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Outline of the Lecture

Overview: Localized Particle-Like Spot Solutions to RD sys tems in 2-D

1. Brief History: Self-Replicating Spots (Lab and Numerical Evidence)

2. Phenomena and Terminology: Competition Instabilities, Oscillatory Profile
Instabilities, Spot Self-Replication Instabilities, Dynamically Triggered
Instabilities.

3. Theoretical Approaches in 1-D and 2-D.

A Specific RD System in 2-D (Detailed Case Study)

1. GS System: Self-Replication, Oscillatory, and Competition Instabilities,
of Spots in 2-D Planar Domains. Phase Diagrams for These
Instabilities for Simple Spot Patterns. Ph.D work of Wan Chen (UBC,
Postdoc Oxford).

2. Some Open Issues: A few interesting problems.
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Singularly Perturbed RD Models: Localization
Spatially localized solutions can occur for singularly perturbed RD models

vt = ε2△v + g(u, v) ; τut = D△u+ f(u, v) , ∂nu = ∂nv = 0 , x ∈ ∂Ω .

Since ε ≪ 1, v can be localized in space as a spot, i.e. concentration at a
discrete set of points in Ω ∈ R

2.

Semi-Strong Interaction Regime: D = O(1) so that u is global. We will focus
on the this regime.

Weak Interaction Regime: D = O(ε2) so that u is also localized. Pioneering
studies of Nishiura and Ueyama (1999,2001) are for this regime.

Some Simple Kinetics: (There is No Variational Structure)

GS Model: (Pearson, 1993; scaling of Muratov-Osipov)

g(u, v) = −v +Auv2 , f(u, v) = (1− u)− uv2 .

Schnakenburg Model: g(u, v) = −v + uv2 and f(u, v) = a− uv2.

GM Model: g(u, v) = −v + v2/u and f(u, v) = −u+ v2.
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Self-Replicating Spots: Overview I
Experimental evidence of spot-splitting

The Ferrocyanide-iodate-sulphite reaction. (Swinney et al., Nature, V.
369, (1994), pp. 215-218). The numerical simulations are for GS
model by Pearson (Science, 1993).

A planar gas discharge system. (Astrov & Purwins, Phys. Lett. A,
V. 283, (2001), pp. 349-354. Such systems often modeled by
3-component RD systems.
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Self-Replicating Spots: Overview II
Numerical evidence of spot-splitting

Pearson, Complex Patterns in a Simple System, Science, 216.

Nishiura & Ueyama, Spatial-Temporal Chaos in the Gray-Scott model,
Physica D, 150, (2001), p. 137; Skeleton Structure of Self-Replicating
Dynamics, Physica D, 130, (1999), p. 73.

Muratov & Osipov, Scenarios of Domain Pattern Formation in
Reaction-Diffusion Systems, Phys. Rev. E, 54, (1996), pp. 4860–4879.

Left: Pearson (1993).
Right: Muratov and Osipov (1996).

HK 3 – p.5



Self-Replicating Spots: Overview III
(More Recent) Numerical evidence of spot-splitting

Schnakenburg Model:

J. Zhu et al., Application of Discontinuous Galerkin Methods for RD
Systems in Developmental Biology, J. Sci. Comput., (2010)
A. Madvamuse, P. Maini, Velocity-Induced Numerical Solutions of
RD Systems on Continuously Growing Domains, JCP, 225, (2007),
p. 100.
Growing Domains: numerics showing spot-splitting for the
Schnakenburg model on a slowly growing planar domain
(Madvamuse, Maini, 2006)

Golovin, Matkowsky, Volpert, Turing Patterns for the Brusselator with
Superdiffusion, SIAP, 68, (2008), p. 251.

K. Glasner, Spatially Localized Structures in Diblock Copolymer
Mixtures, SIAP, (2010). (Self-replication of worm-like patterns in 2-D).
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Self-Replicating Spots: Overview IV
Spot patterns arise from generic initial conditions, or from the breakup of a
stripe to varicose instabilities: Spot-replication appears here as a
secondary instability.

2-D GS Model: Semi-Strong Regime.

vt = ε2△v − v +Auv2 , τut = D△u+ (1− u)− uv2 .

Parameters: A = 3.87, D = 1, ε = 0.04, τ = 1: (Movie)
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Ref: KWW, Zigzag and Breakup Instabilities of Stripes and Rings.... Stud.
Appl. Math., 116, (2006), pp. 35–95.
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Three Types of Instabilities
Dynamically triggered instability is an O(1) time-scale instability that is
triggered at some later time by the slow dynamics of a collection of spots
as they evolve towards their equilibrium locations. Bifurcations induced by
intrinsic motion, not by externally varying control parameter.

