Topics in Localized Pattern Formation

Michael J. Ward (UBC) PIMS-Heidelberg: Math-Bio/PDE Workshop

Collaborators:, A. Lindsay (Notre Dame), A. Bernoff (Harvey Mudd), Jia Gou (UMinn, UC Riverside), Sarafa Iyaniwura (UBC).

Outline

- Topic I: Berg-Purcell Problem Revisited. Determination of effective capacitance of a sphere with N small "traps" on the boundary. The homogenized limit and the mean first capture time. (Lindsay, Bernoff)
- Topic II: PDE/ODE Model of dynamically-active (ODE) small signalling compartments coupled by bulk-diffusion (PDE). Leads to the triggering of (synchronous) oscillations via a hopf bifurcation (J. Gou, S. Iyaniwura). Biologically: illustrates quorum and diffusion sensing behavior.
- Key Features: Derivation and study of new discrete variational problems using from Green's interaction matrices. Nonlinear matrix eigenvalue problems involving Green's interaction matrices.

Topic I: Narrow Capture in 3-D

Caption: spherical target of radius $\varepsilon \ll 1$ centered at $\mathbf{x}_0 \in \Omega$, with *N* locally circular absorbing surface nanotraps (nanopores) of radii $\sigma \ll \varepsilon$ modeled by homogeneous Dirichlet condition.

- ▲ A particle (protein etc..) undergoes Brownian walk ($dX_t = DdW_t$) until captured by one of the N small absorbing surface nanotraps.
- Q1: How long on average does it take to get captured? (MFPT).
- Q2: What is the effect on the MFPT of the spatial distribution $\{x_1, \ldots, x_N\}$ of the surface nanotraps? (Capacitance).

Applications of Narrow Capture

Nuclear Pores: Genetic material enters nucleus via small pores.

Scaling: Nucleus $\approx 10\%$ of cell volume ($\varepsilon = 0.1$). Roughly, N = 2000 pores that occupy 2% of the surface area. (Eilenberg et al. Science 341(6146), 2013).

Cell Signalling: How long does it take an antigen to bind to a receptor on a T-cell to produce antibodies?

The MFPT PDE for Narrow Capture

The Mean First Passage Time (MFPT) T satisfies

$$\Delta T = -\frac{1}{D}, \quad \mathbf{x} \in \Omega \setminus \Omega_{\varepsilon}; \qquad \partial_n T = 0, \quad \mathbf{x} \in \partial \Omega, T = 0, \quad \mathbf{x} \in \partial \Omega_{\varepsilon a}; \quad \partial_n T = 0, \quad \mathbf{x} \in \partial \Omega_{\varepsilon r},$$

where $\partial \Omega_{\varepsilon a}$ and $\partial \Omega_{\varepsilon r}$ are the absorbing and reflecting part of the surface of the small sphere Ω_{ε} within the 3-D cell Ω .

- Solution Calculate the averaged MFPT \overline{T} for capture of a Brownian particle.
- \overline{T} depends on the capacitance C_0 of the structured target (related to the Berg-Purcell problem, 1977). This is the inner or local problem.
- Derive new discrete optimization problems characterizing the optimal MFPT and determine how the fragmentation of the trap set affects \overline{T} .

Ref: [LBW2017] Lindsay, Bernoff, MJW, *First Passage Statistics for the Capture of a Brownian Particle by a Structured Spherical Target with Multiple Surface Traps*, SIAM Multiscale Mod. and Sim. **15**(1), (2017), pp. 74–109.

Asymptotic Result for the Average MFPT

Using strong localized perturbation theory, for $\varepsilon \to 0$ the average MFPT is

$$\bar{T} \equiv \frac{1}{|\Omega \setminus \Omega_{\mathcal{E}}|} \int_{\Omega \setminus \Omega_{\mathcal{E}}} T \, d\mathbf{x} = \frac{|\Omega|}{4\pi C_0 D\varepsilon} \left[1 + 4\pi \varepsilon C_0 R(\mathbf{x}_0) + \mathcal{O}(\varepsilon^2) \right],$$

where $R(\mathbf{x}_0)$ is the regular part of the Neumann Green's function for Ω :

$$\Delta G = \frac{1}{|\Omega|} - \delta(\mathbf{x} - \mathbf{x}_0), \quad \mathbf{x} \in \Omega; \quad \partial_n G = 0, \quad \mathbf{x} \in \partial\Omega,$$
$$G(\mathbf{x}; \mathbf{x}_0) = \frac{1}{4\pi |\mathbf{x} - \mathbf{x}_0|} + R(\mathbf{x}_0), \quad \text{as} \quad \mathbf{x} \to \xi; \qquad \int_{\Omega} G \, d\mathbf{x} = 0.$$

Capacitance Problem: "exterior" problem in potential theory. C_0 satisfies

$$\Delta v = 0, \quad \mathbf{y} \in \mathbb{R}^3 \setminus \Omega_0; \quad v = 0, \quad \mathbf{y} \in \Gamma_a, \quad \partial_n v = 0, \quad \mathbf{y} \in \Gamma_r,$$

$$\lim_{R \to \infty} \int_{\partial \Omega_R} \partial_n v \, ds = -4\pi \,; \quad v \sim -\frac{1}{C_0} + \frac{1}{|\mathbf{y}|} + \mathcal{O}(|\mathbf{y}|^{-2}) \,, \quad |\mathbf{y}| \to \infty \,.$$

Capacitance C₀ of Structured Target

The inner problem for the capacitance C_0 is equivalent to finding the probability $w(\mathbf{y})$ that a particle is captured starting at $\mathbf{y} \in \mathbb{R}^3 \setminus \Omega_0$:

$$\begin{split} \Delta w &= 0 \,, \quad \mathbf{y} \in \mathbb{R}^3 \setminus \Omega_0 \text{ (outside unit ball)} \\ w &= 1 \,, \quad \mathbf{y} \in \Gamma_a \text{ (absorbing pores)} \\ \partial_n w &= 0 \,, \quad \mathbf{y} \in \Gamma_r \text{ (reflecting surface)} \\ w &\sim \frac{C_0}{|\mathbf{y}|} + \mathcal{O}\left(\frac{1}{|\mathbf{y}|^2}\right) \,, \quad \text{as} \quad |\mathbf{y}| \to \infty \,. \end{split}$$

Remarks:

- $C_0 = 1$ if entire surface is absorbing.
- The diffusive flux J into the sphere is

$$\boldsymbol{J} = D \int_{\Gamma_a} \partial_n w \, dS = 4\pi D \boldsymbol{C_0} \, .$$

The sub-inner problem near a pore is the classic electrified disk problem.

