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Abstract

In a singularly perturbed limit of small diffusivity € of one of the two chemical species, equilibrium
spike solutions to the Gray-Scott model on a bounded one-dimensional domain are constructed asymp-
totically using the method of matched asymptotic expansions. The equilibria that are constructed are
symmetric k-spike patterns where the spikes have equal heights. Two distinguished limits in terms of a
dimensionless parameter in the reaction-diffusion system are considered: the low feed-rate regime and
the intermediate regime. In the low feed-rate regime, the solution branches of k-spike equilibria are
found to have a saddle-node bifurcation structure. The stability properties of these branches of solu-
tions are analyzed with respect to the large eigenvalues A in the spectrum of the linearization. These
eigenvalues, which have the property that A = O(1) as e — 0, govern the stability of the solution on
an O(1) time-scale. Precise conditions, in terms of the non-dimensional parameters, for the stability of
symmetric k-spike equilibrium solutions with respect to this class of eigenvalues are obtained. In the low
feed-rate regime, it is shown that a large eigenvalue instability leads either to a competition instability,
whereby certain spikes in a sequence are annihilated, or an oscillatory instability (typically synchronous)
of the spike amplitudes as a result of a Hopf bifurcation. In the intermediate regime, it is shown that
only oscillatory instabilities are possible, and a scaling-law determining the onset of such instabilities is
derived. Detailed numerical simulations are performed to confirm the results of the stability theory. It
is also shown that there is an equivalence principle between spectral properties of the Gray-Scott model
in the low feed-rate regime and the Gierer-Meinhardt model of morphogenesis. Finally, our results are
compared with previous analytical work on the Gray-Scott model.

1 Introduction

We study the existence and stability of equilibrium spike patterns in the one-dimensional Gray-Scott (GS)
model in a particular parameter regime. The GS model, introduced for continuously stirred systems in [10],
models an irreversible reaction involving two reactants in a gel reactor, where the reactor is maintained in

contact with a reservoir of one of the two chemical species. In nondimensional variables, this system is

Vr = D,Vxx — (F+k)V +UV?, 0<X<L, T>0; Vx=0, X=0,L, (1.1a)
Ur =D,Uxx +F(1-U)-UV?, 0<X<L, T>0; Ux=0, X=0,L. (1.1b)

Here D, > 0, D, > 0 are the constant diffusivities, F' > 0 is the feed rate, and k£ > 0 is a reaction-time
constant. For various ranges of these parameters, (1.1) and its two-dimensional counterpart, are known
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to posses a rich solution structure including the existence of stable standing pulses, the propagation of
traveling waves, pulse-replication behavior, and spatio-temporal chaos (cf. [4]-[7], [8], [15], [16], [19], [20],
[24], [25], [26], [28], [30], [31], [32], [33], [34], [35], and [38]).

We will analyze (1.1) in the singularly perturbed limit where D, /D, is asymptotically small. In our
formulation, it is convenient to introduce the change of variables v = V/\/F, x = —1+ 2X/L, and

t = (F 4 k)T as was used in [26]. This leads to the alternative dimensionless system
vy = 2050 — v + Auv?, —-1l<z<l, t>0; vp(£1,8) =0, (1.2a)
Tus = Dtigy + (1 — u) — uv? —l<z<1l, t>0; ug(£1,1) =0. (1.2b)
Here A>0,D >0,7>1,and 0 < ¢ K 1, are defined in terms of D,,, D,,, L, F, and k, by

4D, 2 4D, _F+k vVF

= v =" =28 4=
FI2° ° " I2F+k) |~ F F+k

(1.3)

The system (1.2) is particularly convenient in that it shows that the construction of equilibrium solutions
depends only on the parameters A and D, while the parameter 7 > 1 only influences the stability of these
solutions. The influence of the finite domain and the strength of the inter-spike interactions depends on
D. For a k-spike solution, the finite domain and the inter-spike interactions are significant only when
kv/D = O(1). When kv/D < 1, an equilibrium k-spike solution for (1.2) is composed, essentially, of k
identical copies of a one-spike solution for the infinite-line problem, where (1.2) is defined on —oo0 < z < oo.

We will analyze the existence and stability of equilibrium k-spike solutions for (1.2) in the limit £ — 0
and for D = O(1). There are three regimes for A where different behaviors are obtained. For the low
feed-rate regime A = 0(51/ 2) there is a saddle-node bifurcation structure of equilibrium k-spike solutions,
and we find that the stability of these solutions depends intricately on A, D, and 7. For the intermediate
regime O(e'/?) < A < O(1) there are certain scaling laws in terms of a universal nonlocal eigenvalue
problem that determine the stability of equilibrium spike solutions. Finally, in the high feed-rate regime
A = O(1) the equilibrium spike solutions again exhibit a saddle-node bifurcation structure, and this regime
is intimately connected with a pulse-splitting behavior of spike patterns. In this regime, which is studied
in the companion paper [17], the effect of the finite domain is crucial in the analysis.

We now summarize our results for the low feed-rate regime. In this regime, we introduce A and v by
A=¢e2A,  v=e1. (1.4)
In terms of (1.4), (1.2) is transformed to

v = e2ugg — v+ Aur?, “l<z<1, t>0; ve(£1,8) =0, (1.5a)
Tus = Dugy + (1 — u) — e tur? —l<z<l, t>0; ug(£1,1) = 0. (1.5b)
For € < 1, in §2 we construct k-spike equilibrium solutions where the spikes in v have a common amplitude.

For these symmetric k-spike equilibria, we show that for each k = 1,2... there are two branches of such

solutions for (1.5) when A > Ay.. These branches are parametrized in terms of a parameter s by

(1+5) 126, ~1/2 1
— ) . =,/ — =D Uy = . 1.
A= A, 2\/5 , 0<s<o0; Ake tanh(eo/k’)’ 0o , + sl ( 6)
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Here Uy ~ u(z;), where z; is a spike location. For D = 0.75, in Fig. 1 we plot the Lo norm of v versus A
for the k-spike solution branches for £ = 1,...,4 showing the existence thresholds A, (see (2.11) below
for the definition of the norm). For each k, the upper branch in this figure, where s > 1, is referred to as

the large solution branch, while the lower branch, where 0 < s < 1, is called the small solution branch.
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Figure 1: |v|2 versus A for D = 0.75 and k = 1,..,4. The dashed lines are unstable for 7 > 0. The heavy
solid lines are stable only with respect to the large eigenvalues when 7 < 7,7. The solid lines are stable
with respect to both the large and small eigenvalues when 7 < 7,7,. The fold values Ag, increase with k,
and Ay, corresponds to where the dashed and heavy solid lines intersect (for & = 1, Axp, = Age)-

In §3 we formally derive a nonlocal eigenvalue problem (NLEP) governing the stability of the symmetric
k-spike equilibrium solutions constructed in §2 with respect to the eigenvalues of order O(1) in the spec-
trum of the linearization. These eigenvalues, referred to as the large eigenvalues, are associated with the
initiation of profile instabilities, whereby the spike amplitudes will either oscillate, typically with a common
frequency and phase, or else undergo a competition instability leading to the monotonic annihilation of
spikes in a spike sequence. From this NLEP, we prove in Proposition 3.10 that the small solution branch is
unconditionally unstable for any 7 > 0 and D > 0. The stability properties of the large solution branch is
significantly more intricate. In particular, for each k = 1,2... and D > 0 fixed, we prove that there exists
a threshold value Agr, with Agr, > Age, such that the large solution branch is stable with respect to profile
instabilities for A > Ay when 7 < 7,1. An explicit formula for Ay, is given below in (3.25b). For the
range A > Ay, there is a Hopf bifurcation as 7 exceeds some critical value 7,7. This bifurcation typically
leads to a synchronous oscillatory instability in the spike amplitudes. The precise results are given below
in Propositions 3.11, 3.13, and 3.15. On the range Ax. < A < Ay, for the large solution branch, the
spectrum of the linearization of (1.5) around a symmetric k-spike equilibrium solution contains at least
one (unstable) real and positive eigenvalue. The existence of such eigenvalues in this parameter range is
the mechanism for the initiation of competition instabilities whereby certain spikes in a spike sequence are
annihilated. Precise spectral results for this range of A are given below in Proposition 3.12. The critical
values Agy, for k = 2,3,4 and D = 0.75 can be seen in Fig. 1.

We now illustrate these instabilities for (1.5) for the parameter set k = 4, D = 0.1, and € = 0.01 (this is
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Figure 2: The parameters are k = 4, D = 0.1, A = 8.0, ¢ = 0.01, and 7 = 2. Left figure: the initial
condition for v (solid curve) and u (dashed curve). Right figure: The spike amplitudes v,,. The second
and fourth spikes are annihilated by a spike competition. Of the two remaining spikes, the third spike has
the larger amplitude.

Example 3 of §3.3). For this example, our theory yields Ay, = 8.127. For the value A = 8.0, in Fig. 2(a) we
show a 1% perturbation in the equilibrium solution, which we use as the initial condition for (1.5). Since
A < Agr, our theory predicts the initiation of a spike competition process. In Fig. 2(b) we plot the spike
amplitudes, defined as the values of v at its local maxima, versus time showing a spike competition process
leading to the annihilation of two spikes. In Fig. 3(a) where A = 8.302 > Ay, we show a synchronous
decaying oscillation in the spike amplitudes when 7 = 3.8. In Fig. 3(b), where 7 = 4.1 exceeds the Hopf
bifurcation value, we show a synchronous oscillatory instability leading to the simultaneous collapse of the
four spikes. A theoretical analysis of the initiation of these fast instabilities is given in §3. Competition
and synchronous oscillatory instabilities in the low feed-rate regime, which occur as a result of the finite
domain and a strong inter-spike coupling, have not been previously reported for the GS model (1.5).

The intermediate regime, defined by O(1) < A < O(e~1/2), is analyzed in §4. In this regime, there
are no competition instabilities for spikes separated by O(1) distances. In this regime, we show that such
instabilities can only occur if the inter-spike separation distance L satisfies L < L, ~ (12fykDeA_2) 13 <1,
where A = ¢'/2A4 and 4, = 1+ cos (7/k). In Principal Result 4.2 we derive a universal nonlocal eigenvalue
problem, independent of D and k, that governs the stability of a symmetric k-spike equilibrium solution with
respect to oscillatory instabilities. In terms of a critical value of this eigenvalue problem, in Proposition 4.3
we derive a scaling law for the Hopf bifurcation value of 7. In the intermediate regime the Hopf bifurcation
value is 7 = O(A*). Thus, there are no oscillatory instabilities when 7 = O(1).

Although it is difficult to translate detailed spectral results into precise physical mechanisms for insta-
bility, a qualitative mechanism for the two types of instabilities is as follows. For a given value of A and

for a fixed small value of 7, a competition instability occurs when either D is too large, or equivalently
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Figure 3: Spike amplitudes for k =4, D = 0.1, A = 8.302, and € = 0.01. Left figure: synchronous decaying
oscillation in the amplitudes for 7 = 3.8. Bottom right: synchronous oscillatory instability for 7 = 4.1,
leading to simultaneous annihilation. The spike amplitudes trace out identical trajectories.

when the spikes are too close together. For D large, the inhibitor u diffuses over a large spatial extent
thereby preventing the occurrence of another spike. This instability is probably a counterpart of the spike
over-crowding instability observed numerically in the weak-interaction regime for the two-dimensional GS
model in [32], and observed experimentally in [19] in the ferrocyanide-iodate-sulphite reaction. For D
sufficiently large and 7 small, there are k — 1 positive real eigenvalues in the spectrum of the linearization.
The positive real eigenvalue responsible for a competition instability is the last real eigenvalue that remains
in the right half-plane as D is decreased. Alternatively, for a fixed D, oscillatory instabilities occur when
7 is sufficiently large. For 7 large, the inhibitor field u responds sluggishly to small temporal changes in
the spike pattern. This leads to an oscillatory feedback loop typical in delay-type differential equations.

Similar types of competition and synchronous oscillatory instabilities of equilibrium spike solutions
have been analyzed in [39] for the Gierer-Meinhardt (GM) model of morphogenesis introduced in [9], and
used to model localization problems in biological pattern formation and sea-shell patterns (cf. [11], [22],
[23]). In dimensionless form, this system can be written as

aP _;a™

atZSQam—a+ﬁ, Thy = Dhyy — h+¢ e -l<z<l1l, t>0, (1.7)

with a; = hy at £ = 1. Here a and h are the activator and inhibitor fields, with 0 < €2 < 1, D > 0, and
7 > 0. The usual assumption on the GM exponents (p, g, m, s) (cf. [9]) are that they satisfy

_gm
(p—1)

The relationship between oscillatory and competition instabilities in the GS and GM models is made precise

p>1, qg>0, m>1, 5>0, with ¢ = —(s+1)>0. (1.8)

in Proposition 3.3 below where we show that the nonlocal eigenvalue problem for instabilities in the GS



model in the low feed-rate regime is identical to the nonlocal eigenvalue problem for the GM model with
exponent set (p,q,m,s) = (2,s,2,s), where s is defined in (1.6). This spectral equivalence principle is a
new result, and it allows us to use many of the detailed spectral results derived in [39] for the GM model.