Competition Instability: An instability due to a positive real eigenvalue with
sign-fluctuating eigenfunction that triggers monotonic collapse of spots.
(Movie)

Oscillatory Instability: An instability due to a Hopf bifurcation with (in certain
cases) in-phase eigenfunction that triggers oscillatory collapse of spots
(subcritical?) (Movie)

Self-Replication Instability: An instability of the shape of the spot profile to
locally angular perturbations. This linear instability triggers a spot splitting
event. (Movie 1) (Movie 2) (Movie 3)

Questions: Classify instability types and determine instability thresholds in
a phase diagram in parameter space for certain equilibrium and
quasi-equilibrium spot patterns. Determine the slow dynamics of
quasi-equilibria before/after fast instabilities.
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Theoretical Approaches

1) Turing Stability Analysis: linearize RD around a spatially homogeneous
steady state. Look for diffusion-driven Turing instabilities.

2) Weakly Nonlinear Theory: capture nonlinear terms in multi-scale
perturbative way and derive normal form amplitude equations.

With regards to the intricate patterns computed by him for the GS
model (Science 1993), Pearson (Los Alamos) remarks: Most work
in this field has focused on pattern formation from a spatially uniform
state that is near the transition from linear stability to linear
instability. With this restriction, standard bifurcation-theoretic tools
such as amplitude equations have been used with considerable
success (ref: Cross and Hohenburg (Rev. Mod. Physics 1993)). It is
unclear whether the patterns presented here will yield to these
standard technologies.

3) Stability of Localized Pulse-Type Structures: Study the existence,
stability, and dynamics of localized spike (1-D) and spot patterns (2-D).

Different approaches in 1-D: geometric singular perturbation theory
Lyapunov-Schmidt, NLEP analysis, matched asymptotics,
renormalization group theory. What about 2-D?
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Theoretical Approaches: Brief History I

Brief History of 1-D Theory: Spike Solutions to RD System

Early formal 1-D studies of self-replication of spikes for GS; Petrov,
Scott, Schowalter (1994), Reynolds, Ponce-Dawson, et al. (1998).
Pulse-splitting “qualitative” mechanism for the GS model in the weak
interaction regime D = O(ε2) based on global bifurcation scenario
(Nishiura, Ei, Ueyama, (1999–)).
Dynamics and stability of exponentially weakly interacting pulses
(Ei, Nishiura, Sandstede...)
Stability and dynamics of pulses for the GM and GS models in the
semi-strong regime (Doelman, Gardner, Kaper, Promislow, Muratov,
Osipov, Iron, MJW, Kolokolnikov, Chen, Wei) dating from 1997–.
Notable here is the NLEP stability analysis of pulses, the SLEP
method for spikes, and the study of self-replication of pulses for GS
model in 1-D.
Rigorous framework in 1-D for 2-spike dynamics for GM model in
semi-strong regime based on renormalization group methods
(Doelman, Kaper, Promislow, 2007).
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Theoretical Approaches: Brief History II
Brief History of 2-D Theory: Spot Solutions to RD Systems

Pioneering work of Ni and Takagi for scalar elliptic steady-state
concentration problems (late 1980’s –)

Repulsive spot dynamics in weak interaction regime (Ei, Mimura, Ohta)

Scattors etc..; Strong Interactions; Nishiura, Teramoto, et al.

NLEP stability theory of equilibrium spot patterns for GM and GS in
semi-strong interaction regime (Wei-Winter, (2001–)). NLEP problems
arise from leading-order terms in infinite logarithmic expansion in ε.

One-Spot dynamics for GM (X. Chen, Kowalczyk, Kolokolnikov, MJW,
(2001–)).

Remarks:

For spot patterns in arbitrary 2-D domains, a PDE-based approach
based on the Green function is needed, as the ODE-based tools of
geometric singular perturbation theory for 1-D are of more limited use.

Largely Open: Give an analytical theory for self-replication of spots,
dynamics of spots, and other instabilities (oscillatory and competition)
in arbitrary 2-D planar domains. Focus on semi-strong regime.
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GS Model: Detailed Case Study
GS Model: in a 2-D domain Ω consider the GS model

vt = ε2∆v − v +Auv2 , ∂nv = 0 , x ∈ ∂Ω

τut = D∆u+ (1− u)− uv2 , ∂nu = 0 , x ∈ ∂Ω .

Consider semi-strong limit ε → 0 with D = O(1).

There are three key parameters D > 0, τ > 0, A > 0.

Three main instabilities: self-replication (large A), oscillatory instability
(large τ ), competition or overcrowding instability (large D).

Obtain a phase diagram classification for various “symmetric”
arrangements of spots. Determine parameter ranges for dynamically
triggered instabilities.

W. Chen, M. J. Ward, The Stability and Dynamics of Localized Spot
Patterns in the Two-Dimensional Gray-Scott Model, to appear, SIAM J.
Appl. Dyn. Sys. (2011), (71 pages).

