz, &) is the regular part of G*(z,¢). By matching the limit as z — x; of 1 in (3.12) with the
far-field behaviour ¥ ~ D¢; B(A, S;) of the inner solution, as obtained from (3.9) and (3.3), we obtain the
matching condition

N
(3.14) B(/\, Si)ci = 4me <C¢R)‘(1L’i, .TZ) + Z chA(xi, xj)> .
J#
As similar to the construction of quasi-equilibria in §2, there are two distinguished limits D = O(1) and
D = Dy/e to consider. The stability properties are shown to be significantly different in these two regimes.
In the D = O(1) regime, we recall that S; ~ S, for i = 1,..., N where u(Ss) = 0. From (3.14), we
conclude to leading order that B(\,S,) = 0, so that A must be an eigenvalue of .#, when S = S,. However,
from Figure 5a we find that all eigenvalues of .#, when S = S, satisfy Re(\) < 0. As such, from our leading
order calculation we conclude that N-spot quasi-equilibria in the D = O(1) regime are all linearly stable.
For the remainder of this section we focus exclusively on the D = Dg/e regime. We assume |1 +
7A|/Do < 1 so that GMz,£) ~ e 1Dy/ [(1 4+ 7A)|Q|] + Go(z, €), where Gy is the Neumann Green’s function
satisfying (2.10). We substitute this limiting behaviour into (3.14) and, after rewriting the the resulting
homogeneous linear system for ¢ = (cy,...,cx)? in matrix form, we obtain

(3.15) Be= H“ Ene+dmeGoe,  where B=diag(B(\,S1),....B(\Sy)), Ex=Nee".
T

Here Gy is the Neumann Green’s matrix and x = 4w N D /|€2| (see (2.14b)). Next, we separate the proceeding

analysis into the two cases: symmetric quasi-equilbrium patterns and asymmetric quasi-equilibria.

3.1.1. Stability of Symmetric Patterns in the D = D/ Regime. We suppose that the quasi-
equilibrium solution is symmetric so that to leading order S; = ... = Sy = S, where S, is found by
solving the nonlinear algebraic equation (2.17). Then, from (3.15), the leading order stability problem is

(3.16) B\, S.)e = H%&Vc.

We first consider competition instabilities for N > 2 characterized by ¢’e = 0 so that Eyc = 0. Since
B(\,S.) = 0 from (3.16), it follows that A\ must be an eigenvalue of .#, defined in (3.7b), at S = S..
From Figure 5a we deduce that the pattern is unstable for S below some threshold where the dominant
eigenvalue of .Z equals zero. In fact, this threshold is easily determined to correspond to S, = Secrit, where
1 (Serit) = 0, since by differentiating the core problem (2.1) with respect to S and comparing the resulting
system with (3.4) when [ = 0, we conclude that B(0, S;) = 1/(Sc). The dotted curve in Figure 5b shows that
the zero level curve B(\, S.) = 0 is such that A > 0 for S. < Scyit- As such, we conclude from (2.17) that
symmetric N-spot quasi-equilibria are unstable to competition instabilities when k > k1 = p(Serit)/Serit -

For special spot configurations {z1,...,zy} where e is an eigenvector of Gy we can easily calculate
a higher order correction to this instability threshold. Since Gy is symmetric, there are N — 1 mutually
13
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orthogonal eigenvectors q2, .. .,qyN such that Gogqr = grqi with qfe = 0. Setting ¢ = g in (3.15), and using
B(0,S) ~ e (Sait)d for S = Seit + €0, we can determine the perturbed stability threshold where A = 0
associated with each eigenvector q;. By taking the minimum of such values, and by recalling the refined
approximation (2.19), we obtain that N-spot symmetric quasi-equilibria are all unstable on the range

4re
3.17 See < Sepit + ————  mi .
(3.17) e < Serit + T (Som) 1250 9

Next we consider the case ¢ = e for which we find from (3.15) that, to leading order, \ satisfies

H J—
14+7A

(3.18) B(A, Se) —

First, we note that A = 0 is not a solution of (3.18) since, by using B(0,S) = ¢/(.5), this would require that
' (Se) = K, which the short argument following (2.18) demonstrates is impossible. Therefore, the ¢ = e
mode does not admit a zero-eigenvalue crossing and any instability that arises must occur through a Hopf
bifurcation. We will seek a leading order threshold 7 = 7, (k) beyond which a Hopf bifurcation is triggered.
To motivate the existence of such a threshold we consider first the x — oo limit for which the asymptotics
(2.24) implies that S. = 1/(bk?) < 1 so that from the small S expansion (2.2) of the core solution we
calculate from (3.7b) that #,® ~ A,® — ® + 2w.P + O(k~1). Then, by substituting this expression,
together with the small S asymptotics (2.2) where S. ~ 1/bx? < 1, into (3.10) we can determine B(\, S.)
when x > 1. Then, by using the resulting expression for B in (3.18), we obtain the following well-known
nonlocal eigenvalue problem (NLEP) corresponding to the shadow limit x = 4w N Dy /|Q2| — oc:

2 [0 we(Ap — 14 2we — A) " twZp?dp
IR -
From Table 1 in [22], this NLEP has a Hopf bifurcation at 7 = 7,° ~ 0.373 with corresponding critical

eigenvalue A = iA%° with A\7° ~ 2.174. To determine 7 (x) for k = O(1), we set A = i)p, in (3.18) and
separate the resulting expression into real and imaginary parts to obtain

(3.19) 1+7A— 0.

Im (B(iAn, Se)) |B(i)‘haSC)|2

(3.20) Th = " MiRe (B(iMn, Se))’ m

—k=0,

where S, depends on k from (2.17). Starting with k = 50 we solve the second equation for A, using Newton’s
method with A, = A}° as an initial guess. We then use the first equation to calculate 75,. Decreasing ~ and
using the previous solution as an initial guess we obtain the curves 7,(k) and A\, (k) shown in Figures 6a
and 6b respectively.

We conclude this section by noting from Figure 6b that the leading order Hopf bifurcation threshold
diverges as kK — njl, where k¢1 = p(Serit)/Serit- As a consequence, the assumption that |1 + 7A|/Dy < 1
fails to hold, which thereby invalidates the leading order analysis leading to (3.20). The Hopf bifurcation
threshold for kK < k. must therefore be directly calculated from (3.14) which, in contrast to the leading
order theory, will now depend on the spatial configuration of the N spots. To illustrate the continuation
of the Hopf bifurcation threshold into the k < k. regime we consider an N = 1 spot solution for which
we can use the series expansions in (3.12)—(3.14) of [14] to calculate the reduced wave Green’s function
in the unit sphere and numerically solve (3.14) using Newton’s method. Fixing e = 0.01, this yields the
higher order asymptotic approximation for the Hopf bifurcation threshold indicated by the dashed lines

14
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Figure 6: Leading order (a) Hopf bifurcation threshold 75, (k) and (b) critical eigenvalue A = i), for a symmetric
N-spot pattern as calculated by solving (3.20) numerically. (¢) Comparison of the leading order Hopf bifurcation
threshold with the higher order Hopf bifurcation threshold for an N = 1 spot pattern centred at the origin of the
unit ball with ¢ = 0.01, as obtained by solving (3.14) directly (note x = 3Dy).

in Figure 6. This shows that to higher order the bifurcation threshold is large but finite in the region
Kk < Ke1- Moreover, it hints at an € dependent rescaling of 7 in the region x < k. for which a counterpart
to (3.16) may be derived. While we do not undertake this rescaling in this paper we remark that for 2-D
spot patterns this rescaling led to the discovery in [18] of an anomalous scaling law for the Hopf threshold.

3.1.2. Stability of Asymmetric Patterns in the D = D/ Regime. When the N-spot pattern consists

of n large spots of strength 51 = ... =5, =5, and N —n small spots of strength S,,;1 =... =Sy =9,
the leading order linear stability is characterized by the blocked matrix system
B(\, Sy)Z, 0 K
3.21 ’ = &
( ) ( 0 B(Avsl)IN—n ¢ 1+7A Ne;

where Z,, denotes the m x m identity matrix. In particular, an asymmetric quasi-equilibrium solution is

linearly unstable if this system admits any nontrivial modes, ¢, for which A\ has a positive real part. We

will show that all asymmetric patterns are always unstable by explicitly constructing unstable modes.
First, we assume that 1 <n < N — 1 and we choose ¢ to be a mode satisfying

(3.22) cg=---=¢,=0, Cni1t+ - +eny=0.

Note that this mode describes competition among the N — n small spots of strength S;. For such a mode,
(3.21) reduces to the single equation B(A,S;) = 0, which implies that A must be an eigenvalue of .#{ at
S = 5;. However, since S; < Seit, we deduce from Figure 5a that there exists a real and positive A\ for .#
at S = S;. As such, any mode ¢ satisfying (3.22) is linearly unstable.