More generally, instabilities of spike patterns as a result of positive real eigenvalues, leading to spike
annihilation, have been studied in other systems. In particular, for scalar nonlocal singularly perturbed
parabolic equations where the steady-state problem has a homoclinic connection, a k-spike pattern for
k > 1 is unstable as a result of k — 1 positive real eigenvalues (see Remark 3.1 below). For the GS and GM
models, this type of problem is obtained by taking the limit D — oo with 7 = 0 in the GS model (1.5)
and the GM model (1.7). A similar nonlocal model has been analyzed in detail in the context of hot-spot
patterns arising in the microwave heating of ceramic materials (cf. [2], [3], [13]). The first observation and
formal analysis of growing alternating-sign fluctuations for an activator-type variable in a reaction-diffusion
system was given in [16] and [15] (see Sections 14.4.8, 15.3, Fig. 14.13, and Fig 14.16 of [15]). In [15] this
phenomena was referred to as activator re-pumping. For the Brusselator model, and in a parameter regime
similar to the intermediate range for the GS model, it was shown in [16] (see also Chapter 15 of [15]) that a
periodic spike pattern can lose its stability to an alternating-sign fluctuation of the activator concentration
if the period of the pattern is below some asymptotically small critical value. For the Brusselator, a scaling
law for this minimum distance is given in equation (15.58) of [15], and has a similar form to the scaling
law for a competition instability derived in §4 for the GS model in the intermediate regime.

In 5 we give a precise discussion of the relationship between our results and previous results on the GS
model. The previous equilibrium and spectral results for the GS model in [6], [7], [8], [4], and [5], have
been based on a different dimensionless form of the GS model. This alternative approach is presented and
discussed in some detail in §5. In §4 and §3.4, and more briefly in §5, we also relate our results to those in
[25]. The main conclusion is that our results have a clear overlap with these previous results only in the
intermediate parameter regime for A and for the infinite-line problem. Our analysis of synchronous spike
oscillations and competition instabilities in the low feed-rate regime, which occur on a finite domain, is
new. In §5 we also list a few open problems.

Since we only consider eigenvalues for which A = O(1) as ¢ — 0, we emphasize that our stability results
are valid only for time intervals of O(1) as ¢ — 0. To obtain stability results for unbounded time intervals,
one must consider the stability of the symmetric k-spike solution with respect to the small translational
eigenvalues of order A = O(e?) in the spectrum of the linearization. Additional stability thresholds, with
respect to the dimensionless parameters, occur for this class of eigenvalues. These eigenvalues are closely
related to the existence of asymmetric k-spike solutions. This problem is studied in [18]. In Fig. 1 these
additional thresholds correspond to the intersection points of the solid and heavy solid curves.

Finally, we make some remarks concerning the mathematical rigor of our approach. In §2 and §3 we
only present a formal asymptotic derivation of the existence of equilibrium solutions in the low feed-rate
regime in Principal Result 2.1 and a formal derivation of the nonlocal eigenvalue problem (NLEP) in
Principal Result 3.2. However, starting with the NLEP of Principal Result 3.2, all of the spectral results of
§3.2 for this eigenvalue problem have been rigorously established. Our stability conclusions of the formally

constructed equilibrium solution are based on the spectral properties of this NLEP. However, since the



GM model and the GS model in the low feed-rate regime have a related asymptotic structure, a similar
Lyapunov-Schmidt reduction analysis as was given for the GM model in [41] could be used to rigorously
construct the equilibrium solution and to derive the nonlocal eigenvalue problem. An alternative method
to construct periodic or homoclinic equilibrium solutions in the GS model is to use geometric singular

perturbation theory both rigorously (cf. [8], [7]) or formally (cf. [6]).

2 Symmetric k-Spike Equilibria: A = O(1)

For ¢ — 0, and with A = O(1) and D = O(1), we construct a symmetric k-spike equilibrium solution to
(1.5) using matched asymptotic analysis. For this pattern the spike locations satisfy

(2 —1)

i=1,...,k. 2.1
k 7 .7 7 7 ( )

:Bj:—l—|—

For a symmetric spike pattern the spikes have equal height so that u(z;) =U for j =1,... k.

Since the asymptotic construction of such a solution is similar to that done in [14] for the GM model,
we will only sketch the formal derivation of the result. In §4, where we consider the intermediate regime
0(1) € A < O(s7/?), we will give a detailed formal derivation of the equilibrium solutions for (1.2) and
(1.5) and include formal error estimates associated with the inner and outer expansions.

In the inner region near the jth spike, we let y = ¢~ (z — z;). In each inner region, we obtain that
u ~ U + O(g). Therefore, from (1.5a), the leading-order inner solution for v is v ~ w/(AU), where

w(y) = 3sech® (y/2) is the homoclinic solution to
w —wHw?=0, —co<y<oo; w—0 as |y —=oo, w(0)=0, w(0)>0. (2.2)

In the outer region, defined away from an O(e) region near each spike, v is exponentially small and the

term e~!ur? in (1.5b) can be approximated by a Dirac mass. Thus, the outer solution for u satisfies

6

A2U 4
j

Dugy + (1 —u) —

k

dz—z;)=0, -l<z<l1; uz(£1) =0. (2.3)
=1
In obtaining (2.3), we used [*° w?dy = 6. The solution to (2.3) is

k
u(z) =1~ > Glaia), (2.4)

where G(z;z;) is the Green’s function, satisfying
DGyp — G = —d(z —zj), -l<z<1; Gy(£l;2;) =0. (2.5)
A simple calculation gives,

gjcosh [0g(1 + )] / cosh [0y (1 + z;)], -1<z<zj,

Gl 2) = { gjcosh [0y(1 — )] / cosh [By(1 — z)], zj<z<l, (2.6a)



where
(tanh [6o(1 — z;)] + tanh [6y(1 + :I,‘j)])_l , 0y = D12, (2.6b)

S

g; =

We define a4 = Sk G(z;;x;), where the spike locations satisfy (2.1). Using (2.6), we calculate
k -1
ag = ZG(xj;wi) = [2\/Btanh (Oo/k)] . (2.7)
i=1
Therefore, a4 is independent of j. Setting u(x;) = U in (2.4) we obtain a quadratic equation for U

UU-1) = ——2. (2.8)

In this way, we obtain the following formal result for symmetric k-spike equilibrium solutions to (1.5):
Principal Result 2.1: Let ¢ — 0, with A = O(1) and D = O(1) in (1.5). Then, when A > A, there

are two symmetric k-spike equilibrium solutions to (1.5) given asymptotically by

va( )N—Zk:w[sl(x—a:-)] ug(z) ~1 — ——== 1_Ui zk:G:va: (2.9)
=T AUz —~ e * et 1) .

We label uy, vy and u_, v_ as the small and large solution, respectively. In (2.9), w and G satisfy (2.2)
and (2.5), respectively. In addition, Uy are the roots of (2.8) for A > Ag. given by

1 A? 126,
=2 |1+4/1— ke =,/—
v 2 A% |7 Are tanh (6o /k) ’

6o =D 1/2. (2.10)

The existence threshold Ay, representing a saddle-node bifurcation point for a k-spike solution on a
finite domain, is a new result. These existence thresholds correspond to the fold points in Fig. 1 separating
the upper and lower branches of symmetric k-spike equilibria. As a remark, A is an increasing function
of k. For D < 1 and with v Dk < 1, we get Age ~ v/12D~/*. Thus, when D < 1, the existence threshold
Ape is roughly independent of k provided that v Dk < 1.

To display our results graphically, we introduce the Ly norm |v|e. Using (2.9) and (2.10), we obtain

-1

1 1/2 2
- 2/6k A2,
v]y = (e 1/1;/2 d:z:) el B R VB e B (2.11)

For A = 9.0 and ¢ = 0.02, in Fig. 4(a) and Fig. 4(b) we plot the large solution when D = 0.75 and D = 0.1,
respectively. Notice that as D decreases, the Green’s function in (2.9) decays more rapidly away from the
spike locations. Hence, for D small, u should approach u ~ 1 in the outer regions. This asymptotic value
u ~ 1 in the outer region is also relevant to the infinite-line problem, corresponding to a one-spike solution
to (1.5) on —oco < x < co. However, as seen from Fig. 4(b), even with D = 0.1, u is not so close to its
asymptotic value in the outer regions. Therefore, this suggests that there is range of values of D for which

boundary effects due to the finite domain will be important in the analysis.
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Figure 4: Large solution when k = 3, A = 9.0, and € = 0.02. Left figure: D = 0.75. Right figure: D = 0.1.

The classification of small and large solution refers to low and high concentrations of v in the core of
the spike. Smaller concentrations of u in the core of the spike generate larger amplitudes for ». Hence,
each upper branch (upper solid curve) in Fig. 1 corresponds to the large solution, while each lower branch
corresponds to the small solution. As shown in §3-84, a convenient way to parameterize these solution
branches is to introduce a parameter s defined by s = (1 — U.)/Ux. Then, from (2.10), we get
(1 + S) B 1-— Ui

— = 0 . 2.12
N s 0. < s < o0 (2.12)

Hence the large solution u_, v_ corresponds to the range 1 < s < oo, while the small solution u,, v

-A:Alce

corresponds to 0 < s < 1. The existence threshold Ay, corresponds to s = 1.

To analyze the stability of symmetric k-spike equilibrium solutions we let
u(x,t) = ui($) + eMﬂ(x) ’ V('Ta t) = V:l:(x) + e)‘tqﬁ(l‘) ) (2'13)
where 7 < 1 and ¢ < 1. Substituting (2.13) into (1.5) and linearizing, we obtain the eigenvalue problem

Phoe — $+ 2Ausvad+ Al = Ap,  —1<z<1;  go(x1) =0, (2.14a)
Dy —n — e 'Win — 26 lugvag = 77, -l1<z<1; Ne(£1) =0. (2.14b)

In §3 we analyze the spectrum of (2.14) corresponding to those eigenfunctions that are not locally odd
functions near each spike. The corresponding eigenvalues, which determine the stability of the symmetric
k-spike solution with respect to instabilities occurring on a fast O(1) time-scale, are referred to as the large
eigenvalues. We will show that the small solution u4 and vy is always unstable. For the large solution, we
show that there are two different types of instabilities that can occur depending on the parameter ranges

of D, A, 7, and k. A competition instability, whereby spikes in a spike sequence are destroyed, can occur



only for £ > 1 when A is close to Ag.. This instability results from a certain eigenvalue on the positive
real axis Re(A) > 0. On the other hand, oscillatory instabilities in the amplitudes of the spikes as a result
of a Hopf bifurcation can occur for any A > A, when 7 is sufficiently large.

3 Large Eigenvalues: Fast Profile Instabilities for A = O(1)

We now study the stability of the equilibrium solutions of Principal Result 2.1 on an O(1) time-scale.

3.1 The Nonlocal Eigenvalue Problem

We begin by deriving a nonlocal eigenvalue problem that is central to the analysis. This derivation is
similar to that of [39] for the GM model (1.7), and is related to the approach used in [29] to analyze pulse
stability in the Fitzhugh-Nagumo system. We look for a localized eigenfunction for ¢ in (2.14) in the form

k
d(z) ~ Z c;® [e Mz —z5)] , (3.1)
j=1

for some coefficients c;. As shown below, these coefficients are related to the eigenvectors of a certain matrix
eigenvalue problem. The large eigenvalues are characterized by the condition that ffooo w(y)®(y) dy # 0.
Since ¢ is localized near each z, the spatially inhomogeneous coefficients in (2.14b) can be approximated
by Dirac masses. In this way, we use (3.1), (2.9), and [*° w?dy = 6, to obtain for z ~ z; that
20j

6_1V:2t ~ AQLU?E(S(:B - zj), 2e luvig ~ 1 (/_ w(y)®(y) dy) d(z —x). (3.2)

Here §(z) is the delta function. Substituting (3.2) into (2.14b), we get that 7 satisfies
6 X 9 o k
Dngg — 1+’r/\+ﬁ25(x—xi) n:—(/ w@dy) Zcié(w—wi), lz| <1, (3.3)
A U:l: i=1 A - i=1

with 7(£1) = 0. Defining [¢]; by [¢]; = é(zi4+) — €(z;—), we obtain that this problem is equivalent to

Dijgg —(1+7AN)n=0, |z/<1; ny(£l)=0, (3.4a)
6 . 2¢; [°
[n; =0, [Dng]; = —wi+ AQ—Uin(xi), i=1,.,k; w= —71 . w(y)®(y) dy . (3.4b)

To determine the eigenvalue problem for A, we first need to compute n(z;) from (3.4). To do so, we
solve (3.4a) on each subinterval and use the jump conditions (3.4b) to patch the solution together across

each subinterval. This calculation results in the matrix problem

2¢ [

Bn:[(l—i-T)\)D]*l/Qw, w:—]

w(y)®(y) dy . (3.5)
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Here we have defined the vectors w, ¢, and n, by w' = (w1,...,wg), ¢ = (c1,...,¢cx), and p* = (91, ..., M%),

where ¢t denotes transpose. The matrix B in (3.5) is given in terms of a tridiagonal matrix By by

dy f 0 - 0 0 0

oex fx - 0 0 0

6 0 f)\ (Y 0 0 0
B=B8B,+ I, By = : oo : : : : 3.6
" vz /(T+ND ’ (36)

0 0 0 e f,\ 0

0 0 0 - fx ex fa

0 0 0 -+ 0 fy dy

Here I is the k x k identity matrix, and the matrix entries of By are

dy = coth (%) + tanh (i—’\) : ey = 2coth (%) ; fn = —csch (%) . (3.7

In (3.7), 0y is the principal branch of the square root defined by 8 = 6gv/1+ 7X, with 6y = D~1/2,
Next, we substitute (3.1) and (3.6) into (2.14a). This yields the nonlocal eigenvalue problem

iz 1211]2 ,1/2 -1 ffooo wP d?/ o

with ®(y) — 0 as |y| — oo. Therefore, we must calculate the spectrum of the matrix eigenvalue problem

Be=ke,  k=ko+ [(147X) D] Y? | (3.9)

6
207
where kg and ¢ is an eigenpair of By. These eigenpairs were calculated explicitly in Proposition 2 of [14].

