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Outline

Topic I: Berg-Purcell Problem Revisited. Determination of effective

capacitance of a sphere with N small “traps” on the boundary. The
homogenized limit and the mean first capture time. (Lindsay, Bernoff)

Topic II: PDE/ODE Model of dynamically-active (ODE) small signalling

compartments coupled by bulk-diffusion (PDE). Leads to the triggering
of (synchronous) oscillations via a hopf bifurcation (J. Gou, S.
Iyaniwura). Biologically: illustrates quorum and diffusion sensing
behavior.

Key Features: Derivation and study of new discrete variational problems
using from Green’s interaction matrices.. Nonlinear matrix eigenvalue
problems involving Green’s interaction matrices.
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Topic I: Narrow Capture in 3-D

O(σ)O(σ)
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Caption: spherical target of radius ε ≪ 1 centered at x0 ∈ Ω, with N locally

circular absorbing surface nanotraps (nanopores) of radii σ ≪ ε modeled by

homogeneous Dirichlet condition.

A particle (protein etc..) undergoes Brownian walk (dXt = DdWt) until
captured by one of the N small absorbing surface nanotraps.

Q1: How long on average does it take to get captured? (MFPT).

Q2: What is the effect on the MFPT of the spatial distribution
{x1, . . . ,xN} of the surface nanotraps? (Capacitance).
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Applications of Narrow Capture
Nuclear Pores: Genetic material enters nucleus via small pores.

Scaling: Nucleus ≈ 10% of cell volume (ε = 0.1). Roughly, N = 2000 pores that occupy 2%

of the surface area. (Eilenberg et al. Science 341(6146), 2013).

Cell Signalling: How long does it take an antigen to bind to a receptor on a

T-cell to produce antibodies?

Antigens

T Cell
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The MFPT PDE for Narrow Capture

The Mean First Passage Time (MFPT) T satisfies

∆T = − 1

D
, x ∈ Ω\Ωε ; ∂nT = 0 , x ∈ ∂Ω ,

T = 0 , x ∈ ∂Ωεa ; ∂nT = 0 , x ∈ ∂Ωεr ,

where ∂Ωεa and ∂Ωεr are the absorbing and reflecting part of the surface
of the small sphere Ωε within the 3-D cell Ω.

Calculate the averaged MFPT T̄ for capture of a Brownian particle.

T̄ depends on the capacitance C0 of the structured target (related to
the Berg-Purcell problem, 1977). This is the inner or local problem.

Derive new discrete optimization problems characterizing the optimal

MFPT and determine how the fragmentation of the trap set affects T̄ .

Ref: [LBW2017] Lindsay, Bernoff, MJW, First Passage Statistics for the Capture of a

Brownian Particle by a Structured Spherical Target with Multiple Surface Traps, SIAM

Multiscale Mod. and Sim. 15(1), (2017), pp. 74–109.
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Asymptotic Result for the Average MFPT
Using strong localized perturbation theory, for ε → 0 the average MFPT is

T̄ ≡ 1

|Ω\Ωε|

∫

Ω\Ωε
T dx =

|Ω|
4πC0Dε

[
1 + 4πεC0R(x0) +O(ε2)

]
,

where R(x0) is the regular part of the Neumann Green’s function for Ω:

∆G =
1

|Ω| − δ(x− x0) , x ∈ Ω ; ∂nG = 0 , x ∈ ∂Ω ,

G(x;x0) =
1

4π|x− x0|
+R(x0) , as x → ξ ;

∫

Ω

Gdx = 0 .

Capacitance Problem: “exterior” problem in potential theory. C0 satisfies

∆v = 0 , y ∈ R
3 \ Ω0 ; v = 0 , y ∈ Γa , ∂nv = 0 , y ∈ Γr ,

lim
R→∞

∫

∂ΩR

∂nv ds = −4π ; v ∼ − 1

C0
+

1

|y| +O(|y|−2) , |y| → ∞ .
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Capacitance C0 of Structured Target
The inner problem for the capacitance C0 is equivalent to finding the
probability w(y) that a particle is captured starting at y ∈ R

3 \ Ω0:

∆w = 0 , y ∈ R
3 \ Ω0 (outside unit ball)

w = 1 , y ∈ Γa (absorbing pores)

∂nw = 0 , y ∈ Γr (reflecting surface)

w ∼ C0

|y| +O
(

1

|y|2
)

, as |y| → ∞ .

Target

Sites

Remarks:

C0 = 1 if entire surface is absorbing.

The diffusive flux J into the sphere is

J = D

∫

Γa

∂nw dS = 4πDC0 .

The sub-inner problem near a pore is the
classic electrified disk problem.
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Berg-Purcell Problem: I
This is the Berg-Purcell (BP) problem (Physics of Chemoception,
Biophysics, 20(2), (1977)) ≈ 1500 citations)

BP assumed

N ≫ 1 disjoint equidistributed small pores.

common pore radius σ ≪ 1.

dilute fraction limit, i.e. f ≡ Nσ2/(4π) ≪ 1.

Target

Sites

Using a “physically-isnpired” derivation, BP postulated that

C
0bp =

Nσ

Nσ + π
, Jbp = 4πD

Nσ

Nσ + π
= 4DNσ +O(σ2) .