We must consider the n = N — 1 case separately since (3.22) fails to yield nontrivial modes. Instead of
considering competition between the small spots, we instead consider competition between large and small
spots collectively. We assume that n > N —n, for which n = N — 1 is a special case, and we try to exhibit
an unstable mode ¢ of the form

(3.23) cl=...=c¢cp,=¢p, Chtl=...=CN =(].
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Then, (3.21) reduces to the system of two equations

(BOVS) - gk ) e - mn S7a =0, —gixfe + (BOS) - 5052 ) a =0,

which admits a nontrivial solution if and only if the determinant of this 2 x 2 system vanishes. Therefore,
to show that this mode is unstable it suffices to prove that the zero-determinant condition, written as

K

(3.24) F(A) =B\ S)BAS) = 10—

< Y, ST>> -0,

(;B()\, Sl) + L

has a solution A > 0. To establish this, we first differentiate u(S,) = u(.S;) with respect to S, to obtain the
identity p'(51)S](Sr) = 1/(Sy). Combining this result with B(0,.S) = 1/(S) we calculate that

N —n) n as;
3.25 F(0) = /(S /ST—( .
(3.25) e |
Using /(S;) > 0 and ¢/ (S,) < 0 together with Sj(S,) > —1 (see Figure 2b) and the assumption n/(N—n) >
1, we immediately deduce that F'(0) < 0. Next, we let Ay > 0 be the dominant eigenvalue of .#, when
S =5 (see Figure 5a) so that B(\g, S;) = 0. Then, from (3.24) we obtain

K (N—n)B

.2 F - _
(3.26) (%) 1+7 N

()‘Oy Sr) :

However, since .#( at S = S, > St has no positive eigenvalues (see Figure 5a), we deduce that B(A,S;)
is of one sign for A > 0 and, furthermore, it must be negative since B(0,S,) = 1/(S,) < 0 (see Figure 5b
for a plot of B showing both its continuity and negativity for all A > 0 when S > Sc;;). Therefore, we
have F'(Ag) > 0 and so, combined with (3.25), by the intermediate value theorem it follows that F'(A\) =0
has a positive solution. We remark that our method for showing that all asymmetric multi-spot solutions
are linearly unstable can be used to extend the stability results for the 3-D Schnakenberg obtained in [19],
which showed instability only for n > N — n. We summarize our leading order linear stability results in
the following proposition:

Proposition 3.1. (Linear Stability): Let e < 1 and assume that t < O(e~3). When D = O(1), the
N-spot symmetric pattern from Proposition 2.1 is linearly stable. If D = €~ 'Dq then the symmetric N-
spot pattern from Proposition 2.1 is linearly stable with respect to zero-eigenvalue crossing instabilities if
Kk < ket = p(Serit)/Serit = 0.64619 and is unstable otherwise. Moreover, it is stable with respect to Hopf
instabilities on the range k > ke1 if T < Th(K) where T, (k) is plotted in Figure Ga. Finally, every asymmetric
N-spot pattern in the D = e~ 'Dq regime is always linearly unstable.

4. Slow Spot Dynamics. A wide variety of singularly perturbed RD systems are known to exhibit slow
dynamics of multi-spot solutions in 2-D domains (cf. [9], [3], [15], [20]). In this section we derive a system
of ODE’s which characterize the motion of the spot locations x1,...,xy for the 3-D GM model on a slow
time scale. Since the only N-spot patterns that may be stable on an O(1) time scale are (to leading order)
symmetric we find that the ODE system reduces to a gradient flow. We remark that both the derivation
and final ODE system are closely related to those in [19] for the 3-D Schnakenberg model.

The derivation of slow spot dynamics hinges on establishing a solvability condition for higher order
terms in the asymptotic expansion in the inner region near each spot. As a result, we begin by collecting

16
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higher order expansions of the limiting behaviour as |z — 2;| — 0 of the Green’s functions G(x,x;) and
Go(z, x;) that satisfy (2.7) and (2.10), respectively. In particular, we calculate that

G iy g -V1G 1y Ly ) . .7
(4.1a) G(x; + ey, zj) ~ 1($ 7) ey Vil z;) Z%] as |z —x;| =0,
Trep T R(zi,z;) + ey - ViR(zi, ), 1=17,

where p = |y| and V; denotes the gradient with respect to the first argument. Similarly

D G iy Lj -V1G iryLg) } .7
(4.1b) Gg(xi—ksy,xj)w—o—k ?(:C ) + ey - Vilo(zi, z;) ij as |z — x| — 0.
€‘Q| Irep + RO(IEl) + EY - VlRO(:Eiami)v =17,

Next, we extend the asymptotic construction of quasi-equilibrium patterns in §2 by allowing the spot
locations to vary on a slow time scale. In particular, a dominant balance in the asymptotic expansion
requires that x; = x;(0) where o = £3t. Near each spot z; we introduce a first order correction to the
leading order expansion obtained in §2.2