Lemma 3.1: The eigenvalues kgj, with 0 < kg1 < ... < Ko, and the normalized eigenvectors c; of By are

) — 1
mj=2umhwhm)+2[1—aﬁ<zgﬁ—l)]0%hmaﬂk), j=leenk,  (3108)
1 2 m(j —1) .
ctlzﬁ(l,...,l); cl,j:\/;cos(T(l—l/Qo, J=2,...,k. (3.10b)
Here ¢! denotes transpose and cz- = (C1,j5---+Chyj)-

Substituting (3.9) and (3.10) into (3.8), we formally obtain the following spectral problem for the large
O(1) eigenvalues of (2.14):
Principal Result 3.2: For 0 < ¢ < 1, the O(1) eigenvalues of (2.14) satisfy the NLEP

7 wddy
o«
Joeowdy

Here the operator Ly, referred to as the local operator, is defined by

L0<I>—Xw2< >:/\<I>, —0 <y <o0; ®—0, as |yl — 0. (3.11a)

Lo®=3" — &+ 2uwd. (3.11Db)
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In (3.11a) there are k choices for the multiplier x = x(z;7), for j = 1,...,k, given explicitly by

_ VIitz (1 —cos[r(j — 1)/EDT\ "
= 17) =2 _ h 12

X = x(#1J) s (S + tanh (6y/k) tanh (6, /k) + sinh (20, /k) ’ (3.122)

where 1-U
Z=TA, 0\ =60pvV1+ 2z, HOED_I/Q, s = _U £, (3.12b)

+
Here Uy is determined in terms of A/ Age by (2.10). The global eigenfunction ¢(x) is given by (3.1), where

the coefficients ¢t = (c1,...,cx) are the eigenvectors of By given in (8.10b).

We now establish a spectral equivalence principle between the NLEP (3.11) and a corresponding NLEP
derived in the formal Proposition 2.3 of [39] for the GM model (1.7) with exponent set (p, ¢, m, s). Proposi-
tion 2.3 of [39] shows that the nonlocal eigenvalue problem for the GM model with exponent set (2, g, 2, s)
has exactly the same form as in (3.11), except that x in (3.12) is to be replaced with

—— . -1
x = x(2;7) =2¢ (3 + mnhl(% tanh (0)/k) + ( _scl(r)lsh[gg)\;kl))/k])]) . (3.13)

Therefore, the nonlocal eigenvalue problems for the GM model and the GS model are identical if we take
q = s, to get the GM exponent set (p,q,m,s) = (2,s,2,s), where s is given in (3.12b). However, in the
GM model, the exponents (p, g, m, s) generally satisfy ( = gm/(p—1) — (14 ) > 0 (see (1.8). The spectral
results in [39] for the GM model were obtained under this condition. With the exponent set (2, s,2, s), we
calculate { = s — 1. Since 0 < s < 1 corresponds to the small solution, while s > 1 corresponds to the
large solution, we obtain the following spectral equivalence principle:

Proposition 3.3: In the limit € < 1, consider the large eigenvalues of (2.14). The nonlocal eigenvalue

problem for the stability of the large k-spike symmetric equilibrium solution u_, v_ of the GS model (1.5) is
identical to the related nonlocal eigenvalue problem for the GM model (1.7) with exponent set (p,q,m,s) =
(2,5,2,), where s > 1 is given in (8.12b). The spectral problem for the small solution of the GS model is
also equivalent to that for a GM model with exponents (2,s,2,s), except that { < 0 in (1.8).

For the GS model (1.5), the NLEP (3.11) is a new result. Proposition 3.3 allows us to analyze the
stability of the large solution of the GS model by directly appealing to some results of [39] obtained for the
GM model with arbitrary exponent set (p, g, m, s) satisfying (1.8). For the small solution u, v, we must
extend the analysis in [39] to allow for a GM model with exponent set (2, s,2,s), where ( = s —1 < 0.

Next, we reformulate (3.11) into a form more amenable to analysis. Let 1/(y) be the solution to

Lop =1 — v+ 2w = M + w?; P —0 as |yl — oco. (3.14)
Then, the eigenfunctions of (3.11) can be written as
* wdd
S = x(tA)0d, J = f_c,?iQdy (3.15)
ow?dy

Using (3.15), and assuming that ffooo w® dy # 0, we then obtain that the eigenvalues of (3.11) are the
union of the zeros of the functions g;(A\) =0 for j =1, .., k, where
ffooo w (Lo — /\)_1 w? dy

GO = G ), ) = T (3.16)
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Here we have defined Cj()) = [x(TA;7)] 7", for j =1,...,k, so that from (3.12a) we obtain

0= 5+ e [ )+

2 " 25 tanh (09 /F) (3-17)

After establishing the theoretical results in §3.2, in §3.3 we numerically determine the roots of (3.16) by
following a similar approach as in [39]. We use a combination of Newton’s method coupled to the numerical
solution to the boundary value problem (3.14) obtained by COLSYS [1]. Although (3.14) can be solved
explicitly in terms of hypergeometric functions (cf. [6]), we do not follow this approach since with these

special functions it is then difficult to prove rigorous results for the spectrum of (3.11).

3.2 Theoretical Results on the Spectrum: Large Eigenvalues

We now give rigorous results for the spectrum of the NLEP (3.11). We begin by looking for roots of (3.16)
on the non-negative real axis A = Ag > 0. The first observation is that f(Ag) has a singularity on the
positive real axis as a consequence of Theorem 2.12 of [21].
Lemma 3.4: (From [21]): Consider the local eigenvalue problem Lo¢; = o¢y for ¢ € HY(R). This
problem admits the eigenvalues o9 > 0, 01 = 0, and o; < 0 for j > 1. The eigenvalue og is simple, and
the corresponding eigenfunction ¢y has one sign. The unstable eigenvalue is oy = 5/4.

Since oy > 0, then f(Ag) — +o00 as Ag — o . In [39] the behavior of f(Ag) on the positive real axis
was studied. The following rigorous result is a consequence of Proposition 3.5 of [39]:
Proposition 3.5: (From [39]): For Agr > 0, the function f(Agr) in (3.16) has the local behavior,

1 3\2
3\ > (Lg'w)” d
FOR) ~ 1+ TR + kAL +0(N%), as Agr—0; Ke = I O}SO sz c)ly Y >0. (3.18a)

In addition, we have the global behavior f(Agr) — 400 as Agp — o , and
FOr) >0, f (Ag)>0, for 0<Agp<og; f(Ag) <0, for Ag>op. (3.18b)

Proof: This result is simply Proposition 3.5 of [39] for a GM model with exponents p = m = 2. [ |

Next, we summarize the key properties of C;j(A) when A = Ag > 0 is real.
Proposition 3.6: For any fized T > 0, we have a monotonicity result for Ar > 0 that

Cr(AR) > Chci(AR) > ... > Ci(Ar) >0,  Cr(Ar) < Ch_i(AR) < ... < Ci(AR). (3.19a)
In addition, for T > 0, and for each j = 1,...,k, we have for Ag > 0 that
C;(Ar) >0,  Cj(Ar) <0,  C;(Ag)=0(r"?), as T - +oo. (3.19b)

Define B; by B; = C;(0) for j =1,..,k. These coefficients are independent of T and satisfy

1 dB; dB;
(8;):Bl<BQ<...<Bk; d—D]>O, 1=2,...,k; d—8]<0’ J=1...,k. (319(})
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Proof: This is Proposition 5.1 of [39] for a GM model with exponents (p,q,m,s) = (2,s,2,s). The

monotonicity result for B; with respect to s is immediate from (3.17). [ |

As shown below, the critical values of D and A where B; =1 for j = 2,...,k play a central role in the
analysis. We now calculate these values. The first observation is that for the small solution branch where
0 < s < 1, we have from (3.19c) that B; > 1 for j = 1,...,k. Therefore,

1< C1(0) < Ca(0) < ... < Ck(0), for 0<s<1. (3.20)

For the large solution branch where s > 1 we calculate the values D = D; for which B; = C;(0) =1 for
j=2,...,k. Since By < 1 for any D, there is no threshold value D;. Using (3.17) we calculate

1 1 Y ﬂ(j—l))
Bi=-(1+-)+—-"sd——, =1—cos [ ———2) . 3.21
I ( s) 4ssinh? (8y/k) K ( k (21
Setting B; = 1, for j = 2,...,k, and solving for the thresholds D;, we get
_ 4 . o .
D; = j=2,...,k; ri = +1, j=2,...,k. (3.22)

’ k2[ln(rj+,/rj2-—1)]2’ s—1

Alternatively, for a fixed D, we can calculate thresholds A = A; for which B; = 1. Using (2.12), which

relates s in terms of A, we then set B; = 1 in (3.21) to obtain
[(7j/2) + 2sink® (6o /k)]
([(v3/2) + 2sinb? (B0/K)]” = (7;/2)%)

Here Ay, are the existence thresholds of (2.10). Using (3.19c), (3.22), and (3.23), we then show that

Aj = Age i=2,...,k. (3.23)

1/2°

Ay < A3 < ... < Ag, Dy <Dy 1<...<Ds. (324)

Therefore, B; < 1 for j = 2,...,k whenever D < Dj, or when A > A;. We label these critical values by

4 Yk
Dy =Dy, = 5 rp= ——+1, (3.25a)
k2 [ln(rk-l-,/r]%—l)] s—1
2) 4 2sinh? (6o /k
A = A, = Age ((“Yk/ ) + 2sinh” (6y/ )) 5 v = 1+ cos (%) . (3.25b)

(eve/2) + 25inb? (80/K))” = (1:/2)°)

Next, we look for roots of (3.16) on the non-negative imaginary axis A = ¢A7, with A\; > 0. Substituting
A =14As into (3.14) and (3.16), and extracting real and imaginary parts, we obtain that the eigenvalues of

(3.11) with X = iA; and A; > 0 are the roots of the coupled system gr; = gr; = 0, where

grj(A1) = Crj (A1) — frR (A1) » grj(Ar) = Crj (A1) — fr (A1), i=1,...,k. (3.26a)

14



Here we have defined ggr;j(Ar) = Re[g; (¢A1)], g1;(Ar) = Im(g; (A7)]. In (3.26a), we have

[2 ko [3+ 3] w2 dy AT w (L34 N3] wdy

Ar) = Ar) = 3.26b
fR( I) fjooowgdy ’ fI( I) ffoooUJQdy ’ ( )
CRj()\I) = Re [C] (Z)\I)] ) C[j()\[) =Im [C] (ZA[)] . (3.260)
Some qualitative properties of the functions fg, fr, Cgj;, and Cr; are summarized as follows:
Proposition 3.7: The functions fgr and f1 in (3.26b) have the asymptotic behavior
fROL) ~ 1=k +00]), as A\ —0;  frRO)=0()/%), as X — oo, (3.27a)
3\
fr(Ar) ~ TI +0}), as A —0;  fid)=0(A"), as A — ooc. (3.27b)
Here k. is given in (3.18a). Moreover, the functions fr(Ar) and fr(Ar) have the global behavior
frROAD) <0, fi(A) >0, for A;>0. (3.27¢)
For A\; >0 and 7 > 0, the functions Cr; and Cf; satisfy
Crj(0) =B;, Cgri(\1)>0;  Cr;(0)=0,  Cp(\)>0, (3.28a)
Cri(Ar) =0('2),  C(\) =0(r"?), as T oo, (3.28b)
CR]'(A[) = CRj(O) + O(1A1), C]j()\j) =0(rA1), as 7—0. (3.28¢)

Here Bj are the values Cj(0) = Bj, whose properties were given in (3.19c).
Proof: The proof of (3.27) is a special case of Propositions 3.1 and 3.2 of [39] for the GM model (1.7) with
p =m = 2. The proof of (3.28) follows from setting A = iA; in the definition of C};(\) in (3.17). [ ]