Suggests that J is proportional to the total pore perimeter when σ ≪ 1.

Our Goal: Calculate C0, and the flux J , systematically for a collection of
disjoint pores centered at {y1, . . . ,yN} over the surface. Study the effect
of the location of the pores and fragmentation. For equidistributed pores
derive the BP result and the asymptotic corrections to it.
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Berg-Purcell Problem: II
BP analysis revisited by Shoup-Szabo (Biophysical J. 1982). Replace trap
set by effective trapping parameter k, so that for a sphere of radius R

∆u = 0 , r ≥ R ; Dur = ku , r = R .

Then, the flux J =
∫
Ω
D∂ur|r=R into the sphere is J = 4πDC, where

u = 1− C

r
, with

1

C
=

1

R
+

D

kR2
.

Now estimate k: On an infinite plane with a single trap of radius a

Jdisk =

∫

disk
Duz|z=0 dx = 2πDcdisk , cdisk =

2a

π
.

Thus Jdisk = kdisk = 4aD. Now estimate

k ≈ kdisk

(
N

4πR2

)
=

4D

πRσ
f , where f ≡ Nπσ2

4π

and σ ≡ a/R. Finally, this yields the BP capacitance and BP flux

1

Cbp
=

1

R

( π

Nσ
+ 1
)
, Jbp = 4πDR

(
Nσ

Nσ + π

)
.
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Main Result for C0 and flux J: I
Main Result: For σ → 0, [LBW2017] derived that

1

C0

=
π

Nσ

[
1 +

σ

π

(
log
(
2e−3/2σ

)
+

4

N
H(y1, . . . ,yN )

)
+O(σ2 log σ)

]
,

J = 4DNσ

[
1 +

σ

π
log(2σ) +

σ

π

(
−3

2
+

2

N
H(y1, . . . ,yN )

)
+ · · ·

]−1

.

The interpore interaction energy H, subject to |yj | = 1 ∀j, is

H(y1, . . . ,yN ) ≡
N∑

j=1

N∑

k=j+1

g(|yj−yk|) ; g(µ) ≡ 1

µ
+
1

2
logµ− 1

2
log(2+µ) .

Here yj for j = 1, . . . , N are the nanopore centers with |yj | = 1.

Remarks:

Flux J minimized when H minimized

g(µ) is monotone decreasing, positive,
and convex.

Indicates that optimal configuration
should be (roughly) equidistributed.

µ

0 0.5 1 1.5 2

g(µ)

0

2

4

6

8
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Main Result for C0 and flux J: II
Here g(|yj − yk| = 2πGs(yj ;yk), Gs is the surface-Neumann G-function

Gs(yj ;yk) =
1

2π

[

1

|yj − yk|
−

1

2
log

(

1− yj ·yk + |yj − yk|

|yj | − yj ·yk

)]

.

Key steps in singular perturbation analysis for C0:

Asymptotic expansion of global (outer) solution and local (inner)
solutions near each pore (using tangential-normal coordinates).

The surface Gs-function has a subdominant logarithmic singularity on
the boundary (related to surface diffusion). This fact requires adding
“logarithmic switchback terms in σ” in the outer expansion.

The leading-order local solution is the tangent plane approximation
and yields electrified disk problem in a half-space, with (local)
capacitance cj = 2σ/π.

Key: Need corrections to the tangent plane approximation in the inner
region near the pore. This higher order term in the inner expansion
satisfies a Poisson-type problem, with monopole far-field behavior.

Asymptotic matching and solvability conditions yield 1/C0.
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Asymptotics versus Numerics (Small N)
Asymptotic Results: For σ → 0

J = 4Dσ

[

1 +
σ

π

(

log(2σ)−
3

2

)

−
σ2

π2

(

π2 + 21

36

)

+ · · ·

]

, (N = 1) ,

J = 4DNσ

[

1 +
σ

π
log(2σ) +

σ

π

(

−
3

2
+

2

N
H(y1, . . . ,yN )

)

+ · · ·

]

−1

, (N > 1) .

Numerics: Compare with full numerics from multipole theory based on
integral equations [Bernoff, Lindsay]. Vertices at Platonic Solids.
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Left: One pore: log-log plot of relative error. Leading-order (solid), three-term (dotted),

four-term (dashed). Right: Comparison of rescaled flux J/(4σ) versus σ when pores are

centered at vertices of platonic solids. Marked points are full numerics.
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Clustering and Fragmenting the Pore Set

1

x
0

-1-1
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Left: N = 20 equally-spaced nanopores (centers shown only) clustered in the polar region
θ ∈ (0, π

3
) with total absorbing fraction f = 0.05. Blue pore: is the equivalent area as a

single nanopore. Nanopore radius is σ = 2
√

f/N . Right: optimal dodecahedron pattern.

1

C0

≈ 5.41 (single Pore) ;
1

C0

≈ 2.79 (clustered);
1

C0

≈ 1.98 (optimal) .

Conclude I: subdividing a single nanopore into 20 smaller, but clustered,
nanopores of same total area rougly halves the MFPT to the target.