(4.2) v~ DV~ D(Vie(p) + e*Via(y) +-++),  u~ DU; ~ D(Uic(p) + *Upy) + - -+ ) ,
where Vic(p) = V(p, Sic) and Ui (p) = U(p, Sic). By using the chain rule we calculate 9,V; = —&22/(c)-V, V;

and ,U; = —e22/(0) - V,U;. In this way, upon substituting (4.2) into (1.1) we collect the O(g?) terms to
obtain that Vjo and U;o satisfy

(4.3a) LW =AW+ QWi =—fi., yeR,
where

(Vi _ (pVLp) (o) -y (1420 Ve —ULPVE
o wam (1) = (PO g (M )

It remains to determine the appropriate limiting behaviour as p — oco. From the first row of Q;., we
conclude that V;o — 0 exponentially as p — oo. However, the limiting behaviour of U;s must be established
by matching with the outer solution. To perform this matching, we first use the distributional limit

N N
e %? — 4dneD? Z Sje0(x — x7) + 263 D? Z </ VieVio dy) é(x —xj),
j=1 =1 /R

where the localization at each x1,...,zy eliminates all cross terms. We then update (2.8) to include the
O(£3) correction term. This leads to the refined approximation for the outer solution

N N
(4.4) u~4reD Y " S;G(z, ;) + 268D ) </Rs Vi-Via dy) Gz, ;).
=1 i=1

We observe that the leading order matching condition is immediately satisfied in both the D = O(1) and the
D = Dy /e regimes. To establish the higher order matching condition we distinguish between the D = O(1)
17
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and D = ¢~ 1Dy regimes and use the higher order expansions of the Green’s functions as given by (4.1a)
and (4.1b). In this way, in the D = O(1) regime we obtain the far-field behaviour as |y| — oo given by

1 bic
(4.5) Uia ~ 35 e VieViody +y - bic e SieViR(xs, z) + ; SieVi1G(xi, ) .

Similarly, in the D = Dg/e regime we obtain the following far-field matching condition as |y| — oo:
(4.6)
1 2D & , boi=
Uia ~ 35 o VieVia dy + %) Z /R3 VieVia dy + 9y - bose e SieViRo(z;, i) + Z S;eV1Go(xs, xj) .
J=1 JFi
In both cases, our calculations below will show that only b;c and bg;. affect the slow spot dynamics.

To characterize slow spot dynamics we calculate (o) by formulating an appropriate solvability con-
dition. We observe for each k = 1,2,3 that the functions 0, W;. where W;. = (Vi.,U; )T satisfy the
homogeneous problem .%;.0,, W;. = 0. Therefore, the null-space of the adjoint operator .Z% is at least
three-dimensional. Assuming it is exactly three dimensional we consider the three linearly independent
solutions W, = yxP;(p)/p to the homogeneous adjoint problem, where each P;(p) = (Pi1(p), P2(p)T solves

4.7)  AP; — %Pi + 0P, =0, p>0; Pi0)= <8> . with QL — <_01 8) as p— 00.
p

Owing to this limiting far-field behaviour of the matrix Qﬁ, we immediately deduce that Py = O(p~?)
and that Pj; decays exponentially to zero as p — oo. Enforcing, for convenience, the point normalization
condition Pjs ~ p~2 as p — 0o, we find that (4.7) admits a unique solution. We use each ¥;;. to impose a
solvability condition by multiplying (4.3a) by 7 and integrating over the ball, B, centred at the origin

and of radius pg with pg > 1. Then, by using the divergence theorem, we calculate

(4.8) lim <\Iﬂ; LW — Wi zwk> dy = lim (wﬁapwig — WZ;a,,\I:ik>

— —
po—oe Jp P00 J OB,

P do,
p=po

where © denotes the solid angle for the unit sphere.
To proceed, we use the following simple identities given in terms of the Kronecker symbol §;:

47 PO
(4.9) /Bykf(p)dy:O, /Bykylf(p)dyzékls/o p4f(p)dp, for 1,k=1,2,3.

PO PO

Since .Z7W;;, = 0, we can use (4.3a) and (4.9) to calculate the left-hand side of (4.8) as

(4.10)
3
i i Pu(p)Vi. 1 Pia(p)Ui
lim U LW ipdy = lim <— > (o) / yksz dy+ 5 ykw dy)
PO JB,, PO—00 -1 By, P By, P

aT

== Saulo) [ PaoVE) dp.
Next, in calculating the right-hand side of (4.8) by using the far-field behaviour (4.5) and (4.6), we observe

that only b;. and bg;. terms play a role in the limit. In particular, in the D = O(1) regime we calculate in
18
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Figure 7: Plot of the numerically-computed multiplier «(.S) as defined in the slow gradient flow dynamics (4.14).

