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Outline

® Topic I: Berg-Purcell Problem Revisited. Determination of effective

capacitance of a sphere with V. small “traps” on the boundary. The
homogenized limit and the mean first capture time. (Lindsay, Bernoff)

® Topic ll: PDE/ODE Model of dynamically-active (ODE) small signalling
compartments coupled by bulk-diffusion (PDE). Leads to the triggering
of (synchronous) oscillations via a hopf bifurcation (J. Gou, S.

lyaniwura). Biologically: illustrates quorum and diffusion sensing
behavior.

Key Features: Derivation and study of new discrete variational problems
using from Green’s interaction matrices.. Nonlinear matrix eigenvalue
problems involving Green'’s interaction matrices.
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Topic I: Narrow Capture in 3-D

Absorbing

Nanotraps

Caption: spherical target of radius € < 1 centered at xo € €2, with N locally
circular absorbing surface nanotraps (nanopores) of radii c < ¢ modeled by
homogeneous Dirichlet condition.

® A particle (protein etc..) undergoes Brownian walk (dX; = DdW;) until
captured by one of the N small absorbing surface nanotraps.

®» Q1: How long on average does it take to get captured? (MFPT).

» Q2: What is the effect on the MFPT of the spatial distribution
{x1,...,xn} of the surface nanotraps? (Capacitance).
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Applications of Narrow Capture

Nuclear Pores: Genetic material enters nucleus via small pores.

Chromosomes

Scaling: Nucleus ~ 10% of cell volume (¢ = 0.1). Roughly, N = 2000 pores that occupy 2%
of the surface area. (Eilenberg et al. Science 341(6146), 2013).

Cell Signalling: How long does it take an antigen to bind to a receptor on a
T-cell to produce antibodies?

Antigens ,
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The MFPT PDE for Narrow Capture

The Mean First Passage Time (MFPT) T satisfies

1
AT=-%, xeM\Q; aT=0, xe0Q,

T:O, XE@an; 8nT=0, Xeaﬂgr,

where 0€)¢, and 0)¢, are the absorbing and reflecting part of the surface
of the small sphere )¢ within the 3-D cell €.

® Calculate the averaged MFPT T for capture of a Brownian particle.

® T depends on the capacitance C, of the structured target (related to
the Berg-Purcell problem, 1977). This is the inner or local problem.

® Derive new discrete optimization problems characterizing the optimal
MFPT and determine how the fragmentation of the trap set affects 7.

Ref: [LBW2017] Lindsay, Bernoff, MJW, First Passage Statistics for the Capture of a
Brownian Particle by a Structured Spherical Target with Multiple Surface Traps, SIAM
Multiscale Mod. and Sim. 15(1), (2017), pp. 74—109.
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Asymptotic Result for the Average MFPT

Using strong localized perturbation theory, for ¢ — 0 the average MFPT is

- 1 €] 2
T Tdx = 14+ 4meCoR O
[\Qe| Joop 8 47T00D6[ +dreCoR{xo) + Ofe )}’

where R(xg) is the regular part of the Neumann Green’s function for Q:

1
AG:@—d(x—xo), xeQ; 0,G=0, xe€09N,
1
G(X;XO):47T|X_XO’—|—R(XO), as x —&; /QGdX:O.

Capacitance Problem: “exterior” problem in potential theory. C, satisfies
Av=0, yeR’\Qy; v=0, yel,, 0,v=0, yel,,
1 1

lim Opvds = —4mw; v~ — —|—’ ’—|—(9(]y]_2), ly| = 0.
Yy

R—o0 00 R CO
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Capacitance (), of Structured Target

The inner problem for the capacitance (| is equivalent to finding the
probability w(y) that a particle is captured starting at y € R? \ Q:

«— Diffusing
Particle

Aw=0, yeR\Q (outside unit ball)
w=1, yel, (absorbing pores)
J,w=0, yel, (reflecting surface)

1
w CO—I—O( ), as |y| — oo.

[yl [y[?
Remarks:
® () =1 if entire surface is absorbing. % J
® The diffusive flux J into the sphere is
J:D/ O,wdS = 4nDC . @ )
b Ju=0

® The sub-inner problem near a pore is the
classic electrified disk problem.
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Berg-Purcell Problem: 1

This is the Berg-Purcell (BP) problem (Physics of Chemoception,
Biophysics, 20(2), (1977)) =~ 1500 citations)

Diffusing
Particle

BP assumed

® N > 1 disjoint equidistributed small pores.
$» common pore radius o < 1.

® (dilute fraction limit, i.e. f = No?/(47) < 1.

Using a “physically-isnpired” derivation, BP postulated that

No No 5
pr = 47TDNO'—|—7T =4DNo + O(o7).

OObp: No+m’

Suggests that .J is proportional to the total pore perimeter when o < 1.