Conclude II: The MFPT for 20 optimally distributed pores is significantly
smaller than for 20 clustered pores.
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Discrete Energy: Equidistributed Points
Find global minimum Hmin of H when N ≫ 1

H =
∑

j

∑

k 6=j

g(|yj − yk|) , where g(µ) ≡ 1

µ
+

1

2
log

(
µ

2 + µ

)
.

What is asymptotics of Hmin as N → ∞?

For large N , many local minima, so finding global min is difficult.

Cannot tile a spherical surface with hexagons (must have defects).

Related to classic Fekete point problems of minimizing pure Coulombic
energies on the sphere (Smale’s 7th problem).

Three Coverings of N = 800 points
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Scaling Law: Equidistributed Points
Formal Large N Limit: For N large and

“equidistributed points”, we have

Hmin ∼ N2

4
− d1N

3/2 +
N

8
logN

+d2N + d3N
1/2 + · · · ,

with d1 = 1/2, d2 = 1/8 and d3 = 1/4. Bet-
ter to use d1 = 0.55230 for “pure” Coulombic
interactions [Saff]. 0 500 1000 1500 2000

N

0

2

4

6

8

10

H

×10
5

Main Result (Scaling Law): For N ≫ 1, but small pore surface area fraction

f = O(σ2 log σ) and with equidistributed pores, the optimal C0 and J are

1

C0

∼ 1+
πσ

4f

(
1− 8d1

π

√
f +

σ

π
log
(
β
√
f
)
+

2d3σ
2

π
√
f

)
, β ≡ 4e−3/2e4d2 ,

J ∼ 4πD

[
1 +

πσ

4f

(
1− 8d1

√
f

π
+

σ

π
log
(
β
√

f
)
+

2d3σ
2

π
√
f

)]−1

.

BP Result is the leading-order term. Our analysis yields correction terms

for the sphere. Most notable is the
√
f term, where f ≡ Nσ2/4.
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Fragmentation Effects
Effect of Fragmentation: fix pore fraction f , increase N , and obtain σ from
f = Nπσ2/[4π]. Locate pores centered at spiral Fibonacci points.

Caption: 1001 Nanopores at

vertices of the spiral Fibonacci

points.

N
0 500 1000 1500 2000

1

C0

1

1.5

2

2.5

3

Caption: From top to bottom: f =

{0.02, 0.05, 0.1, 0.15} For N =

2000, f = 0.02, full numerics

gives C−1

0n = 1.1985 and C−1

0 =

1.2028 (scaling law).

Conclusion: Fragmentation effects are significant until N becomes large.
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Compare Scaling Law with Full Numerics
Compare full numerics with the asymptotic scaling law

J ∼ 4πD

[
1 +

πσ

4f

(
1− 8d1

√
f

π
+

σ

π
log
(
β
√

f
)
+

2d3σ
2

π
√
f

)]−1

.

Fix 2% pore coverage (f = 0.02) and choose spiral Fibonacci points.

N Erel
51 1.02%

101 0.90%

201 0.76%

501 0.58%

1001 0.37%

2001 0.34%

Caption: f = 0.02 (2% pore

coverage). Scaling law ac-

curately predicts the flux to

the target for the biological

parameters f = 0.02 and

N = 2001.
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Effective Robin Condition: Leakage κh

Ref: Muratov, 
Shvartsmam,  
Berezhkovskii, 
SIAM MMS 2006.

Consider the planar case with σ pore radius and f coverage. Previous
empirical laws (Berezhkovskii 2013) for a hexagonal arrangement

κ =
4Df

πσ
χ(f) , χ(f) =

1 + 1.37
√
f − 2.59f2

(1− f)2
,

Our homogenized Robin condition: use scaling law for C0 and find κh from

∆vh = 0 , |y| > 1 ; ∂nvh+κhvh = 0 , |y| = 1 ; vh(y) ∼
1

|y|−
1

C0

, |y| → ∞ .

For the unit sphere, and in terms of d1, d2, d3 and β ≡ 4e−3/2e4d2 , we get

κh ∼ 4Df

πσ

[
1− 8d1

π

√
f +

σ

π
log
(
β
√
f
)
+

2d3σ
2

π
√
f

]−1

≈ 4Df

πσ

[
1 + 1.41

√
f + · · ·

]
.
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Further Directions

Rigorus results for the large N behavior of H.

Not just MFPT, but full time-dependent probability density.

Potential theoretic methods (fast) to compute capacitance (L.
Greengard, J. Kaye, preprint archive)

Derive an explicit formula for the capacitance of a bumpy sphere
containing N nanopores

Local analysis near a pore is possible, but no explicit
globally-defined surface Neumann Green’s function.

Needed for asymptotics: computation of surface Neumann Green’s
function and its local behavior near the singularity.

Full numerical computations based on integral equations
challenging.
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Topic II: Active Cells Coupled by Diffusion

Formulate and analyze a model of (ODE) dynamically active small “cells”,
with arbitrary intracellular kinetics, that are coupled spatially by a linear
bulk-diffusion field (PDE) in a bounded 2-D domain.

Specific Questions:

Can one trigger oscillations in the small cells (Hopf bifurcation), that
would otherwise not occur without the coupling via bulk diffusion?

Can we exhibit quorum sensing behavior by which cells oscillate and
synchronize their dynamics when the population reaches a threshold?

