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1 Introduction

The method of matched asymptotic expansions is a powerful systematic analytical method for asymptotically calcu-

lating solutions to singularly perturbed PDE problems. It has been successfully used in a wide variety of applications

(cf. [35], [42]).

In these workshop notes we consider various classes of perturbation problems with localized imperfections in

multi-dimensional domains. A perturbation of large magnitude but small extent will be called a strong localized

perturbation. It may be contrasted with a weak perturbation, which is of small magnitude but may have large

extent. We shall show how to calculate the effects of strong localized perturbations on the solutions of elliptic PDE

problems and reaction-diffusion systems.

The examples of strong localized perturbations that we will consider are the removal of a small subdomain from

the domain of a problem with the imposition of a boundary condition on the boundary of the resulting hole, a large

alteration of the boundary condition on a small region of the boundary of the domain, a large but localized change

in the coefficients of the differential operator, and nonlinear reaction diffusion problems where the nonlinearity is

effectively localized in the domain.

Strong localized perturbations are singular perturbations in the sense that they produce large changes in the

solutions of the problems in which they occur. However, these large changes are themselves localized. Consequently,

the perturbed solutions can be constructed by the method of matched asymptotic expansions. An inner expansion

can describe the large changes in the solution in a neighborhood of the strong perturbation. An outer expansion, valid

in the region away from the strong perturbation can account for the relatively small effects that the perturbation

produces there. These two expansions can be matched to determine the undetermined coefficients in both of them.

For strong localized perturbations in a 2-D domain, the asymptotic expansion of the solution often leads to infinite

logarithmic series in powers of ν = −1/ log ε, where ε is a small positive parameter, it is well-known that this method

may be of only limited practical use in approximating the exact solution accurately. This difficulty stems from the

fact that ν → 0 very slowly as ε decreases. Therefore, unless many coefficients in the infinite logarithmic series

can be obtained analytically, the resulting low order truncation of this series will typically not be very accurate

unless ε is very small. Singular perturbation problems involving infinite logarithmic expansions arise in many areas

of application in two-dimensional spatial domains, including; low Reynolds number fluid flow past cylindrical bodies,
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eigenvalue problems in perforated domains, the calculation of the mean first passage time for Brownian motion in a

domain with small traps, etc.

One primary goal of these notes is to highlight how a common analytical framework can be used to treat a wide

range of problems with strong localized perturbations arising from different areas of application. There are some

workshop problems that supplement the material presented, and which should be attempted by the reader. The

solutions to these problems are given in the Appendices.

2 Strong Localized Perturbations in 3-D

We first recall a few basic results from potential theory. Suppose that ∆u − k2u = δ(x − x0) with x ∈ Ω ∈ R
3 and

k ≥ 0 a constant. Then,

u ∼ 1

4π|x− x0|
as x→ x0 . (2.1)

To derive this simple result, we introduce a small sphere of radius δ about x0 so that Ωδ = {x| |x− x0| ≤ δ}. Then
we define r = |x− x0|, and we look for a local radially symmetric solution to

∆u− k2u = urr +
2

r
ur − k2u = 0 ,

that has a singularity at r = 0. We get u = Ar−1e−kr for some constant A. Upon applying the divergence theorem,
∫

Ωδ

∆u dx− k2
∫

Ωδ

u dx =

∫

Ωδ

δ(x− x0) dx = 1 ,

∫

∂Ωδ

∇u · ndS − k2
∫

Ωδ

u dx = 4π

(
r2
∂u

∂r

∣∣∣∣
r=δ

)
− k2

∫

Ωδ

u dx = 1 .

Then, by substituting u = Ar−1e−kr into the formula above, and taking the limit as δ → 0, we obtain A = −1/4π,

which yields (2.1).

Therefore, if we want to solve in R
3 the problem

∆u = 0 , x ∈ Ω\{x0} ,

u = 0 x ∈ ∂Ω ; u ∼ A

|x− x0|
x→ x0 ,

we use the formal correspondence − 1
4π|x−x0|

→ δ(x− x0) to get A
|x−x0|

→ −4πAδ(x− x0). Thus, the problem above

becomes

∆u = −4πAδ(x− x0) , x ∈ Ω ; u = 0 , x ∈ ∂Ω .

2.1 Eigenvalue Asymptotics in R
3

Let Ω be a 3-D bounded domain with a hole of “radius” O(ǫ), that is removed from Ω. We consider,




∆u+ λu = 0 for x ∈ Ω\Ωǫ

u = 0 for x ∈ ∂Ω

u = 0 for x ∈ ∂Ωǫ∫
Ω\Ωǫ

u2 dx = 1 .

(2.2)
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We assume that Ωǫ shrinks to a point x0 as ǫ → 0. For instance, Ωǫ could be the sphere |x − x0| ≤ ǫ, but more

generally we will allow for holes of arbitrary shape. Then the unperturbed problem is




∆φ+ µφ = 0 for x ∈ Ω

φ = 0 for x ∈ ∂Ω
∫
Ω
φ2 dx = 1 .

(2.3)

This problem has the eigenpairs φj(x), µj for j = 0, 1, ... with the orthogonality property
∫
Ω
φjφk dx = 0 for j 6= k,

and φ0(x) > 0 for x ∈ Ω.

We now look for an eigenpair of (2.2) near the principal eigenpair φ0(x), µ0. We proceed by the method of matched

asymptotic expansions. We first expand the eigenvalue for (2.2) as

λ ∼ µ0 + ν(ǫ)λ1 + · · · ,

where ν(ǫ) → 0 as ε→ 0 is some gauge function to be determined.

In the outer region away from the hole, we expand

u = φ0(x) + ν(ǫ)u1 + · · · .

Now since Ωǫ → {x0} as ǫ→ 0, then u1 satisfies





∆u1 + µ0u1 = −λ1φ0 for x ∈ Ω\{x0}
u1 = 0 for x ∈ ∂Ω
∫
Ω
u1φ0 dx = 0 .

(2.4)

Now we construct an inner expansion near the hole. We let y = ε−1(x − x0) and we define v(y; ǫ) = u(x0 + ǫy).

Then, v(y) satisfies
{
∆yv + λǫ2v = 0 for x 6∈ Ω0

v = 0 for x ∈ ∂Ω0 .
(2.5)

Here Ω0 = ε−1Ωǫ is the magnified hole. Then, we expand v = v0 + ν(ǫ)v1 + · · · , to obtain that v0 satisfies





∆yv0 = 0 for y 6∈ Ω

v0 = 0 for y ∈ ∂Ω

v0 → φ0(x0) as |y| → ∞ .

(2.6)

The matching condition between the outer and inner solutions is that as x → x0 the outer expansion must agree

with the far-field behavior as |y| → ∞ of the inner expansion. We write this formally as

φ0(x) + ν(ǫ)u1 + · · · ∼ v0 + ν(ǫ)v1 + · · · , as x→ x0 and |y| → ∞ . (2.7)

Now we write the solution to (2.6) as

v0 = φ0(x0) (1− vc(y)) , (2.8)
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Trap Shape Ω0 = ε−1Ωε Capacitance C

sphere of radius a C = a

hemisphere of radius a C = 2a
(

1− 1√
3

)

flat disk of radius a C = 2a
π

prolate spheroid with semi-major and minor axes a, b C =

√
a2−b2

cosh−1(a/b)

oblate spheroid with semi-major and minor axes a, b C =

√
a2−b2

cos−1(b/a)

ellipsoid with axes a, b, and c C = 2
(

∫∞
0

(a2 + η)−1/2(b2 + η)−1/2(c2 + η)−1/2 dη
)−1

Table 1. Capacitance C of some simple trap shapes, defined from the solution to (2.9).

where vc(y) satisfies




∆yvc = 0 for y 6∈ Ω0

vc = 1 for y ∈ ∂Ω0

vc → 0 as |y| → ∞ .

(2.9 a)

Except for a few simple shapes Ω0, the solution for vc cannot be found in closed form. However, it does have the

well-known far-field asymptotic behavior

vc ∼
C

|y| +O
(
|y|−2

)
+ · · · , as |y| → ∞ , (2.9 b)

where C > 0 is called the electrostatic capacitance of Ω0.

As a remark, for the special case of a spherical trap of radius ε, then Ωǫ = {x | |x− x0| ≤ ǫ} and Ω0 = {y | |y| ≤ 1}.
We let r = |y| so that in R

3, vc = vc(r) satisfies

{
v′′c + 2

rv
′
c = 0 for r ≥ 1

vc = 1 for r = 1.

Then, vc =
1
r for r ≥ 1, so that C = 1.

The capacitance C, defined in (2.9), has two key properties. Firstly, it is invariant under rotations of the trap

shape. Secondly, with respect to all trap shapes Ωε in of the same volume, C is minimized for a spherical-shaped

trap (cf. [72]). Although C must in general be calculated numerically from (2.9) when Ωε has an arbitrary shape, it

is known analytically for some simple shapes, as summarized in Table 1. The capacitance C is also known in a few

other situations. For instance, for the case of two overlapping identical spheres of radius εa that intersect at exterior

angle ψ, with 0 < ψ < π, then C is given by (cf. [25])

C = 2 a sin

(
ψ

2

)∫ ∞

0

[
1− tanh(πτ) tanh

(
ψτ

2

)]
dτ . (2.10)

For ψ → 0, (2.10) reduces to the well-known result C = 2a log 2 for the capacitance of two touching spheres.

Now we return to v0 and write its far-field behavior as

v0 ∼ φ(x0)

(
1− C

|y| + · · ·
)
, as |y| → ∞ .
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We let y = ε−1(x− x0) and use the matching condition of (2.7) to obtain

φ0(x0) + ν(ǫ)u1 ∼ φ0(x0)− φ0(x0)
ǫC

|x− x0|
+ · · · , as x→ x0 .

This determines both the gauge function ν(ε) and the singularity behavior of u1 as x→ x0 as

ν(ǫ) = ǫ , u1 → −φ0(x0)
C

|x− x0|
, as x→ x0 .

We then return to (2.4) and write this problem as




∆u1 + µ0u1 = −λ1φ0 for x ∈ Ω\{x0}
u1 = 0 for x ∈ ∂Ω

u1 → −φ0(x0) C
|x−x0|

as x→ x0∫
Ω
u1φ0 dx = 0 .

Since −1
4π|x−x0|

→ δ(x− x0), this problem is equivalent to

{
Lu := ∆u1 + µ0u1 = −λ1φ0 + 4πCφ0(x0)δ(x− x0) in Ω

u1 = 0 on ∂Ω .

We integrate Lu over Ω and use the Green’s second identity to get
∫

Ω

(φ0Lu1 − u1Lφ0) dx =

∫

∂Ω

(φ0∂nu1 − u1∂nφ0) dS .

Since φ0 = u1 = 0 on ∂Ω, and Lφ0 = 0, we obtain

0 =

∫

Ω

φ0Lu1 dx =

∫

Ω

φ0(−λ1φ0 + 4πCφ0(x0)δ(x− x0)) dx ,

which determines λ1 as λ1 = 4πC[φ0(x0)]
2

∫
Ω
φ2

0
dx

.

In summary with ν(ǫ) = ǫ, we obtain the following two-term result for the expansion of the principal eigenvalue:

λ ∼ µ0 + ǫλ1 + · · · , λ1 =
4πC[φ0(x0)]

2

∫
Ω
φ20 dx

. (2.11)

Remarks:

(1) If there are N small holes then we obtain

λ ∼ µ0 + 4πǫ

N∑

j=1

Cj
[φ0(xj)]

2

∫
Ω
φ20 dx

+ · · · ,

where Cj is the capacitance of the jth hole.

(2) Let us assume that u = 0 on ∂Ω is replaced by the no-flux condition ∂nu = 0 on ∂Ω. Then,




∆φ+ µφ = 0 for x ∈ Ω

∂nφ = 0 for x ∈ ∂Ω
∫
Ω
φ2 dx = 1 ,

has the principal eigenpair µ0 = 0 and φ0 = 1
|Ω|1/2

, where |Ω| is the volume of Ω. In this case, we can

readily calculate that λ ∼ 4πǫC
|Ω| , so that this leading-order term is independent of the location of the hole.

We elaborate more on this case below in §2.3, as it is directly relevant to calculating the mean first passage
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time for diffusion inside a 3-D domain with absorbing traps inside the domain. A key issue below in §2.3 is to

calculate higher-order terms in this expansion that reflect the location of the traps inside the domain.

Consider the special case of two concentric spheres with an inner sphere of small radius. The radially symmetric

eigenfunctions, under Dirichlet conditions, satisfy
{
urr +

2
rur + λu = 0 for ǫ < r < 1 ,

u(1) = 0 , u(ǫ) = 0 .