terms of the components of b;.; of the vector b;., as given in (4.5), that

3
4
lim VoWl _ p2do = lim S by / YEL 10 = by,
pPo—00 9By, P=pPo pPO—0 = 9By, 0 3
(4.11) - 5
8
I who,¥, 2d0 = —2 i b / YE 40 = — by
Pol—r>noo 9B, 2%p Zk}P=P0p0 Pol—r>noo ; iel 0B, p% 3 ick
;From (4.8), (4.10), and (4.11), we conclude for the D = O(1) regime that
o0
(4.12) v (o) = ———— bick, where  v(S;) E/ Pi(p)Vi(p, Sic)p? dp,
V(Sie) 0
which holds for each component k = 1,2,3 and each spot i = 1,..., N. From symmetry considerations we

see that the constant contribution to the far-field behaviour, as given by the first term in (4.5), is eliminated
when integrated over the boundary. In an identical way, we can determine z, for the D = Dy/e regime.
In summary, in terms of the gradients of the Green’s functions and v;: = v(S;c), as defined in (4.12), we
obtain the following vector-valued ODE systems for the two distinguished ranges of D:

dz; 197 Sisle(:,Ui, .Tl) + Zj#i Sjsle(xi, LBJ)) s for D = 0(1) ,

(4.13) — ==

ie SieV1Ro(x, x;) + Zj;éi Sjgleo(ﬂji, JJ])) , for D = Dy/e.

Since only the symmetric N-spot configurations can be stable on an O(1) time scale (see Proposition
3.1), it suffices to consider the ODE systems in (4.13) when S;c = Sy + O(¢) in the D = O(1) regime and
when S;. = S, + O(e), where S, solves (2.17), in the D = e~ Dq regime. In particular, we find that to
leading order, where the O(e) corrections to the source strengths are neglected, the ODE systems in (4.13)
can be reduced to the gradient flow dynamics

dz; 6mS : o
(4.14a) %:—%vm%(m,...,m), with 7(5):/0 Pi(p)Vi(p, S)p%dp,

19
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Figure 8: (a) Leading order Hopf bifurcation threshold for a one-spot pattern. (b) Plots of the spot height v(0,t)
from numerically solving (1.1) using FlexPDEG6 [6] in the unit ball with € = 0.05 at the indicated 7 and Dy values.

where S = S, or S = S, depending on whether D = O(1) or D = £~ Dy, respectively. In (4.14) the discrete
energy ¢, which depends on the instantaneous spot locations, is defined by
N N _
(4.14Db) H(x1,...,xN) = ZZ]\?l Rlas, ) +2 Zl?vl 2j>i Gl ) for D= 0_(11) 7
Zi:l Ro(xi,l'i) +2Zi:1 Zj>i Go(xi,l'j), for D=¢""'Dy.

In accounting for the factor of two between (4.14) and (4.13), we used the reciprocity relations for the
Green’s functions. In this leading order ODE system, the integral v(.S) is the same for each spot, since
Py (p) is computed numerically from the homogeneous adjoint problem (4.7) using the core solution V;(p, S)
and U (p, S) to calculate the matrix O in (4.7). In Figure 7 we plot the numerically-computed (), where
we note that v(S) > 0. Since 7(S) > 0, local minima of ¢ are linearly stable equilibria for (4.14).

We remark that this gradient flow system (4.14) differs from that derived in [19] for the 3-D Schnaken-
berg model only through the constant (.S). Since this parameter affects only the time-scale of the slow
dynamics, we deduce that the equilibrium configurations and stability properties for the ODE dynamics
will be identical to those of the 3-D Schnakenberg model. As such, we do not analyze (4.14) further and
instead refer to [19] for more detailed numerical investigations. Finally we note that the methods employed
here and in [19] should be applicable to other 3-D RD systems yielding similar limiting ODE systems for
slow spot dynamics. The similarity between slow dynamics for a variety of RD systems in 2-D has been
previously observed and a general asymptotic framework has been pursued in [15] for the dynamics on the
sphere.

5. Numerical Examples. In this section we use FlexPDEG6 [6] to numerically solve (1.1) when (2 is the
unit ball. In particular, we illustrate the emergence of Hopf and competition instabilities, as predicted in
§3 for symmetric spot patterns in the D = Dy/e regimes.

20
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Figure 9: (a) Plots of the spot heights (solid and dashed lines) in a two-spot symmetric pattern at the indicated
values of Dy. Results were obtained by using FlexPDEG [6] to solve (1.1) in the unit ball with £ = 0.05 and 7 = 0.2.
(b) plot of three-dimensional contours of v(z,t) for Dy = 0.112, with contours chosen at v = 0.1,0.2,0.4.