In terms of the number m of cells per unit area, i.e. cell population
density is ρ = m/|Ω|.
What parameters regulate this threshold?

Usually studied from an ODE approach.

Can we exhibit diffusion sensing behavior whereby cells oscillate and
synchronize their dynamics based on:

cell spatial configuration (synchronization easier for clustered cells).

magnitude of diffusivity D of extracellular chemical (autoinducer).

Requires a PDE-based model.
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Dynamical Quorum Sensing in Nature
Collective behavior in “cells” driven by chemical signalling between them.

Collections of spatially segregated unicellular (eukaryotic) organisms
such as starving yeast cells (glycolysis) coupled only through
extracellular signalling molecules (autoinducer is Acetaldehyde). Ref:

De Monte et al., PNAS 104(47), (2007).

Amoeba colonies (Dicty) in low nutrient enviroments, with cAMP
organizing the aggregation of starving colonies; Ref: Nanjundiah,
Bio. Chem. 72, (1998), Gregor et al. Science, 328, (2010).

Catalyst bead particles (BZ particles) interacting through a chemical
diffusion field; Ref: Tinsley, Showalter, et al. “Dynamical Quorum
Sensing... Collections of Excitable and Oscillatory Cataytic Particles”,
Physica D 239 (2010).

Key Ingredient: Need intracellular autocatalytic signal and an extracellular
communication mechanism (bulk diffusion or autoinducer) that influences
the autocatalytic growth. In the absence of coupling by bulk diffusion, the
“cells” are in a quiescent state. Oscillations and ultimate sychronization
occurs via a switchlike response to elevated levels of the autoinducer.
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Amoeba Colony (Dictyostelium discoideum)
About 180 cells are confined into an area of 420 µm in diameter (2-D).

When resources are scarce, each cell secretes cAMP into the medium.

Main Question: Is the oscillation an intrinsic property of the cells or
does it only occur at the population level?

Caption: The cells secrete cAMP into the medium which first initiates a coordinated collective response.

On longer time-scale cells aggregate. Ref: The Onset of Collective Behavior in Social Amoebae, T. Gregor

et al. Science 2010
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Modeling Approaches

Large ODE system of weakly coupled system of oscillators. Prototypical
is the Kuramoto type-models for the coupled oscillator phases:

dxi

dt
= F(xi) + σ

∑

j

CijH(xj) ,

Synchrony occurs between individual oscillators as the coupling
strength σ increases. (Vast literature, but not the mechanism here).

Homogenization approach of deriving RD systems through cell
densities: Yields target and spiral wave patterns of cAMP in Dicty
modeling (but phemenological).

More Recent: PDE-ODE models coupling individual “cells” through a
bulk diffusion field. Our framework related to:

Ref: J. Muller, C. Kuttler, et al. “Cell-Cell Communication by Quorum
Sensing and...”, J. Math. Bio. 53 (2006),

J. Muller, H. Uecker, J. Math. Bio. 67 (2013). (steady-state analysis
in 3-D, dynamics).

Ref [GW]: J. Gou, M.J. Ward, J. Nonlinear Sci., 26(4), (2016), pp. 979–1029.
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Formulation of the 2-D Model: I
The m cells are circular and each
contains n chemicals
µj = (µ1j , . . . , µnj)

T . When
isolated they interact via ODE’s
dµj/dt = Fj(µj).

A scalar bulk diffusion field
(autoinducer) diffuses in the
space between the cells via

UT = DB∆XU − kBU .

There is an exchange across the
cell membrane, regulated by per-
meability parameters, between
the autoinducer and one intracel-
lular species (Robin condition).

Scaling Limit: ǫ ≡ σ/L ≪ 1, where L is lengthscale for Ω. We assume that the

permeability parameters are O(ǫ−1).

Parameters: Bulk diffusivity DB , bulk decay kB , permeabilities, ǫ, and time-scale of

intracellular reactions. Heidelberg – p.24



Formulation of the 2-D Model: II
Our PDE-ODE coupled cell-bulk model in 2-D with m cells is

UT = DB∆XU − kBU , X ∈ Ω\ ∪m
j=1 Ωj ; ∂nX

U = 0 , X ∈ ∂Ω ,

DB∂nX
U = β1jU − β2jµ

1
j , X ∈ ∂Ωj , j = 1, . . . ,m .

Each cell Ωj ∈ Ω is a disk of radius σ centered at some Xj ∈ Ω.

Inside each cell there are n interacting species with mass vector

µj ≡ (µ1
j , . . . , µ

n
j )

T whose dynamics are governed by n-ODEs, with

(rank-one) coupling via integration over the j-th “cell”-membrane ∂Ωj :

dµj

dT
= kRµcF j

(
µj/µc

)
+ e1

∫

∂Ωj

(
β1jU − β2jµ

1
j

)
dSj , j = 1, . . . ,m ,

where e1 ≡ (1, 0, . . . , 0)T , and µc is typical mass.

Only one species µ1
j can cross the j-th cell membrane into the bulk.

kR > 0 is intracellular reaction rate; β1j , β2j are permeabilities.