The exact eigenfunction is u = r−1 sin
(√

λ(r − ǫ)
)
. By satisfying u(1) = 0, we get

√
λ(1 − ǫ) = π, which yields

λ = π2

(1−ǫ)2 ∼ π2(1 + 2ǫ+ · · · ). Hence, λ ∼ π2 + 2ǫπ2 + · · · .
Now use the asymptotic formula given in (2.11). In (2.11), we set µ0 = π2, φ0 = r−1 sin(πr), so that φ0(0) =

limr→0
sin(πr)

r = π. In addition,
∫
Ω
φ20 dx = 4π

∫ 1

0

(
r−2 sin2(πr)

)
r2 dr = 2π. Then (2.11) with C = 1 yields λ ∼

π2 + 2ǫπ2 + · · · , in agreement with the expansion of the exact eigenvalue relation as shown above.

2.2 Narrow Capture Problem

Our next class of model problems to exhibit the asymptotic technique of treating localized traps is to construct an

asymptotic solution in R3 to the following problem:




∆u =M(x) for x ∈ Ω\ ∪N
j=1 Ωǫj

u = αj for x ∈ ∂Ωǫj , j = 1, . . . , N

u = 0 for x ∈ ∂Ω .

Here Ωǫj is a hole of “radius” ǫ with Ωǫj → {xj} as ǫ → 0 for j = 1, . . . , N . We assume that xj ∈ Ω, so that for

ε→ 0 each hole is contained inside the domain.

In the outer region we expand

u = u0 + ǫu1 + · · · ,

where u0 is the unperturbed solution in the absence of any holes, and satisfies
{
∆u0 =M(x) for x ∈ Ω

u0 = 0 for x ∈ ∂Ω .

In addition, u1 satisfies 



∆u1 = 0 for x ∈ Ω\{x1, . . . , xN}
u1 = 0 for x ∈ ∂Ω

u1 singular as x→ xj , j = 1, . . . , N .

Now in the inner region near x = xj we write y = ǫ−1(x − xj) and v(y; ǫ) = u(xj + ǫy, ǫ) = v0(y) + · · · . The
matching condition yields that v0 → u0(xj) as |y| → ∞ so that





∆yv0 = 0 for y 6∈ Ωj = ε−1Ωǫj

v0 = αj for x ∈ ∂Ωj

v0 → u0(xj) as |y| → ∞ .
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The solution is decomposed as

v0 = u0(xj) + (αj − u0(xj)) vc(y) ,

where vc(y) satisfies 



∆yvc = 0 for y 6∈ Ωj

vc = 1 for y ∈ Ωj

vc ∼ Cj

|y| as |y| → ∞ .

Here Cj is the capacitance of the jth hole. This yields the far-field behavior

v0 ∼ u0(xj) + (αj − u0(xj))
Cj

|y| , as |y| → ∞ .

Now the matching condition is simply

u0(xj) + ε(x− xj) · ∇xu0(xj) + ǫu1︸ ︷︷ ︸
x→xj

+ · · · ∼ u0(xj) + (αj − u0(xj))
ǫCj

|x− xj |
+ εv1 + · · · . (2.12)

This yields that

u1 ∼ (αj − u0(xj))
Cj

|x− xj |
as x→ xj .

We remark that the gradient term on the left-hand side of (2.12) gives the far-field behavior of the v1 term, and this

would be the starting point to obtain a higher-order approximation.

Therefore, the problem for u1 is simply
{
∆u1 = −4π

∑N
j=1 (αj − u0(xj)) Cjδ(x− xj) , for x ∈ Ω

u1 = 0 for x ∈ ∂Ω .

The solution is given by

u1 = −4π

N∑

j=1

(αj − u0(xj)) Cj G(x;xj) ,

where G(x;xj) is the Dirichlet Green’s function satisfying
{
∆G = δ(x− xj) for x ∈ Ω

G = 0 for x ∈ ∂Ω .

Now consider the corresponding Neumann problem in Ω ∈ R3 given by




∆u =M(x) for x ∈ Ω\ ∪N
j=1 Ωǫj

∂nu = 0 for x ∈ ∂Ω

u = αj for x ∈ ∂Ωǫj , j = 1, . . . , N .

(2.13)

We assume for simplicity below that Ωǫj = {x| |x− xj | = ǫrj} so that we have N -small spheres of radius ǫrj . This

simplification will allow us to readily calculate a two-term expansion for the solution.

Remarks:

(1) We cannot expand u = u0 + ǫu1 + · · · since
{
∆u0 =M(x) for x ∈ Ω

∂nu0 = 0 for x ∈ ∂Ω ,
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has no solution in general unless
∫
Ω
M(x) dx = 0.

(2) To identify the difficulty with this naive expansion, we recall that the underlying spectral problem given by




∆φ+ λφ = 0 for x ∈ Ω\ ∪N
j=1 Ωǫj

∂nφ = 0 for x ∈ ∂Ω

φ = 0 for x ∈ ∂Ωǫj , j = 1, . . . , N ,

has a principal eigenvalue (see the earlier example) with estimate

λ ∼ 4πǫ

|Ω|

N∑

j=1

Cj = O(ε) .

Thus, the Neumann BVP is “almost” not solvable. The principal eigenvalue estimate λ = O(ǫ) suggests that

the expansion for u should be u = ε−1u0 + u1 + ǫu2 + · · · .

Notice that in the jth inner region, the leading-order inner solution satisfies

{
∆yvc = 0 |y| ≥ rj

vc = 1 |y| = rj ,

with vc ∼ Cj/|y| as |y| → ∞. The exact solution is vc = rj/|y|, so that Cj = rj .

(3) Consider the special case of this problem posed in a concentric annulus formulated as




∆u =M for ǫ < r < 1

ur = 0 for r = 1

u = 1 for r = ǫ ,

where M is assumed to be a constant, independent of x. The exact solution is readily found to be

u =
M

6
(r2 − ǫ2) +

M

3
(
1

r
− 1

ǫ
) + 1 .

Notice that in the outer region, the exact solution gives

u =
u0
ǫ

+ u1 + · · · ,

while in the inner region with r = O(ε), we have

v =
v0
ǫ

+ v1 + · · · .

We then return to (2.13). In the outer region, we expand

u =
u0
ǫ

+ u1 + ǫu2 + · · · .

We obtain that ∆u0 = 0 with ∂nu0 = 0 on ∂Ω, and so u0 = µ where µ is a constant. The problem for u1 is




∆u1 =M(x) for x ∈ Ω\{x1, . . . , xN}
∂nu1 = 0 for x ∈ ∂Ω

u1 singular as x→ xj , j = 1, . . . , N ,
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while u2 satisfies 



∆u2 = 0 for x ∈ Ω\{x1, . . . , xN}
∂nu2 = 0 for x ∈ ∂Ω

u2 singular as x→ xj , j = 1, . . . , N .

Now in the inner region we let y = ǫ−1(x− xj), and we expand the inner solution as

v =
v0
ǫ

+ v1 + ǫv2 + · · · .

We obtain, upon using the matching condition v0 → u0 as |y| → ∞ that




∆yv0 = 0 for |y| ≥ rj

v0 = 0 for |y| = rj

v0 → µ as |y| → ∞ .

The solution is written as v0 = µ(1 − vc), where vc = Cj/|y| and Cj = rj . The matching condition for x → xj

becomes

µ

ǫ
+ u1 + ǫu2 + · · ·

︸ ︷︷ ︸
x→xj

∼ v0
ǫ

+ v1 + · · ·
︸ ︷︷ ︸

y→∞

=
µ

ǫ

(
1− Cj

|x− xj |
ǫ

)
+ v1 + · · · .

Therefore, we obtain

u1 → − µCj

|x− xj |
, as x→ xj .

The problem for u1 is simply 



∆u1 =M(x) for x ∈ Ω\{x1, . . . , xN}
∂nu1 = 0 for x ∈ ∂Ω

u1 ∼ − µCj

|x−xj |
as x→ xj , j = 1, . . . , N ,

which is equivalent to
{
∆u1 =M(x) + 4πµ

∑N
j=1 Cjδ(x− xj) for x ∈ Ω

∂nu1 = 0 for x ∈ ∂Ω .

Upon using the divergence theorem, we obtain that

∫

Ω

M(x) dx+ 4πµ

N∑

j=1

Cj = 0 .

This yields the leading-order outer solution as

u ∼ µ

ǫ
, where µ = − 1

4π

∫
Ω
M(x) dx
∑N

j=1 Cj

.

Now we proceed to one higher order in the asymptotic construction. To do so, we must solve for u1 explicitly. This

is done by introducing the Neumann Green’s function G(x;xj) defined uniquely by the solution to

∆G =
1

|Ω| − δ(x− xj) , x ∈ Ω , (2.14 a)

∂nG = 0 , x ∈ ∂Ω , (2.14 b)
∫

Ω

Gdx = 0 . (2.14 c)
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We notice that G(x;xj) exists since
∫
Ω

(
1
|Ω| − δ(x− xj)

)
dx = 0, and the condition

∫
Ω
Gdx = 0 specifies G uniquely.

In addition, we can decompose G(x;xj) as

G(x;xj) =
1

4π|x− xj |
+R(x;xj) , (2.14 d)

where R(x;xj) is the regular (smooth) part of the Neumann Green’s function. Therefore, as x→ xj we obtain

G(x;xj) ∼
1

4π|x− xj |
+Rj + o(1) , as x→ xj ; Rj ≡ R(xj ;xj) .

Now we write the problem for u1 as



∆u1 =

(
M(x)− 1

|Ω|

∫
Ω
M dx

)
+

(
1
|Ω|

∫
Ω
M(x) dx+ 4πµ

∑N
j=1 Cjδ(x− xj)

)
for x ∈ Ω

∂nu1 = 0 for x ∈ ∂Ω .

We decompose the solution to this problem in the form

u1 = u1p − 4πµ
N∑

j=1

CjG(x;xi) + ū1 . (2.15)

Here ū1 is a constant, while u1p is the unique solution to




∆u1p =M(x)− 1
|Ω|

∫
M dx for x ∈ Ω

∂nu1p = 0 for x ∈ ∂Ω
∫
Ω
u1p dx = 0 .

A simple calculation shows that

∆[−4πµ
N∑

i=1

CiG] = −4πµ
N∑

i=1

Ci

(
1

|Ω| − δ(x− xi)

)
= 4πµ

N∑

i=1

Ciδ(x− xi) +
1

|Ω|

∫

Ω

M(x) dx .

Notice that u1p is uniquely determined. In addition, since
∫
Ω
u1p dx = 0 and

∫
Ω
G(x;xj) dx = 0, it follows that

∫
Ω
u1 dx = ū1|Ω|. Therefore, ū1 in (2.15) has the interpretation that it is the spatial average of u1, i.e. ū1 =

1
|Ω|

∫
Ω
u1 dx.

Now we expand the solution in (2.15) as x→ xj for each j = 1, . . . , N to obtain

u1 ∼ u1p(xj)− 4πµ

( N∑

i6=j

CiG(xj ;xi) + Cj

(
1

4π|x− xj |
+Rj

))
+ ū1 .

We write this expression as

u1 ∼ Bj + ū1 −
µCj

|x− xj |
, as x→ xj ,

where Bj is defined by

Bj = u1p(xj)− 4πµ

(
CjRj +

N∑

i6=j

CiG(xj ;xi)

)
.

Then, the matching condition is

µ

ǫ
+ u1 + ǫu2 + · · · ∼ v0

ǫ
+ v1 + · · · .

Writing this condition out in detail we have

µ

ǫ
+ ū1 +Bj −

µCj

|x− xj |
+ ǫu2 ∼ µ

ǫ

(
1− Cjǫ

|x− xj |

)
+ v1 .
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This implies that for each j = 1, . . . , N , v1 must satisfy




∆yv1 = 0 for |y| ≥ rj

v1 = αj for |y| = rj

v1 ∼ ū1 +Bj as |y| → ∞ .

The solution is given explicitly by

v1 = (ū1 +Bj)− [(ū1 +Bj)− αj ]vc , vc = Cj/|y| , Cj = rj .

Therefore, v1 ∼ (ū1 +Bj)− [(ū1 +Bj)− αj ]
Cj

|y| as |y| → ∞. This implies from the matching condition that u2 must

satisfy




∆u2 = 0 for x ∈ Ω\{x1, . . . , xN}
∂nu2 = 0 for x ∈ ∂Ω

u2 ∼ [αj − (ū1 +Bj)]
Cj

|x−xj |
as x→ xj j = 1, . . . , N .

Therefore, we can write the problem for u2 as

∆u2 = −4π

N∑

j=1

[αj − (ū1 +Bj)]Cjδ(x− xj) x ∈ Ω ; ∂nu2 = 0 , on ∂Ω .