T. Kolokolnikov, M.J. Ward, J. Wei, Spot Self-Replication and Dynamics
for the Schnakenburg Model... J. Nonl. Sci., 19, (2009), pp. 1–56.
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Our Theoretical Framework: 2-D Spot Patterns
Quasi-Equilibrium Pattern: Use singular perturbation methodology to
construct quasi-steady pattern consisting of localized spots in arbitrary
2-D planar domains. Key issue: derive a quasi-equilibrium pattern that
is accurate to all orders in −1/ log ε, i.e. “sum the log expansion”.

Dynamics: Derive dynamics of spots in terms of collective coordinates
characterizing the pattern. The dynamics is slow wrt ǫ.

Stability: For O(1) time-scale instabilities, derive and study singularly
perturbed eigenvalue problems in semi-strong interaction regime.
1. Self-replication instability is largely a local instability near a spot.
2. Competition and Oscillatory instabilities are studied through certain

globally coupled eigenvalue problems. To leading-order in −1/ log ε,
the global eigenvalue problem reduces to the scalar Nonlocal
Eigenvalue Problems (NLEP’s) of Wei-Winter (2001–).

Remarks: This approach is widely applicable and

Various Green functions play a central role.

“Similar” to studying vortex dynamics (GL model of superconductivity).

Difficulty: Need a more rigorous understanding.
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GS Model: Quasi-Equilibrium I
Key: Matched asymptotic expansion approach tailored to problems with
logarithmic gauge functions.

For spots located at xj for j = 1, ..,K, in the jth inner region we define y,
Uj , Vj , by

y = ε−1(x− xj) , ρ = |y| , u =
ε

A
√
D
Uj , v =

√
D

ǫ
Vj .

The spots are found to drift slowly with speed O(ε2), and so we “freeze”
their locations in the asymptotic construction of the quasi equilibrium.

To within O(ε) terms, Uj and Vj satisfy the radially symmetric core
problem on ρ ≥ 0:

Vjρρ +
1

ρ
Vjρ − Vj + UjV

2
j = 0 , Ujρρ +

1

ρ
Ujρ − UjV

2
j = 0 ,

Vj → 0 , Uj ∼ Sj log ρ+ χ(Sj) + o(1) , as ρ → ∞ .

Here Sj =
∫∞

0
ρUjV

2
j dρ > 0 is termed the “source strength” (to be found

by matching to an outer solution). Solutions to the core problem and the
nonlinear function χ(Sj) are obtained numerically.
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GS Model: Quasi-Equilibrium II
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Left: χ(Sj); Middle: Vj(0) vs. Sj ; Right: Vj(ρ) for a few Sj .

Numerically; there is a unique solution to core problem on 0 < Sj < 7.

Vj(ρ) has a volcano shape when Sj > Sv ≈ 4.78.

The function χ(Sj) is central to constructing quasi-equilibria.

Thus, the “ground-state problem” is a coupled set of BVP in contrast to
the scalar BVP wρρ + ρ−1wρ − w + w2 = 0 of NLEP theory.

For Sj ≪ 1, Vj is well-approximated by the scalar ground-state w.

Difficulty: No rigorous existence theory for solutions to the coupled core
problem.
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GS Model: Quasi-Equilibrium III

In the outer region v ≪ 1, each spot is a “source” for u in that

uv2 ∼ 2πǫ
√
D

A

K
∑

j=1

(∫ ∞

0

ρUjV
2
j dρ

)

δ(x−xj) ∼
2πǫ

√
D

A

K
∑

j=1

Sjδ(x−xj) .

The matching condition is that the local and global representations of u
must agree as x → xj and |y| → ∞.

In this way, the outer or global u satisfies

D∆u+ (1− u) =
2π

√
D ε

A

K
∑

j=1

Sj δ(x− xj) , in Ω ; ∂nu = 0 , on ∂Ω ,

u ∼ ε

A
√
D

(

Sj ln |x− xj | − Sj ln ε+ χ(Sj)
)

, as x → xj , j = 1, . . . ,K .

Matching has provided K singularity structures where the strength of each
singularity and the regular part of each singularity is prescribed.
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GS Model: Quasi-Equilibrium IV
This problem indicates that we should define ν and A by

ν = −1/ ln ε , A = νA
√
D/ε .

Then, the global u satisfies

∆u+
(1− u)

D
=

2πν

A

K
∑

j=1

Sj δ(x− xj) , in Ω ; ∂nu = 0 , on ∂Ω ,

u ∼ 1

A (Sjν ln |x− xj |+ Sj + νχ(Sj)) , as x → xj , j = 1, . . . ,K .

Key Point: A nonlinear algebraic system for Sj will be obtained since the
form of the regular (or non-singular) part as x → xj is pre-specified. More
specifically, in solving

∆u− u = 2π
k
∑

j=1

Ajδ(x− xj) in Ω ; ∂nu = 0 on ∂Ω ,

u ∼ Ai ln |x− xi|+Bi , as x → xi , i = 1, . . . ,K ,

there is a relationship between the Ai and Bi for a solution to exist.
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GS Model: Quasi-Equilibrium V
We represent u as

u = 1− 2πν

A

K
∑

j=1

SjG(x;xj) ,

where G(x;xj) is the reduced-wave G-function with regular part Rjj :

∆G− 1

D
G = −δ(x− xj) , in Ω ; ∂nG = 0 , x ∈ ∂Ω ,

G(x;xj) ∼ − 1

2π
log |x− xj |+Rjj + o(1) , as x → xj .