The dimensionless function F j(uj) models the intracellular dynamics.
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Formulation of the 2-D Model: III
Dimensionless Formulation: The concentration of signalling molecule U(x, t)
in the bulk satisfies the PDE:

τUt = D∆U − U , x ∈ Ω\ ∪m
j=1 Ωǫj ; ∂nU = 0 , x ∈ ∂Ω ,

ǫD∂nj
U = d1jU − d2ju

1
j , x ∈ ∂Ωǫj , j = 1, . . . ,m .

The cells are disks of radius ǫ ≪ 1 so that Ωǫj ≡ {x | |x− xj | ≤ ǫ}.

Inside each cell there are n interacting species uj = (u1
j , . . . , u

n
j )

T , with

intracellular dynamics for each j = 1, . . . ,m,

duj

dt
= F j(uj) +

e1

ǫτ

∫

∂Ωǫj

(d1jU − d2ju
1
j ) ds , e1 ≡ (1, 0, . . . , 0)T .

Remark: The time-scale is measured wrt intracellular reactions. The
dimensionless bifurcation parameters are: d1j , d2j (permeabilities); τ
(reaction-time ratio); D (effective diffusivity);

τ ≡ kR
kB

, D ≡
(√

DB/kB
L

)2

, β1j ≡ (kBL)
d1j
ǫ

, β2j ≡
(
kB
L

)
d2j
ǫ

.
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Theoretical Framework
Can one trigger oscillations in the small cells, via a Hopf bifurcation,
that would otherwise not be present without the coupling via bulk
diffusion? (i.e. each cell is a conditional oscillator). Intuition: Need
reaction-time ratio τ in some interval 0 < τ− < τ < τ+ < ∞.

Can we exhibit quorum sensing and diffusion sensing behavior?

Two key regimes for D with different behaviors:

D = O(1); Effect of spatial distribution of cells is a key factor whether
oscillations are triggered or not (diffusion sensing behavior).

D ≫ O(ν−1); In this “well-mixed” regime, the PDE-ODE cell-bulk
model reduces to a finite dimensional dynamical system with global
coupling. Quorum sensing behavior observed.

Mathematical Framework: Use strong localized perturbation theory (SLPT) to
construct steady-states, to formulate the linear stability problem, and to
derive the limiting well mixed ODE system.
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Steady-States: Matched Asymptotics
Main Result (Steady-State): In the outer region, the ss bulk diffusion field is

U(x) = −2π

m
∑

i=1

SiG(x,xi) , where S ≡ (S1, . . . , Sm)T .

In terms of ν = −1/ log ǫ and a Green’s matrix G, we obtain a nonlinear

algebraic system for S and u1 ≡
(
u1
1, . . . , u

1
m

)T
, where e1 = (1, 0, . . . , 0)T :

F j(uj) +
2πD

τ
Sje1 = 0 , (H+ 2πνG)S = −νWu1 , j = 1, . . . ,m .

Here W ≡ diag
(

d21
d11

, . . . , d2m
d1m

)

and H ≡ diag
((

1 + νD
d11

)

, . . . ,
(

1 + νD
d1m

))

.

In this ss formulation, the entries of the m×m Green’s matrix G are

(G)ii = Ri , (G)ij = G(xi;xj) , i 6= j ,

where, with ϕ0 ≡ 1/
√
D, G(x;xj) is the reduced-wave G-function:

∆G− ϕ2
0G = −δ(x− xj) , x ∈ Ω ; ∂nG = 0 , x ∈ ∂Ω .

G(x;xj) ∼ − 1

2π
log |x− xj |+Rj + o(1) , as x → xj .
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Globally Coupled Eigenvalue Problem (GCEP)
Main Stability Result: For ǫ → 0, the perturbed bulk diffusion field satisfies

u(x, t) = U(x) + eλtη(x) , η(x) = −2π

m∑

i=1

ciGλ(x,xi) .

Inside the j-th cell we have uj = uej + 2πDτ−1cje
λt(λI − Jj)

−1e1. Here

c = (c1, . . . , cm)T is a nullvector of the GCEP:

Mc = 0 , M(λ) ≡ 2πνGλ +H+ ν
2πD

τ
WK(λ) .

In this GCEP, Gλ is the Green’s matrix formed from

∆Gλ − ϕ2
λGλ = −δ(x− xj), x ∈ Ω ; ∂nGλ = 0 , x ∈ ∂Ω ,

Gλ(x;xj) ∼ − 1

2π
log |x− xj |+Rλ,j + o(1) , as x → xj ,

with ϕλ ≡ D−1/2
√
1 + τλ. Here K is the diagonal matrix defined in terms

of the Jacobian Jj ≡ F j,u(uej) of the intracellular kinetics F j :

Kj = e1
T (λI − Jj)

−1e1 =
Mj,11(λ)

det(λI − Jj)
, where e1 = (1, 0, . . . , 0)T .
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Numerics for the GCEP
Linear stability analysis: Nonlinear matrix eigenvalue problem of the form

M(λ; τ,D)c = 0 .

Definition: An unstable “mode” is a root λ of F(λ) = det (M(λ)) = 0 in
Re(λ) > 0. The number N of unstable modes is the total number of such
roots. The eigenvector c determines the amplitude and phase at each cell.