Finally, we determine ū1 by the divergence theorem. We calculate

N∑

j=1

[αj − (ū1 +Bj)]Cj = 0 ,

so that

ū1 =

∑N
j=1(αj −Bj)Cj
∑N

j=1 Cj

. (2.16 a)

where

Bj = u1p(xj)− 4πµ

(
CjRj +

N∑

i6=j

CiG(xj ;xi)

)
. (2.16 b)

In summary, a two-term outer expansion for (2.13) is given by

u ∼ µ

ǫ
+ u1 + · · · , with µ = − 1

4π

∫
Ω
M(x) dx
∑N

j=1 Cj

,

where u1 is given by u1 = u1p(x) + ū1 − 4πµ
∑N

i=1 CiG(x;xi). Finally, the constant term ū1 is given in (2.16).

We now show that our result agrees with the exact solution to the concentric annulus problem with M constant,

formulated as 



∆u =M for ǫ < r < 1

ur = 0 for r = 1

u = 1 for r = ǫ

We recall that the exact solution is u = M
6 (r2 − ǫ2) + M

3 ( 1r − 1
ǫ ) + 1.

To recover this result, we use in our asymptotic result that j = 1, x1 = 0, C1 = 1, α1 = 1 and u1p = 0 since M
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constant. In addition, the Neumann Green’s function for the unit sphere with a source point at the origin satisfies




∆G = 1
|Ω| for x ∈ Ω\{0}

Gr = 0 on r = 1

G ∼ 1
4πr +R1 as r → 0

∫
G dx = 0 .

A simple calculation gives

G = − 9

20π
+

1

4πr
+
r2

8π
.

Now as r → 0, then G ∼ 1
4πr +R1, where we identify R1 = − 9

20π .

In our asymptotic result we must calculate µ, B1, and ū1. We obtain

µ = − 1

4πC1

∫

Ω

M dx = − M

4π(1)

(
4π

3

)
= −M

3
, B1 = −4πµC1R1 = −4π(

M

3
)(− 9

20π
) = −3M

5π
.

This yields that

ū1 = (α1 −B1)
C1

C1
= (1 +

3M

5
) .

Then u1 is given explicitly by
{
u1 = u1p + ū1 − 4πµC1G = 1 + 3M

5 − 4π(−M
3 )[− 9

20π + 1
4πr + r2

8π ]

u1 = 1 + 4π
3 M( 1

4πr + r2

8π ) = 1 + M
3r + Mr2

6 .

Therefore to to second-order our asymptotic result is u ∼ µ
ǫ + u1 + · · · , which yields u ∼ 1 + M

3 ( 1r − 1
ǫ ) +

Mr2

6 . This

agrees with the exact solution up to the terms of O(ǫ2).

2.3 An Eigenvalue Optimization Problem and the Mean First Passage Time

We now apply the asymptotic methodology to the problem of determining the mean first passage time (MFPT) for

Brownian motion inside a three-dimensional domain with N localized traps. This section is motivated by the recent

paper [16]. For a fixed trap volume fraction, which spatial arrangement of traps will minimize the average MFPT.

Is the effect of fragmentation of the trap set significant? In other words, is there much difference in the MFPT when

we replace N small traps by one larger “effective” trap that maintains the volume of the trap set? Such questions

are relevant in biological cell signalling when one considers how to model the highly spatially heterogeneous cell

cytoplasm.

The mathematical problem is formulated as follows: We consider an optimization problem for the principal eigen-

value of the Laplacian in a bounded three-dimensional domain with a reflecting boundary that is perturbed by the

presence of N small traps in the interior of the domain. The perturbed eigenvalue problem is formulated as

∆u+ λu = 0 , x ∈ Ω\Ωa ;

∫

Ω\Ωa

u2 dx = 1 , (2.17 a)

∂nu = 0 , x ∈ ∂Ω , (2.17 b)

u = 0 , x ∈ ∂Ωa ≡ ∪N
j=1∂Ωεj . (2.17 c)

Here Ω is the unperturbed domain, Ωa ≡ ∪N
j=1Ωεj is a collection of N small interior traps Ωεj , for j = 1, . . . , N , each
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of ‘radius’ O(ε) ≪ 1, and ∂nu is the outward normal derivative of u on ∂Ω. We assume that Ωεj → xj uniformly as

ε → 0, for j = 1, . . . , N , and that the traps are well-separated in the sense that dist(xi, xj) = O(1) for i 6= j and

dist(xj , ∂Ω) = O(1) for j = 1, . . . , N .

The primary motivation for considering (2.17) is its relationship to determining the mean first passage time

(MFPT) for a Brownian particle wandering inside a three-dimensional domain that contains N localized absorbing

traps. Denoting the trajectory of the Brownian particle by X(t), the MFPT v(x) is defined as the expectation

value of the time τ taken for the Brownian particle to become absorbed somewhere in ∂Ωa starting initially from

X(0) = x ∈ Ω, so that v(x) = E[τ |X(0) = x]. The calculation of v(x) becomes a narrow capture problem in the

limit when the volume of the absorbing set |∂Ωa| = O(ε3) is asymptotically small, where 0 < ε ≪ 1 measures

the dimensionless trap radius. Since the MFPT diverges as ε → 0, the calculation of the MFPT v(x) constitutes a

singular perturbation problem. It is well-known (cf. [29], [58]) that the MFPT v(x) satisfies a Poisson equation with

mixed Dirichlet-Neumann boundary conditions, formulated as

∆v = − 1

D
, x ∈ Ω\Ωa , , (2.18 a)

∂nv = 0 , x ∈ ∂Ω ; v = 0 , x ∈ ∂Ωa = ∪N
j=1∂Ωεj , (2.18 b)

where D is the diffusivity of the underlying Brownian motion. With respect to a uniform distribution of initial points

x ∈ Ω for the Brownian walk, the average MFPT, denoted by v̄, is defined by

v̄ = χ ≡ 1

|Ω\Ωa|

∫

Ω\Ωa

v(x) dx , (2.19)

where |Ω\Ωa| is the volume of the trap-free domain.

The mean first passage time v is readily calculated by using the matched asymptotic approach of §2.1. Alternatively,
v can be calculated by representing it as an eigenfunction expansion in terms of the normalized eigenfunctions φk

and eigenvalues λk for k ≥ 1 of (2.17). In the trap-free domain Ωp = Ω\Ωa, we readily derive that

v =
1

D

[
φ1
λ1

(∫

Ωp

φ1 dx

)
+

∞∑

k=2

φk
λk

(∫

Ωp

φk dx

)]
. (2.20)

For ε→ 0, the principal eigenpair λ1, φ1, are given in (2.22 a) and (2.22 c), respectively. They satisfy φ1
∫
Ωp
φ1 dx =

1+O(ε2) and λ1 = O(ε). Next, we give a rough estimate of the asymptotic order of the infinite sum in (2.20). This

infinite sum does converge for each fixed ε, since λk = O(k2) as k → ∞. However, for each fixed k with k > 2, we

have that λk = λk0 + O(ε) as ε → 0, where λk0 > 0 for k ≥ 2 are the eigenvalues of the Laplacian in the trap-free

unit sphere with homogeneous Neumann boundary condition. In addition, for each fixed k with k ≥ 2, we have that
∫
Ωp
φk dx = O(ε), due to the near orthogonality of φk and 1 as ε→ 0 when k ≥ 2. In this way, for ε→ 0, the infinite

sum in (2.20) contributes at most an O(ε) term, and consequently it can be neglected in comparison with the leading

term in (2.20). In particular, one can readily show that the average MFPT v̄ is given asymptotically for ε → 0 in

terms of the principal eigenvalue λ1 by

v̄ = χ ∼ 1

Dλ1
+O(ε) . (2.21)

This narrow capture problem has wide applications in cellular signal transduction. In particular, in many cases



14 M. J. Ward

a diffusing molecule must arrive at a localized signaling region within a cell before a signaling cascade can be

initiated. Of primary importance then is to determine how quickly such a diffusing molecule can arrive at any one

of these localized regions. Our narrow capture problem is closely related to the so-called narrow escape problem,

related to the expected time required for a Brownian particle to escape from a confining bounded domain that has

N localized windows on an otherwise reflecting boundary. The narrow escape problem has many applications in

biophysical modeling (see [4], [29], [62], and the references therein). The narrow escape problem in both two- and

three-dimensional confining domains has been studied with a variety of analytical methods in [29], [66], [65], [30],

[53], and [15].

We let λ(ε) denote the first eigenvalue of (2.17), with corresponding eigenfunction u(x, ε). Clearly, λ(ε) → 0 as

ε → 0. For ε → 0, a simple calculation shows that λ(ε) is related to the average MFPT χ by λ(ε) ∼ 1/(Dχ). One

of the main objectives is to derive a two-term asymptotic expansion for λ(ε) as ε → 0. Such a two-term expansion

not only provides a more accurate determination, when ε is not too small, of the principal eigenvalue and the

corresponding average MFPT, it also provides an explicit formula showing how the locations of the traps within the

domain influence these quantities. As explained in §2.1, we emphasize that the leading-order term in the expansion

of λ(ε) as ε→ 0 is independent of the locations of the traps. By examining the coefficient of the second-order term in

the expansion of λ(ε) we will formulate a discrete optimization problem for the spatial configuration {x1, . . . , xN} of

the centers of the N traps of fixed given shapes that maximizes this principal eigenvalue λ(ε), and correspondingly

minimizes the average MFPT χ.

By using the method of matched asymptotic expansions in a similar way as for the simple model problem of §2.1,
we readily obtain the following result of [16]:

Principal Result 2.1: In the limit of small trap radius, ε → 0, the principal eigenvalue λ(ε) of (2.17) has the

two-term asymptotic expansion

λ(ε) ∼ 4πεN

|Ω| C̄ − 16π2ε2

|Ω| pc(x1, . . . , xN ) . (2.22 a)

Here C̄ ≡ N−1(C1 + . . . + CN ) and pc(x1, . . . , xN ) is the discrete sum defined in terms of the entries Gi,j of the

Green’s matrix G of (2.23) by

pc(x1, . . . , xN ) ≡ cTGc =
N∑

i=1

N∑

j=1

CiCjGi,j . (2.22 b)

The corresponding eigenfunction u is given asymptotically in the outer region |x− xj | >> O(ε) for j = 1, . . . , N by

u ∼ 1

|Ω|1/2 − 4πε

|Ω|1/2
N∑

j=1

CjG(x;xj) +O(ε2) . (2.22 c)

For ε≪ 1, the principal eigenvalue λ(ε) is maximized when the trap configuration {x1, . . . , xN} is chosen to minimize

pc(x1, . . . , xN ). For N identical traps with a common capacitance C, (2.22 a) reduces to

λ(ε) ∼ 4πεNC

|Ω|

[
1− 4πεC

N
p(x1, . . . , xN )

]
, p(x1, . . . , xN ) ≡ e

TGe =
N∑

i=1

N∑

j=1

Gi,j . (2.22 d)
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In this result, we have defined the capacitance vector c and the symmetric Neumann Green’s matrix G by

G ≡




R1,1 G1,2 · · · G1,N

G2,1
. . .

. . .
...

...
. . .

. . . GN−1,N

GN,1 · · · GN,N−1 RN,N



, c ≡




C1

...

CN


 . (2.23)

Here Cj is the capacitance of the jth trap defined in (2.9), and Gi,j ≡ G(xi;xj) for i 6= j is the Neumann Green’s

function of (2.14) with regular part Rj,j ≡ R(xj ;xj). At this stage, the reader should attempt the following problem:

Problem 2.1: Derive Principal Result 2.1 by extending the calculation of the simple model problem of §2.1 to one

higher order.

The solution to this problem is given in Appendix A. The next result is for the average MFPT.

Principal Result 2.2 In the limit ε → 0 of small trap radius, the average mean first passage time v̄, based on a

uniform distribution of starting points for the Brownian motion, is given for ε→ 0 by v̄ ∼ |Ω|−1
∫
Ω
v dx, and is given

explicitly by

v̄ ∼ 1

Dλ1
+O(ε) =

|Ω|
4πNC̄Dε

[
1 +

4πε

NC̄
pc(x1, . . . , xN ) +O(ε2)

]
. (2.24)

The derivation of this follows immediately by using the result for λ(ε) in Principal Result 2.1 in (2.21).

We now optimize the coefficient of the second-order term in the asymptotic expansion of λ in (2.22 d) of Principal

Result 2.1 for the special case when Ω is a sphere of radius one that contains N small identically-shaped traps of

a common “radius” ε. To do so, we require the Neumann Green’s function of (2.14) for the unit sphere as given

explicitly by (see Appendix A of [16])

G(x; ξ) =
1

4π|x− ξ| +
1

4π|x||x′ − ξ| +
1

4π
log

(
2

1− |x||ξ| cos θ + |x||x′ − ξ|

)
+

1

6|Ω|
(
|x|2 + |ξ|2

)
− 7

10π
, (2.25 a)

where |Ω| = 4π/3. Here x
′

= x/|x|2 is the image point to x outside the unit sphere, and θ is the angle between ξ and

x, i.e. cos θ = x · ξ/|x||ξ|, where · denotes the dot product.