To determine the number of eigenvalues in the unstable right half-plane Re()\) > 0 we calculate the
winding number of g;(A) in (3.16), with A = Ag + i), over the counterclockwise contour composed of the
imaginary axis —iR < ImA < 4R and the semi-circle I'g, given by |A\| = R > 0, for —7/2 < argh < /2.
The function g;(A) in (3.16) is analytic in the right half-plane, except at the simple pole A = g9 = 5/4 > 0,
which is the unique positive eigenvalue of the operator Ly (see Lemma 3.4 above). For any 7 > 0, we have
from (3.17) that Cj()\) ~ O(v/A) as |A| = oo in the right half-plane. Moreover, f(A) — 0 as |[A| — oo.
Hence, for any 7 > 0, the change in the argument of g;()A) over I'g as R — oo is 7/2. Therefore, assuming

that there are no zeros of g;(A) on the imaginary axis, we let R — oo and use the argument principle

together with g;(\) = g;()) to obtain the following winding number criterion:
Proposition 3.8: Let 7 > 0 and assume that there are no zeros of gj(\) on the imaginary azis for
j=1,...,k. Then, the number of eigenvalues M of (3.11) in Re()\) > 0 satisfies

5k 1
M=+ > larg gjr, - (3.29)
j=1

Here [arg g;]1., denotes the change in the argument of g;()) along the semi-infinite imaginary azis I'r = iAr,

0 < A1 < o0, traversed in the downwards direction.
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Using the properties given in Propositions 3.6 and 3.7, there are only a few possible values for [arg gj]FI.
This leads to a more specific winding number criterion.
Proposition 3.9: Let 7 > 0. Then, there are three distinct possibilities:

(1): if gr; <0 when gg;j=0, then [argg;l, = —57/4, (3.30a)
(2): if gr; >0 when gg;=0, then [argg;l, =37/4, (3.30b)
(3): if gr; >0 forall \; >0, then [argg;l. = —7/4. (3.30c)

)

Proof: Let 7 > 0. From (3.28) and (3.27), Cr;(Ar) is a positive monotone increasing function and fr(Ar
is a positive monotone decreasing function. Therefore, gr; = 0 has at most one root. First suppose that
Crj(0) < fr(0) = 1 so that gg; = 0 has a root. Then, using (3.28) and (3.27) we get gr; ~ byv/A; and
grj ~ by/Ar as A\; — +oo for some b > 0. In addition, from (3.27b) and Cr;(0) = 0 it follows that gr; < 0
and gr; =0 at A\; = 0. Therefore, argg; = m/4 as A\ = 400, and argg; = —m at A\; = 0. Since the root to
grj = 0 is unique, this shows that [arg gj]FI is either 57/4 or —37/4 depending on the sign of gr; at the
unique root of gg; = 0. This proves (3.30a) and (3.30b). Next, suppose that Cg;(0) > fr(0) = 1. Then,
since ggr;(0) > 0 and g'Rj()\I) > 0 from (3.27c) and (3.28a), we conclude that gg; > 0 for Ay > 0. In this
case, argg; = 0 at A\ = 0. Since gg; > 0 for all A; > 0, the result (3.30c) follows. [ |

The first consequence of Propositions 3.5-3.9 concerns the stability of the small solution w4, vy.
Proposition 3.10: For any 7 > 0, D > 0, and 0 < s < 1, the small solution uy, v4 is unstable due to
exactly k positive real eigenvalues of (3.11) located in the interval 0 < Ag < 09 = 5/4. These k unstable

etgenvalues have a common leading-order asymptotic behavior as T — 00

A N e 45 tanh (6 /k) (ffooo Wi dy) (ffooo w0 dy)
R™ Y VT k NG ffooo w? dy )
Here ¢y is the principal eigenfunction of Loy (see Lemma 3.4), normalized by ffooo ¢120 dy = 1.
Proof: Let 7 > 0 and 0 < s < 1. Since Cg;(0) = B; > 1 for j =1,...,k from (3.20), we have gg;(0) > 0,
and consequently ggr;(Ar) > 0 for A\ > 0. Therefore, for j = 1,...,k, condition (3) of Proposition 3.9

5.0

applies. From (3.29) this yields that there are M = k eigenvalues in the right half-plane for any 7 > 0
and 0 < s < 1. Next, we show that these eigenvalues are real and positive. For any 0 < s < 1, (3.19¢)
yields that 1 < By < By < ... < Bg, and consequently 1 = f(0) < C1(0) < ... < Ck(0). Proposition 3.6
proves that Cj(Ag) is a positive increasing and concave function, while f(Ag) is a positive increasing convex
function on 0 < Ar < g¢. Hence, it follows that g;(Ar) = 0 has exactly one root for each j = 1,...,k on the
interval 0 < Ag < 9. Since f(Agr) < 0 for Ag > ¢ from (3.18b), there can be no roots on Ag > 0¢. Hence,
we have k real positive eigenvalues for (3.11) on the interval 0 < Agr < 09 = 5/4. The asymptotic behavior
(3.31) is obtained by expanding Ag and % in fractional powers of 7 similar to that done in Proposition 3.8
of [39] for the GM model, and using C;(Ag) ~ coom'/? for 7> 1 from (3.17). [ |

The next result gives a criterion for the stability of a one-spike large solution u_, v_, and for a k-spike
large solution when D < Dyp, or A > Aip. Here Dy and Aygy, are the thresholds given in (3.25).
Proposition 3.11 Let 7 > 0, k = 1, and consider the large solution u_, v_, where s > 1. For such a

solution, we have M = 0 when 7 K 1 and M = 2 when 7 is sufficiently large. Moreover, there exists a

16



2.0 3.0 4.0 5.0

(a) gr; =0 (b) g1 =0

Figure 5: Parameter values are D = 0.75, k = 3, A = 9.023, and 7 = 2.0. Left figure: Cg;()\), for
j=1,...,3, and fr(Ar) (solid curve). Right figure: Cr;(Ar) and fr(A) (solid curve). In these figures Cpri
and C7y are the heavy solid curves.

value T = Tx1, depending on A and D, such that there is a pair of compler conjugate eigenvalues on the
imaginary azis. For a multi-spike solution where k > 1, suppose that D < Dy, or A > Agr. Then, M =0
when 7 K 1 and M = 2k when 7 > 1. For k > 1, and for 7 sufficiently large, these eigenvalues are real
and are on the interval 0 < A\g < o9 = 5/4. There are k eigenvalues Ag; that tend to oo = 5/4 from below
as T — 00, and k eigenvalues Ag; that tend to zero as T — oo. The eigenvalues Ag; for j =1,...,k have
the common asymptotic behavior (3.31). In terms of the unique positive root w; of Cj(w;T~ 1) = 1, the
eigenvalues \gj satisfy Agj ~ w;/T+O(172), for j=1,...,k and 7> 1.

Proof: Let 7 > 0, s > 1, and £ > 1. Assume for & > 1 that D < Dy, or equivalently A > Axr. We first
show that M = 0 when 7 < 1 and M = 2k when 7 >> 1. In this case, we have Cg;(0) = B; < fr(0) =1
for j =1,...,k, so that gg;(0) < 0. Therefore, by the monotonicity of grj, grj = 0 has a unique root for
each j = 1,..., k. Moreover, since Cg;(0) < 1 it follows for 7 < 1 that all of these roots must lie in some
interval (0, Azc), where Az is independent of 7. Since Cr; — 0 uniformly as 7 — 0 for any fixed A; from
(3.28c), it follows for 7 < 1 that gr; < 0 whenever gr; = 0. Hence, for 7 < 1 condition (1) in Proposition
3.9 applies. Therefore, from (3.29) we get M = 0. Alternatively, since at each fixed A7, Cr; increases
without bound as 7 — oo from (3.28b), it follows that gr; > 0 at the unique root of gr; = 0. Therefore,
for 7 > 1, condition (2) in Proposition 3.9 holds, and we get M = 2k from (3.29). Next, we show that
for £ > 1, and 7 > 1 that there are 2k eigenvalues on the real axis in 0 < Ag < gg. Along the real
axis, Proposition 3.5 shows that f(0) = 1, and f(Ag) is an increasing, convex, function on 0 < Ag < 0yg.
Moreover, f(Ar) = 400 as Ag — o, and f(Ag) < 0 for Ag > 0. In contrast, from (3.19b) we have
that C;(Ag) is a monotone increasing concave function, with an unbounded derivative for 7 > 1. When
D < Dy, or when A > Ap, then C;(0) = Bj < f(0) =1 for j = 1,...,k. Therefore, as 7 is increased,
there exists a critical value 7,,; > 0 where C;(Agr) and f(Ag) first intersect tangentially. For 7 > 7,,; there
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are two roots to g;(A) = 0. The values 7 = 7p,; for j = 1,...,k are the values where complex conjugate
eigenvalues merge onto the real axis. Clearly, as 7 — oo, one root of each g;j(Ag) = 0 tends to o, while
the other root tends to zero. The precise asymptotic behavior of these roots as 7 — oo is obtained in a
similar way as in Propositions 3.8 and 3.9 of [39]. Sincefor k=1, M =0for 7 < 1 and M =2 for 7 > 1,

the existence of a Hopf bifurcation value 75,1 (possibly non-unique) follows by continuity. |

0.0 0.2 0.5 0.8 1.0 0.0 0.2 0.5 0.8 1.0
)\R )\R

(@) g;=0 (b) g; =0

Figure 6: Plots of C;(Ag), for j = 1 (heavy solid curve) and j = 2,3 (dotted curves), with fr(Ag) (solid
curve). Left figure: plots for D = 0.75, k = 3, A = 9.023, and 7 = 80. Right figure: plots for D = 0.75,
k=3, A=28.357, and 7 = 36.93, where C1(Ag) intersects f(Ag) tangentially. For this data Ay < A < Ajsp.

We illustrate this result for D = 0.75, k = 3, A = 9.023, and 7 = 2.0. For these values, Proposition
3.11 applies since, from (3.25b), A > A3, = 8.686. In Fig. 5(a) and Fig. 5(b), we plot the numerically
computed curves fr(Ar), Crj(Ar) and fr(Ar), Crj(Ar) for j =1,...,3. From these figures it follows that
grj < 0 when gg; = 0. Therefore, since condition (1) of Proposition 3.9 holds for each j = 1,2,3, we get
M = 0 from (3.29). Hence, there are no eigenvalues of (3.11) in Re(A) > 0. In Fig. 6(a) we plot C;(Ag)
and fr(Ag) with 7 = 80, and for the same parameter values given above. For this larger value of 7, each
Cj(Ar) intersects fr(Ar) exactly twice. Hence, there are six real positive eigenvalues on 0 < Ag < 5/4.

For a one-spike solution, the main limitation of Proposition 3.11 is that we cannot prove that the Hopf
bifurcation value 751 is unique. In particular, we cannot theoretically exclude the case that there are IV,
with NV > 1 and odd, values of 7,1 where there are complex conjugate eigenvalues on the imaginary axis.
To show that 741 is unique one would have to prove a strict transversal crossing condition that states
that whenever 7 > 73 there must be exactly two eigenvalues in the right half-plane. From our numerical
experiments in §3.3 and others not shown it appears that such a crossing condition does in fact hold.
However, Proposition 3.11 does guarantee that there are two real positive eigenvalues for all 7 > 7,1.

For the large solution branch, the qualitative difference between the spectrum of (3.11) for a one-spike

and for a multi-spike solution is that only for a multi-spike solution can eigenvalues cross through the
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origin along the real axis Im()\) = 0 as D or A is varied. However, when D < Dy, or A > Ay, there
are no real positive eigenvalues when 7 < 1. The real eigenvalues that exist when 7 > 1 have occurred
from the merging of complex conjugate pairs of eigenvalues onto the real axis. These complex conjugate
eigenvalues arise from a Hopf bifurcation. Notice that since C;(0) is independent of 7, the eigenvalues of
(3.11) can never cross through the origin along the real axis as 7 is increased. Therefore, instabilities as 7
is increased can only occur from Hopf bifurcations, whereas instabilities that occur as D is increased or A
is decreased occur from real eigenvalues entering the right half-plane.

The next result characterizes the number of eigenvalues in the right half-plane for a multi-spike solution
for other ranges of D and A, where there may be positive real eigenvalues when 7 < 1.
Proposition 3.12: Let 7 > 0, k > 1, and consider the multi-spike large solution u_, v_, where s > 1.
Suppose that there exists a j* with 2 < j* < k such that either Dj» < D < Dj«_1, or Ajo_1 < A < Ajx.
Here Dj and Aj for j =2,...,k are given in (3.22) and (3.23), respectively. Since there are no thresholds

for 3 =1, we conveniently label D1 = 0o and A; = Aje, where Ay, is the existence threshold of (2.10).
Then, for any T > 0, the number of eigenvalues M of (3.11) in the right half-plane satisfies the bounds

1+k—7*<M<k—1+j". (3.32)

Moreover, there are at least Mg = 1+ k — j* positive real eigenvalues on 0 < Ag < 5/4 for any 7 > 0.