We begin by considering a single spot centred at the origin in the unit ball, for the D = ¢~ Dy regime.
Since no competition instabilities occur for a single spot solution, we focus exclusively on the onset of Hopf
instabilities as 7 is increased. In Figure 8a we plot the Hopf bifurcation threshold obtained from our linear
stability theory, and indicate several sample points below and above the threshold. Using FlexPDE6 [6],
we performed full numerical simulations of (1.1) in the unit ball with ¢ = 0.05 and parameters Dy and
7 corresponding to the labeled points in Figure 8a. The resulting activator height at the origin, v(0,t),
computed from FlexPDEG6 is shown in Figure 8b for these indicated parameter values. We observe that
there is good agreement with the onset of Hopf bifurcations as predicted by our linear stability theory.

Next, we illustrate the onset of a competition instability by considering a symmetric two-spot config-
urations with spots centred at (£0.51565,0,0) in the unit ball and with 7 = 0.2 (chosen small enough to
avoid Hopf bifurcations) and ¢ = 0.05. The critical value of k. =~ 0.64619 then implies that the leading
order competition instability threshold for the unit ball with || = 47 /3 is Dy ~ 0.64619/(3N) = 0.108. We
performed full numerical simulations of (1.1) using FlexPDEG6 [6] with values of Dy = 0.09 and Dy = 0.112.
The results of our numerical simulations are shown in Figure 9, where we observe that a competition in-
stability occurs for Dy = 0.112, as predicted by the linear stability theory. Moreover, in agreement with
previous studies of competition instabilities (cf. [19], [3]), we observe that a competition instability triggers
a nonlinear event leading to the annihilation of one spot.

6. The Weak Interaction Limit D = O(e?). In §3 we have shown in both the D = O(1) and
D = O(¢71) regimes that N-spot quasi-equilibria are not susceptible to locally non-radially symmetric
instabilities. Here we consider the weak-interaction regime D = Dge?, where we numerically determine
that locally non-radially symmetric instabilities of a localized spot are possible. First, we let £ € () satisfy
dist(&,09Q) > O(e?) and we introduce the local coordinates = £ + ey and the inner variables v ~ 2V (p)
and u ~ g2U(p). With this scaling, and with D = Dye?, the steady-state problem for (1.1) becomes

(6.1) AV —V+UW2=0, DAU-U+V2=0, p=]|y>0.
21
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Figure 10: (a) Bifurcation diagram for solutions to the core problem (6.1) in the D = 2Dg regime. (b) Dominant
eigenvalue of the linearization of the core problem for each mode [ = 0,2, 3,4, as computed numerically from (6.5).

For this core problem, we impose the boundary conditions V,(0) = U,(0) = 0 and (V,U) — 0 exponentially
as p — oo. Unlike the D = O(1) and D = O(e7!) regimes, u and v are both exponentially small in the outer
region. Therefore, for any well-separated configuration 1, ...,z y, the inner problems near each spot centre
are essentially identical and independent. In Figure 10a we plot V(0) versus Dy obtained by numerically
solving (6.1). From this figure, we observe that for all Dy g 14.825, corresponding to a saddle-node point,
the core problem (6.1) admits two distinct radially-symmetric solutions.

Since both the activator V and inhibitor U decay exponentially there are only exponentially weak
interactions between individual spots. As a result, it suffices to consider only the linear stability of the core
problem (6.1). Upon linearizing (1.1) about the core solution we obtain the eigenvalue problem
I(l + 1) 2V V2 I + 1)

Pt T =2, DoAY -

62)  A,D-— V- W42V =0,
for each [ > 0 and for which we impose that ®'(0) = ¥’(0) = 0 and (P, ¥) — 0 exponentially as p — oo.
We reduce (6.2) to a single nonlocal equation by noting that the Green’s function G(p, pg) satisfying

l(l+1) 5(p — po)

p?

(6.3) Dol ,Gy — G -G =—

is given explicitly by

(6.4) Gulp, po) = 1 {Il+1/2(P/\/7)Kl+1/2(PO/\/7) p<po,

Doy/pop Ii11/2(p0/ v/ Do) Kiy1/2(p/ v/ Do) p>po,

where I,,(-) and K,,(-) are the n'® order modified Bessel Functions of the first and second kind, respectively.
As a result, by proceeding as in §3 we reduce (6.2) to the nonlocal spectral problem .#;® = A® where

2
(65) = a0 - "o 0 Fa - T [T 600 Vi) 2007 ds.

In Figure 10b we plot the real part of the largest numerically-computed eigenvalue of .#; as a function of
V(0) for I = 0,2,3,4. From this figure, we observe that the entire lower solution branch in the V(0) versus
22
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Dy bifurcation diagram in Figure 10a is unstable. However, in contrast to the D = O(1) and D = O(¢™!)
regimes, we observe from the orange curve in Figure 10b for the [ = 2 mode that when D = 2Dy there is
a range of Dy values for which a peanut-splitting instability is the only unstable mode.