From the regular part of the singularity structures, we obtain that the Sj for
j = 1, . . . , k satisfy the nonlinear algebraic system:

A = Sj + 2πν






SjRj,j +

K
∑

i=1

i 6=j

SiGj,i






+ νχ(Sj) , j = 1, . . . ,K ,

ν = −1/ ln ε , A = νA
√
D/ε = A

√
D/ε(− ln ε) .

Upon determining the Sj , we know the core solution near each spot.
HK 3 – p.18



GS Model: Quasi-Equilibrium VI
For G and its regular part R, simple formulae for a disk and a rectangle
(Ewald summation needed). Fast-multipole methods can be used for
arbitrary Ω (Greengard et al.).

Construction yields a quasi-equilibrium solution for any “frozen”
configuration xj , j = 1, . . . ,K of spots. The error is smaller than any
power of ν = −1/ log ε; i.e. we have “summed” all logarithmic terms.

Related log expansion problems: eigenvalue of the Laplacian in a domain
with localized traps (Ozawa 1982–), Bratu’s equation with cooling rod,
etc.. The novelty here with the GS model is that the inner problem is
nonlinear. Typically, for Laplacian eigenvalue problems in a 2-D
domain with small hole Ωε, the inner core problem is

∆yU = 0 , y /∈ Ω1 = ε−1Ωε ; U = 0 , y ∈ ∂Ω1 ,

U ∼ log |y|− log d+ o(1) , |y| → ∞ ,

where d is the logarithmic capacitance. Our inner nonlinear core
problem for one spot yields U ∼ S log |y|+ χ(S) + o(1) as |y| → ∞.

Survey of strong localized perturbation theory: Online notes for Fourth
Winter School Applied Math (City U. Hong Kong, Dec. 2010).
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GS Model: Dynamics of Spots I
Key Point: The collective slow coordinates for the dynamics are Sj and xj ,
for j = 1, . . . k.

Principal Result: (DAE System) : Let A = εA/(ν
√
D) and ν = −1/ log ε.

Provided that there are no O(1) time-scale instabilities of the
quasi-equilibrium profile, the DAE system for the time evolution of the
source strengths Sj and spot locations xj is

A = Sj + 2πν






SjRj,j +

K
∑

i=1

i 6=j

SiGj,i






+ νχ(Sj) , j = 1, . . . ,K

x′
j ∼ −2πε2γ(Sj)






Sj∇R(xj ;xj) +

K
∑

i=1

i 6=j

Si∇G(xj ;xi)






, j = 1, . . . ,K .

Here Gj,i ≡ G(xj ;xi) and Rj,j ≡ R(xj ;xj), where G(x;xj) is the Reduced
Wave Green function with regular part R(xj ;xj), which depend on D.

Note: The speed of the spots is O(ε2).
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GS Model: Dynamics of Spots: II
The DAE system depends on two functions γ(Sj) and χ(Sj)
associated with the coupled core problem near each spot.
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The Green function terms Gij and Rjj , which mediate spot
interactions, depend on D and the shape of Ω.

Universality: Changing the nonlinearities, while maintaing that the
“outer” solution is D∆u− u =

∑

j βjδ(x− xj) will change only γ(Sj)

and χ(Sj).
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GS Model: Dynamics of Spots: III
Sketch of Derivation: In the inner region, we expand to higher order

u =
ε

A
√
D

(U0j(ρ) + εU1j(y) + . . .) , v =

√
D

ε
(V0j(ρ) + εV1j(y) + . . .) .

where y = ε−1(x− xj) with xj = xj(ε
2t).

Define wj ≡ (V1j , U1j)
T . The GS model yields

∆ywj +Mjwj = gj , y ∈ R
2 ,

where

Mj ≡
(

−1 + 2U0V0 V 2
0

−2U0V0 −V 2
0

)

, gj ≡
(

−V ′
0x

′
j · y/|y|
0

)

.

The matching condition for the algebraic in ε terms is:

wj →
(

0

−fj · y

)

as y → ∞ ; fj ≡ 2π



Sj∇R(xj ;xj) +

K
∑

i 6=j

Si∇G(xj ;xi)



 .
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GS Model: Dynamics of Spots: IV
Lemma : A necessary condition for the existence of a solution for wj is that

x′
j = γ(Sj)fj , γ ≡ γ(Sj) =

−2
∫∞

0
ρV

′

0 (ρ)Φ̂
∗(ρ) dρ

.