Berg-Purcell Problem: I

This is the Berg-Purcell (BP) problem (Physics of Chemoception, Biophysics, 20(2), (1977)) ≈ 1500 citations)

BP assumed

- $N \gg 1$ disjoint equidistributed small pores.
- common pore radius $\sigma \ll 1$.
- dilute fraction limit, i.e. $f \equiv N\sigma^2/(4\pi) \ll 1$.

Using a "physically-isnpired" derivation, BP postulated that

$$\label{eq:cobp} \begin{split} \frac{N\sigma}{N\sigma+\pi}\,, \qquad J_{\text{bp}} = 4\pi D \frac{N\sigma}{N\sigma+\pi} = 4DN\sigma + \mathcal{O}(\sigma^2)\,. \end{split}$$

Suggests that J is proportional to the total pore perimeter when $\sigma \ll 1$.

<u>Our Goal</u>: Calculate C_0 , and the flux J, systematically for a collection of disjoint pores centered at $\{y_1, \ldots, y_N\}$ over the surface. Study the effect of the location of the pores and fragmentation. For equidistributed pores derive the BP result and the asymptotic corrections to it.

Berg-Purcell Problem: II

BP analysis revisited by Shoup-Szabo (Biophysical J. 1982). Replace trap set by effective trapping parameter k, so that for a sphere of radius R

$$\Delta u = 0, \quad r \ge R; \quad Du_r = \mathbf{k}u, \quad r = R.$$

Then, the flux $J = \int_{\Omega} D\partial_u r|_{r=R}$ into the sphere is $J = 4\pi DC$, where

$$u = 1 - \frac{C}{r}$$
, with $\frac{1}{C} = \frac{1}{R} + \frac{D}{kR^2}$

Now estimate k: On an infinite plane with a single trap of radius a

$$J_{\text{disk}} = \int_{\text{disk}} Du_z|_{z=0} d\boldsymbol{x} = 2\pi Dc_{\text{disk}}, \qquad c_{\text{disk}} = \frac{2a}{\pi}$$

Thus $J_{\text{disk}} = k_{\text{disk}} = 4aD$. Now estimate

$$k \approx k_{\text{disk}} \left(\frac{N}{4\pi R^2} \right) = \frac{4D}{\pi R\sigma} f$$
, where $f \equiv \frac{N\pi\sigma^2}{4\pi}$

and $\sigma \equiv a/R$. Finally, this yields the BP capacitance and BP flux

$$\frac{1}{C_{\text{bp}}} = \frac{1}{R} \left(\frac{\pi}{N\sigma} + 1 \right) , \qquad J_{\text{bp}} = 4\pi DR \left(\frac{N\sigma}{N\sigma + \pi} \right)$$

Main Result for C₀ and flux J: I

<u>Main Result</u>: For $\sigma \rightarrow 0$, [LBW2017] derived that

$$\frac{1}{C_0} = \frac{\pi}{N\sigma} \left[1 + \frac{\sigma}{\pi} \left(\log \left(2e^{-3/2}\sigma \right) + \frac{4}{N} \mathcal{H}(\mathbf{y}_1, \dots, \mathbf{y}_N) \right) + \mathcal{O}(\sigma^2 \log \sigma) \right],$$

$$J = 4DN\sigma \left[1 + \frac{\sigma}{\pi} \log(2\sigma) + \frac{\sigma}{\pi} \left(-\frac{3}{2} + \frac{2}{N} \mathcal{H}(\mathbf{y}_1, \dots, \mathbf{y}_N) \right) + \cdots \right]^{-1}.$$

The interpore interaction energy \mathcal{H} , subject to $|\mathbf{y}_j| = 1 \ \forall j$, is

$$\mathcal{H}(\mathbf{y}_1, \dots, \mathbf{y}_N) \equiv \sum_{j=1}^N \sum_{k=j+1}^N g(|\mathbf{y}_j - \mathbf{y}_k|); \quad g(\mu) \equiv \frac{1}{\mu} + \frac{1}{2} \log \mu - \frac{1}{2} \log(2 + \mu).$$

Here \mathbf{y}_j for j = 1, ..., N are the nanopore centers with $|\mathbf{y}_j| = 1$.

Remarks:

- **9** Flux J minimized when \mathcal{H} minimized
- $g(\mu)$ is monotone decreasing, positive, and convex.
- Indicates that optimal configuration should be (roughly) equidistributed.

Main Result for C₀ and flux J: II

Here $g(|\mathbf{y}_j - \mathbf{y}_k| = 2\pi G_s(\mathbf{y}_j; \mathbf{y}_k), G_s$ is the surface-Neumann G-function

$$G_s(\mathbf{y}_j; \mathbf{y}_k) = \frac{1}{2\pi} \left[\frac{1}{|\mathbf{y}_j - \mathbf{y}_k|} - \frac{1}{2} \log \left(\frac{1 - \mathbf{y}_j \cdot \mathbf{y}_k + |\mathbf{y}_j - \mathbf{y}_k|}{|\mathbf{y}_j| - \mathbf{y}_j \cdot \mathbf{y}_k} \right) \right]$$

Key steps in singular perturbation analysis for C_0 :

- Asymptotic expansion of global (outer) solution and local (inner) solutions near each pore (using tangential-normal coordinates).
- The surface G_s-function has a subdominant logarithmic singularity on the boundary (related to surface diffusion). This fact requires adding "logarithmic switchback terms in σ " in the outer expansion.
- The leading-order local solution is the tangent plane approximation and yields electrified disk problem in a half-space, with (local) capacitance $c_j = 2\sigma/\pi$.
- Key: Need corrections to the tangent plane approximation in the inner region near the pore. This higher order term in the inner expansion satisfies a Poisson-type problem, with monopole far-field behavior.
 - Asymptotic matching and solvability conditions yield $1/C_0$.

Asymptotics versus Numerics (Small N)

Asymptotic Results: For $\sigma \to 0$

$$J = 4D\sigma \left[1 + \frac{\sigma}{\pi} \left(\log(2\sigma) - \frac{3}{2} \right) - \frac{\sigma^2}{\pi^2} \left(\frac{\pi^2 + 21}{36} \right) + \cdots \right], \quad (N = 1),$$

$$J = 4DN\sigma \left[1 + \frac{\sigma}{\pi} \log(2\sigma) + \frac{\sigma}{\pi} \left(-\frac{3}{2} + \frac{2}{N} \mathcal{H}(\mathbf{y}_1, \dots, \mathbf{y}_N) \right) + \cdots \right]^{-1}, \quad (N > 1).$$

Numerics: Compare with full numerics from multipole theory based on integral equations [Bernoff, Lindsay]. Vertices at Platonic Solids.

Left: One pore: log-log plot of relative error. Leading-order (solid), three-term (dotted), four-term (dashed). Right: Comparison of rescaled flux $J/(4\sigma)$ versus σ when pores are centered at vertices of platonic solids. Marked points are full numerics.