Our Goal: Calculate C, and the flux J, systematically for a collection of
disjoint pores centered at {y1,...,yn} over the surface. Study the effect
of the location of the pores and fragmentation. For equidistributed pores
derive the BP result and the asymptotic corrections to it.
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Berg-Purcell Problem: 11

BP analysis revisited by Shoup-Szabo (Biophysical J. 1982). Replace trap
set by effective trapping parameter k, so that for a sphere of radius R

Au=0, r>R; Du.=ku, r=R.
Then, the flux J = [, DO,r|.—r into the sphere is J = 47 DC, where

=1 with L] + =
T C~ R kR
Now estimate k: On an infinite plane with a single trap of radius a
2a
Thus JdiSk = kdiSk = 4aD. Now estimate
N 4D Nro?
~ kn; — | = —5— h —
K kd|3k(47rR2) WRaf’ where 47

and o = a/R. Finally, this yields the BP capacitance and BP flux

No
=4nDR :
" (N0+7T>

Clbp_;z(wl“» op
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Main Result for 'y and flux J: I

Main Result: For o — 0, [LBW2017] derived that

1 T 3/2 4 ;
oA — ]
CO NO' [1"‘ . (10g (26 O'> + NH(Y17 7YN)> ‘|‘O(O' OgO') ,

—1
3 2

J=4DNo 1—|—€10g(20)—|—g — 4+ —H(y1,.--,yN) | + - :
s s 2 N

The interpore interaction energy H, subject to |y;| = 1V, is

N N
I 1 1
Hiyroyn) =3 3 9llyi—vel)i g(w) = LT g logu—7 log(2+1).
J=1k=j5+1
Here y; for j =1,..., N are the nanopore centers with |y,| = 1.

10

Remarks:
® Flux J minimized when H minimized

6,
® ¢(u) is monotone decreasing, positive, "
and convex. af

® Indicates that optimal configuration
0

8t

1.5

—_

should be (roughly) equidistributed. 0 05

2
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Main Result for ¢, and flux .J: 11

Here g(|ly; — yx| = 27Gs(y;;¥k), Gs is the surface-Neumann G-function

1 1 1 1—y, _
Gs(yj3yk) = [ ——10g< Yo Vi +1y; W'ﬂ :
2m | ly; —yx| 2 Vil = ¥iye

Key steps in singular perturbation analysis for ():

® Asymptotic expansion of global (outer) solution and local (inner)
solutions near each pore (using tangential-normal coordinates).

® The surface G,-function has a subdominant logarithmic singularity on
the boundary (related to surface diffusion). This fact requires adding
“logarithmic switchback terms in ¢” in the outer expansion.

® The leading-order local solution is the tangent plane approximation
and yields electrified disk problem in a half-space, with (local)
capacitance c; = 20 /.

® Key: Need corrections to the tangent plane approximation in the inner
region near the pore. This higher order term in the inner expansion
satisfies a Poisson-type problem, with monopole far-field behavior.

® Asymptotic matching and solvability conditions yield 1/Cy.
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Asymptotics versus Numerics (Small N)

Asymptotic Results: For o — 0

o 3 o’ 7T2—|—21
— — — — ] — N =1
J =4D¢ [1 -+ — (log(20) 2) — ( 36 ) -+ ] ;o ( ),

2
J =4DNo [1 + Zlog(20) + 2 <_§
T ’iy

2+Nﬂ(y1,---,yw)>+~-]1, (N >1)

Numerics: Compare with full numerics from multipole theory based on
integral equations [Bernoff, Lindsay]. Vertices at Platonic Solids.

-2 -1.5 -1 -0.5 . o S ‘ ‘
log,o 0 0 0.05 0.1 0.15 0.2 0.25

g

Left: One pore: log-log plot of relative error. Leading-order (solid), three-term (dotted),
four-term (dashed). Right: Comparison of rescaled flux J/(40) versus o when pores are
centered at vertices of platonic solids. Marked points are full numerics.
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Clustering and Fragmenting the Pore Set

—)
109
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Left: V = 20 equally-spaced nanopores (centers shown only) clustered in the polar region

6 € (0, 3 ) with total absorbing fraction f = 0.05. Blue pore: is the equivalent area as a

single nanopore. Nanopore radius is o = 24/ f/N. Right: optimal dodecahedron pattern.
1

: 1 .
— = 5.41 (single Pore) ; 1 ~ 2.79 (clustered); — =~ 1.98 (optimal).
Co CO OO

Conclude I: subdividing a single nanopore into 20 smaller, but clustered,
nanopores of same total area rougly halves the MFPT to the target.