Proof: The proof is simple. For the range of D and A stated above, we have Cg;(0) > 1 for j = j*,... k,
and Cg;(0) < 1for j =1,...,5*—1. Hence, ggj(Ar) > 0 for j = j*,...,k, and condition (3) of Proposition
3.9 holds. This yields [arg g;]. = —/4 for j = j*,...,k and any 7 > 0. For the other indices, we proceed
as in the proof of Proposition 3.11, to get [argg;], = —5m/4 for j = 1,...,5% — 1 when 7 is sufficiently
small, and [arg gj]F] =3m/4 for j =1,...,5% —1 when 7 is sufficiently large. Substituting these values into
the winding number criterion (3.29) we obtain (3.32). It is clear that there are at least Mp =1+ k — j*
eigenvalues on the real axis when 7 < 1. This follows since C;(0) = B; > 1 = f(0) for j = j*,...,k, and

the fact that for any 7 > 0 the curve Cj(Ag) must intersect f(Ag) exactly once for each j = j*,..., k. B

We illustrate this result for D = 0.75, K = 3, A = 8.357 and 7 = 36.93. For these values, (3.23) and
(3.25b) yield Ay = 6.86 and Az;, = 8.686, so that Ay < A < Asp. Therefore, we set j* = k = 3 in
Proposition 3.12 to get 1 < M < 5. In Fig. 6(b) we show the graphical determination of the eigenvalues of
(3.11) on the positive real axis by plotting C;(Ag), for j = 1,...,3, and f(Agr). Since C3(0) > 1, we only
get one root of g3 = 0 for any 7 > 0. For the value 7 = 36.93, we have that C intersects fr tangentially.
For 7 > 1, it is clear that M = 5. For the smaller value 7 = 6.183, in Fig. 7(a) we plot fr(Ar) and Cg;(Ar)
for j = 1,...,3. A similar plot of f;(A;) and Crj(Af), for j = 1,...,3, is shown in Fig. 7(b). For this
value of 7, we have gg1 = gr1 = 0. In addition, we have gro < 0 when gre = 0, and that gr3(Ar) > 0
for all A > 0. Therefore, condition (1) and condition (3) of Proposition 3.9 holds for j = 2 and j = 3,
respectively. Then, from (3.29), it is clear that this value of 7 corresponds to where (3.11) has complex
conjugate eigenvalues on the imaginary axis, together with one positive real eigenvalue.

Remark 3.1: As a special case of this result, we set j* = 2 to obtain kK — 1 < M < k + 1. Therefore,
when D > Dy, or when A < A, there are at least k — 1 eigenvalues on the positive real axis. Here Do

and Ay are given in (3.22) and (3.23), respectively. This range of the parameters is the near-shadow limit,
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since we know that a k-spike solution for the shadow problem, obtained by letting D — oo in (1.5), will
have k — 1 eigenvalues on the positive real axis when 7 = 0. Hence, this qualitative feature of the spectrum
is preserved for finite values of D up until D crosses below Dy. The k-spike hot-spot solution of the scalar
nonlocal microwave heating model of [2], [3], and [13] has k£ — 1 unstable real eigenvalues.

0.0 1.0 2.0 3.0 4.0 5.0

(a) gr; =0 (b) g1 =0

Figure 7: Parameter values D = 0.75, k = 3, A = 8.357, and 7 = 6.183. Left figure: Cg;(Ar), for
j=1,...,3, and fr(Ar) (solid curve). Right figure: Cr;(Ar) and fr(A) (solid curve). In these figures Cpy
and Crp are the heavy solid curves.

The method of proof of Proposition 3.12 shows that there exists a value 7 = 75; > 0 (possibly non-
unique) such that gr; = gr; = 0. At this value of 7, there is a complex conjugate pair of eigenvalues on the

imaginary axis. The minimum 747, of these values determines the stability threshold. Therefore, we define
ThLEMin(Thj; ] = 1,..,k‘) . (333)

The main stability results in this section can now be summarized succinctly as follows.
Proposition 3.13: Let 7 > 0, k > 1, and consider the multi-spike large solution u_, v_, where s > 1. For

D < Dy, or A > Agr, the solution will be stable with respect to the large eigenvalues when 0 < T < ThL.
Alternatively, suppose that D > Dyr,, or Age < A < Agr, then the solution is unstable for any T > 0.

Although we have not been able to prove a strict transversal crossing condition, all of the numerical
experiments that we have performed indicate that the values 75; are uniquely defined. Specifically, when
T increases past a particular 7;,; an additional pair of complex conjugate eigenvalues enters into the right
half-plane and remains in this plane for all 7 > 75;. Therefore, we conjecture that when D < Dy, or
when A > Agr, the multi-spike solution will be unstable for any 7 with 7 > 7;,,. When D > Dyr,, or when
A < Ay, there is at least one positive real eigenvalue for any 7 > 0. In this range of D or A, there may
be additional complex conjugate pairs of eigenvalues in the right half-plane if 7 is large enough.

Next, we discuss the two types of instabilities that can occur for multi-spike solutions to (1.5). We first

discuss competition instabilities that occur as a result of eigenvalues on the positive real axis. Suppose
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that D satisfies Dy;, < D < Dy_1, or equivalently Az 1 < A < Agp. Then, following the idea of the
proof of Proposition 3.12, there will be exactly one eigenvalue in the right half-plane for 0 < 7 < 74,
and it is located along the real axis. Therefore, on this parameter range, the j = k mode governs the
instability. The unstable eigenvalue, Agy > 0, is the unique root of g (Ar) = 0. From Principal Result 3.2,
the unstable eigenvector is ¢ given in (3.10b). This implies that for some § < 1 the initial instability of
the large k-spike equilibrium solution has the form

k
v=uv_+0eG . p(z) = chfb [e7H @ —24)] , ¢n = cos (w (n— 1/2)) . (3.34)
n=1

Since 22:1 ¢, = 0, this instability locally preserves the sum of the heights of the spikes. Hence, we refer to
it as a competition instability. As shown in the numerical experiments below in §3.3, this mode initiates
a spike competition process, decreasing the amplitudes of some spikes while increasing the amplitudes of
others. Numerically, it is found that this type of instability has the ultimate effect of annihilating spikes.
A similar growing alternating-sign fluctuation of an activator-type variable was first observed in a different
context in [16] and [15] (see Chapter 15 of [15]).

Next, we discuss the type of oscillatory instability that occurs when D < Dy, or A > Agr, as 7
increases past 7,7. The value of j for which the minimum in (3.33) is obtained determines the unstable
eigenvector ¢; in Principal Result 3.2. We now develop a criterion to determine which mode goes unstable
first as 7 is increased. To do so, we first try to develop an ordering principle for Cgr; and Cy;. From (3.17)
and (3.26c), we obtain for j =1,...,k — 1 that

Crj+1 — Crj = BjRe[E(§)] , Crj+1 — Cr; = B;Im[E(§)] , E(¢) =

(3.35a)

Here 8; > 0 and the complex variable § are defined by

[k sin[7(j — 1/2)/k]sin[n/(2k)] _ 26 .
B = ( ) ( ot (007 ) >0, (= T‘)\/Hm\]. (3.35b)

29()8

This leads to the following ordering principle:
Lemma 3.14: Suppose that Re[E(£)] > 0 and Im[E(§)] < 0 at each point on some interval 0 < A\ < A,.
Then, we have the following ordering principle on 0 < A\; < Ay

CRl()\I) <...< CRk(A[), 011()\]) >0 2> C]k()\]) . (3.36)

When this principle holds, j = 1 is the first unstable mode. We state the result as follows.
Proposition 3.15: Let ¢ — 0, k > 1, and consider the large solution u_, v_. Let 7 = 11 and A\j = A\py

correspond to the minimum value of T for which gr1 = gr1 = 0 has a root. Suppose that for 7 = 141, the
ordering principle of Lemma 3.14 holds at each point on the interval 0 < A\ < Ap1. Then, there are either
zero or two eigenvalues in Re(\) > 0 for 7 in a small neighborhood of T = 1p1.

Proof: Since the ordering principle (3.36) holds when 7 = 741, it follows by continuity that it holds in a
sufficiently small neighborhood of 75;. Therefore, we will have g7; < 0 whenever gg; =0 for j = 2,..,k - 1.
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Figure 8: Parameter values D = 0.75, k¥ = 3, A = 9.023, and 7 = 8.049. Left figure: Cg;(\;), for
j=1,...,3, and fr(Ar) (solid curve). Right figure: Cr;(Ar) and fr(A) (solid curve). In these figures Cpry
and C7y are the heavy solid curves.

This implies that condition (1) of Proposition 3.9 holds, and so we get [arg g;]. = —5n/4 for j =2,... k.
From (3.29) we get M =0 or M = 2 depending on whether [arggi]p, = —57/4 or [arggi]p, = 37/4. W

To illustrate this result we choose the parameters D = 0.75, kK = 3, and A = 9.023 > Aj3y, of Fig. 5.
For 7 = 8.049, in Fig. 8(a) we plot the numerically computed fr(Ar) and Cg;(Ar) for j =1,...,3. In
Fig. 8(b) we plot fr(A;) and Crj(Ar), for j =1,...,3. For this value of 7 it is clear from these figures that
the ordering principle (3.36) holds, and so 7 = 1 sets the stability threshold. Therefore, for 7 = 8.049, it
follows that (3.11) has no eigenvalues in the right half-plane, but has a pair of complex conjugate eigenvalues
on the imaginary axis determined by the j = 1 mode. This is the Hopf bifurcation value.

Under the conditions of Proposition 3.15, j = 1 is the first unstable mode. The corresponding eigen-

vector from (3.10b) is ¢} = (1,...,1). Thus, for 7 = 74 the initial instability of the large solution is
. k
v=v_+d6eMlptce, o(z)= Z cn® [6_1(11,‘ —z,)], =1, n=1.k. (3.37)
n=1

Here c.c denotes complex conjugate, § << 1, and Ap1 is the root of gr1 = gr1 = 0, which occurs when
7 = 7h1. The key observation is that since ¢, = 1, for n = 1,.., k, the initial form of the instability is to
synchronize the amplitudes of the spikes. We refer to this as a synchronous oscillatory instability.
Therefore, if the ordering principle in Lemma, 3.14 holds, the j = 1 mode goes unstable first, and the effect
is to synchronize the small-scale oscillations in the spike amplitudes.

The critical condition in Lemma 3.14 is to determine the signs of Re[E({)] and Im[E(£)]. Writing
¢ = &r + &1, a simple calculation shows that Re [E(€)] > 0 and Im [E(£)] < 0 if and only if

tanh &g cos £1 + g—lsin& >0, and sin&; — g—ltanhf}zcos& >0. (3.38)
R R
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From the definition of £ in (3.35b), it follows that (3.38) holds when 7); is small enough. Therefore, it is

was natural to look for a condition where the j = 1 sets the stability threshold.
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Figure 9: Left figure: the Hopf bifurcation value 737 versus \A/.A;. for a one-spike solution. Right figure:
Tm1 versus A/Aj. where the complex pair of eigenvalues merge onto the positive real axis. The labels are
D = 0.75 (dashed curve), D = 0.25 (solid curve), and D = 0.1 (heavy solid curve).

Finally, we remark on the possibility of asynchronous small-scale oscillation near the Hopf bifurcation
point 7,1,. Such an instability is governed by the 7 = k mode which, as discussed with respect to competition
instabilities, has the effect of locally conserving the spike amplitudes. The j = k mode sets the initial
instability when both Re [E(¢)] and Im [E(€)] have exactly one zero-crossing on the interval 0 < Ay < Apg,
where A\ = Apx and 7 = 7 is the root of ggr = grx = 0. Although we show in Example 4 of §3.3 that
asynchronous oscillatory instabilities are theoretically possible in a narrow parameter range, we have not

been able to numerically observe such oscillations in the GS model (1.5) in the low feed-rate regime.

3.3 Numerical Results: Oscillatory and Competition Instabilities

We now give some numerical results for the stability thresholds studied rigorously in §3.2. Here we will
only consider instabilities of the large solution. To illustrate our results we take D = 0.75 and D = 0.1. For
D = 0.75, the spike interaction is strong and oscillatory instabilities occur for small values of 7. Moreover,
spike competition instabilities due to positive real eigenvalues can also occur far from the existence threshold
Age. Alternatively, for D = 0.1, the inter-spike interaction is relatively weak and the finite domain does
not play a very significant role in generating instabilities, unless there are many spikes. More specifically,
for kv/D < 1, instabilities due to positive real eigenvalues only occur very close to the existence threshold
Age. Recall also from (1.3), that our formulation of the GS model required that 7 > 1. All of the stability
thresholds for a Hopf bifurcation computed below for D = 0.75 and D = 0.1 satisfy this condition.

For k = 1, in Fig. 9(a) we plot the Hopf bifurcation threshold 73, versus A/ A, for D = 0.75, D = 0.25,
and D = 0.1. These results suggest that 7,1 is an increasing function of A/ A, and that the stability
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threshold 75, is larger for smaller values of D. This is intuitive since for smaller values of D the interaction
of the spike with the boundaries of the domain is weaker. In Fig. 9(b) we plot the values 7,,; where complex
conjugate eigenvalues first merge onto the real axis. In Fig. 10(a) we plot the Hopf bifurcation frequency
Ap1 versus A/ Aj.. This frequency tends to a limiting value A3 = 0.53 for A/ A1 > 1 (see §4).