In previous studies of singularly perturbed RD systems supporting peanut-splitting instabilities it has
typically been observed that such linear instabilities trigger nonlinear spot self-replication events (cf. [19],
[9], [15], and [3]). Recently, in [26] it has been shown using a hybrid analytical-numerical approach that
peanut-splitting instabilities are subcritical for the 2-D Schnakenberg, Gray-Scott, and Brusselator models,
although the corresponding issue in a 3-D setting is still an open problem. Our numerical computations
below suggest that peanut-splitting instabilities for the 3-D GM model in the D = e2Dq regime are also
subcritical. Moreover, due to the exponentially small interaction between spots, we also hypothesize that
a peanut-splitting instability triggers a cascade of spot self-replication events that will eventually pack the
domain with identical spots. To explore this proposed behaviour we use FlexPDE6 [6] to numerically solve
(1.1) in the unit ball with parameters 7 = 1, ¢ = 0.05 and Dy = 16¢2, where the initial condition is a single
spot pattern given asymptotically by the solution to (6.1) with V(0) = 5. From the bifurcation and stability
plots of Figure 10 our parameter values and initial conditions are in the range where a peanut-splitting
instability occurs. In Figure 11 we plot contours of the solution v(x,t) at various times. We observe that
the peanut-splitting instability triggered between t = 20 and ¢t = 60 leads to a self-replication process
resulting in two identical spots at t = 110. The peanut-splitting instability is triggered for each of these
two spots and this process repeats, leading to a packing of the domain with N = 8 identical spots.

7. General Gierer-Meinhardt Exponents. Next, we briefly consider the generalized GM model
(71) v =e*Av—v+u WP, Tup=DAu—u+e u", z€Q; Ow=0u=0, zcdN,

where the GM exponents (p,q,m,s) satisfy the usual conditions p > 1, ¢ > 0, m > 1, s > 0, and
¢=mqg/(p—1)—(s+1) > 0 (cf. [22]). Although this general exponent set leads to some quantitative
23
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differences as compared to the prototypical set (p,q,m,s) = (2,1,2,0) considered in this paper, many of
the qualitative properties resulting from the properties of 1(S) in Conjecture 2.1, such as the existence of
symmetric quasi-equilibrium spot patterns in the D = O(1) regime, remain unchanged.

Suppose that (7.1) has an N-spot quasi-equilibrium solution with well-separated spots. Near the ith
spot we introduce the inner expansion v ~ DV (y), u ~ DPU;(y), and y = e~ !(x — x;), where

AV = Vi D DBty — o AU - DT = =DM Gy g e RY.

Choosing « and 3 such that (p — 1)a — ¢S =0 and ma — (s +1)3 = 1 we obtain

a=v/C, B=1/C, v=gq/p-1), C=mv—(s+1)

with which the inner expansion takes the form v ~ D*/<V(p; S;.) and u ~ DY<U(p; S;.), where V(p; S)
and U(p; S) are radially-symmetric solutions to the D-independent core problem

(7.22) AV —V4+UVP=0, AU=-UV"  p>0,
(7.2b) V(0)=09,U(0)=0, V-—0 and U~pu(S)+S/p, p—oc.

By using the divergence theorem, we obtain the identity S = fooo U=sV™mp?dp > 0.

By solving the core problem (7.2) numerically, we now illustrate that the function u(S) retains several
of the key qualitative properties of the exponent set (p,q,m,s) = (2,1,2,0) observed in §2.1, which were
central to the analysis in §2 and §3. To path-follow solutions, we proceed as in §2.1 by first approximating
solutions to (7.2) for S < 1. For S <« 1, we use the identity S = fooo U=V™p?dp > 0 to motivate a small
S scaling law, and from this we readily calculate that

(73 v<p;s>~(f)<ilwc<p>, U(p;s>~(§)4il, u<s>~(§)<il, b= [T uitdp,

where w, > 0 is the radially-symmetric solution of
(7.4) Apwe —we+wh =0, p>0; Opwe(0) =0, we =0 as p— 00,

which is a generalization of (2.3) and has likewise been well studied [25]. With this approximate solution
for S < 1, we proceed as in §2.1 to calculate p(.S) in (7.2) for different GM exponent sets by path-following
in S. In Figure 12b we plot u(S) when (p,q,m,s) = (p,1,p,0) with p = 2,3,4, while a similar plot is
shown in Figure 12a for other typical exponent sets in [22]. For each set considered, we find that pu(.S)
satisfies the properties in Conjecture 2.1. Finally, to obtain the NAS for the source strengths we proceed
as in §2.2 to obtain that the outer solution for the inhibitor field is given by simply replacing D with D/¢
in (2.8). Then, by using the matching condition u ~ D¢ (u(S;e) + Sjee/|x — x;]) as @ — x;, for each
j=1,...,N, we conclude that the NAS (2.14) still holds for a general GM exponent set provided that
w1(S) is now defined by the generalized core problem (7.2).