Here Φ̂∗(ρ) is the first component of the radially symmetric adjoint solution

P̂ ∗(ρ) ≡
(

Φ̂∗(ρ), Ψ̂∗(ρ)
)t

satisfying

∂ρρP̂
∗ + ρ−1∂ρP̂

∗ − ρ−2P̂ ∗ +Mt
0P̂

∗ = 0 , 0 < ρ < ∞ ,

subject to Φ̂∗ → 0 exponentially and Ψ̂∗ ∼ 1/ρ as ρ → ∞.

Derivation: standard solvability condition type argument.
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GS Model: The Stability of Quasi-Equilibria
We seek fast O(1) time-scale instabilities relative to slow dynamics of xj .

We assume τ ≪ O(ε−2). Let u = ue + eλtη and v = ve + eλtφ. In each
inner region we introduce the local angular mode m = 0, 2, 3, . . . by

η =
ε

A
√
D
eimθNj(ρ) , φ =

√
D

ε
eimθΦj(ρ) , ρ = |y| , y = ε−1(x− xj) .

Then, on 0 < ρ < ∞, we get the two-component eigenvalue problem

LmΦj − Φj + 2UjVjΦj + V 2
j Nj = λΦj , LmNj − 2UjVjΦj − V 2

j Nj = 0 ,

with operator Lm defined by

LmΦj ≡ ∂ρρΦj + ρ−1∂ρΦj −m2ρ−2Φj .

Uj and Vj are computed from the core problem and depend on Sj . The
Sj for j = 1, . . . ,K satisfy the nonlinear algebraic system involving G.

Key Point: This is a two-component eigenvalue problem, in contrast to
the scalar problem of NLEP theory. Hence, with no maximum principle
there is no ordering principle for eigenvalues wrt number of nodal lines
of eigenfunctions.
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GS Model: Self-Replication Instability I
Definition of Thresholds: Let λ0(Sj ,m) denote the eigenvalue with the
largest real part, with Σm denoting the Sj s.t. Reλ0(Σm,m) = 0.

The Modes m ≥ 2: We must impose Nj ∼ ρ−2 → 0 as ρ → ∞. Thus, the
local eigenvalue problems are uncoupled, except through the
determination of Sj . We compute

Σ2 = 4.303 , Σ3 = 5.439 , Σ4 = 6.143 .
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Key point: The peanut-splitting instability m = 2 is dominant.
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GS Model: Self-Replication Instability II
Principal Result: Consider the GS model with ε ≪ 1, τ ≪ O(ε−2),

A = εA/(ν
√
D) so that A = O(−ε ln ε). Then, if Sj < Σ2 ≈ 4.31, the jth

spot is linearly stable to a spot deformation instability for modes m ≥ 2.
Alternatively, for Sj > Σ2, it is linearly unstable to the peanut-splitting
mode m = 2.

Numerically: This instability triggers a nonlinear self-replication event for
the time-dependent elliptic-parabolic nonlinear core problem

Vt = ∆yV − V + UV 2 , ∆yU − UV 2 = 0 , y ∈ R
2 ,

V → 0 , U → S ln |y| , as |y| → ∞ .

2D  reduced Gray-Scott model
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Plots at t = 0, 100, 130, 140, 170 for disk of radius 30 when S = 4.5.
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GS Model: Self-Replication Instability III
For Sj ≈ Σ2, the linearization of the core problem has an approximate
four-dimensional null-space (two translation and splitting modes).

By a projection onto this four-dimensional nullspace (center
manifold-type reduction), it can be shown that splitting occurs in a
direction perpendicular to the motion when ε ≪ 1. Ref: Kolokolnikov,
MJW, Wei, J. Nonlin. Sci. (2009).

Spot-Splitting in the Unit Disk: x0(0) = (0.5, 0.0), ε = 0.03, Left: Trace of the
contour v = 0.5 from t = 15 to t = 175 with increments ∆t = 5. Right:
spatial profile of v at t = 105 during the splitting.
(Movie for unit square with S = 5.0 > Σ2)
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GS Model: Self-Replication Instability IV
Example: Fix A = 20, D = 1, ε = 0.02. Put K = 3 spots on a ring of radius
r = 0.3 centered at (0.4, 0.4) in the unit square at t = 0. We compute
S1 = 4.05, S2 = 2.37, S3 = 4.79. Predict: One spot splits beginning at t = 0
(Movie)

DAE Dynamics accurately tracks spots after splitting event
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Competition and Oscillatory Instabilities I
Key Point: These are instabilities associated with locally radially symmetric
perturbations near a spot, i.e. m = 0.

When m = 0, the local eigenvalue problem for Nj = Nj(ρ) and

Φj = Φj(ρ), with ρ = |y|, near the jth spot is

Φ′′
j +

1

ρ
Φ′

j − Φj + 2UjVjΦj + V 2
j Nj = λΦj , ρ ≥ 0 ; Φ′

j(0) = 0 ,

N ′′
j +

1

ρ
N ′

j − V 2
j Nj − 2UjVjΦj = 0 , ρ ≥ 0 ; N ′

j(0) = 0 ,

Φj(ρ) → 0 , Nj(ρ) → Cj ln ρ+ CjB̂j + o(1) , as ρ → ∞.