0.6 0.8
0.6 - B
T )‘hl 0.4 B
i |
0.2 } i
0.1 i
0.0 Il 0.0 Il 1 Il 1
1.0 12 14 1.0 1.2 1.4 1.6 1.8 2.0
.A/.A]e -A/-Ale
(a) Ant (b) An1

Figure 10: Left figure: the Hopf bifurcation frequency Ap; versus A/Aj. for a one-spike solution with
D = 0.75 (dashed curve), D = 0.25 (solid curve), and D = 0.1 (heavy solid curve). Right figure A,; for a
two-spike solution with D = 0.75 (heavy solid curve) and D = 0.1 (solid curve).

Next we consider two-spike solutions for D = 0.75 and D = 0.1. From (2.10) and (3.25b), we calculate

the critical values As. and Ay, as
Age =5.158, Agr, =5.633, for D =0.75; A =6.427, Ao =6.433, for D=0.1. (3.39)

In Fig. 11(a) we plot the Hopf bifurcation value 75,7, as a function of A/Ag. for both values of D. This
threshold is set by the j = 1 mode. In this diagram we have indicated, by a vertical line, the value Ayz / Age.
Recall that below this value there are eigenvalues on the positive real axis for any 7 > 0. Since Agy, is very
close to A, when D = 0.1, a competition instability for this value of D occurs only in a narrow parameter
regime. The corresponding frequency Ap; is plotted in Fig. 10(b). In Fig. 11(b) we plot a more detailed
stability threshold for D = 0.75. In this plot we have indicated by a dashed line the threshold 749 at which
an additional pair of complex conjugate eigenvalues enter the right half-plane. Hence, for A > A1, and
T > Tpo there are four eigenvalues in the right half-plane. From the theory developed earlier, the curve 739
versus A/ Ag, terminates when A4 — .A;'L since the complex conjugate pair for the 7 = 2 mode coalesce at
the origin A = 0. One eigenvalue then moves along the positive real axis, while the other moves along the

negative real axis as A is decreased below Asj,.
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Figure 11: The Hopf bifurcation value 75,7, versus A/ Ay, for k = 2 (top row), k = 3 (middle row), and
k = 4 (bottom row). In the left figures we plot 7,1 for D = 0.75 (heavy solid curves) and D = 0.1 (solid
curves). For D = 0.75, in the right figures we plot 75, (heavy solid curve) and 75,; (dashed curves) for
j=2,... k.
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For three-spike solutions with D = 0.75 and D = 0.1, we get from (2.10), (3.23), and (3.25b), that

Asze =6.145, Ay =6.864, Az, =8.6857, for D =0.75, (3.40a)
Asze =6.960, A =6.978, A3r =7.0904, for D =0.1. (3.40b)

Similarly, for four-spike solutions we obtain the thresholds

Age =7.023, Ay =70914, A3=1052, A4 =12.69, for D =0.75, (3.41a)
Ase =7.589, Ay =7.619, A;=7.830, Ay =8.127, for D=0.1. (3.41b)

In Fig. 11(c) and Fig. 11(e) we plot 74, versus A/ A, for three and four-spike solutions when D = 0.75
and D = 0.1. For the larger value D = 0.75, in Fig. 11(d) and Fig. 11(f) we show the detailed stability
diagram by plotting 74; for ;7 = 2,...,k. In each case, the stability threshold 757 is set by the j = 1
mode representing synchronous oscillations. The vertical lines in these figures indicate where positive
real eigenvalues enter the right half-plane. The information in Proposition 3.12 is succinctly contained in
these detailed stability diagrams. For instance, from Fig. 11(f) for D = 0.75, we see that if A satisfies
7.914 < A < 10.52, then there are two real eigenvalues in the right half-plane when 7 < 737 and six
eigenvalues (at least two real) in the right half-plane when 7 > 7.

We now consider some specific examples of the theory, and we compare the results with full-scale
numerical simulations of (1.5). The solution to (1.5) is computed using the routine DO3PCF of the NAG
library [27] with 1500 uniformly spaced meshpoints. In terms of the k-spike equilibrium solution of Principal
Result 2.1, in each of the experiments below the initial condition for (1.5) is taken to be

- (z — ;)
v(z,0) = v_(z) |1+0.01 > (~1)"*! cos (%) e @/ y(2,0) =u(z).  (3.42)
j=1

Example 1: We first consider a one-spike solution to (1.5) for D = 0.75, A = 4.563, and ¢ = 0.01. In
Fig. 12(a) we plot the spike amplitude v,, = v(0,t) for two values of 7. From this figure, we observe
decaying and growing spike oscillations when 7 = 7.5 and 7 = 7.8, respectively. From the data used to
generate Fig. 9(a), the Hopf bifurcation value is 7,7, = 7.7. In Fig. 12(b) we plot the spike amplitude v,
versus t for two values of 7 when D = 0.1, A = 6.59, and € = 0.01. The spike oscillations are found to decay
when 7 = 8.6 and grow when 7 = 8.8. The Hopf bifurcation value from Fig. 9(a) is 7, = 8.7. Although
our theory correctly predicts the Hopf bifurcation value, it does not explain the large-scale oscillations seen
in Fig. 12(b) whereby the instability ultimately leads to the annihilation of the spike.

Example 2: Next, we consider a three-spike solution to (1.5) with D = 0.75 and € = 0.1. We first take
the parameter values A = 8.6 and 7 = 2.0. Since A satisfies A2 < A < Agr, from (3.40a), and 7 is below
the Hopf bifurcation value, we expect a competition instability. In Fig. 13(a) we plot the initial condition
(3.42) used for the numerical solution of (1.5). In Fig. 13(b) we show the competition instability that
occurs from the unique real positive eigenvalue in the right half-plane. Although we can correctly predict
the onset of the competition instability, the nonlinear mechanisms leading to the annihilation of the second

spike as seen in Fig. 13(b) is an open problem. Next, we take the slightly larger value A = 8.86, so that
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(a) vm versus t (b) v, versus t

Figure 12: Example 1: Plots of v, versus t for k = 1 with ¢ = 0.01. Left figure: D = 0.75 and A = 4.563,
with 7 = 7.5 (heavy solid curve) and 7 = 7.8 (solid curve). Right figure: D = 0.1 and A = 6.59, with
7 = 8.6 (heavy solid curve) and 7 = 8.8 (solid curve).

now A > A3y = 8.6857. For this value, the data used to generate Fig. 11(c) yields the Hopf bifurcation
value 7,7, = 7.5. For 7 = 7.25, in Fig. 14(a) we show a synchronous decaying oscillation in the spike
amplitudes. For the slightly larger value 7 = 7.6, in Fig. 14(b) we show both the onset of a synchronous
oscillatory instability, and the ultimate simultaneous annihilation of the three spikes.
Example 3: This is the four-spike example for D = 0.1 and € = 0.01 shown in Fig. 2 an Fig. 3 of §1. Since
Az = 7.83 and A4y, = 8.127 from (3.41b), there is a competition instability when A = 8.0 and 7 is below
the Hopf bifurcation value. This is clearly observed in Fig. 2(b) where 7 = 2.0. For this value of A, from
the data used to generate Fig. 11(e), there is a Hopf bifurcation when 7 ~ 3.4. For this value of 7 there
is a pair of complex conjugate eigenvalues on the imaginary axis, together with a positive real eigenvalue.
Therefore, for 7 = 3.2, the initial instability should be a superposition of a competition instability and a
synchronous decaying oscillation in the spike amplitudes. This is shown in Fig. 15. These two types of
instabilities lead to an initial synchronization of the spike oscillations, followed by a spike competition.
Alternatively, suppose that we take the larger value A = 8.3 > Ayz. From the data used to plot
Fig. 11(e) we obtain that the Hopf bifurcation now occurs when 7 = 4.0. In Fig. 3(a) of §1 we showed a
synchronous decaying oscillation in the spike amplitudes when 7 = 3.8. For 7 = 4.1, Fig. 3(b) of §1 shows
a synchronous oscillatory instability in the spike amplitudes followed by a simultaneous spike annihilation.
Since D = 0.1 is small for this example, we might naively expect that the inter-spike interaction is very
weak. However, for four spikes, the interaction is sufficiently strong so that these instabilities occur rather
far from the existence threshold A4, = 7.589.
Example 4: In this example we try to determine asynchronous oscillations of a two-spike solution. We let
D = 0.25 and we compute the critical values 75,1 and 7,9 versus A/ Az, where complex conjugate pairs of

eigenvalues enter the right half-plane. The plot is shown in Fig. 16(a). The Hopf bifurcation value 75,1, is the
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Figure 13: Example 2: Here k = 3, D = 0.75, A = 8.6, ¢ = 0.01, and 7 = 2.0. Left figure: the initial
condition for v (solid curve) and u (dashed curve). Right figure: The spike amplitudes v,,. The middle
spike is annihilated, and the other two spikes have a common amplitude.
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Figure 14: Example 2: The parameters are k = 3, D = 0.75, A = 8.86, and ¢ = 0.01. Left figure:
synchronous decaying amplitude oscillations for 7 = 7.25. Right figure: synchronous oscillatory instability
for 7 = 7.6, leading to a simultaneous collapse. The spike amplitudes trace out identical trajectories.
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Figure 15: Example 3: The parameters are k =4, D = 0.1, ¢ = 0.01, A = 8.0 and 7 = 3.2. Synchronized
oscillations of the spike amplitudes are followed by a competition leading to the annihilation of the second
spike and then the fourth spike. Of the two remaining spikes, the third has the largest amplitude.

minimum of these two values. From this figure we notice that the two curves 7,1 and 739 cross exactly once
at some value of A/ Ay, and that they both asymptote to a common limiting behavior as A4/ Az, — oo.
This limiting behavior is analyzed in §5 when we study the intermediate regime. On the range where
Th1 < The in Fig. 16(a) we expect synchronous oscillations as 7 is increased beyond 7p1. Asynchronous
oscillations should occur on the narrow range where Tp9 < 71 as 7 is increased. As a remark, when
D = 0.25 we compute that As. = 5.614 and Ay, = 5.681. Hence, there will be no competition instabilities
due to real eigenvalues crossing into the right half-plane when A > 5.681.

To illustrate the resulting spike dynamics we take A = 7.9377 and € = 0.01. We compute that 7,1 = 36.1
and 70 = 35.6. Hence, the complex eigenvalues that first enter the right half-plane as 7 is increased
corresponds to the asynchronous mode. In Fig. 16(b) we plot the numerically computed spike amplitudes
for three values of 7 starting from the asynchronous initial condition (3.42). For each of these values of
7, the spike amplitudes are found to synchronize very quickly in time. For 7 = 40, the spike amplitudes
both collapse, for 7 = 34 they exhibit a large-scale periodic oscillation, and for 7 = 30 the oscillations
relax back to the equilibrium state as ¢ increases. We have done many other examples to try to determine
asynchronous oscillations in the low feed-rate regime without success. However, asynchronous oscillations
for the spike amplitudes have been observed in the pulse-splitting parameter regime where A = 0(6_1/ Y,
or equivalently where A = O(1) (see [17]). There are two possibilities for not observing such oscillations in
the low feed-rate regime. One possibility is that the asynchronous mode is unstable in the weakly nonlinear
regime. The second possibility results from our observation that whenever 7,1, = 7, so that stability is
set by the asynchronous mode, the threshold for the synchronous mode 741 has a numerical value that is
typically very close to 7h,. Hence, whenever asynchronous oscillations are theoretically possible as 7 is

increased, we have typically found that the more dominant synchronous mode is essentially also present.
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Figure 16: Example 4: Left figure: The critical values 751 (solid curve) and 749 (dashed curve) versus
A/ Ay for a two-spike solution with D = 0.25. Right figure: Spike amplitudes for D = 0.25, ¢ = 0.01, with
7 = 30 (dashed curve), 7 = 34 (solid curve), and 7 = 40 (heavy solid curve).