Determine N numerically from winding number computation of F(λ)
over a large semi-circle in Re(λ) > 0. Gives a “stability map” in (τ,D)
plane with N = 0 (white), N = 2 (grey), N = 4 (blue), etc..

Hopf bifurcation boundaries, λ = iλI(D) and τ = τ(D) can have folds
in D. Compute with ReF = 0 and ImF = 0 using psuedo-arclength.

Tractable: Ring and Ring + Center Hole Pattern:

Small identical cells inside unit disk, evenly
spaced on a concentric ring of radius r0.

The center-cell can have different kinetics, or
different permeabilities d1 and d2.

Matrix spectrum Mc = σc available analyti-
cally. Heidelberg – p.30



Intracellular Selkov Reaction-Kinetics
Selkov Kinetics: Let u = (u1, u2)

T be intracellular dynamics given by Selkov
model (used for modeling glycolysis oscillations):

F1(u1, u2) = αu2 + u2u
2
1 − u1 , F2(u1, u2) = ǫ0

(
µ− (αu2 + u2u

2
1)
)
.

For an isolated cell ∃ a unique steady-state at u1e = µ, u2e = µ/(α+ µ2).
The determinant and trace of the Jacobian Je is

trace(Je) =

[
µ2 − α2 − ǫ0(α+ µ2)2

]

α+ µ2
, det(Je) = ε0(α+ µ2) > 0 .

0 1 2 3 4

-2

0

2

4

Fix Selkov parameters as α = 0.9, and
ǫ0 = 0.15 and plot versus µ.

For µ = 2 an isolated cell has a sta-
ble fixed point with no oscillations,
but is near to stability threshold.

Remark: When coupled to the other cells there is a new (but unique)
steady-state and the PDE-ODE coupling can trigger oscillations via a HB.
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D = O(1): Ring Patterns

r0

Analytically Tractable Example:

m small cells inside the unit disk, evenly
spaced on a concentric ring of radius r0.

Assume identical kinetics and permeabili-
ties, so that F j = F , d1j = d1, and d2j = d2.

Spectral Problem (from GCEP): Must find the roots λ to Bj(λ) = 0, where

Bj(λ) ≡ ωλ,j +
1

2πν

(
1 +

Dν

d1

)
+

(
d2D

d1τ

)
M11

det(λI − J)
, j = 1, . . . ,m .

Here ωλ,j are the eigenvalues of the λ-dependent Green’s matrix Gλ:

Gλvj = ωλ,jvj , j = 1, . . . ,m ,

∃ a steady-state with Sj = Sc for all j = 1, . . . ,m.

Gλ and G are symmetric, cyclic matrices. Hence v1 = (1, . . . , 1)T

(synchronous mode).

For the unit disk, the Green’s matrix Gλ is given analytically in terms of
an infinite series of modified Bessel functions of complex argument. Heidelberg – p.32



D = O(1): Ring Patterns: II

Linear Stability Computations (Theory):

Phase Diagram: Compute Hopf Bifurcation (HB) boundaries in the τ
versus D plane for each j = 1, . . . ,m by setting λ = iλI . Fix r0,
ǫ = 0.05, d1 = 0.8, and d2 = 0.2.

Winding Number computations used to check where Re(λ) > 0 in open
regions of the τ versus D plane.

Cyclic Symmetric Matrices:: Matrix spectrum of Gλ readily calculated.

Note: v1 = e ≡ (1, . . . , 1)T (synchronous mode), while eTvj = 0 for
j = 2, . . . ,m are the asynchronous modes. However, mode
degeneracy occurs due to cyclicity and symmetry of Gλ. In particular, if
m = 5, there are exactly two asynchronous branches.

Qualitative Questions: What is the effect of:

cell clustering (i.e. smaller r0?)

the cell permeabilities d1 and d2?

the number m of cells?

small changes in the intracellular kinetics?
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D = O(1): HB Boundaries: m = 2 Cells

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1 HB boundaries τ vs. D for m = 2
and r0 = 0.75.

Synchronous and asynchronous
HB boundaries (heavy dashed).

N = 2 (grey) and N = 4 (blue).
(winding-number results)

Asynchronous lobe exists only for
D small.

Predicts no oscillations for D ≫ 1.

Numerical Validation: FlexPDE for a similar map with r0 = 0.25
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D = O(1): Diffusion Sensing Behavior

r0

0 2 4 6
0

0.2

0.4

0.6

0.8

1

D

τ

 

 

r0=0.25 r0=0.5 r0=0.75

Caption: Let m = 2 and vary r0: HB boundaries in τ versus D for the synchronous mode

(larger lobes) and the asynchronous mode (small lobes for D small).

Asynchronous lobe is smallest when r0 = 0.25 (i.e. for closely-spaced
cells). Implies that D has to be only increased a bit before
asynchronous oscillations are impossible.

If r0 = 0.75 the two cells are rather close to their images across the
boundary of the disk (Neumann BC).

Diffusion sensing: If D = 5 and τ = 0.6, we are outside instability lobe
for r0 = 0.5 but within the lobes for r0 = 0.25 and r0 = 0.75. Thus a
more clustered configuration will trigger oscillations for the same D. Heidelberg – p.35



D = O(1): HB Boundaries m = 5
HB boundaries: m = 5 cells and r0 = 0.5.(Right is zoom of left)

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

N = 2 (grey), N = 6 (red), N = 10 (cyan).