For ρ ≫ 1 the operator for Nj reduces to N ′′
j + ρ−1N ′

j ≈ 0 for ρ ≫ 1,
and so we cannot impose that Nj → 0 as ρ → ∞. Instead, we must
allow for logarithmic growth at infinity, which allows us to match to the
outer solution.

The constant B̂j is a function of λ and Sj .
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Competition and Oscillatory Instabilities II
In the outer region each spot is a “source” for the outer eigenfunction η.
Recall that η = ε/(A

√
D)Nj(ρ). Matching condition: LHS and RHS agree

as x → xj and ρ → ∞.

In this way, the outer eigenfunction with ∂nη = 0 on ∂Ω satisfies

∆η − (1 + τλ)

D
η =

2πε

A
√
D

k
∑

j=1

Cjδ(x− xj) , in x ∈ Ω

η ∼ ε

A
√
D

[

Cj ln |x− xj |+
Cj

ν
+ CjB̂j + o(1)

]

, as x → xj , j = 1, . . . ,K .

Key: We have K singularity structures where both the singular and regular
parts are specified. We write η as

η = − 2πε

A
√
D

K
∑

j=1

CjGλ(x;xj) ,

where the λ-dependent Green function satisfies
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Competition and Oscillatory Instabilities III

∆Gλ − (1 + τλ)

D
Gλ = −δ(x− xj) , x ∈ Ω ; ∂nGλ = 0 , x ∈ ∂Ω ,

Gλ(x;xj) ∼ − 1

2π
ln |x− xj |+Rλ j,j + o(1) as x → xj .

Note: Rλj,j depends on xj , D, and τλ. The regular parts of the singularity
structures yield a homogeneous linear system for Cj :

Cj (1 + 2πνRλ j,j) + νCjB̂j + 2πν

K
∑

i 6=j

CiGλ i,j = 0 , j = 1, . . . ,K .

By writing as a matrix problem Mc = 0, then det(M) = 0 determines λ.

Global Coupling is in Two Ways: Recall that Sj are also coupled globally
(and that B̂j = B̂j(Sj , λ)). Formulation is an extended-NLEP problem
accounting for all logarithmic correction terms ν.

Certainly similar to the asymptotic approach for determining the
eigenvalue of the Laplacian in 2-D in a domain with K small holes
(Keller, MJW, (1993)).
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Competition and Oscillatory Instabilities IV
In matrix form, the globally coupled extended-NLEP problem is

M c = 0 , M ≡ I + νB + 2πνGλ ,

where c ≡ (C1, . . . , Ck)
T , and the matrices Gλ and B are

Gλj,j = Rλjj , Gλi,j = Gλj,i = Gλ(xi;xj) , i 6= j ; B = Diag(B̂j)

Note: Gλ is symmetric matrix, but is not Hermitian when λ is complex.

Also, the nonlinear algebraic system for the Sj can be written as:

Ae = s+ 2πνG0s+ νX ,

where e = (1, . . . , 1)t, s = (S1, . . . , Sk)
T , and X = Diag(χ(Sj)).

Principal Result : For A = O(−ε ln ε), and τλ ≪ O(ε−2), the stability of a
K-spot pattern to locally radially symmetric perturbations near each spot
is determined by det(M) = 0. If the principal eigenvalue λ0 satisfies
Re(λ0) < 0, then the K−spot quasi-equilibrium solution is linearly stable
to such perturbations near each spot, otherwise it is linearly unstable.
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Competition and Oscillatory Instabilities V
Oscillatory: For k ≥ 1, as τ is increased a c.c eigenvalue pair can cross
into Re(λ0) > 0 (Hopf bifurcation). In certain cases, one can predict
c = (1, . . . , 1)T (i.e. a synchronous oscillatory instability). Numerically: it
initiates an oscillatory death in the amplitude of spots. Su bcritical?

Note: There is no such instability generated by the core problem
alone; i.e. imposing Nj bounded at infinity, then no Hopf bifurcation
occurs. Oscillation results from the global coupling.

Competition: For k ≥ 2, as D is increased, a real eigenvalue λ0 can
enter unstable right half-plane along the real axis Im(λ0) = 0. In
certain cases, one can predict c = (1,−1, 1,−1, ...)T (i.e. a sign
fluctuating instability). Numerically: it initiates a spot competition process
leading to annihilation of some spots.

Hybrid Asymptotic-Numerical Formulation: If Gλ is analytically available,
only simple numerics is needed: solving BVP’s, root-finders, etc.

Key Feature in 2-D: The three instabilities occur in the same parameter
regime A = O(1), D = O(1) when we do not make the leading-order
ν ≪ 1 approximation. Thus, compute phase diagrams for instabilities.
Not true for GS in 1-D.
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Competition and Oscillatory Instabilities VI
Phase Diagrams: for “Symmetric” spot configurations. Assume that
x1, . . . ,xk is such that Gλ is a circulant matrix.