3.4 The Infinite-Line Problem

Next, we briefly consider the stability of a one-spike equilibrium solution centered at x = 0 for the infinite-
line problem where (1.5) is posed on —oco < z < oo. The only main modification needed to the analysis
leading to Principal Results 2.1 and 3.2 is that the Green’s function in (2.5) must be replaced with the

infinite-line Green’s function G(z;0) satisfying
0
DGy —G=-6(z), —-co<z<o0; G—=0 as |z|]—>00; G(z;0)= (50) e~folal | (3.43)

where 6y = 1/ v/D. Since the analysis to construct this solution parallels that in §2, we only give the result.
Principal Result 3.16: Let ¢ — 0, with A= O(1) and D = O(1) in (1.5), defined now on —o0 < x < 00.
Then, when A > A1, = /12D 1/% there are two one-spike solutions given asymptotically by

1 6 1 A2
vi(z) ~ .A—in [e7tz] , ug(z) ~1— A2—UiG(:c;O), Uy = 3 [1 +4/1 - .Al; . (3.44)

Here uy, vy and u—, v_ are the small and large solutions. Also, w and G satisfy (2.2) and (3.43).
Since the derivation of the nonlocal eigenvalue problem is similar to that done in §3 for a multi-spike

solution on the finite interval we again only give the main result. Consider perturbations of the form
v(z) = va(z) + MO [e_lx] , u(z) = us(z) + eNn(z). (3.45)
Then, in terms of the local operator Ly of (3.11b), the nonlocal eigenvalue problem for ®(y) satisfies

ffooo wd dy

2s _ 1-U4
25 wdy

_— s= , 3.46
s+V/14+7A Ut ( )

LOCE—XwQ( ):)\@, —o0 <y < o0; X =
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with ® — 0 as |y| — oo. Notice that the multiplier x in (3.46) can be obtained by taking the limit D — 0

in the multiplier in (3.12) corresponding to a k-spike symmetric pattern on the finite line. In place of (3.16)

and (3.17), we then obtain that the eigenvalues A are the roots of g(A) = 0, where
ffooow(Lo—)\)_lw2dy 1 V147X

I =OW = f0), TN =T S e =gk 34D

Although the derivation of the equilibrium solution and the nonlocal eigenvalue problem are based on

formal asymptotics, the rigorous approach of §3.2 can be applied to study the spectrum of (3.46). In this
way, we obtain the following result:
Proposition 3.17: Let ¢ — 0 and consider a one-spike solution to (1.5) on the infinite line. The small

solution uy, vy, where 0 < s <1, is unstable for any 7 > 0 as a result of a positive eigenvalue on the real
azis. The large solution u_, v_, where s > 1, is stable with respect to the large eigenvalues for T sufficiently
small, and is unstable with respect to the large eigenvalues for T sufficiently large. There exists a value

Th = Th(8) (possibly non-unique) where there are complex conjugate eigenvalues on the imaginary azis.

T T T 06 T T T
750
0.5+ 4
600 1 ol |
450 bl
Thy Tm 0.3
\ihy ARm //'
300 F 1 0.2 i
150 - B 01} i
//
0 — 1 1 0.0 1 1 1
1.0 1.2 14 1.6 1.0 1.2 14 1.6
A/ Ase A/ Ase
(a) 7 and Tm (b) Arp and Arm

Figure 17: Left figure: the Hopf bifurcation value 75, (heavy solid curve) versus \A/Aj.. The complex
eigenvalues merge onto the positive real axis when 7 = 7,,, (solid curve). Right figure: The corresponding
critical values Az, (heavy solid curve) and Agy, (solid curve).

Using the numerical method described briefly in §3.3, we compute 7, = 75,(s) numerically. From
s = (1 - Uy)/Us, we get 7, as a function of A/Aje = (1+s)[2v/3] . In addition, we can compute the
value of 7, labeled by 7,,(s), where the complex conjugate eigenvalues merge onto the real axis. A simple
calculation using (3.46) together with the local properties of f()) for A — 0, as given in Propositions 3.5
and 3.7 above, shows that when s = 1 there is a double root to g(A) = 0 at A = 0 and 7 = 3. The
numerical results for 7, and 7,,, as a function of A/ A, are shown in Fig. 17(a). Although we cannot prove
that 75 is unique, numerical evidence suggests that when 7 > 75, there are always two eigenvalues in the
right half-plane. In Fig. 17(b) we plot the function A7, versus .A/.A;. where we have a Hopf bifurcation.
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In this figure we also plot the function Ag,, versus A/A;. where complex conjugate eigenvalues in the
right half-plane first merge onto the real axis. From this figure, we notice that A, and Agy,, have limiting
behaviors for s > 1. This limiting behavior is analyzed in a more general context in §4. The critical value
7, for this infinite-line problem can be obtained by taking the limiting v/ Dk < 1 in all of the results of
§3.2 for the finite domain problem (1.5). Therefore, the results for D = 0.1 and k = 1,...,3, computed
above in §3.3, should reasonably approximate those for the infinite-line problem.

Next, we relate our results for the infinite-line problem with those of [25]. In [25] a similar formal
analysis was used to construct a one-spike equilibrium solution. To show the equivalence of our nonlocal

eigenvalue problem (3.46) with that in [25], we integrate (3.46) over —oco < y < 00 to obtain

(2—X)/oow<1>dy:()\+1)/oo<1>dy. (3.48)

— 0 -0

Then, we solve (3.48) for [*° w® dy. Substituting the result into (3.46), and using [*°_ w? dy = 6, we get

x(A+1) 2/‘”
Log® — ——w Ody = )\ 3.49
0 6(2—X) - Yy ( )

For the large solution, where s > 1, we use (3.46) for x to write (3.49) as

2
4o % 3A% (14 )) A2
L<I>——2/ ddy =)\, = ~— L (1441 -] 3.50
L R I O R, T V' a2 (3:50)

where w(y) = 3sech?(y/2). The NLEP (3.50) is given in equation (2.13) of [25]. Our plots of 74 and Az,
are equivalent to those in Fig. 2.4c and Fig. 2.4d of [25]. In Appendix B of [25], some properties of the

spectrum for (3.50) were obtained. Our rigorous approach to the nonlocal eigenvalue problem, with results
summarized in Proposition 3.17, provides an alternative proof of the stability properties.

In [8] a rigorous geometric singular perturbation approach was used to establish the existence of a
one-spike solution and a periodic solution to a different dimensionless form of the infinite line GS model
(cf. Theorem 4.3 of [8]). For a one-spike solution, the threshold Aj, = v/12D~ /% for the low feed-rate
regime is equivalent to that in Theorem 4.3 of [8]. In [7] an alternative analysis of the NLEP (3.46) was

given using dynamical systems techniques. This work is described in more detail in §4 and §5 below.

4 The Intermediate Regime: O(1) < A < O(e71/?)

The derivation of the spectral problem in Principal Result 3.2 was based on linearizing (1.5) around the
solution of Principal Result 2.1. A crucial feature of this solution is that the leading-order inner problems
for uy and vy decouple near each spike. In particular, this implies that uy = Uy + O(e) in the core of
each spike. The nonlocal eigenvalue problem (3.11) is valid for the range of A where such a leading-order
decoupling of the inner problems for u4 and v4 can be made. We now show formally that, when D = O(1),
this decoupling property holds for the intermediate regime O(1) < A < O(¢~'/2). In this regime, we then
derive certain scaling laws for the stability thresholds calculated in §3.

To construct a k-spike pattern, we first construct a symmetric one-spike equilibrium solution to (1.5)

on the interval —] < z < [. Then, by setting [ = 1/k, we obtain the result for a k-spike solution of (1.5) on
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—1 <z < 1. In the inner region near z = 0, we let y = e "'z, v;(y) = v(ey), ui(y) = u(ey), and we expand
the inner equilibrium solution for (1.5) on —] < x <[ as

vi(y) = violy) + evin(y) + -+, wi(y) = uio(y) + euin(y) +--- . (4.1)

Substituting (4.1) into the equilibrium problem for (1.5), we collect powers of € to get

n n

Vio — Vio + Auigr = 0; u; =0, —o00 <y < 00, (4.2a)

n 2 n 2
Vi — Vil + 2Auz~01/z-01/i1 = —.Auill/io ; Duil = U0V —0 <Yy <oo. (4.2b)

In terms of the solution w to (2.2), the solution to (4.2a) is simply v;o(y) = w/(AU) and ui(y) = U.

2

In the outer region, v is exponentially small and e 'ur? can be represented as a Dirac mass, which can

be calculated using the leading-order inner solutions u;y and v;y. Thus, the outer solution ug satisfies

Dug + (1 — ug) §(x) —l<z<l;  ug(£l)=0. (4.3)

6
AU
The solution to (4.3) is written in terms of the Green’s function G;(z,0) on |z| < I satisfying

@) cosh [(I — |z])6o]
2 sinh (16y) '

DG — Gy = =4(z), —-l<z<l; Gu(£l;0)=0; Gi(=z;0)= ( (4.4)

where 6y = 1//D. Then, we solve (4.3), and use the leading-order matching condition u((0) = U to get

6 _ 6Gy(0;0)

up(z) =1 — WG(:C;O), U=1 By G1(0;0) = (02—0> coth (6yl) . (4.5)

Next, we expand ug in one-sided limits as z — 0% to obtain the following matching condition for u;;:

6G; (0550
Uil ~ —%y, as y — *oo. (4.6)
To obtain parameter-free inner problems, we introduce new inner variables i;; and ;; defined by
1 1 .
Uyl = muila Vi1 = WWI- (4.7)

Substituting (4.7) and (4.6) into (4.2), and noting that Gy, (0%;0) = F62/2, we obtain an explicit two-term
inner expansion. The outer expansion is obtained from (4.5). Finally, by identifying [ = 1/k we obtain the
following formal result for a k-spike equilibrium solution:

Principal Result 4.1: For e — 0, consider a k-spike equilibrium solution to (1.5). Then, when A > A,

there are two such solutions; the large solution u_, v_, and the small solution uy, vy. The two-term inner
expansions in the core of each spike are

1

e . N
Vit (y) ~ AUS w(y) + ml/ﬂ(y) AR uix(y) ~ Uz i (y) +--- |, (4.8a)

14—
A2U2D

where Uy and Ay are given explicitly in (2.10). Here ;1 (y) and 441 (y) are even solutions to the following
parameter-independent inner problems on —oo <y < 00:

Uy — U1 + 2wiy = —ﬁil’wQ ,  Ujp = w? ; Ui1— 0, b~ 3|y| , as \y| — 0. (4.8b)

33



In terms of the global Green’s function of (2.5), the corresponding outer solution for u on |x| < 1 is

k

ug(z) =1— (1;7ch) ZG(:I:;arj), ag = [2\/Btanh ((90/19)]71 . (4.9)

g j=1

From (4.8a), it follows that the leading-order inner solutions can be decoupled provided that

£

07D < 1. (4.10)

Since Uy — 1 as A — oo, (4.10) holds uniformly as A — oo for the small solution u, v,. Alternatively,
as A — oo, we have for the large solution u_, v_ that

2 4
U_Nfﬁ-l-O(Jj@e), for A>1. (4.11)

Substituting (4.11) into (4.10), and using (2.10) for Ay, we obtain that (4.10) holds provided that
O(1) < A< 3¢ Y2 coth[Oo/k], 6y =D'/2. (4.12)

Therefore, for D = O(1) and D < 1, we require that A < O(¢~'/2). Although the lower bound in (4.12)
appears to hold uniformly in D as D — 0, this is misleading because the existence threshold in (2.10)
yields Ag, = O(Dil/ Y) for D < 1. Hence, for D < 1, the intermediate regime exists provided that
O(D~Y*) « A < O(¢~1/2). This requires that D > O(g?). Therefore, there is no intermediate range for
A in the the weak-interaction regime D = O(e?) studied in [30], [31], and [38]. In this regime, the analysis
of equilibrium solutions for the GS model requires a full balance of all of the terms in (1.2).

We now derive certain scaling laws in the intermediate regime O(1) < A < O(¢~'/?) and D = O(1).

In this regime we use (4.11) to obtain the two-term inner expansion for v_ and v_

AvD % 3 coth (6y/k)

Here § = # tanh? (y/k) < 1. Moreover, for A > 1, the outer solution (4.9) has the form

vi—(y) [L+ 0t (y) +---] . (4.13)

2 k
up(z) ~ 1 — 1 (1 - f—ﬁ) ZIG(;c;xj). (4.14)
=

Qg

In the intermediate regime, we can use (4.13) to calculate the norm |v|2 in (2.11) as

! 2 V6DEA
|V|2 o (8 /_1 v dx) 3C0th (90/]4:) ) (415)

The expansions (4.13) and (4.14) do suggest the following scalings of the inner and outer solutions in the

pulse-splitting regime A = O(e~/?), which is studied in the companion paper [17]:

vi=0@E?),  wi=0(), u=uy+O0(). (4.16)
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The spectral results of §3 are valid when the decoupling condition (4.12) holds. We now derive scaling
laws for the stability thresholds of the large solution in the intermediate regime. Using (4.11), we get
1-U_  44°
SET:A—ie_2+O(1)’ as A —o00. (4.17)
To calculate the stability threshold Dy for a competition instability, we let s — oo in (3.25a). From
(4.17), a simple calculation shows that Dy;, = O(A?) for A > 1. More precisely, for k > 1 we obtain

8.A?

Dir, = D33 + 0 (A)Ar), DS =—2
kL kL ( / ke) kL k2’)’k«4%e

where 7y, =1+ cos (%) . (4.18)
Since A, depends on D, the threshold for D can be written more explicitly by using (2.10) for A, directly
in (4.18). In this way, we obtain that there are no eigenvalues on the positive real axis when 7 is sufficiently
small, provided that D < D73, where Dg§ for k > 1 is the unique root of

2A2 1
VD= 24 o (_> | 419

o kD (4.19)
In the intermediate regime, (4.19) can be solved asymptotically to predict a minimum inter-spike distance
L,, for the stability of a spike pattern. For a k-spike pattern on a domain of length 2, the inter-spike
separation is L = 2/k. For A > 1, the root of (4.19) satisfies D > 1. For D > 1, we solve (4.19) for k

with A = e71/24 to conclude that, for 7 sufficiently small, there are no positive real eigenvalues when

12")’k De
A2

1/3
L>L,~ < ) , 0E"?) <« A< 0(1); Yk = 1+ cos (m/k) . (4.20)

Since Ly, > O(e), the analysis leading to (4.20) is consistent. A similar scaling law was given in equation
(15.58) of [15] for the minimum inter-spike separation distance of a periodic spike pattern of the Brusselator
model in a particular parameter regime.