Conclude Il: The MFPT for 20 optimally distributed pores is significantly
smaller than for 20 clustered pores.
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Discrete Energy: Equidistributed Points

Find global minimum H,,in, of H when N > 1

HzZZg(|yj—yk|), where g(,u)ziqulog( - )

2 2
i kg TH

® What is asymptotics of H,,,;n, as N — 00?
® Forlarge N, many local minima, so finding global min is difficult.
® Cannot tile a spherical surface with hexagons (must have defects).
® Related to classic Fekete point problems of minimizing pure Coulombic
energies on the sphere (Smale’s 7th problem).
Three Coverings of N = 800 points

7 —— _ T
P

0.5

‘ ¢
-0.5 . ;“l i

Uniform Random Equispaced in (0, ¢) Fibonacci Spirals

Not Great Better Best (SO far.. ) Heidelberg — p.14



Scaling Law: Equidistributed Points

Formal Large NV Limit: For N large and
“equidistributed points”, we have

N? N
Homin ~ —— = diN*? + - log N

+doN + dsNY2 ...

with dl — 1/2, dg — 1/8 and d3 = 1/4 Bet- .

ter to use d; = 0.55230 for “pure” Coulombic
interactions [Saff].

x10°

10

0o
0
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Main Result (Scaling Law): For NV > 1, but small pore surface area fraction

f = O(c”log o) and with equidistributed pores, the optimal C;, and J are

o~ (1—%f ? 10g (6/F) +

2d30’

\/7

J ~ 47D [1+E (1— Sdivf log (5[)

4f

s

BP Result is the leading-order term. Our analysis yields correction terms

) b= Je—3/2 4z

2d30‘
T/ f

IR

for the sphere. Most notable is the \/f term, where f = No?/4.

Y
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Fragmentation Effects

Effect of Fragmentation: fix pore fraction f, increase N, and obtain ¢ from
f = Nro?/[4x]. Locate pores centered at spiral Fibonacci points.

Caption: 1001 Nanopores at
vertices of the spiral Fibonacci

points.
\\\;5\\v////o//£
3 . : :
2.5} 1 Caption: From top to bottom: f =
= {0.02,0.05,0.1,0.15} For N =
02 . .
2000, f = 0.02, full numerics
150 _ gives C;.! = 1.1985 and C; ' =
g 1.2028 (scaling law).
o 500 1000 1500 2000
N

Conclusion: Fragmentation effects are significant until N becomes large.
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Compare Scaling Law with Full Numerics

Compare full numerics with the asymptotic scaling law

JN47TD[

1+ —
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Fix 2% pore coverage (f = 0.02) and choose spiral Fibonacci points.

,® e
Yo o\

e
oq\\‘\
.....\\\\
S TP R
0% e o Yoyt

L .'.Hl‘

AP -‘\\ //'..:\\
/’0:" } "i:".o°“}\
283 oy 1108 a8,

00 009" o0’ 00
". ' \' . . .1|
A SO PPTIRTLEND
! Q.‘,* ‘\Qtt ® o’

N e ‘// ‘::.o’.o”/

N =101 N =201

/] og0 [ By .. [
éml":"'. % ...0“‘\\*‘
A R et TPt A
10000 4%0 8 % P ety
s 805 0 0% ot o qguatily
l.."n'..'.-'t. ‘....o:."n“
aeetige ote .'Ooao.',t,t,i
o {
Roeede. 8 oot ity
/

P e g
i

N =2001

N Erel
51 1.02%
101 0.90%
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1001 | 0.37%
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Caption: f = 0.02 (2% pore
coverage). Scaling law ac-
curately predicts the flux to
the target for the biological
parameters f = 0.02 and
N = 2001.

Heidelberg — p.17



Effective Robin Condition: Leakage ~;,

u=0 J,u=0 Opu+ ku =0

—

Ref: Muratov,
Shvartsmam,
Berezhkovskii,
SIAM MMS 2006.

Consider the planar case with o pore radius and f coverage. Previous
empirical laws (Berezhkovskii 2013) for a hexagonal arrangement

ADf 14137/ f —2.59f2
R = To X(f) X(f)_ (1_f)2 y
Our homogenized Robin condition: use scaling law for Cy and find ~;, from
1 1
Avp =0, |ly|>1; Opvp+rpvyp =0, |y|=1; v(y) ~ ———, |y| = 0.
vyl Co

For the unit sphere, and in terms of d;, ds, ds and 8 = 4e=3/2¢%?2  we get

e 1_%f+ log (5V/F) + Qdfffll 47if[1+141f+ 5
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Further Directions

Rigorus results for the large N behavior of H.
Not just MFPT, but full time-dependent probability density.

Potential theoretic methods (fast) to compute capacitance (L.
Greengard, J. Kaye, preprint archive)

Derive an explicit formula for the capacitance of a bumpy sphere
containing N nanopores

» Local analysis near a pore is possible, but no explicit
globally-defined surface Neumann Green’s function.

» Needed for asymptotics: computation of surface Neumann Green’s
function and its local behavior near the singularity.

» Full numerical computations based on integral equations
challenging.
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Topic II: Active Cells Coupled by Diffusion

Formulate and analyze a model of (ODE) dynamically active small “cells”,
with arbitrary intracellular kinetics, that are coupled spatially by a linear
bulk-diffusion field (PDE) in a bounded 2-D domain.

Specific Questions:

® Can one trigger oscillations in the small cells (Hopf bifurcation), that
would otherwise not occur without the coupling via bulk diffusion?

® (Can we exhibit quorum sensing behavior by which cells oscillate and
synchronize their dynamics when the population reaches a threshold?
» |n terms of the number m of cells per unit area, i.e. cell population
density is p = m/||.
o What parameters regulate this threshold?
» Usually studied from an ODE approach.