To calculate R(ξ; ξ) from (2.25 a) we take the limit of G(x, ξ) as x → ξ and extract the nonsingular part of the

resulting expression. Setting x = ξ and θ = 0 in (2.25 a), we obtain |x′ − ξ| = −|ξ|+ 1/|ξ|, so that

R(ξ, ξ) =
1

4π (1− |ξ|2) +
1

4π
log

(
1

1− |ξ|2
)
+

|ξ|2
4π

− 7

10π
. (2.25 b)

Next, we compute optimal spatial arrangements {x1, . . . , xN} of N ≥ 2 identically shaped traps inside the unit

sphere that minimizes p(x1, . . . , xN ) in (2.22 d), or equivalently maximizes the coefficient of the second-order term in

ε in the asymptotic expansion of λ(ε) given in (2.22 d). To simplify the computation, we will minimize the function

Hball defined in terms of p of (2.22 d) by

Hball ≡
N∑

i=1

N∑

j=1

G̃i,j =
N∑

i=1

N∑

j=1

(
(1− δij)G̃ij + δijR̃ii

)
, p(x1, . . . , xN ) =

Hball

4π
− 7N2

10π
, (2.26)

where δij = 0 if i 6= j and δjj = 1. Here we have defined G̃i,j , G̃i,j and R̃j,j by G̃i,j = 4π(Gi,j−B), G̃i,j ≡ 4π(Gi,j−B),

and R̃j,j ≡ 4π(Rj,j −B), where B = −7/(10π) and Gi,j and Rj,j are obtained from (2.25).
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N H(a)
ball Spherical radii H(b)

ball Spherical radii

r1 = ... = rN r2 = ... = rN (r1 = 0)

2 7.2763 0.429 9.0316 0.563

3 18.5047 0.516 20.3664 0.601

4 34.5635 0.564 36.8817 0.626

5 56.2187 0.595 58.1823 0.645

6 82.6490 0.618 85.0825 0.659

7 115.016 0.639 116.718 0.671

8 152.349 0.648 154.311 0.680

9 195.131 0.659 196.843 0.688

10 243.373 0.668 244.824 0.694

11 297.282 0.676 297.283 0.700

12 355.920 0.683 357.371 0.705

13 420.950 0.689 421.186 0.710

14 491.011 0.694 491.415 0.713

15 566.649 0.698 566.664 0.717

16 647.738 0.702 647.489 0.720

17 734.344 0.706 733.765 0.722

18 826.459 0.709 825.556 0.725

19 924.360 0.712 922.855 0.727

20 1027.379 0.715 1025.94 0.729

Table 2. Numerically computed minimal values of the discrete energy functions H(a)
ball and H(b)

ball for the optimal

arrangement of N -traps within a unit sphere, as computed using the DSO method. The numerically computed

minimum value of Hball in (2.26) is shown in bold face.

Various numerical methods for global optimization are available, including

(1) The Extended Cutting Angle method (ECAM). This deterministic global optimization technique is applicable to

Lipschitz functions. Within the algorithm, a sequence of piecewise linear lower approximations to the objective

function is constructed. The sequence of the corresponding solutions to these relaxed problems converges to

the global minimum of the objective function (cf. [3]).

(2) Dynamical Systems Based Optimization (DSO). A dynamical system is constructed, using a number of sampled

values of the objective function to introduce “forces”. The evolution of such a system yields a descent trajectory

converging to lower values of the objective function. The algorithm continues sampling the domain until it

converges to a stationary point (cf. [49]).

Our computational results given below for the minimization of (2.26) were obtained by using the open software

library GANSO (cf. [26]), where both the ECAM and DSO methods are implemented.

The optimal trap pattern when N is small, consisting of N traps on one inner sphere, is found to switch to an

optimal pattern with N−1 traps on an inner sphere and one at the origin as N is increased. We compare the minimal

values of the discrete energy Hball in (2.26) for the case (a) when all traps are forced to lie on one sphere (H(a)
ball),
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(a) N = 8 (b) N = 15 (c) N = 16

Figure 1. Numerically computed optimal spatial arrangements of traps inside a unit sphere. For N = 8 and N = 15 all
traps are on an interior sphere. For N = 16 there is one trap at the origin, while 15 traps are on an interior sphere.

and in the case (b) when one trap remains at the origin (r1 = 0), while the remaining traps lie on one inner sphere

(H(b)
ball). These optimal energy values and the corresponding inner sphere radii, computed with the DSO method, are

given in Table 2. For each N with 2 ≤ N ≤ 15, our results show that the optimal configuration has N traps located

on a single inner sphere within the unit sphere. The case N = 16 is the smallest value of N that deviates from this

rule. In particular, for 16 ≤ N ≤ 20, there is one trap located at the origin (r1 = 0), while the remaining N − 1 traps

are located on one interior sphere so that r2 =, . . . ,= rN .

We remark that the numerically computed minima of the energy function Hball in (2.26) were computed directly

using the ECAM and DSO methods, and the results obtained were found to coincide with the results shown in

Table 2 computed from the restricted optimization problem associated with H(a)
ball for 2 ≤ N ≤ 15 and with H(b)

ball for

N = 16, 17, 18. In Fig. 1 we show the numerically computed optimal spatial arrangements of traps for N = 8, 15, 16.

We also remark that the numerical optimization problem becomes increasingly difficult to solve as N increases, due

to the occurrence of many local minima.

For the special case of N traps with a common capacitance C = Cj for j = 1, . . . , N inside the unit sphere Ω, then

v̄ in (2.24) becomes

v̄ ∼ |Ω|
D

[
1

4πεNC
+

1

N2
p(x1, . . . , xN )

]
, p(x1, . . . , xN ) =

N∑

i=1

N∑

j=1

Gij =
Hball

4π
− 7N2

10π
, (2.27)

where Hball is the discrete energy defined in (2.26). Next, we use (2.27) to illustrate the effect on v̄ of trap clustering.

For N = 20 optimally placed spherical traps of a common radius ε, we set C = 1 and use the last entry for Hball

in Table 2 for N = 20 to evaluate p in (2.27). In contrast, suppose that there are N = 10 clusters of two touching

spheres of a common radius ε inside the unit sphere. Assume that the clusters are optimally located within the unit

sphere. For this arrangement, we set N = 10 in (2.27), and use the capacitance C = 2 log 2 of two touching spheres,

together with optimal value for Hball given in Table 2 for N = 10. In this way, we obtain

v̄ ∼ |Ω|
D

(
1

80πε
− 0.01871

)
, (no trap clustering) ; v̄ ∼ |Ω|

D

(
1

80πε log 2
− 0.02915

)
, (trap clustering) .

(2.28)

Therefore, to leading order, this case of trap clustering increases the average MFPT by a factor of 1/ log 2.
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Figure 2. The average MFPT v̄ in (2.24) with D = 1 and the principal eigenvalue λ of (2.22 d) versus the percentage trap
volume fraction 100f = 100ε3N for the optimal arrangement of N identical traps of a common radius ε in the unit sphere. Left
figure: v̄ versus 100f forN = 1, 5, 8, 11, 14, 17, 20 (top to bottom curves). Right figure: λ versus 100f forN = 1, 5, 8, 11, 14, 17, 20
(bottom to top curves).

Principal Result 2.2 can be used to show the influence of the number N of distinct subregions comprising the trap

set. In this way, we study the effect of fragmentation of the trap set. We consider N spherical traps of a common radius

ε inside the unit sphere. We denote the percentage trap volume fraction by 100f , where f = 4πε3N/(3|Ω|) = ε3N .

In Fig. 2(a) we plot v̄, given in (2.27) with C = 1, versus the trap volume percentage fraction 100f corresponding to

the optimal arrangement of N = 5, 8, 11, 14, 17, 20 traps, as computed from the global optimization routine discussed

above (see Table 2). In this figure we also plot v̄ for a single large trap with the same trap volume fraction. We

conclude that even when f is small, the effect of fragmentation of the trap set is rather significant. In Fig. 2(b) we

plot the corresponding principal eigenvalue λ of (2.22 d) versus the percentage trap volume fraction.

At this stage, we list a few open problems:

(1) Provide reliable computations of the global minimum of the discrete energy Hball for N large and to determine

a scaling law for it that is valid as N → ∞. This scaling law would yield a scaling law for the average MFPT

v̄.

(2) Does the optimal arrangement of traps for large N exhibit some underlying hexahedron-type symmetry. Can

the limiting eigenvalue asymptotics be predicted by the dilute fraction limit of homogenization theory?

(3) Calculate the modified Green’s function and its regular part numerically for other 3-D domains to determine

the eigenvalue asymptotics as well as a scaling law for the optimal average MFPT. How can one reliably

compute the Neumann Green’s function in (2.14) for an arbitrary domain given that one must impose the

constraint
∫
Ω
Gdx = 0.

2.4 Splitting Probabilities

Next, we use the method of matched asymptotic expansions to calculate the splitting probabilities of [18]. The

splitting probability u(x) is defined as the probability of reaching a specific target trap Ωε1 from the initial source



Asymptotics for Strong Localized Perturbations: Theory and Applications 19

point x ∈ Ω\Ωa, before reaching any of the other surrounding traps Ωεj for j = 2, . . . , N . Then, it is well-known

that u satisfies (cf. [18])

∆u = 0 , x ∈ Ω\Ωa ≡ ∪N
j=1Ωεj ; ∂nu = 0 , x ∈ ∂Ω , (2.29 a)

u = 1 , x ∈ ∂Ωε1 ; u = 0 , x ∈ ∪N
j=2∂Ωεj . (2.29 b)

By developing a two-term matched asymptotic expansion the following result can be obtained:

Principal Result 2.3: In the limit ε→ 0 of small trap radius, the splitting probability u, satisfying (2.29), is given

asymptotically in the outer region |x− xj | ≫ O(ε) for j = 1, . . . , N by

u ∼ C1

NC̄
+ 4πεC1


G(x;x1)−

1

NC̄

N∑

j=1

CjG(x;xj)


+ εχ1 +O(ε2) , (2.30 a)

where χ1 is given by

χ1 = −4πC1

NC̄

[
(Gc)1 −

1

NC̄
cTGc

]
. (2.30 b)

Here G is the Green’s matrix of (2.23), c = (C1, . . . , CN )T , and (Gc)1 is the first component of Gc. The averaged

splitting probability ū ≡ |Ω|−1
∫
Ω
u dx, which assumes a uniform distribution of starting points x ∈ Ω, is

ū ∼ C1

NC̄
+ εχ1 +O(ε2) . (2.30 c)

Problem 2.2: Derive Principal Result 2.3 by adapting the methodology of the simple model problem of §2.2.

The solution to this problem is given in the Appendix A..

From (2.30 a) we observe that u ∼ C1/(NC̄), so that there is no leading-order effect on the splitting probability u

of either the location of the source, the target, or the surrounding traps. If Cj = 1 for j = 1, . . . , N , then u ∼ 1/N .

Therefore, for this equal-capacitance case, then to leading-order in ε it is equally likely to reach any one of the N

possible traps. If the target at x1 has a larger capacitance C1 than those of the other traps at xj for j = 2, . . . , N , then

the leading order theory predicts that u > 1/N . The formulae for the capacitances in Table 1 can be used to calculate

the leading order term for u for different shapes of either the target or surrounding traps. Further implications of

this result are given in §3 of [16].

3 Strong Localized Perturbations in 2-D Domains

In this section we extend the analysis of §2 to treat some related steady-state elliptic problems in a two-dimensional

domain with multiple inclusions.



20 M. J. Ward

3.1 Some Fundamentals: Leading-Order Eigenvalue Asymptotics

We first recall a basic result from potential theory. Suppose that ∆u − k2u = δ(x − x0) for x ∈ Ω ∈ R
2. Then, the

singularity has the form

u ∼ 1

2π
log |x− x0| , as x→ x0 .

The derivation of this is simple, and proceeds as in the derivation of the corresponding 3-D result in §3.1.
To illustrate the asymptotic approach and scalings needed in the 2-D case, we consider the following simple

eigenvalue problem posed in a domain with a small hole:





∆u+ λu = 0 for x ∈ Ω\Ωǫ

u = 0 for x ∈ ∂Ω

u = 0 for x ∈ ∂Ωε∫
Ω\Ωǫ

u2 dx = 1 .