To determine the stability threshold for a Hopf bifurcation in the intermediate regime, we let s — oo
in (3.17) to get C; = (1/2) + O(s7!) for 7 = O(1) and D = O(1). Since C;j ~ 1/2, there are no eigenvalues
in the right half-plane (cf. Appendix E of [14] and Theorem 1.4 of [40]). Thus, for D = O(1), an instability

can only occur when 7 > 1. The correct scaling law is to introduce a new O(1) parameter 7y by
7 = 79 tanh? (6y/k) s° . (4.21)

Substituting (4.21) into (3.17), and assuming that D = O(1), we let s — oo to obtain

Ci(A) ~ Cos(N) +0(s72),  Coo(N) = % [1+ v/ - (4.22)

Notice that Cx(A) is independent of j, of D, and of the number of spikes k. The nonlocal eigenvalue
problem in the intermediate regime is then obtained by replacing x in (3.11) with x = 1/Cy. Substituting
(4.17) into (4.21), we obtain the key scaling law

16.4* 2

A2\
T~ Tog = A—ée tanh? (6 /k) 0 (1 - 2;;2) +o(1). (4.23)
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Formally this leads to the following nonlocal eigenvalue problem in the intermediate regime:
Principal Result 4.2: Assume that 0 < ¢ € 1, D = O(1), and O(1) € A < O(e~/2). Then, with
® = B(y), the O(1) eigenvalues of (2.14) for a symmetric k-spike large solution u_, v_ satisfy, for each

j=1,...,k, the following universal nonlocal eigenvalue problem:
foo w® dy )
Lo® — xoow? (‘é’.‘% =A0, —00<y<o0; XYoo =T, (4.24)
I wdy 1+ /7oA

with ® — 0 as |y| = oo. In (4.24) the local operator Ly is given in (3.11b). The corresponding global
eigenfunction ¢(x), representing the perturbation in v_, satisfies ¢(x) ~ Zle ¢i® [e7 (z — z;)] . Here ¢;

fori=1,...,k are the components of any one of the k independent eigenvectors in (3.10b).
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(a) path in complex plane (b) Ar(70), A1(70)

Figure 18: Left figure: plot of the path of A = Ar + i\ as 7¢p increases past mgp, = 1.748 until it merges
onto the real axis at 7g,, = 8.567. Right figure: Ag (heavy solid curve) and Ar (solid curve) versus 7.

In terms of a different dimensionless form of the GS model (1.2), the eigenvalue problem (4.24) was
also derived and studied in [6] and [7] using a dynamical systems approach. In [6] and [7], hypergeometric
functions were used to numerically compute a winding number criterion for (4.24) over a wedge-shaped
region that includes part of the left half-plane. Since the continuous spectrum is on the negative real
axis, there were many technical difficulties that were overcome with the approach in [7] in order to count
the number of eigenvalues near the origin. In our analysis of §3, by having derived properties of f()) on
the imaginary axis, we do not need to consider the left half-plane and the difficulties with the continuous
spectrum intersecting the origin. The only effect of the continuous spectrum with our formulation is that
Céo (0) is infinite. Even with this change in the property of C' in Proposition 3.6, the theory of §3 applies
directly to (4.24), and proves that there is a Hopf bifurcation value 7q;, (possibly non-unique) where (4.24)
has complex conjugate eigenvalues on the imaginary axis. In addition, the theory of §3 also readily proves
that there is another critical value 7y, where unstable complex conjugate eigenvalues first merge onto the

positive real axis at some Ag,, as 7y is increased.
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For increasing values of 79, in Fig. 18(a) we plot the numerically computed path of the unstable
eigenvalues for (4.24) up until they merge onto the real axis. The corresponding functions A\ = Ag(7) and
Ar = Az7(7) > 0 are shown in Fig. 18(b). These numerical results suggest the stronger statement that 7op
is in fact unique, and that there are always two eigenvalues of (4.24) in the right half-plane when 7y > 7.

Our computations yield the critical values,
Ton = 1.748, Arp = 0.534; Tom = 8.567, Arm = 0.300. (4.25)

As shown in §5, these values are consistent with those in [6]. To obtain our scaling laws, we substitute
(2.10) for A, into (4.23). In this way, and in analogy with Proposition 3.15, we can then summarize our
stability results for the large solution in the intermediate regime.

Proposition 4.3: Let ¢ < 1, and consider the intermediate regime O(1) < A < O(e~/?) for a symmetric
k-spike large solution u_, v_. Then, when D = O(1), the solution is stable with respect to the large

eigenvalues when T < 77°, where

w A*D. 660 2
Th ~ Ttanh (Oo/k) TOh (1 - _A?tT(OO/k)> + 0(1) - (426)

Moreover, for D = O(1), two unstable complex conjugate eigenvalues merge onto the positive real axis in
the interval 0 < X\ < 5/4 when 7 = 73°, where 10 ~ T°Toy /Ton. The numerically computed values are
Ton = 1.748 and 7o, = 8.567. Next, suppose that D > D75, where DY > 1 is given in (4.18). Then, the
large is unstable for any T > 0.

As shown in §5, the leading term in the scaling law for 7;° and 7,7 agrees with previous results in
[6]. The extra term in the brackets in (4.26) is a new correction term. In contrast to the NLEP (3.11) of
the low feed-rate regime, where there are k different multipliers x, the key feature of the NLEP problem
(4.24) of the intermediate regime is that a k-spike solution is associated with exactly one multiplier .
This suggests a certain complexity in the dynamics near the Hopf bifurcation point, since there are k
possible eigenfunctions in Principal Result 4.2 that occur when 7 crosses past 7;°. Therefore, in contrast
to the low feed-rate regime, there is no apriori guarantee that spike oscillations will be synchronous in
the intermediate regime. This complexity in the dynamics was observed numerically in [6], without any
theoretical explanation, where it was noted that the behavior near the Hopf bifurcation point is quite
unpredictable and sensitive to perturbations (see page 30 of [6]).

In Fig. 19(a) and Fig. 19(b) we compare the scaling law (4.26) for 7,° with the corresponding numerical
value computed from (3.11) for ¥ = 1 and k = 2, respectively. From these figures, we observe that 7,°
provides a good approximation to the numerically computed value except near the existence threshold Age.
We remark that the leading-order approximation to 7;,°, obtained by neglecting the correction term in the
bracket in (4.26), is in only fair agreement with the numerical stability threshold.

Finally, we remark that a similar scaling law for a Hopf bifurcation can be derived for the infinite-line

problem of §3.4. Letting s — oo in (3.46), we obtain that the Hopf bifurcation value 7;° is given by

‘D 60 2
50 “49 Ton (1 - i—g) +o(1), (4.27)
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(a) k= 1: log,o(7) versus A/ Ai. (b) k = 2: log,o(7) versus A/ Ase

Figure 19: Comparison of numerical Hopf bifurcation value log;,(74) (solid curve is D = 0.1, heavy solid
curve is D = 0.75) with the asymptotic scaling law log,(77°), where 7,.° is given in (4.26) (dashed curves).
Left figure: kK = 1. Right figure: k = 2.

where 6y = 1/v/D. Here 1o, computed from (4.24), is given in (4.25). If we set D = 1, and write
A = €'/? A, then the following leading term in (4.27) is equivalent to equation (2.11) of [25]:

70 ~ 0.19422A4% 72, (4.28)

5 Discussion and Comparisons

In this section we discuss more precisely the relationship between our results and those in the literature.
We also list some open problems.

In §3.2 and in §4 we compared our results with those of [25], which were based on the infinite-line
problem in both the low feed-rate and intermediate regimes. Our results in those regimes are completely
consistent with those of [25].

Next, we compare our results with those of [6] and [7] for the GS model with nondimensional form
Ve =8Vxx -8V +UV?, 0<X<L, T>0; Vx=0, X=0,L, (5.1a)
Upr=Uxx +6%a(1-U)-UV?, 0<X<L, T>0; Ux=0, X=0,L. (5.1b)

Here 0 < < 1, and 6 < 1. In [6], solutions of a spatial period 7 are constructed formally. For a k-spike
solution, this determines L as L = Tk. In terms of our dimensionless groupings of (1.2), it follows that

4 4625 592 §1=Fp
D=——, 2= ——, T= , A= \/E' (5.2)
02aT?2k2 bT2k2 a b
In equation (2.10) of [6], the mode m of the periodic pattern is related to the period 7 by
2
m=2 *1_ L E =eTWe/2 (5.3)

E2 -1 tanh(logE)’
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Using L = Tk and (5.2), we can express m in terms of our notation as
m = [tanh (§/k)]™*, 6, =D/2. (5.4)

The only nonlocal eigenvalue problem studied in [6] and [7] is given in equation (4.14) of [6]. Using
(5.2), it is readily shown that equation (4.14) of [6] is exactly equivalent to the intermediate regime NLEP
(4.24) of Principal Result 4.2. In [6], hypergeometric functions were used to study this NLEP. In this way,
it was shown in equation (5.16) of [6] that there is a Hopf bifurcation at b = by, and that a pair of unstable
complex conjugate eigenvalues merge onto the positive real axis at b = b.. These critical values were

b=ty = Ye512-8(066),  b=b, = Y5126 (0.99). (5.5)
m m

We now show that these results agree precisely with the leading-order terms for the scaling-laws 77° and

720 given in Proposition 4.3. To show this, we write the leading term in (4.26) as

4 —2 A4

D A*D
7';;0 ~ AT tanh? (Oo/k) Toh = ET tanh? (90/]6) TOh - (56)

Using the change of variables (5.2), which relates our notation to that of [6], we obtain

62 7%
— =5

4 TOh
tanh? (8o /k) (—9 ) . (5.7)
Solving (5.7) for b, and recalling (5.4) for m, we obtain

b Yasi/2-p (M)”‘* _

m 9

Recalling from (4.25) that 7o, = 1.748, we observe that (5.8) and (5.5) agree. Similarly, the leading-order
term for 750 in Proposition 4.3 agrees with b, in (5.5).

(5.8)

Therefore, our results for the stability of k-spike patterns in the intermediate regime agree asymptoti-
cally with those of [6]. However, there are a few differences in the approach and in the results. Firstly, our
rigorous analysis of the nonlocal eigenvalue problem in Principal Result 4.2 provides a simple alternative
proof to the study in [6] and [7], which uses dynamical systems techniques and computations involving
hypergeometric functions to establish the existence of a Hopf bifurcation point. Secondly, the scaling laws
in Proposition 4.3 incorporate an extra correction term not given in [6] (see Fig. 19). Without this term,
only fair agreement is obtained with numerically computed Hopf bifurcation thresholds. Finally, we have
provided a new scaling law in (4.20) for competition instabilities of closely spaced spikes.

However, the essential difference between our study and that of previous studies is our analysis of the
low-feed rate regime in §2 and §3. The eigenvalue problem of Principal Result 3.2 is new in the context of the
GS model. Tt leads to the existence of both competition and (typically) synchronous oscillatory instabilities.
These instabilities have not been reported previously for the GS model. In addition, Proposition 3.3 shows
a clear equivalence between the GS and GM models in the low feed-rate regime. In the intermediate regime,
the stability analysis of k-spike patterns is essentially very simple, in that the scaling laws described above

show that the stability threshold for a k-spike pattern is a multiple of the threshold for a one-spike pattern.
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This simplification does not occur for the GS model in the low-feed rate regime, and consequently the
stability analysis there is much more intricate than in the intermediate regime.

There are several open problems related to this study. Regarding large-scale behavior away from
bifurcation points, an open problem is to analyze the large-scale synchronous oscillatory instabilities and
competition instabilities that occur in the low feed-rate regime after they are initiated. In this context, it
is an open problem to prove that the oscillatory instability in the GS model is subcritical. The oscillatory
instabilities in the GM model studied in [39] often lead to stable large-scale time-periodic solutions. It
would be interesting to calculate the normal form of these oscillations for both the GS and GM models to
show the differences in the behavior of the oscillations. A key technical problem, for both the low feed-rate
and intermediate regimes, is to prove a strict transversal crossing condition to guarantee that the complex
conjugate eigenvalues on the imaginary axis when 7 = 7, remain in the right half-plane for any 7 > 7.
Numerical evidence suggests that this is the case, but an analytical proof is not available. Another open
problem is to determine if there is a wide parameter regime where asynchronous oscillations in the spike
amplitudes are possible. It would also be interesting to characterize the dynamics of quasi-equilibrium
patterns in the low and intermediate feed-rate regimes. For the GM model (1.7), such an analysis of
the dynamics of quasi-equilibrium patterns was done for a k-spike pattern with 7 = 0 in [12], and for a
one-spike pattern with 7 > 0 in [36]. Two-spike evolutions were analyzed in [4] and [5] on the infinite line,
and in [37] on a finite domain. Finally, since our analysis does not rely on dynamical systems techniques,
much of it is readily extended to treat the stability and dynamics of two-dimensional spot patterns for the

GS model. Work in this direction is in progress.
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