8. Discussion. We have used the method of matched asymptotic expansions to construct and study
the linear stability of N-spot quasi-equilibrium solutions to the 3-D GM model (1.1) in the limit of an
asymptotically small activator diffusivity e < 1. Our key contribution has been the identification of two
distinguished regimes for the inhibitor diffusivity, the D = O(1) and D = O(¢™ 1) regimes, for which we
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Figure 12: Left panel: Plot of u(.S), computed from the generalized GM core problem (7.2), for the indicated exponent
sets (p, g, m, s). Right panel: p(S) for exponent sets (p,1,p,0) with p = 2, 3,4. For each set, there is a unique S = S,
for which p(Sy) = 0. The properties of u(S) in Conjecture 2.1 for the protypical set (2,1,2,0) still hold.

constructed N-spot quasi-equilibrium patterns, analyzed their linear stability, and derived an ODE system
governing their slow spot dynamics. We determined that in the D = O(1) regime all N-spot patterns are,
to leading order in e, symmetric and linearly stable on an O(1) time scale. On the other hand, in the
D = O(e7 ') regime we found the existence of both symmetric and asymmetric N-spot patterns. However,
we demonstrated that all asymmetric patterns are unstable on an O(1) time scale, while for the symmetric
patterns we calculated Hopf and competition instability thresholds. These GM results are related to those
in [19] for the 3-D singularly perturbed Schnakenberg model, with one of the key new features being the
emergence of two distinguished limits, and in particular the existence of localized solutions in the D = O(1)
regime for the GM model. For D = O(1), concentration behaviour for the Schnakenberg model as e — 0 is
no longer at discrete points typical of spot patterns, but instead appears to occur on higher co-dimension
structures such as thin sheets and tubes in 3-D (cf. [17]). For the GM model, we illustrated the onset of
both Hopf and competition instabilities by numerically solving the full GM PDE system using the finite
element software FlexPDE6 [6]. We have also considered the weak-interaction regime D = O(£?), where we
used a hybrid analytical-numerical approach to calculate steady-state solutions and determine their linear
stability properties. In this small D regime we found that spot patterns are susceptible to peanut-splitting
instabilities. Finally, using FlexPDEG6 we illustrated how the weak-interaction between spots together with
the peanut-splitting instability leads to a cascade of spot self-replication events.

We conclude by highlighting directions for future work and open problems. First, although we have
provided numerical evidence for the properties of p(S) highlighted in Conjecture 2.1, a rigorous proof
remains to be found. In particular, we believe that it would be significant contribution to rigorously prove
the existence and uniqueness of the ground state solution to the core problem (2.1), which we numerically
calculated when S = S,. A broader and more ambitious future direction is to characterize the reaction
kinetics F'(V,U) and G(V,U) for which the core problem

(8.1) AV +F(V,U) =0, AU+ G(V,U) =0, in p>0,
admits a radially-symmetric ground state solution for which V' — 0 exponentially and U = O(p~!) as

p — oo. The existence of such a ground state plays a key role in determining the regimes of D for
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Figure 13: Plots of the far-field constant behaviour for the (a) Gierer-Meinhardt with saturation, (b) Schnakenberg
or Gray-Scott, and (c) Brusselator models. See Table 1 for the explicit form of the kinetics F'(v,u) and G(v,u) for
each model. A zero-crossing of u(S) at some S > 0 occurs only for the GMS model.

which localized solutions can be constructed. For example, in the study of the 3-D singularly perturbed
Schnakenberg model it was found that the core problem does not admit such a solution and as a result
localized spot solutions could not be constructed in the D = O(1) regime (cf. [19]). To further motivate
such an investigation of (8.1) we extend our numerical method from §2.1 to calculate and plot in Figure 13
the far-field constant u(S) for the core problems associated with the GM model with saturation (GMS),
the Schnakenberg/Gray-Scott (S/GS) model, and the Brusselator (B) model (see Table 1 for more details).
Note that for the GMS model we can find values of S, such that p(Sy) = 0, but such a zero-crossing does
not appear to occur for the (S/GS) and (B) models. As a consequence, for these three specific RD systems,
localized spot patterns in the D = O(1) regime should only occur for the GMS model. Additionally,
understanding how properties of p(.5), such as convexity and positiveness, are inherited from the reaction
kinetics would be a significant contribution. In this direction, it would be interesting to try extend the
rigorous numerics methodology of [1] to try to establish Conjecture 2.1.
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