Clustering and Fragmenting the Pore Set

Left: N = 20 equally-spaced nanopores (centers shown only) clustered in the polar region $\theta \in (0, \frac{\pi}{3})$ with total absorbing fraction f = 0.05. Blue pore: is the equivalent area as a single nanopore. Nanopore radius is $\sigma = 2\sqrt{f/N}$. Right: optimal dodecahedron pattern.

$$\frac{1}{C_0} \approx 5.41$$
 (single Pore); $\frac{1}{C_0} \approx 2.79$ (clustered); $\frac{1}{C_0} \approx 1.98$ (optimal).

<u>Conclude I:</u> subdividing a single nanopore into 20 smaller, but clustered, nanopores of same total area rougly halves the MFPT to the target.

<u>Conclude II:</u> The MFPT for 20 optimally distributed pores is significantly smaller than for 20 clustered pores.

Discrete Energy: Equidistributed Points

Find global minimum \mathcal{H}_{\min} of \mathcal{H} when $N \gg 1$

$$\mathcal{H} = \sum_{j} \sum_{k \neq j} g(|\mathbf{y}_j - \mathbf{y}_k|), \quad \text{where} \quad g(\mu) \equiv \frac{1}{\mu} + \frac{1}{2} \log\left(\frac{\mu}{2+\mu}\right)$$

- What is asymptotics of \mathcal{H}_{min} as $N \to \infty$?
- For large N, many local minima, so finding global min is difficult.
- Cannot tile a spherical surface with hexagons (must have defects).
- Related to classic Fekete point problems of minimizing pure Coulombic energies on the sphere (Smale's 7th problem).

Heidelberg - p.14

Scaling Law: Equidistributed Points

Main Result (Scaling Law): For $N \gg 1$, but small pore surface area fraction $f = O(\sigma^2 \log \sigma)$ and with equidistributed pores, the optimal C_0 and J are

$$\frac{1}{C_0} \sim 1 + \frac{\pi\sigma}{4f} \left(1 - \frac{8d_1}{\pi}\sqrt{f} + \frac{\sigma}{\pi} \log\left(\beta\sqrt{f}\right) + \frac{2d_3\sigma^2}{\pi\sqrt{f}} \right), \quad \beta \equiv 4e^{-3/2}e^{4d_2},$$
$$J \sim 4\pi D \left[1 + \frac{\pi\sigma}{4f} \left(1 - \frac{8d_1\sqrt{f}}{\pi} + \frac{\sigma}{\pi} \log\left(\beta\sqrt{f}\right) + \frac{2d_3\sigma^2}{\pi\sqrt{f}} \right) \right]^{-1}.$$

BP Result is the leading-order term. Our analysis yields correction terms for the sphere. Most notable is the \sqrt{f} term, where $f \equiv N\sigma^2/4$.

Fragmentation Effects

Effect of Fragmentation: fix pore fraction f, increase N, and obtain σ from $f = N\pi\sigma^2/[4\pi]$. Locate pores centered at spiral Fibonacci points.

Caption: 1001 Nanopores at vertices of the spiral Fibonacci points.

Caption: From top to bottom: $f = \{0.02, 0.05, 0.1, 0.15\}$ For N = 2000, f = 0.02, full numerics gives $C_{0n}^{-1} = 1.1985$ and $C_0^{-1} = 1.2028$ (scaling law).

Conclusion: Fragmentation effects are significant until N becomes large.

Compare Scaling Law with Full Numerics

Compare full numerics with the asymptotic scaling law

$$J \sim 4\pi D \left[1 + \frac{\pi\sigma}{4f} \left(1 - \frac{8d_1\sqrt{f}}{\pi} + \frac{\sigma}{\pi} \log\left(\beta\sqrt{f}\right) + \frac{2d_3\sigma^2}{\pi\sqrt{f}} \right) \right]^{-1}$$

Fix 2% pore coverage (f = 0.02) and choose spiral Fibonacci points.

N	\mathcal{E}_{rel}
51	1.02%
101	0.90%
201	0.76%
501	0.58%
1001	0.37%
2001	0.34%

Caption: f = 0.02 (2% pore coverage). Scaling law accurately predicts the flux to the target for the biological parameters f = 0.02 and N = 2001.

Consider the planar case with σ pore radius and f coverage. Previous empirical laws (Berezhkovskii 2013) for a hexagonal arrangement

$$\kappa = \frac{4Df}{\pi\sigma}\chi(f), \qquad \chi(f) = \frac{1+1.37\sqrt{f}-2.59f^2}{(1-f)^2},$$

Our homogenized Robin condition: use scaling law for C_0 and find κ_h from

$$\Delta v_h = 0, \ |\mathbf{y}| > 1; \ \partial_n v_h + \kappa_h v_h = 0, \ |\mathbf{y}| = 1; \ v_h(\mathbf{y}) \sim \frac{1}{|\mathbf{y}|} - \frac{1}{C_0}, \ |\mathbf{y}| \to \infty.$$

For the unit sphere, and in terms of d_1, d_2, d_3 and $\beta \equiv 4e^{-3/2}e^{4d_2}$, we get

$$\kappa_{h} \sim \frac{4Df}{\pi\sigma} \left[1 - \frac{8d_{1}}{\pi} \sqrt{f} + \frac{\sigma}{\pi} \log\left(\beta\sqrt{f}\right) + \frac{2d_{3}\sigma^{2}}{\pi\sqrt{f}} \right]^{-1} \approx \frac{4Df}{\pi\sigma} \left[1 + 1.41\sqrt{f} + \cdots \right].$$
Heidelberg - p.18

Further Directions

- Rigorus results for the large N behavior of \mathcal{H} .
- Not just MFPT, but full time-dependent probability density.
- Potential theoretic methods (fast) to compute capacitance (L. Greengard, J. Kaye, preprint archive)
- Derive an explicit formula for the capacitance of a bumpy sphere containing N nanopores
 - Local analysis near a pore is possible, but no explicit globally-defined surface Neumann Green's function.
 - Needed for asymptotics: computation of surface Neumann Green's function and its local behavior near the singularity.
 - Full numerical computations based on integral equations challenging.

Topic II: Active Cells Coupled by Diffusion

Formulate and analyze a model of (ODE) dynamically active small "cells", with arbitrary intracellular kinetics, that are coupled spatially by a linear bulk-diffusion field (PDE) in a bounded 2-D domain.

Specific Questions:

- Can one trigger oscillations in the small cells (Hopf bifurcation), that would otherwise not occur without the coupling via bulk diffusion?
- Can we exhibit quorum sensing behavior by which cells oscillate and synchronize their dynamics when the population reaches a threshold?
 - In terms of the number m of cells per unit area, i.e. cell population density is $\rho = m/|\Omega|$.
 - What parameters regulate this threshold?
 - Usually studied from an ODE approach.
- Can we exhibit diffusion sensing behavior whereby cells oscillate and synchronize their dynamics based on:
 - cell spatial configuration (synchronization easier for clustered cells).
 - magnitude of diffusivity D of extracellular chemical (autoinducer).
 - Requires a PDE-based model.