(3.1)

Here Ωǫ is a small hole of “radius” O(ε), for which Ωǫ → {x0} as ǫ → 0, where x0 is an interior point of Ω. Let

µ0, φ0 be the principal first eigenpair of the unperturbed problem, so that





∆φ0 + λφ0 = 0 for x ∈ Ω

φ0 = 0 for x ∈ ∂Ω
∫
Ω
φ20 dx = 1 .

(3.2)

Now we will expand the eigenvalue of (3.1) that is close to µ0 as λ ∼ µ0 + ν(ǫ)λ1 + · · · , with ν(ǫ) → 0 as ǫ → 0.

Here ν(ε) is an unknown gauge function to be determined. In the outer region away from the hole, we expand

u = φ0 + νu1 + · · · . Upon substituting these expansions into (3.1) we obtain




∆u1 + µ0u1 = −λ1φ0 for x ∈ Ω\{x0}
u1 = 0 for x ∈ ∂Ω
∫
Ω
u1φ0 dx = 0 .

(3.3)

In addition, u1 is to satisfy some singularity condition as x→ x0 that will be determined after constructing the inner

expansion and then matching the inner and outer expansions.

In the inner region near the hole, we let y = ε−1(x − x0), and we expand u = ν(ǫ)v0(y) + · · · , where ∆yv0 = 0.

We want v0(y) ∼ A0 log |y|, as |y| → ∞, and so we write v0(y) = A0vc(y), where vc(y) satisfies the canonical inner

problem 



∆yvc = 0 for y 6∈ Ω0

vc = 0 for y ∈ ∂Ω0

vc ∼ log |y| as |y| → ∞ .

(3.4 a)

The problem (3.4 a) has a unique solution for vc(y), with the more refined far-field behavior

vc(y) ∼ log |y| − log d+O(|y|−1) , as |y| → ∞ . (3.4 b)

Here d is a constant determined by the solution, and is called the “logarithmic capacitance” of Ω0.

Notice that, in contrast to the 3-D case, we require that u≪ O(1) in the inner region. This key point results from
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[htbp]

Table 3. The logarithmic capacitance d for some cross-sectional shapes of Ω0 = ε−1Ωε.

Shape of Ω0 ≡ ε−1Ωε Logarithmic Capacitance d

circle, radius a d = a

ellipse, semi-axes a, b d = a+b
2

equilateral triangle, side h d =
√
3 Γ( 1

3
)3h

8π2 ≈ 0.422h

isosceles right triangle, short side h d =
33/4Γ( 1

4
)2h

27/2π3/2 ≈ 0.476h

square, side h d =
Γ( 1

4
)2h

4π3/2 ≈ 0.5902h

the simple fact that for a prescribed value C 6= 0 there is no solution w to the following problem:

∆yw = 0 , y /∈ Ω0 ,

w = 0 , y ∈ ∂Ω0 ; w ∼ C , as |y| → ∞ .

Therefore, we cannot simply impose in the inner region that v ∼ w + o(1) with w → φ0(x0) as |y| → ∞.

The logarithmic capacitance d depends on the shape of Ω0 and not its orientation within the domain. A table of

numerical values for d for different shapes of Ω0 are given in [57], and some of these are reproduced in Table 3. A

boundary integral method to compute d for arbitrarily-shaped domains Ω1 is described and implemented in [22].

Next, we write inner expansion in terms of outer variables as

u ∼ ν(ǫ)A0[log |y| − log d] ∼ ν(ǫ)A0[− log(ǫd) + log |x− x0|] ,

so that the matching condition becomes

φ0(x0) + · · ·+ ν(ǫ)u1 ∼ (− log(ǫd))A0ν(ǫ) +A0ν(ǫ) log |x− x0|+ · · · .

Therefore, we must take ν(ǫ) = −1
log(ǫd) and choose A0 = φ0(x0). In addition, the matching condition gives the

singularity condition u1(x) → A0 log |x− x0| = φ0(x0) log |x− x0| as x→ x0. Therefore, (3.3) becomes




∆u1 + µ0u1 = −λ1φ0 for x ∈ Ω\{x0}
u1 = 0 for x ∈ ∂Ω

u1 ∼ φ0(x0) log |x− x0| as x→ x0∫
Ω
u1φ0 dx = 0 .

This problem is equivalent to




Lu1 := ∆u1 + µ0u1 = −λ1φ0 + 2πφ0(x0)δ(x− x0) for x ∈ Ω\{x0}
u1 = 0 for x ∈ ∂Ω

u1 ∼ φ0(x0) log |x− x0| as x→ x0∫
Ω
u1φ0 dx = 0 .

We then use Green’s second identity
∫

Ω

(φ0∂nu1 − u1∂nφ0) dS =

∫

Ω

(φ0Lu1 − u1Lφ0) dx ,
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with φ0 = u1 = 0 on ∂Ω and Lφ0 = 0. In this way, we get
∫
Ω
φ0Lu1 dx = 0, which can be written as

∫

Ω

φ0 (−λ1φ0 + 2πφ0(x0)δ(x− x0)) dx = 0 .

This specifies λ1 as

λ1 =
2π[φ0(x0)]

2

∫
Ω
φ20 dx

.

Therefore, we obtain a two-term expansion for the perturbation of the fundamental eigenvalue given by

λ ∼ µ0 +
2πν[φ0(x0)]

2

∫
Ω
φ20 dx

+ · · · , ν = − 1

log(ǫd)
. (3.6)

Remarks:

(1) Further terms in the expansion have the form

λ ∼ µ0 +A1ν +A2ν
2 +A3ν

3 + · · · ,

which is an infinite-logarithmic expansion in powers of ν. Since (log(ǫd))−1 decreases only very slowly in ε, it

would be preferable to find a method to “sum” the series. Such a method is developed and implemented in

later subsections. In particular, is the series convergent when ε is small, or only asymptotic? Our results below

indicate that the series is in fact convergent for ε sufficiently small.

(2) If u = 0 on ∂Ω is replaced by ∂nu = 0 on ∂Ω, then µ0 = 0 and φ0 = 1√
|Ω|

so that
∫
Ω
φ20dx = 1. This yields the

leading-order result

λ ∼ 2πν

|Ω| , as ǫ→ 0 .

Therefore, the leading-order asymptotics is independent of the location of the hole. Further terms in the expansion

of the eigenvalue must be obtained to determine the effect of the location of the hole. This is done in §3.3 – §3.5 for

various problems where the leading-order asymptotics gives no information.

For an annular domain, we now confirm our two-term asymptotic result by comparing it with the result obtained

by expanding the exact eigenvalue relation for small ε. The eigenvalue problem in an annular domain is




∆u+ λu = 0 in ǫ < r < 1

u = 0 on r = 1

u = 0 on r = ǫ .

The unperturbed solution is φ0 = J0(
√
µ0r) where J0(

√
µ0) = 0 and

√
µ0 = τ0, with z0 is the first zero of J0(z).

Using the perturbation formula we have vc(y) = log |y|, since ∆yvc = 0, vc = 0 on |y| = 1, so that d = 1. Then,

x0 = 0 and φ0(x0) = J0(0) = 1. Therefore, from (3.6), we obtain

λ ∼ µ0 +
2πν∫

Ω
φ20(x) dx

∼ µ0 +
2πν

2π
∫ 1

0
rJ2

0 (
√
µ0r) dr

.

We recall the integral identity
∫ 1

0
rJ2

0 (
√
µ0r) dr = 1

2 (J
′
0(
√
µ0))

2, when J0(
√
µ0) = 0, so that the expression above
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becomes

λ ∼ µ0 +

(
− 1

log(ǫ)

)(
2

[
J ′
0(
√
µ0)
]2
)
+ · · · . (3.7)

Now we compare (3.7) with the exact solution. In the class of radially symmetric eigenfunctions, we obtain

u = J0(
√
λr)− J0(

√
λ)

Y0(
√
λ)
Y0(

√
λr) .

Setting u(ε) = 0 gives the eigenvalue relation as

J0(
√
λ) =

J0(
√
λǫ)

Y0(
√
λǫ)

Y0(
√
λ) . (3.8)

To solve this eigenvalue relation for ε≪ 1, we first recall that

J0(z) ∼ 1 +O(z2) Y0(z) ∼
2

π
[log(z)− log 2 + γ] + · · · , as z → 0 ,

where γ is Euler’s constant. Therefore, with z =
√
λ we obtain for ε≪ 1 that (3.8) becomes

J0(z) ∼ Y0(z)
π

2
[log(ǫz)− log 2 + γ]−1 .

To find the root of this expression we expand

z = z0 +

( −1

log ε

)
z1 + · · · ,

Here z0 =
√
λ0 is the first root of J0(z0) = 0, so that z0 =

√
µ0. Then, we use Taylor series to obtain

J0(z0) +

( −1

log ε

)
J ′
0(z0)z1 + . . . ∼ πY0(z0)

2 log ǫ
+ · · · .

This yields that z1 = −π
2
Y0(z0)
J ′

0
(z0)

. Now we write
√
λ = z = z0 +

(
− 1

log ǫ

)
z1 + · · · . Hence, we get λ ∼ z20 +

(
− 1

log ǫ

)
2z0z1 + . . ., which yields λ ∼ µ0 +

(
− 1

log ǫ

)
2
√
µ0z1. In summary, we obtain that

λ ∼ µ0 +

(
− 1

log ǫ

)
λ1 + · · · , λ1 = 2

√
µ0z1 = 2

√
µ0

(
− π

2

Y0(
√
µ0)

J ′
0(
√
µ0)

)
= −π√µ0

Y0(
√
µ0)

J ′
0(
√
µ0)

. (3.9)

To write this result in a form to compare with the result obtained above from the asymptotic theory, we need an

identity that is based on the Wronskian relation
(

d

dr
J0(

√
λr)

)
Y0(

√
λr)−

(
d

dr
Y0(

√
λr)

)
J0(

√
λr) = − 2

πr
.

Now evaluating this identity at r = 1, and setting λ = µ0 where J0(
√
µ0) = 0, we get

Y0(
√
µ0) =

2

π
√
µ0J ′

0(
√
µ0)

.

Substituting this into the result of (3.9) we obtain

λ1 = −π√µ0

(
Y0(

√
µ0)

J ′
0(
√
µ0)

)
=

2

(J ′
0(
√
µ0))2

,

which gives the two-term expansion

λ ∼ µ0 +

(
− 1

log ǫ

)
2

(J ′
0(
√
µ0))2

+ · · · ,

in agreement with the asymptotic result given in (3.7).
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In the next section we consider a simple problem to illustrate the methodology used to sum infinite logarithmic

expansions for singularly perturbed PDE problems in 2-D domains with holes.

3.2 Summing the Infinite Logarithmic Expansion: A Simple Model Problem

We first consider a simple problem to illustrate some main ideas for treating elliptic PDE problems with infinite

logarithmic expansions. Consider a two-dimensional bounded domain Ω with a small trap Ωε of radius O(ε) centered

at some x0 ∈ Ω. Then, the expected time w(x) for a Brownian particle to be captured given that it starts from

x ∈ Ω\Ωε satisfies Poisson’s equation

△w = −β ≡ −1/D , x ∈ Ω\Ωε , (3.10 a)

w = 0 , x ∈ ∂Ω , (3.10 b)

w = 0 , x ∈ ∂Ωε . (3.10 c)

where D is the constant diffusivity. We assume that Ωε has radius O(ε) and that Ωε → x0 uniformly as ε→ 0, where

x0 ∈ Ω. We denote the scaled subdomain that results from an O(ε−1) magnification of the length scale of Ωε by

Ω1 ≡ ε−1Ωε. In this model problem the outer boundary on ∂Ω is also absorbing.

The asymptotic solution to (3.10) is constructed in two different regions: an outer region defined at an O(1)

distance from the localized trap, and an inner region defined in an O(ε) neighborhood of the trap Ωε. The analysis

below will show how to calculate the sum of all the logarithmic terms for w in in the limit ε→ 0 of small core radius.

In the outer region we expand the solution to (3.10) as

w(x; ε) =W0(x; ν) + σ(ε)W1(x; ν) + · · · . (3.11)

Here ν = O(1/ log ε) is a gauge function to be chosen, and we assume that σ ≪ νk for any k > 0 as ε → 0. Thus,

W0 contains all of the logarithmic terms in the expansion. Substituting (3.11) into (3.10 a) and (3.10 b), and letting

Ωε → x0 as ε→ 0, we get that W0 satisfies

△W0 = −β , x ∈ Ω\{x0} , (3.12 a)

W0 = 0 , x ∈ ∂Ω , (3.12 b)

W0 is singular as x→ x0 . (3.12 c)

The matching of the outer and inner expansions will determine a singularity behavior for W0 as x→ x0.