® Can we exhibit diffusion sensing behavior whereby cells oscillate and
synchronize their dynamics based on:

» cell spatial configuration (synchronization easier for clustered cells).

» magnitude of diffusivity D of extracellular chemical (autoinducer).
» Requires a PDE-based model.
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Dynamical Quorum Sensing in Nature

Collective behavior in “cells” driven by chemical signalling between them.

® Collections of spatially segregated unicellular (eukaryotic) organisms
such as starving yeast cells (glycolysis) coupled only through
extracellular signalling molecules (autoinducer is Acetaldehyde). Ref:
De Monte et al., PNAS 104(47), (2007).

® Amoeba colonies (Dicty) in low nutrient enviroments, with cAMP
organizing the aggregation of starving colonies; Ref: Nanjundiah,
Bio. Chem. 72, (1998), Gregor et al. Science, 328, (2010).

® (Catalyst bead particles (BZ particles) interacting through a chemical
diffusion field; Ref: Tinsley, Showalter, et al. “Dynamical Quorum
Sensing... Collections of Excitable and Oscillatory Cataytic Particles”,
Physica D 239 (2010).

Key Ingredient: Need intracellular autocatalytic signal and an extracellular
communication mechanism (bulk diffusion or autoinducer) that influences
the autocatalytic growth. In the absence of coupling by bulk diffusion, the
“cells” are in a quiescent state. Oscillations and ultimate sychronization
occurs via a switchlike response to elevated levels of the autoinducer.
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Amoeba Colony (Dictyostelium discoideum)

® About 180 cells are confined into an area of 420 um in diameter (2-D).
® When resources are scarce, each cell secretes cAMP into the medium.

» Main Question: Is the oscillation an intrinsic property of the cells or
does it only occur at the population level?

L "_,‘

i v : Sl -

300 320 480 490 500 680 690 700 970 980 990
Time(min) Time(min) Time(min) Time(min)

Caption: The cells secrete cAMP into the medium which first initiates a coordinated collective response.
On longer time-scale cells aggregate. Ref: The Onset of Collective Behavior in Social Amoebae, T. Gregor
et al. Science 2010
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Modeling Approaches
® Large ODE system of weakly coupled system of oscillators. Prototypical
Is the Kuramoto type-models for the coupled oscillator phases:

dXz‘
dt

—F(x;)+o0 Z Ci;jH(x;)

J

Synchrony occurs between individual oscillators as the coupling
strength o increases. (Vast literature, but not the mechanism here).

® Homogenization approach of deriving RD systems through cell
densities: Yields target and spiral wave patterns of cAMP in Dicty
modeling (but phemenological).

® More Recent: PDE-ODE models coupling individual “cells” through a
bulk diffusion field. Our framework related to:

# Ref: J. Muller, C. Kuttler, et al. “Cell-Cell Communication by Quorum
Sensing and...”, J. Math. Bio. 53 (2006),

o J. Muller, H. Uecker, J. Math. Bio. 67 (2013). (steady-state analysis
in 3-D, dynamics).

Ref [GW]: J. Gou, M.J. Ward, J. Nonlinear Sci., 26(4), (2016), pp. 979—1029.
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Formulation of the 2-D Model: 1

® The m cells are circular and each
contains n chemicals

pi = (H1js - s Bng) " - When
isolated they interact via ODE'’s

dp;/dt = F;(p;).
A scalar bulk diffusion field

(autoinducer) diffuses in the
space between the cells via

UT = DBAXL{ — ]{BU.

There is an exchange across the
cell membrane, regulated by per-
meability parameters, between
the autoinducer and one intracel-
lular species (Robin condition).

Scaling Limit: ¢ = o /L < 1, where L is lengthscale for 2. We assume that the
permeability parameters are O(e ).

Parameters: Bulk diffusivity Dg, bulk decay kg, permeabilities, ¢, and time-scale of
intracellular reactions. Heidelberg  p.24




Formulation of the 2-D Model: 11

Our PDE-ODE coupled cell-bulk model in 2-D with m cells is
Ur = DpAxU — kpld, X € Q\UL; Q;; 0, U =0, X €099,
DganXZ/{:BljU—/fgju}, XEan, 17=1,....m.

Each cell 2; € 2 is a disk of radius ¢ centered at some X ; € (.

Inside each cell there are n interacting species with mass vector
pi = (uj,...,p7)" whose dynamics are governed by n-ODEs, with
(rank-one) coupling via integration over the j-th “cell>-membrane 0f2;:

dis.
% = krpcFj (1) pie) +61/ (81U = Bojug) dSy,  j=1,....m,
o,

where e; = (1,0,...,0)T, and p. is typical mass.

® Only one species u} can cross the j-th cell membrane into the bulk.

® £kr > Olsintracellular reaction rate; 3,;, 52, are permeabilities.