Dynamical Quorum Sensing in Nature

Collective behavior in "cells" driven by chemical signalling between them.

- Collections of spatially segregated unicellular (eukaryotic) organisms such as starving yeast cells (glycolysis) coupled only through extracellular signalling molecules (autoinducer is Acetaldehyde). Ref: De Monte et al., PNAS 104(47), (2007).
- Amoeba colonies (Dicty) in low nutrient environments, with cAMP organizing the aggregation of starving colonies; Ref: Nanjundiah, Bio. Chem. 72, (1998), Gregor et al. Science, 328, (2010).
- Catalyst bead particles (BZ particles) interacting through a chemical diffusion field; Ref: Tinsley, Showalter, et al. "Dynamical Quorum Sensing... Collections of Excitable and Oscillatory Cataytic Particles", Physica D 239 (2010).

Key Ingredient: Need intracellular autocatalytic signal and an extracellular communication mechanism (bulk diffusion or autoinducer) that influences the autocatalytic growth. In the absence of coupling by bulk diffusion, the "cells" are in a quiescent state. Oscillations and ultimate sychronization occurs via a switchlike response to elevated levels of the autoinducer.

Amoeba Colony (Dictyostelium discoideum)

- About 180 cells are confined into an area of 420 μm in diameter (2-D).
- When resources are scarce, each cell secretes cAMP into the medium.
- Main Question: Is the oscillation an intrinsic property of the cells or does it only occur at the population level?

Caption: The cells secrete cAMP into the medium which first initiates a coordinated collective response.

On longer time-scale cells aggregate. Ref: The Onset of Collective Behavior in Social Amoebae, T. Gregor et al. Science 2010

Modeling Approaches

Large ODE system of weakly coupled system of oscillators. Prototypical is the Kuramoto type-models for the coupled oscillator phases:

$$\frac{d\mathbf{x}_i}{dt} = \mathbf{F}(\mathbf{x}_i) + \sigma \sum_j C_{ij} \mathbf{H}(\mathbf{x}_j) \,,$$

Synchrony occurs between individual oscillators as the coupling strength σ increases. (Vast literature, but not the mechanism here).

- Homogenization approach of deriving RD systems through cell densities: Yields target and spiral wave patterns of cAMP in Dicty modeling (but phemenological).
- More Recent: PDE-ODE models coupling individual "cells" through a bulk diffusion field. Our framework related to:
 - Ref: J. Muller, C. Kuttler, et al. "Cell-Cell Communication by Quorum Sensing and...", J. Math. Bio. 53 (2006),
 - J. Muller, H. Uecker, J. Math. Bio. 67 (2013). (steady-state analysis in 3-D, dynamics).

Ref [GW]: J. Gou, M.J. Ward, J. Nonlinear Sci., 26(4), (2016), pp. 979–1029.

Formulation of the 2-D Model: I

- The *m* cells are circular and each contains *n* chemicals $\mu_j = (\mu_{1j}, \dots, \mu_{nj})^T$. When isolated they interact via ODE's $d\mu_i/dt = \mathbf{F}_j(\mu_{\mathbf{j}})$.
 - A scalar bulk diffusion field (autoinducer) diffuses in the space between the cells via

 $\mathcal{U}_T = D_B \Delta_X \mathcal{U} - k_B \mathcal{U} \,.$

There is an exchange across the cell membrane, regulated by permeability parameters, between the autoinducer and one intracellular species (Robin condition).

Scaling Limit: $\epsilon \equiv \sigma/L \ll 1$, where *L* is lengthscale for Ω . We assume that the permeability parameters are $\mathcal{O}(\epsilon^{-1})$. Parameters: Bulk diffusivity D_B , bulk decay k_B , permeabilities, ϵ , and time-scale of intracellular reactions.

Formulation of the 2-D Model: II

Our PDE-ODE coupled cell-bulk model in 2-D with m cells is

$$\mathcal{U}_T = \mathbf{D}_B \Delta_{\mathbf{X}} \mathcal{U} - \mathbf{k}_B \mathcal{U}, \quad \mathbf{X} \in \Omega \setminus \bigcup_{j=1}^m \Omega_j; \quad \partial_{n_{\mathbf{X}}} \mathcal{U} = 0, \quad \mathbf{X} \in \partial \Omega,$$
$$D_B \partial_{n_{\mathbf{X}}} \mathcal{U} = \beta_{1j} \mathcal{U} - \beta_{2j} \mu_j^1, \quad \mathbf{X} \in \partial \Omega_j, \quad j = 1, \dots, m.$$

Each cell $\Omega_j \in \Omega$ is a disk of radius σ centered at some $X_j \in \Omega$.

Inside each cell there are *n* interacting species with mass vector $\mu_j \equiv (\mu_j^1, \dots, \mu_j^n)^T$ whose dynamics are governed by *n*-ODEs, with (rank-one) coupling via integration over the *j*-th "cell"-membrane $\partial \Omega_j$:

$$\frac{d\boldsymbol{\mu}_j}{dT} = \boldsymbol{k_R} \mu_c \boldsymbol{F}_j \left(\boldsymbol{\mu}_j / \mu_c \right) + \boldsymbol{e}_1 \int_{\partial \Omega_j} \left(\boldsymbol{\beta}_{1j} \mathcal{U} - \boldsymbol{\beta}_{2j} \mu_j^1 \right) \, dS_j \,, \quad j = 1, \dots, m \,,$$

where $e_1 \equiv (1, 0, \dots, 0)^T$, and μ_c is typical mass.

Only one species μ_i^1 can cross the *j*-th cell membrane into the bulk.

- $k_R > 0$ is intracellular reaction rate; β_{1j} , β_{2j} are permeabilities.
- The dimensionless function $F_j(u_j)$ models the intracellular dynamics.

Formulation of the 2-D Model: III

<u>Dimensionless Formulation</u>: The concentration of signalling molecule U(x, t) in the bulk satisfies the PDE:

$$\tau U_t = \mathbf{D}\Delta U - U, \qquad \mathbf{x} \in \Omega \setminus \bigcup_{j=1}^m \Omega_{\epsilon_j}; \quad \partial_n U = 0, \quad \mathbf{x} \in \partial \Omega,$$

$$\epsilon \mathbf{D}\partial_{n_j} U = \mathbf{d}_{1j} U - \mathbf{d}_{2j} u_j^1, \qquad \mathbf{x} \in \partial \Omega_{\epsilon_j}, \quad j = 1, \dots, m.$$

The cells are disks of radius $\epsilon \ll 1$ so that $\Omega_{\epsilon_j} \equiv \{x \mid |x - x_j| \le \epsilon\}$.