In the inner region near Ωε we introduce the inner variables

y = ε−1(x− x0) , v(y; ε) =W (x0 + εy; ε) . (3.13)

If we naively assume that v = O(1) in the inner region, we obtain the leading-order problem for v that △yv = 0

outside Ω1, with v = 0 on ∂Ω1 and v → W0(x0) as |y| → ∞, where △y denotes the Laplacian in the y variable.

This far-field condition as |y| → ∞ is obtained by matching v to the outer solution. However, in two-dimensions

there is no solution to this problem since the Green’s function for the Laplacian grows logarithmically at infinity. To
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overcome this difficulty, we require that v = O(ν) in the inner region and we allow v to be logarithmically unbounded

as |y| → ∞. Therefore, we expand v as

v(y; ε) = V0(y; ν) + µ0(ε)V1(y) + · · · , (3.14 a)

where we write V0 in the form

V0(y; ν) = νγvc(y) . (3.14 b)

Here γ = γ(ν) is a constant to be determined with γ = O(1) as ν → 0, and we assume that µ0 ≪ νk for any k > 0 as

ε→ 0. Substituting (3.13) and (3.14) into (3.10 a) and (3.10 c), and allowing vc(y) to grow logarithmically at infinity,

we obtain that vc(y) satisfies

△yvc = 0 , y /∈ Ω1 ; vc = 0 , y ∈ ∂Ω1 , (3.15 a)

vc ∼ log |y| , as |y| → ∞ . (3.15 b)

The unique solution to (3.15) has the following far-field asymptotic behavior:

vc(y) ∼ log |y| − log d+
p · y
|y|2 + · · · , as |y| → ∞ . (3.15 c)

The constant d > 0 is the logarithmic capacitance of Ω1, while the vector p is called the dipole vector.

The leading-order matching condition between the inner and outer solutions will determine the constant γ in

(3.14 b). Upon writing (3.15 c) in outer variables and substituting into (3.14 b), we get the far-field behavior

v(y; ε) ∼ γν [log |x− x0| − log(εd)] + · · · , as |y| → ∞ . (3.16)

Choosing

ν(ε) = −1/ log(εd) , (3.17)

and matching (3.16) to the outer expansion (3.11) for W , we obtain the singularity condition for W0,

W0 = γ + γν log |x− x0|+ o(1) , as x→ x0 . (3.18)

The singularity behavior in (3.18) specifies both the regular and singular part of a Coulomb singularity. As such,

it provides one constraint for the determination of γ. More specifically, the solution to (3.12) together with (3.18)

must determine γ, since for a singularity condition of the form W0 ∼ S log |x− x0|+ R for an elliptic equation, the

constant R is not arbitrary but is determined as a function of S, x0, and Ω.

The solution for W0 is decomposed as

W0(x; ν) =W0H(x)− 2πγνGd(x;x0) . (3.19)

Here W0H(x) is the smooth function satisfying the unperturbed problem

△W0H = −β , x ∈ Ω ; W0H = 0 , x ∈ ∂Ω . (3.20)
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In (3.19), Gd(x;x0) is the Dirichlet Green’s function satisfying

△Gd = −δ(x− x0) , x ∈ Ω ; Gd = 0 , x ∈ ∂Ω , (3.21 a)

Gd(x;x0) = − 1

2π
log |x− x0|+Rd(x0;x0) + o(1) , as x→ x0 . (3.21 b)

Here Rd00 ≡ Rd(x0;x0) is the regular part of the Dirichlet Green’s function Gd(x;x0) at x = x0. This regular part is

also known as either the self-interaction term or the Robin constant (cf. [2]).

Upon substituting (3.21 b) into (3.19) and letting x → x0, we compare the resulting expression with (3.18) to

obtain that γ is given by

γ =
W0H(x0)

1 + 2πνRd00
. (3.22)

Therefore, for this problem, γ is determined as the sum of a geometric series in ν. The range of validity of (3.22) is

limited to values of ε for which 2πν|Rd00| < 1. This yields,

0 < ε < εc , εc ≡
1

d
exp [2πRd00] . (3.23)

We summarize our result as follows:

Principal Result 3.1: For ε≪ 1, the outer expansion for (3.10) is

w ∼W0(x; ν) =W0H(x)− 2πνW0H(x0)

1 + 2πνRd00
Gd(x;x0) , for |x− x0| = O(1) , (3.24 a)

and the inner expansion with y = ε−1(x− x0) is

w ∼ V0(y; ν) =
νW0H(x0)

1 + 2πνRd00
vc(y) , for |x− x0| = O(ε) . (3.24 b)

Here ν = −1/ log(εd), d is defined in (3.15 c), vc(y) satisfies (3.15), and W0H satisfies the unperturbed problem

(3.20). Also Gd(x;x0) and Rd00 ≡ Rd(x0;x0) are the Dirichlet Green’s function and its regular part satisfying (3.21).

This formulation is referred to as a hybrid asymptotic-numerical method since it uses the asymptotic analysis as a

means of reducing the original problem (3.10) with a hole to the simpler asymptotically related problem (3.12) with

singularity behavior (3.18). This related problem does not have a boundary layer structure and so is easy to solve

numerically. The numerics required for the hybrid problem involve the computation of the unperturbed solutionW0H

and the Dirichlet Green’s function Gd(x;x0). In terms of Gd we then identify its regular part Rd(x0;x0) at the singular

point. From the solution to the canonical inner problem (3.15) we then compute the logarithmic capacitance, d. The

result (3.24 a) then shows that the asymptotic solution only depends on the product of εd and not on ε itself. This

feature allows for an asymptotic equivalence between traps of different cross-sectional shape, based on an effective

‘radius’ of the trap. This equivalence is known as Kaplun’s equivalence principle (cf. [33], [40]).

An advantage of the hybrid method over the traditional method of matched asymptotic expansions is that the

hybrid formulation is able to sum the infinite logarithmic series and thereby provide an accurate approximate solution.

From another viewpoint, the hybrid problem is much easier to solve numerically than the full singularly perturbed

problem (3.10). For the hybrid method a change of the shape of Ω1 requires us to only re-calculate the constant
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d. This simplification does not occur in a full numerical approach. An explicit example comparing the result of the

hybrid method with a full numerical solution is given in [75].

We now outline how Principal Result 3.1 can be obtained by a direct summation of a conventional infinite-order

logarithmic expansion for the outer solution given in the form

W ∼W0H(x) +
∞∑

j=1

νjW0j(x) + µ0(ε)W1 + · · · , (3.25)

with µ0(ε) ≪ νk for any k > 0. By formulating a similar series for the inner solution, we will derive a recursive set

of problems for the W0j for j ≥ 0 from the asymptotic matching of the inner and outer solutions. We will then sum

this series to re-derive the result in Principal Result 3.1.

In the outer region we expand the solution to (3.10) as in (3.25). In (3.25), ν = O(1/ log ε) is a gauge function to

be chosen, while the smooth function W0H satisfies the unperturbed problem (3.20) in the unperturbed domain. By

substituting (3.25) into (3.10 a) and (3.10 b), and letting Ωε → x0 as ε→ 0, we get that W0j for j ≥ 1 satisfies

△W0j = 0 , x ∈ Ω\{x0} , (3.26 a)

W0j = 0 , x ∈ ∂Ω , (3.26 b)

W0j is singular as x→ x0 . (3.26 c)

The matching of the outer and inner expansions will determine a singularity behavior for W0j as x → x0 for each

j ≥ 1.

In the inner region near Ωε we introduce the inner variables

y = ε−1(x− x0) , v(y; ε) =W (x0 + εy; ε) . (3.27)

We then pose the explicit infinite-order logarithmic inner expansion

v(y; ε) =

∞∑

j=0

γjν
j+1vc(y) . (3.28)

Here γj are ε-independent coefficients to be determined. Substituting (3.28) and (3.10 a) and (3.10 c), and allowing

vc(y) to grow logarithmically at infinity, we obtain that vc(y) satisfies (3.15) with far-field behavior (3.15 c).

Upon using the far-field behavior (3.15 c) in (3.28), and writing the resulting expression in terms of the outer

variable x− x0 = εy, we obtain that

v ∼ γ0 +

∞∑

j=1

νj [γj−1 log |x− x0|+ γj ] . (3.29)

The matching condition between the infinite-order outer expansion (3.25) as x→ x0 and the far-field behavior (3.29)

of the inner expansion is that

W0H(x0) +

∞∑

j=1

νjW0j(x) ∼ γ0 +

∞∑

j=1

νj [γj−1 log |x− x0|+ γj ] . (3.30)

The leading-order match yields that

γ0 =W0H(x0) . (3.31)
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The higher-order matching condition, from (3.30), shows that the solution W0j to (3.26) must have the singularity

behavior

W0j ∼ γj−1 log |x− x0|+ γj , as x→ x0 . (3.32)

The unknown coefficients γj for j ≥ 1, starting with γ0 = W0H(x0), are determined recursively from the infinite

sequence of problems (3.26) and (3.32) for j ≥ 1. The explicit solution to (3.26) with W0j ∼ γj−1 log |x − x0| as
x→ x0 is given explicitly in terms of Gd(x;x0) of (3.21) as

W0j(x) = −2πγj−1Gd(x;x0) . (3.33)

Next, we expand (3.33) as x→ x0 and compare it with the required singularity structure (3.32). This yields

−2πγj−1

[
− 1

2π
log |x− x0|+Rd00

]
∼ γj−1 log |x− x0|+ γj , (3.34)

where Rd00 ≡ Rd(x0;x0). By comparing the non-singular parts of (3.34), we obtain a recursion relation for the γj ,

valid for j ≥ 1, given by

γj = (−2πRd00) γj−1 , γ0 =W0H(x0) , (3.35)

which has the explicit solution

γj = [−2πRd00]
j
W0H(x0) , j ≥ 0 . (3.36)

Finally, to obtain the outer solution we substitute (3.33) and (3.36) into (3.25) to obtain

w −W0H(x) ∼
∞∑

j=1

νj (−2πγj−1)Gd(x;x0) = −2πνGd(x;x0)

∞∑

j=0

νjγj

∼ −2πνW0H(x0)Gd(x;x0)

∞∑

j=0

[−2πνRd00]
j

∼ −2πνW0H(x0)

1 + 2πνRd00
Gd(x0;x0) . (3.37 a)

Equation (3.37 a) agrees with equation (3.24 a) of Principal Result 3.1. Similarly, upon substituting (3.36) into the

infinite-order inner expansion (3.28), we obtain

v(y; ε) = νW0H(x0)vc(y)

∞∑

j=0

[−2πRd00ν]
j
=

νW0H(x0)

1 + 2πνRd00
vc(y) , (3.38)

which recovers equation (3.24 b) of Principal Result 3.1. This derivation strongly suggests that infinite logarithmic

expansions are not just asymptotic, but actually do converge when ε is sufficiently small.

At this stage, the reader should attempt the following two problems (with solutions given in Appendix B):

Problem 3.1: Consider the following problem in an arbitrary two-dimensional domain with N small inclusions:

△u−m(x)u = 0 , x ∈ Ω\ ∪N
j=1 Ωεj , (3.39 a)

u = αj , x ∈ ∂Ωεj , j = 1, . . . , N , (3.39 b)

u = f , x ∈ ∂Ω . (3.39 c)

Here m(x) is an arbitrary smooth function with m(x) > 0 in Ω, f is an arbitrary function on ∂Ω, and αj are
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constants. Formulate a linear system in terms of a certain Green’s function, that effectively sums the infinite-order

logarithmic series in the asymptotic expansion of the solution. Apply your general theory to the unit disk Ω for the

case N = 1, m ≡ 1, f ≡ 0, and α1 = 1, when there is an arbitrarily-shaped hole centered at the origin of the unit

disk.

Problem 3.2: Consider the following problem in the disk Ω = {x | |x| ≤ 2} that contains three small holes:

△u = 0 , x ∈ Ω\ ∪3
j=1 Ωεj , (3.40 a)

u = αj , x ∈ ∂Ωεj , j = 1, 2, 3 , (3.40 b)

u = 4 cos(2θ) , |x| = 2 . (3.40 c)

Suppose that each of the holes has an elliptical shape with semi-axes ε and 2ε. Apply the theory for summing infinite

logarithmic expansions to first derive and then numerically solve a linear system for the source strengths. In your

implementation assume that the holes are centered at x1 = (1/2, 1/2), x2 = (1/2, 0) and x3 = (−1/4, 0). The boundary

values on the holes are to be taken as α1 = 1, α2 = 0 and α3 = 2.