® The dimensionless function F';(u,) models the intracellular dynamics.
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Formulation of the 2-D Model: 111

Dimensionless Formulation: The concentration of signalling molecule U(x, t)
in the bulk satisfies the PDE:

U, = DAU - U , rxe QUL Qs 0,U=0, xe€d,
eDO, U =d;U—dyju;, ®ed,, j=1,...,m.

The cells are disks of radius ¢ < 1 so that ., = {z | |x — x;| < €}.

Inside each cell there are n interacting species u; = (u;,...,u7)", with
intracellular dynamics foreach j = 1,...,m,
d’u,j

€1

Remark: The time-scale is measured wrt intracellular reactions. The
dimensionless bifurcation parameters are: d; ;, d»; (permeabilities); 7
(reaction-time ratio); D (effective diffusivity);

2
__kn D<\/DB//~¢B>7 &jz(kBL)%7 BQjE(kB)dzj.

- L L €
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Theoretical Framework

® (Can one trigger oscillations in the small cells, via a Hopf bifurcation,
that would otherwise not be present without the coupling via bulk
diffusion? (i.e. each cell is a conditional oscillator). Intuition: Need
reaction-time ratio 7 in some interval 0 < 7_ < 7 < 74 < 0.

® (Can we exhibit quorum sensing and diffusion sensing behavior?

Two key regimes for [ with different behaviors:

® D = O(1); Effect of spatial distribution of cells is a key factor whether
oscillations are triggered or not (diffusion sensing behavior).

® D> O(v1); In this “well-mixed” regime, the PDE-ODE cell-bulk
model reduces to a finite dimensional dynamical system with global
coupling. Quorum sensing behavior observed.

Mathematical Framework: Use strong localized perturbation theory (SLPT) to
construct steady-states, to formulate the linear stability problem, and to
derive the limiting well mixed ODE system.
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Steady-States: Matched Asymptotics

Main Result (Steady-State): /n the outer region, the ss bulk diffusion field is

U(x)=—2m Y S,G(x,x;), where S=(5,....9,)".

=1

In terms of and a Green’s matrix G, we obtain a nonlinear
algebraic system for S and u' = (us, . .. ,u}n)T, where e; = (1,0,...,0)%:
21w D

Fj(uj)—l——Sjele, (H—I—Zﬂ' Q)S:—Wul, ]:1,,77?,
T

Here W = diag (d21 . fﬁ—g) and H = diag ((1 + ﬁ) (1 + dlm)).
In this ss formulation, the entries of the m x m Green’s matrix G are
(g)u' = R;, (g)z’j :G(wi;w]’), i £ 7,
where, with ¢y = 1/V'D, G(x; ;) is the reduced-wave G-function:
AG - piG = —6(x —x;), x€Q; 0,G=0, xecod.

1
G(a:;a:j)N—%log\w—mj\JerﬂLo(l), as x—x;.
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Globally Coupled Eigenvalue Problem (GCEP)

Main Stability Result: For e — 0, the perturbed bulk diffusion field satisfies

u(x,t) = U(x) + eMn(x), n(x) = —27 Z ciGx(x, x;) .

=1
Inside the j-th cell we have w; = u.; + 2r D7 1c;eM(A — J;)"te;. Here
c=(cy,...,cm)?! is anullvector of the GCEP:

2w D

T

Me=0, M) =216y +H+ WIC(A).

In this GCEP, G, is the Green’s matrix formed from

AGA—gpiG,\:—é(w—wj), x € ); 0,Gr=0, xec0f,
1
GA(:U;:UJ-)N—z—log]m—mj|+R>\,j+o(l), as = —zx;,
T

with o, = D~/2y/1 + 7). Here K is the diagonal matrix defined in terms

of the Jacobian J; = F'; ,,(u.;) of the intracellular kinetics F';:

_ M)
det(M — J;)

ICj = €1T()\I — Jj)_lel where e; = (1,0, . .,O)T .
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Numerics for the GCEP

Linear stability analysis: Nonlinear matrix eigenvalue problem of the form
M\, 7,D)e=0.

Definition: An unstable “mode” is a root A of F(\) = det (M (M) =01in
Re(\) > 0. The number N of unstable modes is the total number of such
roots. The eigenvector c determines the amplitude and phase at each cell.

® Determine N numerically from winding number computation of F(\)
over a large semi-circle in Re(\) > 0. Gives a “stability map” in (7, D)
plane with N = 0 (white), N = 2 (grey), N = 4 (blue), efc..

® Hopf bifurcation boundaries, A = iA\;(D) and 7 = 7(D) can have folds
in D. Compute with ReF = 0 and ImJF = 0 using psuedo-arclength.
Tractable: Ring and Ring + Center Hole Pattern:

® Small identical cells inside unit disk, evenly
spaced on a concentric ring of radius ry.

® The center-cell can have different kinetics, or
different permeabilities d; and ds.