Inside each cell there are *n* interacting species $u_j = (u_j^1, \ldots, u_j^n)^T$, with intracellular dynamics for each $j = 1, \ldots, m$,

$$\frac{d\boldsymbol{u}_j}{dt} = \boldsymbol{F}_j(\boldsymbol{u}_j) + \frac{\boldsymbol{e}_1}{\epsilon\tau} \int_{\partial\Omega_{\epsilon_j}} (\boldsymbol{d}_{1j}U - \boldsymbol{d}_{2j}u_j^1) \, ds \,, \qquad \boldsymbol{e}_1 \equiv (1, 0, \dots, 0)^T \,,$$

<u>**Remark:</u>** The time-scale is measured wrt intracellular reactions. The dimensionless bifurcation parameters are: d_{1j} , d_{2j} (permeabilities); τ (reaction-time ratio); D (effective diffusivity);</u>

$$\tau \equiv \frac{k_R}{k_B}, \quad D \equiv \left(\frac{\sqrt{D_B/k_B}}{L}\right)^2, \quad \beta_{1j} \equiv (k_B L) \frac{d_{1j}}{\epsilon}, \quad \beta_{2j} \equiv \left(\frac{k_B}{L}\right) \frac{d_{2j}}{\epsilon}.$$

Theoretical Framework

- Solution Can one trigger oscillations in the small cells, via a Hopf bifurcation, that would otherwise not be present without the coupling via bulk diffusion? (i.e. each cell is a conditional oscillator). Intuition: Need reaction-time ratio τ in some interval 0 < τ_{-} < τ < τ_{+} < ∞.</p>
- Can we exhibit quorum sensing and diffusion sensing behavior?

Two key regimes for D with different behaviors:

- D = O(1); Effect of spatial distribution of cells is a key factor whether oscillations are triggered or not (diffusion sensing behavior).
- $D \gg O(\nu^{-1})$; In this "well-mixed" regime, the PDE-ODE cell-bulk model reduces to a finite dimensional dynamical system with global coupling. Quorum sensing behavior observed.

Mathematical Framework: Use strong localized perturbation theory (SLPT) to construct steady-states, to formulate the linear stability problem, and to derive the limiting well mixed ODE system.

Steady-States: Matched Asymptotics

Main Result (Steady-State): In the outer region, the ss bulk diffusion field is

$$U(\boldsymbol{x}) = -2\pi \sum_{i=1}^{m} S_i G(\boldsymbol{x}, \boldsymbol{x}_i), \text{ where } \boldsymbol{S} \equiv (S_1, \dots, S_m)^T.$$

In terms of $\nu = -1/\log \epsilon$ and a Green's matrix \mathcal{G} , we obtain a nonlinear algebraic system for \mathbf{S} and $\mathbf{u}^1 \equiv (u_1^1, \dots, u_m^1)^T$, where $e_1 = (1, 0, \dots, 0)^T$:

$$\boldsymbol{F}_{\boldsymbol{j}}(\boldsymbol{u}_{\boldsymbol{j}}) + \frac{2\pi D}{\tau} \boldsymbol{S}_{\boldsymbol{j}} \boldsymbol{e}_{1} = 0, \quad (\mathcal{H} + 2\pi \nu \boldsymbol{\mathcal{G}}) \, \boldsymbol{S} = -\nu \mathcal{W} \boldsymbol{u}^{1}, \quad \boldsymbol{j} = 1, \dots, m.$$

Here
$$\mathcal{W} \equiv \operatorname{diag}\left(\frac{d_{21}}{d_{11}}, \dots, \frac{d_{2m}}{d_{1m}}\right)$$
 and $\mathcal{H} \equiv \operatorname{diag}\left(\left(1 + \frac{\nu D}{d_{11}}\right), \dots, \left(1 + \frac{\nu D}{d_{1m}}\right)\right)$.

In this ss formulation, the entries of the $m \times m$ Green's matrix \mathcal{G} are

$$(\mathcal{G})_{ii} = R_i, \qquad (\mathcal{G})_{ij} = G(\boldsymbol{x}_i; \boldsymbol{x}_j), \quad i \neq j,$$

where, with $\varphi_0 \equiv 1/\sqrt{D}$, $G(\boldsymbol{x}; \boldsymbol{x}_j)$ is the reduced-wave G-function:

$$\begin{split} \Delta G - \varphi_0^2 G &= -\delta(\boldsymbol{x} - \boldsymbol{x}_j) \,, \quad \boldsymbol{x} \in \Omega \,; \qquad \partial_n G = 0 \,, \quad \boldsymbol{x} \in \partial \Omega \,. \\ G(\boldsymbol{x}; \boldsymbol{x}_j) &\sim -\frac{1}{2\pi} \log |\boldsymbol{x} - \boldsymbol{x}_j| + R_j + o(1) \,, \qquad \text{as} \quad \boldsymbol{x} \to \boldsymbol{x}_j \,. \end{split}$$

Globally Coupled Eigenvalue Problem (GCEP)

Main Stability Result: For $\epsilon \to 0$, the perturbed bulk diffusion field satisfies

$$u(\boldsymbol{x},t) = U(\boldsymbol{x}) + e^{\lambda t} \eta(\boldsymbol{x}), \qquad \eta(\boldsymbol{x}) = -2\pi \sum_{i=1}^{m} c_i G_{\lambda}(\boldsymbol{x},\boldsymbol{x}_i).$$

Inside the *j*-th cell we have $u_j = u_{ej} + 2\pi D\tau^{-1}c_j e^{\lambda t}(\lambda I - J_j)^{-1}e_1$. Here $c = (c_1, \ldots, c_m)^T$ is a nullvector of the GCEP:

$$\mathcal{M}\mathbf{c} = \mathbf{0}, \qquad \mathcal{M}(\lambda) \equiv 2\pi\nu\mathcal{G}_{\lambda} + \mathcal{H} + \nu\frac{2\pi D}{\tau}\mathcal{W}\mathcal{K}(\lambda).$$

In this GCEP, \mathcal{G}_{λ} is the Green's matrix formed from

$$egin{aligned} &\Delta G_\lambda - arphi_\lambda^2 G_\lambda = -\delta(oldsymbol{x} - oldsymbol{x}_j), \quad oldsymbol{x} \in \Omega\,; &\partial_n G_\lambda = 0\,, \quad oldsymbol{x} \in \partial\Omega\,, \ &G_\lambda(oldsymbol{x};oldsymbol{x}_j) &\sim -rac{1}{2\pi} \log |oldsymbol{x} - oldsymbol{x}_j| + R_{\lambda,j} + o(1)\,, & ext{as} \quad oldsymbol{x} o oldsymbol{x}_j\,, \end{aligned}$$

with $\varphi_{\lambda} \equiv D^{-1/2}\sqrt{1 + \tau\lambda}$. Here \mathcal{K} is the diagonal matrix defined in terms of the Jacobian $J_j \equiv \mathbf{F}_{j,\mathbf{u}}(\mathbf{u}_{ej})$ of the intracellular kinetics \mathbf{F}_j :

$$\mathcal{K}_{j} = e_{1}^{T} (\lambda I - J_{j})^{-1} e_{1} = \frac{M_{j,11}(\lambda)}{\det(\lambda I - J_{j})}, \text{ where } e_{1} = (1, 0, \dots, 0)^{T}.$$