3.3 The Principal Neumann Eigenvalue in a Planar Domain with Traps

In this section we follow [38] and consider an optimization problem for the fundamental eigenvalue of the Laplacian

in a planar bounded two-dimensional domain with a reflecting boundary that is perturbed by the presence of K

small holes in the interior of the domain. The perturbed eigenvalue problem is

∆u+ λu = 0 , x ∈ Ω\Ωp ;

∫

Ω\Ωp

u2 dx = 1 , (3.41 a)

∂nu = 0 , x ∈ ∂Ω ; u = 0 , x ∈ ∂Ωp ≡ ∪K
i=1∂Ωεi . (3.41 b)

Here Ω is the unperturbed domain, Ωp = ∪K
i=1Ωεi is a collection of K small interior holes Ωεi , for i = 1, . . . ,K, each

of ‘radius’ O(ε), and ∂nu is the outward normal derivative of u on ∂Ω. We assume that the small holes in Ω are

non-overlapping and that Ωεi → xi as ε→ 0, for i = 1, . . . ,K. A schematic plot of the domain is shown in Fig. 3.

εO(  )

walls
reflecting

n
x

2

1

x

wandering particle

K small absorbing holes

Figure 3. A schematic plot of the perturbed domain for the eigenvalue problem (3.41).

We let λ0(ε) denote the first eigenvalue of (3.41), with corresponding eigenfunction u(x, ε). Clearly, λ0(ε) → 0 as
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ε→ 0. Our objective is to determine the locations, xi for i = 1, . . . ,K, of the K holes of a given shape that maximize

this fundamental eigenvalue. Asymptotic expansions for the fundamental eigenvalue of related eigenvalue problems

in perforated multi-dimensional domains, with various boundary conditions on the holes and outer boundary, are

given in [51], [77], [78], [20], and [43] (see also the references therein).

As an application of (3.41), consider the Brownian motion of a particle in a two-dimensional domain Ω, with

reflecting walls, that contains K small traps Ωεi , for i = 1, . . . ,K, each of ‘radius’ ε, for i = 1, . . . ,K. The traps are

centered at xi, for i = 1, . . . ,K. If the Brownian particle starts from the point y ∈ Ω\Ωp at time t = 0, then the

probability density v(x, y, t, ε) that the particle is at point x at time t satisfies

vt = ∆v , x ∈ Ω\Ωp ; ∂nv = 0 , x ∈ ∂Ω ; v = 0 , x ∈ ∂Ωp ; v = δ(x− y) , t = 0 . (3.42)

By calculating the solution to (3.42) in terms of an eigenfunction expansion, and by assuming that y is uniformly

distributed over Ω\Ωp, it is easy to show that the probability P0(t, ε) that the Brownian particle is in Ω\Ωp at time

t is given by

P0(t, ε) = e−λ0(ε)t [1 +O(ν)] . (3.43)

Therefore, the expected lifetime of the Brownian particle is proportional to 1/λ0(ε). In this context, our optimization

problem is equivalent to choosing the locations of K small traps to minimize this expected lifetime.

We first consider (3.41) for the case of one hole. In [77] (see also [78]) it was shown that as ε → 0 the first

eigenvalue λ0 of (3.41) has the asymptotic expansion:

λ0(ε) = λ00 + ν(ε)λ01 + ν2(ε)λ02 + · · · .

Here, ν(ε) = −1/ log(εd) where d is the logarithmic capacitance of the hole. For the unperturbed problem with ε = 0,

we have λ00 = 0. In the O(ν) term, λ01 is independent of the location of the hole at x = x0 (cf. [77]). Therefore, we

need the higher-order coefficient λ02 in order to determine the location of the hole that maximizes the first eigenvalue,

λ0.

For the case of one hole, an infinite logarithmic expansion for λ0(ε) has the form

λ0(ε) = λ∗(ν) +O
(

ε

log ε

)
, ν ≡ − 1

log(εd)
.

To calculate λ∗(ν) we use the hybrid asymptotic-numerical method of [38]. Near the hole, we identify an inner

(local) region in terms of a local spatial variable y = ε−1(x−x0), and where the hole is rescaled so that Ω0 ≡ ε−1Ωε.

Denoting the inner (local) solution by v(y, ε) = u(x0 + εy, ε), we then expand v(y, ε) as

v(y, ε) = Aν vc(y) + · · · . (3.44)

Here, A = A(ν) ∼ O(1) as ε→ 0, and vc(y) is the solution of the canonical inner problem (3.15), re-written here as

∆yvc = 0 , y /∈ Ω0 ; vc = 0 , y ∈ ∂Ω0 , (3.45 a)

vc ∼ log |y| − log d+
p · y
|y|2 , as |y| → ∞ . (3.45 b)
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In (3.45 b), the logarithmic capacitance d and the dipole vector p = (p1, p2) are determined from the shape of the

hole.

We expand the eigenvalue λ0 and the outer (global) solution as

λ0(ε) = λ∗(ν) + µλ1 + · · · , u(x, ε) = u∗(x, ν) + µu1(x, ν) + · · · , (3.46)

where µ ≪ O(νk) for any k > 0. Substituting (3.46) into (3.41 a) and the boundary condition (3.41 b) on ∂Ω, we

obtain the full problem in a domain punctured by the point x0,

∆u∗ + λ∗u∗ = 0 , x ∈ Ω\{x0} ;
∫

Ω

(u∗)2 dx = 1 ; ∂nu
∗ = 0 , x ∈ ∂Ω . (3.47)

The singularity condition for (3.47) as x→ x0 given below arises from matching u∗ to the inner solution. Substituting

(3.45 b) into (3.44), and expressing the result in global variables, we obtain

v(y, ε) ∼ Aν log |x− x0|+A+ εA ν
p · (x− x0)

|x− x0|2
+ · · · , as y → ∞ . (3.48)

Here, we have used ν ≡ −1/ log(εd). To match u∗ to (3.48), we require that u∗ has the singularity behavior

u∗(x, ν) ∼ Aν log |x− x0|+A , as x→ x0 . (3.49)

Comparing the terms in (3.48) and (3.46) at the next order, we see that µ = O(εν).

Next, we determine u∗(x, ν) and λ∗(ν) satisfying (3.47) and (3.49). To do so, we introduce the Helmholtz Green’s

function, Gh(x;x0, λ
∗), and its regular part, Rh(x0;x0, λ

∗), satisfying

∆Gh + λ∗Gh = −δ(x− x0) , x ∈ Ω ; ∂nGh = 0 , x ∈ ∂Ω , (3.50 a)

Gh(x;x0, λ
∗) ∼ − 1

2π
log |x− x0|+Rh(x0;x0, λ

∗) + o(1) , as x→ x0 . (3.50 b)

In terms of this Green’s function, u∗(x, ν) is given by

u∗(x, ν) = −2π Aν Gh(x;x0, λ
∗).

By using (3.50 b), we expand u∗ as x→ x0 to obtain

u∗(x, ν) ∼ Aν log |x− x0| − 2π Aν Rh(x0;x0, λ
∗) , as x→ x0 . (3.51)

The matching condition is that the expressions in (3.49) and (3.51) agree. The log |x−x0| terms agree automatically,

and from the remaining terms, we obtain a transcendental equation for λ∗(ν) given by

Rh(x0;x0, λ
∗) = − 1

2πν
. (3.52)

To obtain the asymptotic behavior for λ0, we need the solution λ∗ of (3.52) that tends to zero as ν → 0.

Equation (3.52) can, in general, only be solved numerically as a function of ν. Below, we only determine an

expression for λ∗ that is correct to terms of order O(ν2). To obtain this expression, we expand the Helmholtz Green’s

function, Gh(x;x0, λ
∗), in terms of λ∗ ≪ 1, as

G(x;x0, λ
∗) =

1

λ∗
G0(x;x0) +G1(x;x0) + λ∗G2(x;x0) + · · · . (3.53)



32 M. J. Ward

Substituting (3.53) into (3.50), we get a series of problems for the Gj(x;x0), j = 0, 1, 2, . . .. At order O(1/λ∗), G0

satisfies ∆G0 = 0 in Ω and ∂nG0 = 0 on ∂Ω, from which we obtain that G0 is a constant. The higher-order corrections

Gj for j ≥ 1 are readily found to satisfy

∆Gj =

{
−δ(x− x0)−G0, j = 1,

−Gj−1, j > 1,
x ∈ Ω ; ∂nGj = 0, x ∈ ∂Ω , j ≥ 1 ;

∫

Ω

Gj dx = 0, j ≥ 1 . (3.54)

Applying the Divergence Theorem, we obtain that G0 = −1/|Ω|, where |Ω| is the area of Ω. The function G1(x;x0)

(which we shall henceforth call GN ) is the Neumann Green’s function, with regular part RN (x0;x0) defined by

∆GN =
1

|Ω| − δ(x− x0) , x ∈ Ω , (3.55 a)

∂nGN = 0 , x ∈ ∂Ω , (3.55 b)
∫

Ω

GN dx = 0 . (3.55 c)

We notice thatGN (x;x0) exists since
∫
Ω

(
1
|Ω| − δ(x− xj)

)
dx = 0, and is unique due to the constraint

∫
Ω
GN (x;x0) dx =

0. In addition, we can decompose GN (x;xj) as

GN (x;x0) = − 1

2π
log |x− x0|+RN (x;x0) , (3.55 d)

where RN (x;x0) is the regular (smooth) part of the Neumann Green’s function.

From (3.53) and (3.55), we write the two-term expansion for G when λ∗ ≪ 1 as

Gh(x;x0, λ
∗) = − 1

|Ω|λ∗ +GN (x;x0) +O(λ∗) . (3.56)

A similar two-term expansion for the regular part Rh of the Helmholtz Green’s function in terms of the regular part

of the Neumann Green’s function is

Rh(x0;x0, λ
∗) = − 1

|Ω|λ∗ +RN (x0;x0) +O(λ∗) . (3.57)

Substituting this expression into (3.52), we get the following two-term asymptotic result:

Principal Result 3.2:(One Hole) For ε→ 0, the first eigenvalue λ0 of (3.41) has the two-term asymptotic behavior

λ0(ε) =
2πν

|Ω| (1 + 2πνRN (x0;x0))
+O(ν3) =

2πν

|Ω| − 4π2ν2

|Ω| RN (x0;x0) +O(ν3) . (3.58)

Here ν = −1/ log(εd), and d is the logarithmic capacitance determined from the inner problem (3.45). An infinite-

order logarithmic expansion for λ0 is given by λ0 ∼ λ∗, where λ∗ is the first positive root of (3.52).

Next, we extend the asymptotic framework to the case of K holes. Much of the analysis above remains the same,

except that now the single hole x0 is replaced by xi, for i = 1, . . . ,K. The hybrid formulation for K holes is

∆u∗ + λ∗u∗ = 0 , x ∈ Ω\{x1, . . . , xK} ;
∫

Ω

(u∗)2 dx = 1 ; ∂nu
∗ = 0 , x ∈ ∂Ω , (3.59 a)

u∗ ∼ Ai νi log |x− xi|+Ai , as x→ xi , i = 1, . . . ,K . (3.59 b)

Here, νi = −1/ log(εdi), where di is the logarithmic capacitance of the ith hole. In this formulation, we have the K

unknowns, Ai, for i = 1, . . . ,K, and one normalization condition for u∗. The normalization condition effectively sets

one relation between the Ai, for i = 1, . . . ,K.
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We write u∗ in terms of the Helmholtz Green’s function defined in (3.50), and then take the limit x→ xi to get

u∗ = −2π

K∑

j=1

AjνjGh(x;xj , λ
∗) ∼ Aiνi (log |x− xi| − 2πνiRh(xi;xi, λ

∗))− 2π

K∑

j=1

j 6=i

AjνjGh(xi;xj , λ
∗) . (3.60)

The matching condition is that the expressions in (3.59 b) and (3.60) agree. The logarithmic terms agree, and from

the remaining terms, we obtain a K ×K homogeneous linear system to solve for the Ai

Ai (1 + 2πνiRh(xi;xi, λ
∗)) + 2π

K∑

j=1

j 6=i

AjνjGh(xi;xj , λ
∗) = 0 , i = 1, . . . ,K . (3.61)

A solution to (3.61) exists only when the following determinant vanishes:

∣∣∣∣∣∣∣∣∣∣

(1 + 2πν1Rh11(λ
∗)) 2πν2Gh12(λ

∗) · · · 2πνKGh1K(λ∗)

2πν1Gh21(λ
∗) (1 + 2πν2Rh22(λ

∗))
...

...
. . .

2πν1GhK1(λ
∗) · · · 2πνK−1GhKK−1(λ

∗) (1 + 2πνKRhKK(λ∗))

∣∣∣∣∣∣∣∣∣∣

= 0 . (3.62)

Here we have defined Rhii(λ
∗) = Rh(xi;xi, λ

∗), Ghij(λ
∗) = Gh(xi;xj , λ

∗), for i 6= j, and νi = −1/ log(εdi) for

i = 1, . . . ,K. We need the solution λ∗(ν1, . . . , νK) of (3.62) that tends to zero as νi → 0 for i = 1, . . . ,K. Equation

(3.62) provides an expression for λ∗(ν1, . . . , νK) that sums all the logarithmic terms in the asymptotic expansion of

λ0(ε).