® Matrix spectrum Mc = oc available analyti-
cal |y Heidelberg — p.30




Intracellular Selkov Reaction-Kinetics

Selkov Kinetics: Let u = (uq, u2)? be intracellular dynamics given by Selkov
model (used for modeling glycolysis oscillations):

Fi(u1,u2) = aug + ugu% —uy, Fo(ui,us)=¢g (,u — (qug + ugu%)) :

For an isolated cell 3 a unique steady-state at u;. = p, use = /(a0 + p?).
The determinant and trace of the Jacobian J. is

12 - a? — eola+ )]

trace(.J,) = . det(J.) = ep(a+ u?) >0.
() — (10) = oo+ 4?)
4 :
—trace(J,)
 |---det(J,) ® Fix Selkov parameters as o — (0.9, and
----- stability line| ..~~~ eop = 0.15 and plot versus p.

-
-
-
-
-
-

e \ ® For ;= 2 an isolated cell has a sta-

ble fixed point with no oscillations,
but is near to stability threshold.

trace, det

Remark: When coupled to the other cells there is a new (but unique)
steady-state and the PDE-ODE coupling can trigger oscillations via a HB.
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D = O(1): Ring Patterns

Analytically Tractable Example:

® m small cells inside the unit disk, evenly
spaced on a concentric ring of radius rg.

® Assume identical kinetics and permeabili-
tieS, so that Fj = F, dlj — dq, and dgj — ds.

Spectral Problem (from GCEP): Must find the roots A to B;(\) = 0, where

1 D dy D My, .
Bi(\) =wy . +— (1422 —1,...,m.
3N =g+ 50 ( i d1>+(d17)det(>\I—J)’ ST et

Here w, ; are the eigenvalues of the \-dependent Green’s matrix G, :
g)\’vj:(U)\,j’Uj, jZl,...,m,

® Jasteady-state with S; = S.forallj =1,...,m.

® (G, and G are symmetric, cyclic matrices. Hence v, = (1,...,1)%
(synchronous mode).

® For the unit disk, the Green’s matrix G, is given analytically in terms of
an infinite series of modified Bessel functions of complex argument.  teiener-p22



D = O(1): Ring Patterns: 11

Linear Stability Computations (Theory):

® Phase Diagram: Compute Hopf Bifurcation (HB) boundaries in the =
versus D plane foreach j = 1,...,m by setting A = i\;. Fix rq,
e = 0.05, d; = 0.8, and dy = 0.2.

® Winding Number computations used to check where Re(\) > 0 in open
regions of the 7 versus D plane.

® Cyclic Symmetric Matrices:: Matrix spectrum of G, readily calculated.
Note: v; = e = (1,...,1)" (synchronous mode), while e’v; = 0 for
7 =2,...,m are the asynchronous modes. However, mode
degeneracy occurs due to cyclicity and symmetry of G,. In particular, if
m = b, there are exactly two asynchronous branches.

Qualitative Questions: What is the effect of:

® cell clustering (i.e. smaller ry?)

® the cell permeabilities d; and dy?

® the number m of cells?

® small changes in the intracellular kinetics?
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D = O(1): HB Boundaries: m = 2 Cells

1 . ® HB boundaries 7 vs. D for m = 2
and ro = 0.75.
0.8
® Synchronous and asynchronous
0.6 HB boundaries (heavy dashed).
=
0.4 ® N =2(grey) and N = 4 (blue).
(winding-number results)
0.2
® Asynchronous lobe exists only for
L ! ! !
% ) . 5 o D small.
D ® Predicts no oscillations for D > 1.

Numerical Validation: FlexPDE for a similar map with ro = 0.25

Point1: 7= 0.84606 and D =4.05818 Point2: 7= 0.7665 and D=2.5 Point3: 7=0.6033 and D =1.8400
1 g ” ‘ PNl
08 :' 'nt2.P0mH ; S S
. 1.25
C e . 13 ‘ v
06 . Point3 0 200 400 600 800 1000 150 200 250 800 820 840 860 880 900
b fime fime time
04 0.7 0.81
0.7
02 2085 < 088 20805
: | | W A 06 sl VUV UV UV Y
0 9 4 6 0 200 400 600 800 1000 150 200 250 800 820 840 860 880 900 Heidelberg — p.34
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O(1): Diffusion Sensing Behavior

1

0.8

0.6

[

0.4
: - --10=0.25

r0=0.5 r0=0.75

I %
0211y
Y/

Caption: Let m = 2 and vary ro: HB boundaries in = versus D for the synchronous mode
(larger lobes) and the asynchronous mode (small lobes for D small).

® Asynchronous lobe is smallest when ro = 0.25 (i.e. for closely-spaced
cells). Implies that D has to be only increased a bit before
asynchronous oscillations are impossible.

® |[fro = 0.75 the two cells are rather close to their images across the
boundary of the disk (Neumann BC).

® Diffusion sensing: If D =5 and 7 = 0.6, we are outside instability lobe
for ro = 0.5 but within the lobes for ro = 0.25 and ro = 0.75. Thus a
more clustered configuration will trigger oscillations for the same D.
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D = O(1): HB Boundaries m = 5

HB boundaries: m = 5 cells and ry = 0.5.(Right is zoom of left)

S ‘ 1§
e

® N =2(grey), N =6 (red), N = 10 (cyan).
® Asynchronous lobes: only for D small. Two such lobes when m = 5.
® |[nstability lobe for synchronous mode is now unbounded (left figure).