Heidelberg – p.29

Numerics for the GCEP

Linear stability analysis: Nonlinear matrix eigenvalue problem of the form

 $\mathcal{M}(\lambda;\tau,D)\boldsymbol{c}=\boldsymbol{0}.$

<u>Definition</u>: An unstable "mode" is a root λ of $\mathcal{F}(\lambda) = \det(\mathcal{M}(\lambda)) = 0$ in $\operatorname{Re}(\lambda) > 0$. The number N of unstable modes is the total number of such roots. The eigenvector c determines the amplitude and phase at each cell.

- Determine N numerically from winding number computation of $\mathcal{F}(\lambda)$ over a large semi-circle in $\text{Re}(\lambda) > 0$. Gives a "stability map" in (τ, D) plane with N = 0 (white), N = 2 (grey), N = 4 (blue), etc..
- Hopf bifurcation boundaries, $\lambda = i\lambda_I(D)$ and $\tau = \tau(D)$ can have folds in *D*. Compute with $\text{Re}\mathcal{F} = 0$ and $\text{Im}\mathcal{F} = 0$ using psuedo-arclength.

Tractable: Ring and Ring + Center Hole Pattern:

- Small identical cells inside unit disk, evenly spaced on a concentric ring of radius r_0 .
- The center-cell can have different kinetics, or different permeabilities d_1 and d_2 .
- Matrix spectrum $\mathcal{M} oldsymbol{c} = \sigma oldsymbol{c}$ available analytically.

Intracellular Selkov Reaction-Kinetics

<u>Selkov Kinetics</u>: Let $u = (u_1, u_2)^T$ be intracellular dynamics given by Selkov model (used for modeling glycolysis oscillations):

$$F_1(u_1, u_2) = \alpha u_2 + u_2 u_1^2 - u_1, \quad F_2(u_1, u_2) = \epsilon_0 \left(\mu - (\alpha u_2 + u_2 u_1^2) \right)$$

For an *isolated cell* \exists a unique steady-state at $u_{1e} = \mu$, $u_{2e} = \mu/(\alpha + \mu^2)$. The determinant and trace of the Jacobian J_e is

$$\operatorname{trace}(J_e) = \frac{\left[\mu^2 - \alpha^2 - \epsilon_0(\alpha + \mu^2)^2\right]}{\alpha + \mu^2}, \quad \operatorname{det}(J_e) = \varepsilon_0(\alpha + \mu^2) > 0.$$

- Fix Selkov parameters as $\alpha = 0.9$, and $\epsilon_0 = 0.15$ and plot versus μ .
- For $\mu = 2$ an isolated cell has a stable fixed point with no oscillations, but is near to stability threshold.

<u>Remark:</u> When coupled to the other cells there is a new (but unique) steady-state and the PDE-ODE coupling can trigger oscillations via a HB.

$D = \mathcal{O}(1)$: Ring Patterns

Analytically Tractable Example:

- m small cells inside the unit disk, evenly spaced on a concentric ring of radius r_0 .
- Assume identical kinetics and permeabilities, so that $F_j = F$, $d_{1j} = d_1$, and $d_{2j} = d_2$.

Spectral Problem (from GCEP): Must find the roots λ to $\mathcal{B}_j(\lambda) = 0$, where

$$\mathcal{B}_{j}(\lambda) \equiv \omega_{\lambda,j} + \frac{1}{2\pi\nu} \left(1 + \frac{D\nu}{d_{1}}\right) + \left(\frac{d_{2}D}{d_{1}\tau}\right) \frac{M_{11}}{\det(\lambda I - J)}, \qquad j = 1, \dots, m.$$

Here $\omega_{\lambda,j}$ are the eigenvalues of the λ -dependent Green's matrix \mathcal{G}_{λ} :

$$\mathcal{G}_{\lambda} \boldsymbol{v}_j = \boldsymbol{\omega}_{\boldsymbol{\lambda}, \boldsymbol{j}} \boldsymbol{v}_j, \qquad \boldsymbol{j} = 1, \dots, m,$$

- \exists a steady-state with $S_j = S_c$ for all j = 1, ..., m.
- For the unit disk, the Green's matrix G_{λ} is given analytically in terms of an infinite series of modified Bessel functions of complex argument.

$D = \mathcal{O}(1)$: Ring Patterns: II

Linear Stability Computations (Theory):

- Phase Diagram: Compute Hopf Bifurcation (HB) boundaries in the τ versus D plane for each j = 1, ..., m by setting $\lambda = i\lambda_I$. Fix r_0 , $\epsilon = 0.05$, $d_1 = 0.8$, and $d_2 = 0.2$.
- Winding Number computations used to check where $\text{Re}(\lambda) > 0$ in open regions of the τ versus D plane.
- Cyclic Symmetric Matrices:: Matrix spectrum of \mathcal{G}_{λ} readily calculated. Note: $\mathbf{v}_1 = \mathbf{e} \equiv (1, \dots, 1)^T$ (synchronous mode), while $\mathbf{e}^T \mathbf{v}_j = 0$ for $j = 2, \dots, m$ are the asynchronous modes. However, mode degeneracy occurs due to cyclicity and symmetry of \mathcal{G}_{λ} . In particular, if m = 5, there are exactly two asynchronous branches.

Qualitative Questions: What is the effect of:

- \checkmark cell clustering (i.e. smaller r_0 ?)
- \checkmark the cell permeabilities d_1 and d_2 ?
- \checkmark the number m of cells?
- small changes in the intracellular kinetics?

$D = \mathcal{O}(1)$: HB Boundaries: m = 2 Cells

- HB boundaries τ vs. D for m = 2and $r_0 = 0.75$.
- Synchronous and asynchronous HB boundaries (heavy dashed).
- N = 2 (grey) and N = 4 (blue). (winding-number results)
- Asynchronous lobe exists only for D small.
- Predicts no oscillations for $D \gg 1$.

Heidelberg - p.34

<u>Numerical Validation</u>: FlexPDE for a similar map with $r_0 = 0.25$

Caption: Let m = 2 and vary r_0 : HB boundaries in τ versus D for the synchronous mode (larger lobes) and the asynchronous mode (small lobes for D small).