Asynchronous lobes: only for D small. Two such lobes when m = 5.

Instability lobe for synchronous mode is now unbounded (left figure).

Implication: The unbounded lobe for the synchronous mode indicates that
for the well-mixed limit D → ∞ a Hopf bifurcation for the steady-state will
occur when τ = τ± (horizontal asymptotes), and that an oscillatory
instability occurs for τ− < τ < τ+.
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Ring + Center Pattern: Role of Permeability
Consider m = 5 with a defective cell at the center of the disk with different
permeabilities than four identical cells on a ring of radius r0 = 0.75.

Ring Cells: d1 = 0.8, d2 = 0.2 (identical
kinetics)

Center Cell: Case I: d1 = 0.8, d2 = 0.2. Case II

(Defective): d1 = 0.4, d2 = 0.2.

M is a 5×5 symmetric matrix with a 4×4 cyclic
block with the fifth row being (b, b, b, b, r).

1 2 3 4
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0.4
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0.8

1

0.5 1 1.5 2
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0.6

0.8

1

0.02 0.04 0.06 0.08 0.1 0.12
0

0.2

0.4

0.6

0.8

1

Caption: Left: Case I: all identical. Middle: Case II: center defective. Right: Zoom for small D

with N = 0 (white), N = 2 (grey), N = 4 (blue), N = 6 (red), N = 8 (green), N = 10 (cyan).
Heidelberg – p.37



Ring + Center Pattern: A Triggering Center Cell
Consider m = 5 with a defective cell at the center of the disk that has a
different intracellular kinetic (Selkov) parameter closer to stability
threshold of an isolated cell than the four identical cells on the ring.

0.5 1 1.5 2 2.5 3
0.2

0.4

0.6

0.8

1

1 2 3 4 5
0.2

0.4

0.6

0.8

1

Caption: Lobes of instability for the synchronous mode c = (1, 1, 1, ξ): Left: all identical cells

d1 = 0.3, d2 = 0.2, α = 0.9. Right: center-cell has α = 0.86.

Small change in intracellular kinetics can have large effect on region in
τ versus D parameter space where oscillations occur.

With more clustering (r0 = 0.25), one can have a larger bulk diffusivity
D before autoinducer wanders too far from cells to trigger collective
behavior. Heidelberg – p.38



The Well-Mixed Regime D ≫ O(ν−1): I
Goal: Derive and analyze a reduced finite-dimensional dynamical system
characterizing the cell-bulk interations from PDE-ODE system for D → ∞.

An asymptotic analysis yields that in the bulk that u(x, t) ∼ U0(t), where

U ′
0 = −1

τ
U0 −

ρ

τ


 1

m

m∑

j=1

[
κ1,jU0 − κ2,ju

1
j

]

 ,

u′
j = F j(uj) +

1

τ

[
κ1,jU0 − κ2,ju

1
j

]
e1 , j = 1 , . . . ,m ,

where e1 = (1, 0, . . . , 0)T . Here ρ is the effective cell density and

ρ ≡ m

|Ω| , κ1,j ≡ 2πd1,j , κ2,j ≡ 2πd2,j .

Large system of ODEs with weak but global coupling when 0 < d1j << 1
and 0 < d2j ≪ 1, or when τ ≫ 1.

Identical Cells: Look for uj = u , ∀j. We get

U ′
0 = −1

τ
(1 + κ1ρ)U0 + ρ

κ2

τ
u1 , u′ = F (u) +

1

τ
[κ1U0 − κ2u1] e1 .
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The Well-Mixed Regime D ≫ O(ν−1): II
Selkov with d1 = 0.8, d2 = 0.2 and |Ω| = π. Global Bifurcation Study.

0.2 0.4 0.6 0.8
0.8

1.2

1.6

2

τ

u 1

Caption: Global solution

branches u1e versus τ for

m = 5 cells: Heavy (thin)

solid is stable (unstable)

steady-steady. Dots indi-

cate stable periodic solution

branch. HB points at τH−
=

0.2187 and τH+ = 0.6238.

Key: Stable synchronous oscillations occur in some τ interval. Limiting

well-mixed ODE dynamics is independent of cell locations and D.

Quorum sensing (Qualitative): Collective behavior of “cells” in response to

changes in their population size. There is a threshold number mc of cells
or a critical cell density ρ that is needed to initiate a collective behavior.

Quorum sensing (Math): For what range of m, do the well-mixed ODEs

have a stable periodic solution on τH− < τ < τH+ with HB points at τH±?
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Quorum Sensing Behavior
What parameters control control QS behavior? We will study QS behavior
as the permeability d1 is varied and d2 = 0.2: Recall:

∂nj
U = d1U − d2u

1
j , on ∂Ωεj

, j = 1, . . . ,m .

Remark: Equivalent to finding the range of m for which the instability lobe
for the synchronous mode is unbounded in the τ versus D plane.