Implication: The unbounded lobe for the synchronous mode indicates that
for the well-mixed limit D — oo a Hopf bifurcation for the steady-state will

occur when 7 = 7 (horizontal asymptotes), and that an oscillatory
instability occurs for 7_ < 7 < 7.
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Ring + Center Pattern: Role of Permeability
Consider m = 5 with a defective cell at the center of the disk with different
permeabilities than four identical cells on a ring of radius rq = 0.75.
® Ring Cells: d; = 0.8, d» = 0.2 (identical

Kinetics)

® Center Cell: Casel: d; = 0.8, do = 0.2. Caselll
(Defective). d; = 0.4, dy = 0.2.

® Misabxbsymmetric matrix with a 4 x4 cyclic
block with the fifth row being (b, 5,0, b, 7).

11— ‘ ‘ f prosssseeeees 1

0.8 | 08 : 0.8
0.6
0.4
0.2
. . . . . . | 0 > |
1 2 3 4 0.5 1 1.5 2 002 004 006 008 01 012
D D D

Caption: Left: Case I: all identical. Middle: Case II: center defective. Right: Zoom for small D
with N = 0 (white), N = 2 (grey), N = 4 (blue), N = 6 (red), N = 8 (green), N = 10 (cyan).
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Ring + Center Pattern: A Triggering Center Cell

Consider m = 5 with a defective cell at the center of the disk that has a
different intracellular kinetic (Selkov) parameter closer to stability
threshold of an isolated cell than the four identical cells on the ring.

1 w w w w w 1

0.8 | 0.8 |

~ 0.6 | - 0.6 |

04 —79 = 0.25| 0.4

---rg = 0.75

0.2

0.2

o5 1 15 2 25 3
D

Caption: Lobes of instability for the synchronous mode ¢ = (1,1, 1, £): Left: all identical cells
d1 = 0.3, d2 = 0.2, = 0.9. Right: center-cell has o = 0.86.

®» Small change in intracellular kinetics can have large effect on region in
T versus D parameter space where oscillations occur.

® With more clustering (rg = 0.25), one can have a larger bulk diffusivity
D before autoinducer wanders too far from cells to trigger collective
behavior.
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The Well-Mixed Regime D > O(v~1): 1

Goal: Derive and analyze a reduced finite-dimensional dynamical system
characterizing the cell-bulk interations from PDE-ODE system for D — ~c.

An asymptotic analysis yields that in the bulk that u(z,t) ~ Uy(t), where

1 p [ 1 &
U,=—-Uy—~ | — U
0 Yo = m;[’ﬁy 0 — K245 | .
1 :
u;:Fj(uj)+;[/il,on—/ig,ju}]el, 7=1,....m,
where e; = (1,0,...,0)". Here p is the effective cell density and
m
p = ﬁ : K1, = 27Td1,j , R2 i = 27Td2,j .

Large system of ODEs with weak but global coupling when 0 < d;; <<'1
and 0 < dy; < 1, or when 7 > 1.

Identical Cells: Look for u; = u, Vj. We get

1 K 1
U) = - (14 Kk1p) Uy + p?zul : u' = F(u) + - (k1Up — kauql e .
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The Well-Mixed Regime D > O(v~1): II

Selkov with d; = 0.8, ds = 0.2 and |2| = 7. Global Bifurcation Study.

of Caption:  Global solution
' h branches wi. versus 7 for
m = 5 cells: Heavy (thin)
solid is stable (unstable)
steady-steady. Dots indi-

12¢ e a cate stable periodic solution
: R branch. HB points at 7 =
o . . . . . . . 0.2187 and 75+ = 0.6238.
0.2 0.4 0.6 0.8

T

Key: Stable synchronous oscillations occur in some 7 interval. Limiting
well-mixed ODE dynamics is independent of cell locations and D.

Quorum sensing (Qualitative): Collective behavior of “cells” in response to
changes in their population size. There is a threshold number m.. of cells
or a critical cell density p that is needed to initiate a collective behavior.

Quorum sensing (Math): For what range of m, do the well-mixed ODEs
have a stable periodic solution on 7y < 7 < 74 with HB points at 77747
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Quorum Sensing Behavior

What parameters control control QS behavior? We will study QS behavior
as the permeability d; is varied and d> = 0.2: Recall:

Op, U = d1U — dau; , on e, j=1,...,m.

Remark: Equivalent to finding the range of m for which the instability lobe
for the synchronous mode is unbounded in the 7 versus D plane.

Left: Quorum threshold m. vs. d; from ODEs. Right: 7 vs. D for d; = 0.3, ro = 0.5.