- Asynchronous lobe is smallest when $r_0 = 0.25$ (i.e. for closely-spaced cells). Implies that D has to be only increased a bit before asynchronous oscillations are impossible.
- If $r_0 = 0.75$ the two cells are rather close to their images across the boundary of the disk (Neumann BC).
- Diffusion sensing: If D = 5 and $\tau = 0.6$, we are outside instability lobe for $r_0 = 0.5$ but within the lobes for $r_0 = 0.25$ and $r_0 = 0.75$. Thus a more clustered configuration will trigger oscillations for the same D.

$D = \mathcal{O}(1)$: HB Boundaries m = 5

HB boundaries: m = 5 cells and $r_0 = 0.5$.(Right is zoom of left)

•
$$N = 2$$
 (grey), $N = 6$ (red), $N = 10$ (cyan).

• Asynchronous lobes: only for D small. Two such lobes when m = 5.

Instability lobe for synchronous mode is now unbounded (left figure).

Implication: The unbounded lobe for the synchronous mode indicates that for the well-mixed limit $D \to \infty$ a Hopf bifurcation for the steady-state will occur when $\tau = \tau_{\pm}$ (horizontal asymptotes), and that an oscillatory instability occurs for $\tau_{-} < \tau < \tau_{+}$.

Ring + Center Pattern: Role of Permeability

Consider m = 5 with a defective cell at the center of the disk with different permeabilities than four identical cells on a ring of radius $r_0 = 0.75$.

- **Ring Cells:** $d_1 = 0.8$, $d_2 = 0.2$ (identical kinetics)
- Center Cell: Case I: $d_1 = 0.8$, $d_2 = 0.2$. Case II (Defective): $d_1 = 0.4$, $d_2 = 0.2$.
- \mathcal{M} is a 5×5 symmetric matrix with a 4×4 cyclic block with the fifth row being (b, b, b, b, r).

Caption: Left: Case I: all identical. Middle: Case II: center defective. Right: Zoom for small D with N = 0 (white), N = 2 (grey), N = 4 (blue), N = 6 (red), N = 8 (green), N = 10 (cyan).

Ring + Center Pattern: A Triggering Center Cell

Consider m = 5 with a defective cell at the center of the disk that has a different intracellular kinetic (Selkov) parameter closer to stability threshold of an isolated cell than the four identical cells on the ring.

Caption: Lobes of instability for the synchronous mode $c = (1, 1, 1, \xi)$: Left: all identical cells $d_1 = 0.3, d_2 = 0.2, \alpha = 0.9$. Right: center-cell has $\alpha = 0.86$.

- With more clustering ($r_0 = 0.25$), one can have a larger bulk diffusivity D before autoinducer wanders too far from cells to trigger collective behavior.

The Well-Mixed Regime $D \gg \mathcal{O}(\nu^{-1})$: I

Goal: Derive and analyze a reduced finite-dimensional dynamical system characterizing the cell-bulk interations from PDE-ODE system for $D \rightarrow \infty$.

An asymptotic analysis yields that in the bulk that $u(x,t) \sim U_0(t)$, where

$$egin{aligned} U_0' &= -rac{1}{ au} U_0 - rac{oldsymbol{
ho}}{ au} \left(rac{1}{m} \sum_{j=1}^m \left[\kappa_{1,j} U_0 - \kappa_{2,j} u_j^1
ight]
ight) \,, \ u_j' &= oldsymbol{F}_j(oldsymbol{u}_j) + rac{1}{ au} \left[\kappa_{1,j} U_0 - \kappa_{2,j} u_j^1
ight] oldsymbol{e}_1 \,, \qquad j=1\,,\ldots,m \,, \end{aligned}$$

where $e_1 = (1, 0, ..., 0)^T$. Here ρ is the effective cell density and

$$\rho \equiv \frac{m}{|\Omega|}, \qquad \kappa_{1,j} \equiv 2\pi d_{1,j}, \qquad \kappa_{2,j} \equiv 2\pi d_{2,j}.$$

Large system of ODEs with weak but global coupling when $0 < d_{1j} << 1$ and $0 < d_{2j} \ll 1$, or when $\tau \gg 1$.

Identical Cells: Look for $\boldsymbol{u}_j = \boldsymbol{u} \,,\, \forall j$. We get

$$U_0' = -\frac{1}{\tau} (1 + \kappa_1 \rho) U_0 + \rho \frac{\kappa_2}{\tau} u_1, \qquad u' = F(u) + \frac{1}{\tau} [\kappa_1 U_0 - \kappa_2 u_1] e_1.$$

The Well-Mixed Regime $D \gg \mathcal{O}(\nu^{-1})$: II Selkov with $d_1 = 0.8$, $d_2 = 0.2$ and $|\Omega| = \pi$. Global Bifurcation Study.

Caption: Global solution branches u_{1e} versus τ for m = 5 cells: Heavy (thin) solid is stable (unstable) steady-steady. Dots indicate stable periodic solution branch. HB points at $\tau_{H-} =$ 0.2187 and $\tau_{H+} = 0.6238$.

<u>Key:</u> Stable synchronous oscillations occur in some τ interval. Limiting well-mixed ODE dynamics is independent of cell locations and D.

Quorum sensing (Qualitative): Collective behavior of "cells" in response to changes in their population size. There is a threshold number m_c of cells or a critical cell density ρ that is needed to initiate a collective behavior.

Quorum sensing (Math): For what range of m, do the well-mixed ODEs have a stable periodic solution on $\tau_{H-} < \tau < \tau_{H+}$ with HB points at $\tau_{H\pm}$?

Quorum Sensing Behavior

What parameters control control QS behavior? We will study QS behavior as the permeability d_1 is varied and $d_2 = 0.2$: Recall:

 $\partial_{n_j} U = \mathbf{d_1} U - \mathbf{d_2} u_j^1$, on $\partial \Omega_{\mathcal{E}_j}$, $j = 1, \dots, m$.

<u>**Remark:**</u> Equivalent to finding the range of m for which the instability lobe for the synchronous mode is unbounded in the τ versus D plane.

Left: Quorum threshold m_c vs. d_1 from ODEs. Right: τ vs. D for $d_1 = 0.3$, $r_0 = 0.5$.

Key: m_c sensitive to small changes in d_1 $d_1 = 0.8$, $m_c = 3$; $d_1 = 0.3$, $m_c = 7$; $d_1 = 0.2$, $m_c = 12$; $d_1 = 0.1$, $m_c = 19$.