This occurs for two-spots in R
2; for K spots equally spaced on a ring

concentric with unit disk; for two spots in a arbitrary Ω when Rλ1,1 = Rλ2,2

holds, etc...(“equivalent” to equally-spaced spike patterns in R
1).

Lemma: For the k × k symmetric and circulant Green matrix Gλ whose first
row vector is a = (a1, . . . , ak), the spectrum Gλv = ωλv is


























ωλ1 =
∑k

m=1 am, vT1 = (1, . . . , 1),

ωλj =
∑k−1

m=0 cos
(

2π(j−1)m
k

)

am+1, multiplicity 2,

vT
j =

(

1, cos
(

2π(j−1)
k

)

, . . . , cos
(

2π(j−1)(k−1)
k

))

,

vT
k+2−j =

(

0, sin
(

2π(j−1)
k

)

, . . . , sin
(

2π(j−1)(k−1)
k

))

, j = 2, . . . , ⌈k/2⌉+ 1 .

Note: ⌈m⌉ is smallest integer not less than m. Note: If k is even, then a
simple eigenvector is (1,−1, · · · , 1,−1)T .
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Competition and Oscillatory Instabilities VII
Simplifications Owing to Circulant Matrix Condition

(Quasi-Equilibria) There are solutions with a common source strength
Sc, where Sc satisfies

A = Sc + 2πνθSc + νχ(Sc) ,

where G0e = θe, e = (1, . . . , 1)T .

(Extended-NLEP Problem) The global eigenvalues are the roots of K
transcendental equations for λ:

fj ≡ 1 + νB̂c + 2πνωλj(τλ) = 0 ,

where ωλj(τλ) for j = 1, . . . ,K is any eigenvalue of Gλ, and cj = vj .
Note that B̂c = B̂c(S, λ) is independent of j (need one core problem)

(Threshold for λ = 0) obtained by solving the coupled problem

1 + νχ′(Sc) + 2πνω0j(0) = 0 , A = Sc + 2πνθSc + νχ(Sc) ,

where ω0j(0) is any of the eigenvalues of G0. Key: B̂c(0, Sc) = χ′(Sc).
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Two-Spot Pattern in R
2: I

Put two spots at x1 = (−α, 0) and x2 = (α, 0). Set D = 1 and ε = 0.02.

With S1 = S2 ≡ Sc, the common source strength Sc satisfies

A =
ε

ν
F(Sc) ; F(Sc) ≡ Sc [1 + ν(ln 2− γe) + νK0 (2α)] + ν χ(Sc) .

The existence and splitting thresholds are simply

Aexist =
ε

ν
min
Sc

(F(Sc)) ; Asplit =
ε

ν
F(Σ2) , Σ2 = 4.31 . . . .

(Repulsive) slow DAE dynamics for α: dα/dξ = −γ(Sc)ScK
′
0 (2α) > 0 and

A = εν−1F(Sc).

Extended-NLEP Problem: The eigenpair v±, ωλ j(τλ) of Gλ are

ωλ± =
1

2π

[

(ln 2− γe − log
√
1 + τλ)±K0(2α

√
1 + τλ)

]

, v± ≡ (1,±1)T .

With B̂c = B̂c(λ, Sc), we must determine the roots of

ν−1 + B̂c + 2πωλ±(τλ) = 0 .

HK 3 – p.36



Two-Spot Pattern in R
2: II

Competition Instability is set by v−. To compute threshold A = Acomp(α),

set λ = 0, B̂c(0, Sc) = χ′(Sc), and eliminate Sc between

χ′(Sc) + ln 2− γe −K0(2α) = −ν−1 , A =
ε

ν
F(Sc) .

Oscillatory Instability: We compute τ+(α) and τ−(α), and obtain τ+ < τ−
(synchronous oscillatory instability).
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Left: Phase Diagram Right: τ± vs. α for A = 0.18, 0.20, 0.22.

Key: A dynamically triggered spot self-replication instability is possible for
α large enough (i.e. under-crowding instability).
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K-Spot Patterns on a Ring in Unit Disk: I
Put spots at xj = r exp(2πij/K) for j = 1, . . . ,K, with 0 < r < 1 in the unit
disk. Fix ε = 0.02. Phase Diagrams of A vs. Ring Radius r
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(e) D = 5.0, K = 2

Note: Regime σ: no existence. β: unstable to competition. ζ: unstable to
an oscillation if τ > τH(r, A) (synchronous). θ: unstable to replication.

DAE Dynamics: Equally-spaced spots on a ring, remain on a ring of
slowly evolving radius, i.e. r = r(ε2t).

Equilibrium: Equilibrium ring radius coincides with minimum of Asplit(r)

(upper curve).