201 \ 1

0.8 |-
15
06}
l\
04 +

0.2

S~ | 0 : : : : x
% 05 ) 1 15 1 2 3 4 5 6
‘ D
Key: m. sensitive to small changes in d;
d120.8,mc:3; d120.3,m627; dle.Z,mC:12; d1:0.1,m6219.
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Large Cell Populations: Synchronization I
In the well-mixed limit D — oo, the PDE-ODE system reduces to

m
U(’) ——Uo — LZ /11,on — /432,3'“;} )
7=1
! __ 1 1 -
’Ll,j—Fj(’U,j)—I-;[lil’jU()—KJQ,j’UJj]el, ]—1,...,m,

where p = m/|Q)] is the “cell density” k1 ; = 2nd; ; and ko ; = 27ds ;.

Non-ldentical Cells: We take 7 = 0.5, and fix common permeability
parameters d; = 0.8 and dz; = 0.2 Vj. The intracellular kinetics F'; are
not identical. Selkov parameters ¢y = 0.15 and p = 2 are fixed for each
cell, but o can vary from cell to cell. Isolated cells are not oscillatory.

Kuramoto order parameter: (measures the degree of oscillator phase synchrony):

R =1 (Perfect phase synchrony); R =0 (No phase coherence);

R—< 1Zexp26’ < 1Zexp@0 >>, 0<R<I.
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Large Cell Populations: Synchronization 11
Computations of order parameter R with respect to p. lyaniwura (UBC)

1000 identical cells ] 600 identical, 400 defective 1 100 identical, 900 defective

0.8 ¢ 0.8 | 0.8 ¢
0.6 0.6 0.6 ¢
o o as
0.4 ¢ 04 0.4 r
0.2 |p, =0.75 pp =28 0.2 | p, =085 pp =24 0.2 —p1=1_1\ /;)21.80 1
0 \ ) ) / 0 \ ) ) / OOA.I—W
0 1 2 3 0 1 2 3
p p P
1000 identical cells ] 600 identical, 400 defective 1 100 identical, 900 defective
——Bulk amp. ——Bulk amp. ——Bulk amp.
08 & ——Cells ave. amp. || 08 ——Cells ave. amp. || 08 & ——Cells ave. amp. ||
A 0.6 A 06 f A 06
g g 3
<V0.4— <\E/0.4— <V0.4—
0.2 0.2 | [.\ 0.2
0 0 ‘ seessessesseas, : 0 &
3 4 1 2 3 4 1 2 3 4
P P P

® |dentical cells: a = 0.9. “Defective” cells: « is random in 0.921 < o < 0.952.
® Population density p plays a dual role of triggering and quenching oscillations

® Interval of p where synchrony occurs decreases as the number of defective
cells increases.
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°

Cell-Bulk Model: Further Directions

non- oscnlatlng cells? (i.e. “chimera’-type states.)

How do we solve the spectral problem in arbitrary domains? (fast
multipole methods for G and G )

Numerics for the GCEP for large numbers of cells.

What if the steady-state solution is not unique (hysteresis) or if
intracellular dynamics has a time-delay?

Intracellular dynamics to model a specific biological system (LuxIR
circuit in Vibrio fischeri).

Derive a RD system in the homogenized limit of m > 1 but me? < 1.
Two bulk-diffusing (autoinducer) species.

PDE-ODE Model in 3-D. (interactions are, in general, much weaker
owing to 1/r decay of Green’s function).
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PDE-ODE Cell-Bulk Model in 3-D

The dimensionless bulk concentration U(x, t) satisfies

%—(Z:DAU— U, x€eQ\ULQ); 0,U=0, x€0Q,

which is coupled to the dimensionless intracellular dynamics for the ;™ cell

du;

dl,j dZ,j 1 .
7 :F](u])—l—el/aQE(TU—s—Quj dS, ]:1,2,...,77’1/,

where u; = (u},...,u?)", e1 = (1,0,...,0)T, and dz ; = O(1).

Near Well-Mixed Limit: An interesting limit where there is O(1) interaction
between the cells is when

o D= (9(8_1), , dl,j — %, where CAZ/LJ' — O(l) .

® In this regime, Quorum and Diffusing sensing can be studied through a
common limiting system.
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ODE System in Near Well-Mixed Limit

In this limit, the PDE-ODE system reduces to

ik 1672
Ué_—/iUo+—Zp293—p1gUo 0] Zpl,] c)j+ ...,

2 4
dv; 1 2 :
E:Fj (’Uj)—l—47'('61(p1,jU0—pgjj?}j)—FlG&“ﬂ' elpljj( C)j—l—..., ]21,...,m,
where ¢ = (ci1,...,cm)?, G is Neumann Green’s matrix in 3-D and
. DO 6717]' o DO dz’j d23 j dl jUO .
P1,j = = , P2, = = Cj: y ]:1,...,777,.
dl,j + Dy dl 4 T DO Cll,j + Dy

® For Dy — 0,thenp; ; — 0and ps ; — 0 (no cell-cell communication).
For Dy — o0 (WeII—mixed), then P15 — Ji’j, P2, — dz,j, and Cj — 0
(maximal cell-cell communication, but cell configuration insignificant).

® For Dy = O(1) dependence on cell configuration and shape of
confining domain 2 is at O(¢) term through Neumann G-matrix

® ODE system: reveals both quorum sensing and diffusion sensing
behavior.

°
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