Large Cell Populations: Synchronization I

In the well-mixed limit $D \rightarrow \infty$, the PDE-ODE system reduces to

$$U'_{0} = -\frac{1}{\tau}U_{0} - \frac{\rho}{m\tau} \sum_{j=1}^{m} \left[\kappa_{1,j}U_{0} - \kappa_{2,j}u_{j}^{1}\right],$$
$$u'_{j} = F_{j}(u_{j}) + \frac{1}{\tau} \left[\kappa_{1,j}U_{0} - \kappa_{2,j}u_{j}^{1}\right] e_{1}, \qquad j = 1, \dots, m,$$

where $\rho = m/|\Omega|$ is the "cell density" $\kappa_{1,j} \equiv 2\pi d_{1,j}$ and $\kappa_{2,j} \equiv 2\pi d_{2,j}$.

<u>Non-Identical Cells</u>: We take $\tau = 0.5$, and fix common permeability parameters $d_{1j} = 0.8$ and $d_{2j} = 0.2 \quad \forall j$. The intracellular kinetics F_j are not identical. Selkov parameters $\varepsilon_0 = 0.15$ and $\mu = 2$ are fixed for each cell, but α can vary from cell to cell. Isolated cells are not oscillatory.

Kuramoto order parameter: (measures the degree of oscillator phase synchrony):

$$R = \left\langle \left| N^{-1} \sum_{j=1}^{N} \exp[i\theta_j(t)] - \left\langle N^{-1} \sum_{j=1}^{N} \exp[i\theta_j(t)] \right\rangle \right| \right\rangle, \quad 0 \le R \le 1.$$

R = 1 (Perfect phase synchrony); R = 0 (No phase coherence);

Large Cell Populations: Synchronization II

Computations of order parameter R with respect to ρ . Iyaniwura (UBC)

Identical cells: $\alpha = 0.9$. "Defective" cells: α is random in $0.921 \le \alpha \le 0.952$.

Population density ρ plays a dual role of triggering and quenching oscillations

Interval of ρ where synchrony occurs decreases as the number of defective cells increases.

Cell-Bulk Model: Further Directions

Let D = O(1). Consider *m* "randomly" placed cells in a disk. Can we observe clusters of oscillating and non-oscillating cells? (i.e. "chimera"-type states.)

- How do we solve the spectral problem in arbitrary domains? (fast multipole methods for G and G_{λ})
- Numerics for the GCEP for large numbers of cells.
- What if the steady-state solution is not unique (hysteresis) or if intracellular dynamics has a time-delay?
- Intracellular dynamics to model a specific biological system (LuxIR circuit in Vibrio fischeri).
- Derive a RD system in the homogenized limit of $m \gg 1$ but $m\epsilon^2 \ll 1$.
- Two bulk-diffusing (autoinducer) species.
- PDE-ODE Model in 3-D. (interactions are, in general, much weaker owing to 1/r decay of Green's function).

PDE-ODE Cell-Bulk Model in 3-D

The dimensionless bulk concentration $U(\mathbf{x}, t)$ satisfies

$$\frac{\partial U}{\partial t} = \mathbf{D} \,\Delta U - \kappa \,U, \quad \mathbf{x} \in \Omega \setminus \bigcup_{j=1}^{m} \Omega_{\varepsilon_j} \,; \quad \partial_n \,U = 0, \quad \mathbf{x} \in \partial\Omega \,,$$
$$\varepsilon \mathbf{D} \,\partial_n U = \mathbf{d}_{1,j} \,U - \frac{\mathbf{d}_{2,j}}{\varepsilon} u_j^1 \,, \quad \mathbf{x} \in \partial\Omega_{\varepsilon_j} \,, \quad j = 1, \dots, m,$$

which is coupled to the dimensionless intracellular dynamics for the j^{th} cell

$$\frac{d\boldsymbol{u}_{j}}{dt} = \boldsymbol{F}_{j}\left(\boldsymbol{u}_{j}\right) + \boldsymbol{e}_{1} \int_{\partial\Omega_{\varepsilon_{j}}} \left(\frac{\boldsymbol{d}_{1,j}}{\varepsilon}U - \frac{\boldsymbol{d}_{2,j}}{\varepsilon^{2}}u_{j}^{1}\right) \, dS \,, \quad j = 1, 2, \dots, m,$$

where $u_j = (u_j^1, \dots, u_j^n)^T$, $e_1 \equiv (1, 0, \dots, 0)^T$, and $d_{2,j} = \mathcal{O}(1)$.

<u>Near Well-Mixed Limit</u>: An interesting limit where there is $\mathcal{O}(1)$ interaction between the cells is when

•
$$D = \mathcal{O}(\varepsilon^{-1}), \kappa = \mathcal{O}(1), d_{1,j} = \frac{\widetilde{d}_{1,j}}{\varepsilon}, \text{ where } \widetilde{d}_{1,j} = \mathcal{O}(1)$$

In this regime, Quorum and Diffusing sensing can be studied through a common limiting system.

ODE System in Near Well-Mixed Limit

In this limit, the PDE-ODE system reduces to

$$U_0' = -\kappa U_0 + \frac{4\pi}{|\Omega|} \sum_{j=1}^m (p_{2,j} v_j^1 - p_{1,j} U_0) - \frac{16\pi^2 \varepsilon}{|\Omega|} \sum_{j=1}^m p_{1,j} (\mathcal{G} c)_j + \dots,$$

 $\frac{d\boldsymbol{v}_j}{dt} = \boldsymbol{F}_j(\boldsymbol{v}_j) + 4\pi \boldsymbol{e}_1(\boldsymbol{p}_{1,j}U_0 - \boldsymbol{p}_{2,j}v_j^1) + 16\varepsilon\pi^2 \boldsymbol{e}_1 \, \boldsymbol{p}_{1,j}(\boldsymbol{\mathcal{G}}\,\boldsymbol{c})_j + \dots, \ j = 1,\dots,m,$

where $\boldsymbol{c} = (c_1, \ldots, c_m)^T$, $\boldsymbol{\mathcal{G}}$ is Neumann Green's matrix in 3-D and

$$p_{1,j} \equiv \frac{D_0 \,\widetilde{d}_{1,j}}{\widetilde{d}_{1,j} + D_0}, \quad p_{2,j} \equiv \frac{D_0 \,d_{2,j}}{\widetilde{d}_{1,j} + D_0}, \quad c_j \equiv \frac{d_{2,j} v_j^1 - \widetilde{d}_{1,j} U_0}{\widetilde{d}_{1,j} + D_0}, \quad j = 1, \dots, m.$$

■ For $D_0 \rightarrow 0$, then $p_{1,j} \rightarrow 0$ and $p_{2,j} \rightarrow 0$ (no cell-cell communication).

- For $D_0 \to \infty$ (well-mixed), then $p_{1,j} \to \tilde{d}_{i,j}$, $p_{2,j} \to d_{2,j}$, and $c_j \to 0$ (maximal cell-cell communication, but cell configuration insignificant).
- For $D_0 = O(1)$ dependence on cell configuration and shape of confining domain Ω is at O(ε) term through Neumann G-matrix G.
- ODE system: reveals both quorum sensing and diffusion sensing behavior.