Left: Quorum threshold mc vs. d1 from ODEs. Right: τ vs. D for d1 = 0.3, r0 = 0.5.
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Key: mc sensitive to small changes in d1
d1 = 0.8 ,mc = 3 ; d1 = 0.3 ,mc = 7 ; d1 = 0.2 ,mc = 12 ; d1 = 0.1 ,mc = 19 .
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Large Cell Populations: Synchronization I
In the well-mixed limit D → ∞, the PDE-ODE system reduces to

U ′
0 = −1

τ
U0 −

ρ

mτ

m∑

j=1

[
κ1,jU0 − κ2,ju

1
j

]
,

u′
j = F j(uj) +

1

τ

[
κ1,jU0 − κ2,ju

1
j

]
e1 , j = 1 , . . . ,m ,

where ρ = m/|Ω| is the “cell density” κ1,j ≡ 2πd1,j and κ2,j ≡ 2πd2,j .

Non-Identical Cells: We take τ = 0.5, and fix common permeability
parameters d1j = 0.8 and d2j = 0.2 ∀j. The intracellular kinetics F j are
not identical. Selkov parameters ε0 = 0.15 and µ = 2 are fixed for each
cell, but α can vary from cell to cell. Isolated cells are not oscillatory.

Kuramoto order parameter: (measures the degree of oscillator phase synchrony):

R =

〈∣∣∣∣∣∣
N−1

N∑

j=1

exp[iθj(t)]−
〈
N−1

N∑

j=1

exp[iθj(t)]

〉∣∣∣∣∣∣

〉
, 0 ≤ R ≤ 1 .

R = 1 (Perfect phase synchrony) ; R = 0 (No phase coherence) ;
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Large Cell Populations: Synchronization II
Computations of order parameter R with respect to ρ. Iyaniwura (UBC)
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Identical cells: α = 0.9. “Defective” cells: α is random in 0.921 ≤ α ≤ 0.952.

Population density ρ plays a dual role of triggering and quenching oscillations

Interval of ρ where synchrony occurs decreases as the number of defective

cells increases.
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Cell-Bulk Model: Further Directions

Let D = O(1). Consider m “randomly” placed cells
in a disk. Can we observe clusters of oscillating and
non-oscillating cells? (i.e. “chimera”-type states.)

How do we solve the spectral problem in arbitrary domains? (fast
multipole methods for G and Gλ)

Numerics for the GCEP for large numbers of cells.

What if the steady-state solution is not unique (hysteresis) or if
intracellular dynamics has a time-delay?

Intracellular dynamics to model a specific biological system (LuxIR
circuit in Vibrio fischeri).

Derive a RD system in the homogenized limit of m ≫ 1 but mǫ2 ≪ 1.

Two bulk-diffusing (autoinducer) species.

PDE-ODE Model in 3-D. (interactions are, in general, much weaker
owing to 1/r decay of Green’s function).
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PDE-ODE Cell-Bulk Model in 3-D
The dimensionless bulk concentration U(x, t) satisfies

∂U

∂t
=D∆U − κU, x ∈ Ω \ ∪m

j=1 Ωεj ; ∂n U = 0, x ∈ ∂Ω ,

εD ∂nU = d1,j U − d2,j
ε

u1
j , x ∈ ∂Ωεj , j = 1, . . . ,m,

which is coupled to the dimensionless intracellular dynamics for the jth cell

duj

dt
= F j (uj) + e1

∫

∂Ωεj

(
d1,j
ε

U − d2,j
ε2

u1
j

)
dS , j = 1, 2, . . . ,m,

where uj = (u1
j , . . . , u

n
j )

T , e1 ≡ (1, 0, ..., 0)T , and d2,j = O(1).

Near Well-Mixed Limit: An interesting limit where there is O(1) interaction
between the cells is when

D = O(ε−1), κ = O(1), d1,j =
d̃1,j

ε , where d̃1,j = O(1) .

In this regime, Quorum and Diffusing sensing can be studied through a
common limiting system.
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ODE System in Near Well-Mixed Limit
In this limit, the PDE-ODE system reduces to

U ′
0 = −κU0 +

4π

|Ω|

m∑

j=1

(p2,j v
1
j − p1,j U0)−

16π2ε

|Ω|

m∑

j=1

p1,j (G ccc)j + . . . ,

dvvvj
dt

= FFF j (vvvj) + 4πeee1(p1,jU0 − p2,jv
1
j ) + 16επ2 eee1 p1,j(G ccc)j + . . . , j = 1, . . . ,m ,

where ccc = (c1, . . . , cm)T , G is Neumann Green’s matrix in 3-D and

p1,j ≡
D0 d̃1,j

d̃1,j +D0

, p2,j ≡
D0 d2,j

d̃1,j +D0

, cj ≡
d2,jv

1
j − d̃1,jU0

d̃1,j +D0

, j = 1, . . . ,m .

For D0 → 0, then p1,j → 0 and p2,j → 0 (no cell-cell communication).

For D0 → ∞ (well-mixed), then p1,j → d̃i,j , p2,j → d2,j , and cj → 0
(maximal cell-cell communication, but cell configuration insignificant).

For D0 = O(1) dependence on cell configuration and shape of
confining domain Ω is at O(ε) term through Neumann G-matrix G.

ODE system: reveals both quorum sensing and diffusion sensing
behavior.
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