Dynamically Triggered spot self-replication and competition instabilities
are clearly possible. HK 3 – p.38



K-Spot Patterns on a Ring in Unit Disk: II
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Ex: K = 4, r(0) = 0.42, A = 0.7. Predict: dynam. triggered instability.
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K-Spot Patterns on a Ring in Unit Disk: III
Although the radial ODE for the ring radius has a stable equilibrium, the
full DAE system has a weak instability if too many spots are on one ring.

Experiment (Small Eigenvalue Instability): ε = 0.02, D = 0.2, K = 9, and
A = 0.75. Initially nine spots are on a slowly expanding ring. As the
equilibrium ring radius is approached, one spot is pushed off the ring. The
equilibrium pattern has eight spots on a ring with a center-spot.
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Conjecture that instability results from indefinite Hessian of the DAE
dynamics if K > Kc (similar to Eulerian point vortices on a ring or on
equator of a sphere (S. Boatto, Physica D, 2002)).
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Four Spots in the Unit Square: I
Let Ω = [0, 1]× [0, 1], D = 1, with ε = 0.02 fixed. Put four spots along
diagonals of the unit square at distance r from the center. For this pattern
the Green matrix is circulant symmetric, and in terms of the reduced-wave
G-function, the common source strength Sc satisfies

A =
ε

nu
√
D
F(Sc) , F(Sc) ≡ Sc+2πνθSc+νχ(Sc) , θ ≡ R1,1+

4
∑

j=2

G1,j .

The phase-diagram of A versus r showing four regions is:
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Four Spots in the Unit Square: II

Regime σ: the four-spot quasi-equilibrium solution does not exist.

Regime β: the quasi-equilibrium solution exists but is unstable to a
competition instability.

Regime ζ: the solution is unstable to an oscillatory profile instability
when τ > τH(A, r).

Regime θ: the quasi-equilibrium solution is unstable to spot
self-replication.

The existence and spot-replication thresholds are simply

Aexist =
ε

ν
√
D

min
Sc

(F(Sc)) ; Asplit =
ε

ν
√
D
F(Σ2) , Σ2 = 4.31 . . . .
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Four Spots in the Unit Square: III
The competition instability threshold of A versus r is obtained by
eliminating Sc between:

χ′(Sc) + 2π

4
∑

m=1

(−1)m−1am = −ν−1 ; a1 = R1,1 ; aj = G1,j , j = 2, 3, 4 ,

A =
ε

ν
√
D
F(Sc) ≡ Sc + 2πνθSc + νχ(Sc) , θ ≡ R1,1 +

4
∑

j=2

G1,j .

Example: ε = 0.02, D = 1, A = 0.6 and τ = 1.0. Initially we have
r = 1/2

√
2, so that we are in Regime β of phase diagram. The competition

instability is set by the sign-fluctuating eigenvector of the Green matrix.
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Four Spots in the Unit Square: IV
Example: Fix D = 1, ε = 0.02. Plot τH(r) for synchronous oscillation (heavy
solid) and alternating-phase (light curves) for A = 0.8, A = 0.9, A = 1.0.
Synchronous gives smallest τH . Note: Equilibrium at minimum value of
τH(r). Hence, dynamically triggered oscillations are possible.
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Open Issues and Further Directions: I
Rigor: clearly a need for it

Universality: Apply framework to (generic) RD systems to derive
general principles for dynamics, stability, replication. (W. Chen, MJW)

Growing Domains: Study delayed bifurcation effects and self-replication
of spots on growing planar domains and on surface of a sphere (Ph.D
thesis of Ignacio Rozada (UBC); ongoing).

Annihilation-Creation Attractor: construct a “chaotic” attractor or “loop” for
GS model composed of spot-replication events, leading to spot
creation, followed by an over-crowding instability (spot-annihilation).
(W. Chen, MJW).

Stability of Periodic Lattice Patterns in R
2 for GS: Need periodic G function

for stability (Bloch representation); continuous spectrum etc..(Iron,
Rumsey, MJW).

Cell Signalling: Can localized compartments with ODE kinetics that are
coupled together through a (slow) time-dependent (passive) diffusion
process, trigger temporal oscillations in the compartments when no
oscillations would otherwise be present? This is the mechanism of
spot oscillations for GS model. (D. Coombs and Y. Nec (UBC)).
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Open Issues and Further Directions: II
Patterns on Manifolds: Pattern formation on manifolds, where the geometry
of the manifold influences localization ; equilibrium stripes on geodesics?
dynamics of spots induced by Gaussian curvature? Spot replication on
slowly evolving manifolds etc..Require properties of Green functions
on manifolds. (Large D limit for a one-spot solution to a GM model
(Tse, Winter, Wei, (2010).))

Schnakenburg model on a Manifold: S. Ruuth (JCP, 2008)

Key: New PDE numerical approaches “Closest Point Algorithms to
Compute PDE’s on Surfaces”, by S. Ruuth (SFU) , C. McDonald
(Oxford), allow for “routine” full numerical simulations to test any
asymptotic theories.
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