As with the case for one hole in the domain, we can derive an asymptotic formula for λ∗ that has an error of

O(ν3). This formula is again determined in terms of the Neumann Green’s function GN and its regular part RN ,

defined in (3.55). By using (3.56) and (3.57) in (3.62), we obtain a homogeneous linear system for the Ai

Ai

[
1 + 2πνiRN (xj ;xj)−

2πνi
|Ω|λ∗

]
+ 2π

K∑

j=1

j 6=i

Ajνj

[
− 1

|Ω|λ∗ +GN (xj ;xi)

]
= 0 , i = 1, . . . ,K . (3.63)

It is convenient to write (3.63) in matrix form as

Ca =
2π

|Ω|λ∗BVa ; V ≡




ν1 0 · · · 0

0
. . . · · · 0

...
...

. . .
...

0 0 · · · νK



, B ≡




1 1 · · · 1

1
. . . · · · 1

...
...

. . .
...

1 1 · · · 1



, a ≡




A1

...

AK


 . (3.64 a)

In (3.64 a), the matrix C is defined in terms of the Neumann Green’s function matrix GN by

C = I + 2πGNV , (3.64 b)

where

GN ≡




RN (x1;x1) GN (x1;x2) · · · · · · GN (x1;xK)

GN (x2;x1) RN (x2;x2) GN (x2;x3) · · · · · ·
...

...
. . .

...
...

· · · · · · GN (xK−1;xK−2) RN (xK−1;xK−2) GN (xK−1;xK)

GN (xK ;x1) · · · · · · GN (xK ;xK−1) RN (xK ;xK)



. (3.64 c)
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Let νm = max
j=1,...,K

νj . Then, for νm sufficiently small, we can invert C, to obtain that λ∗ is an eigenvalue of the matrix

eigenvalue problem

Aa = λ∗a , A =
2π

|Ω| C
−1BV . (3.65)

By using this representation of λ∗ we obtain the following result:

Principal Result 3.3:(K Holes) For ε→ 0, the first eigenvalue λ0 of (3.41) has the explicit two-term asymptotic

behavior

λ0(ε) ∼ λ∗ , λ∗ =
2π

|Ω|




K∑

j=1

νj − 2π

K∑

j=1

K∑

i=1

νjνi (G)Nij


+O(ν3m) . (3.66)

Here (G)Nij are the entries of the Neumann Green’s function matrix GN defined in (3.64 c).

Proof: We first notice that the matrix BV has rank one, since V is diagonal and B = e0e
t
0, where e

t
0 = (1, 1, . . . , 1).

This implies that A has rank one, and so λ∗ is the unique nonzero eigenvalue of A. Hence, λ∗ = TraceA. By using

the structure of A in (3.65), we readily calculate that

λ∗ =
2π

|Ω|

K∑

j=1

νj

(
K∑

i=1

cij

)
, cij ≡

(
C−1

)
ij
. (3.67)

Finally, we use the asymptotic inverse C−1 ∼ I − 2πGNV + · · · for νm ≪ 1 to calculate cij . Substituting this result

into (3.67) we obtain (3.66). �

As a Corollary to this result, we obtain the following simplification for the case of K identical holes:

Corollary:(K Identical Holes) Suppose that the K holes are identical, in the sense that εdj is independent of j.

Then, (3.66) can be written as the explicit two-term expansion

λ0(ε) ∼ λ∗ , λ∗ =
2πKν

|Ω| − 4π2ν2

|Ω| p(x1, . . . , xK) +O(ν3) , (3.68)

where ν ≡ −1/ log(εd), and the function p(x1, . . . , xK) is defined by

p(x1, . . . , xK) =

K∑

j=1

K∑

i=1

(G)Nij ≡ Ke
tGNe =

K∑

i=1


RN (xi;xi) +

K∑

j=1

j 6=i

GN (xj ;xi)


 . (3.69)

Here (G)Nij are the entries in the matrix GN in (3.64 c), and e is the unit vector e = K−1/2(1, .., 1)T . For K circular

holes of radius ε, then dj = 1 for j = 1, . . . ,K, and so ν = −1/ log ε.

When Ω is the unit disk, the optimal spatial configurations of the centers {x1, . . . , xK} of K distinct traps of a

common radius ε were computed numerically in [38] by optimizing the function p(x1, . . . , xK) in (3.69). For the unit

disk, the Neumann Green’s function GN (x; ξ) and its regular part RN (ξ; ξ) are explicitly available, and are given by

G(x;x0) =
1

2π

(
− log |x− x0| − log

∣∣∣∣x|x0| −
x0
|x0|

∣∣∣∣+
1

2
(|x|2 + |x0|2)−

3

4

)
, (3.70 a)

R(x0;x0) =
1

2π

(
− log

∣∣∣∣x0|x0| −
x0
|x0|

∣∣∣∣+ |x0|2 −
3

4

)
. (3.70 b)

By using this Green’s function, it is readily shown that the problem of minimizing the function p(x1, . . . , xK) is
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equivalent to the discrete variational problem of minimizing the function F(x1, . . . , xK) defined by

F(x1, . . . , xK) = −
K∑

j=1

K∑

k=1

k 6=j

log |xj − xk| −
K∑

j=1

K∑

k=1

log |1− xj x̄k|+K

K∑

j=1

|xj |2 , |xj | < 1 , (3.71)

for xj 6= xk when j 6= k, and where x̄k denotes the complex conjugate of xk.

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Figure 4. Optimum configuration of 6 ≤ K ≤ 25 traps inside the unit disk that minimizes the principal eigenvalue of (3.41).

For K small, optimal patterns consist of ring arrangements of traps, which can be analyzed explicitly as in [38].

The optimal patterns of holes for 6 ≤ K ≤ 25 are shown in Fig. 4. An interesting open problem is to determine

the optimal arrangement of K ≫ 1 traps in the dilute fraction limit Kπε2 ≪ 1, and to determine a scaling law

valid for N ≫ 1 for the optimal energy F . In particular, does the optimal arrangement approach a hexagonal lattice

structure with a boundary layer near the rim of the unit disk? Can the limiting result for the eigenvalue asymptotics

be predicted from the dilute fraction limit of homogenization theory?

As this stage the reader should attempt the following two problems (the solutions are given in Appendix B):

Problem 3.3: Consider the principal eigenvalue of (3.41) in the unit disk, with the Dirichlet condition u = 0 posed

on ∂Ω instead of ∂nu = 0 on ∂Ω. Assume that there is one arbitrarily-shaped hole centered at the origin of the

unit disk. Derive an explicit transcendental equation for the infinite-order logarithmic series approximation to the
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principal eigenvalue, and apply your result to the special case of the unit disk that contains a hole of arbitrary shape

centered at the origin.

Problem 3.4: Consider (3.41) for the case of K holes that have a common logarithmic capacitance d = d1 = . . . , dK .

By introducing two-term expansions directly in (3.41) for the eigenvalue and for the outer and inner approximations

to the eigenfunction, re-derive the two-term approximation given in (3.68) of the Corollary.

3.4 The Fundamental Eigenvalue on the Surface of a Sphere with Localized Traps

A related spectral problem concerns the determination of the mean first passage time (MFPT) for Brownian motion

on the surface of the unit sphere S in the presence of a collection of perfectly absorbing traps of asymptotically small

radii. This problem, with clear biophysical applications, was studied in [19]. In this context, the average MFPT is

asymptotically proportional to the inverse of the principal eigenvalue σ⋆(ε) of the Laplace-Beltrami operator for the

sphere. The eigenvalue problem is formulated as

△sψ + σψ = 0 , x ∈ Sε ≡ S\ ∪K
j=1 Ωεj ; ψ = 0 , x ∈ ∂Ωεj , j = 1, . . . , N . (3.72)

Each trap is assumed to be centered at some xj ∈ S with |xj | = 1 and has radius O(ε), with ε ≪ 1. The traps are

assumed to be well-separated in the sense that |xi − xj | = O(1) for i 6= j and i, j = 1, . . . ,K. In (3.72), ∆s is the

Laplace-Beltrami operator for the sphere.

We consider the special case of K locally circular traps of a common radius ε. Then, the principal eigenvalue σ⋆(ε)

has an infinite logarithmic expansion of the form σ(ε) as

σ⋆(ε) = µσ0 + µ2σ1 + µ3σ2 + · · · , µ ≡ − 1

log ε
. (3.73)

The logarithmic nature of the expansion is similar to other problems in two space dimensions with localized pertur-

bations (cf. [6], [38], [70], and [77]). One can readily derive a two-term expansion for this principal eigenvalue as in

[19] by deriving simple formulae for the coefficients σ0 and σ1. Since the curvature of the sphere provides only an

O(ε) correction to the solution in the inner region near each trap, this contribution is asymptotically insignificant

in comparison with the logarithmic gauge −1/ log ε. Consequently, the curvature of the sphere can be neglected in

each inner region. The two-term result from [19] is summarized as follows:

Principal Result 3.4: Consider (3.72) for K circular traps of a common radius ε centered at xj, for j = 1, . . . , N ,

on the unit sphere. Then, the principal eigenvalue σ⋆(ε) of (3.72) has the two-term asymptotic expansion

σ(ε) ∼ µK

2
+ µ2

[
−K

2

4
(2 log 2− 1) + p(x1, . . . , xK)

]
, µ ≡ − 1

log ε
, (3.74)

where p(x1, . . . , xK) is the discrete energy defined by

p(x1, . . . , xK) ≡
K∑

i=1

K∑

j>i

log |xi − xj | . (3.75)

This result shows that the optimal configuration {x1, . . . , xK} of the centers of the traps that maximize the

fundamental eigenvalue, thereby minimizing the lifetime of the wandering Brownian particle, is at the so-called
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elliptic Fekete points that minimize the discrete logarithmic energy −∑K
i=1

∑K
j>i log |xi − xj | on the unit sphere.

This famous discrete variational problem has a long history in approximation theory (see [5], [27], [55]).

The derivation of the main result (3.74) involves, in a rather central way, the modified Green’s function Gm(x;x0)

for the sphere, defined as the unique solution to

△sGm =
1

4π
− δ(x− x0) , x ∈ S , (3.76 a)

Gm is 2π periodic in φ and smooth at θ = 0, π , (3.76 b)
∫

S

Gm ds ≡
∫ 2π

0

∫ π

0

Gm sin θ dθdφ = 0 . (3.76 c)

Here x and x0 are given in terms of spherical coordinates φ (longitude) and θ (latitude) by

x = (cosφ sin θ, sinφ sin θ, cos θ) , x0 = (cosφ0 sin θ0, sinφ0 sin θ0, cos θ0) . (3.77)

The solution of (3.76) is well-known from various studies of the motion of fluid vortices on the sphere (see [36] and

the references therein), and is given explicitly for any x ∈ S by

Gm(x;x0) = − 1

2π
log |x− x0|+Rm , Rm ≡ 1

4π
[2 log 2− 1] , (3.78)

where Rm is the (constant) regular part of Gm.

To formulate a problem that has the effect of summing all of the logarithmic terms in the asymptotic expansion

of (3.72), we do not expand ψ or σ⋆(ε) in an infinite logarithmic series. Instead, we take the outer solution for ψ

to satisfy (3.72) in the punctured domain S\{x1, . . . , xK}, with an appropriate singularity behavior at each xj that

asymptotically matches with the inner solution to Laplace’s equation. In this way, the hybrid asymptotic-numerical

formulation for the outer solution for ψ and the eigenvalue σ is to solve

△sψ + σψ = 0 , x ∈ S\{x1, . . . , xK} , (3.79 a)

ψ ∼ Aj + µjAj log |x− xj | , as x→ xj , j = 1, . . . ,K . (3.79 b)

with
∫
S
ψ2 ds = 1, where ψ is singularity-free at the poles θ = 0, π and is 2π periodic in φ.

To represent the solution to (3.79), we first must introduce the Helmholtz Green’s function GH(x;x0, ν) for the

Laplace-Beltrami operator, defined as the solution to

△sGH + ν(ν + 1)GH = −δ(x− x0) , x ∈ S , (3.80 a)

GH is 2π periodic in φ and smooth at θ = 0, π . (3.80 b)

This Green’s function, which arises in the study of high frequency wave scattering (see [69] and [73]), is given

explicitly by

GH(x;x0, ν) = − 1

4 sin(πν)
Pν (−x · x0) , (3.81)

where Pν(z) is the Legendre function of the first kind of order ν. As z → −1, it follows from [23] that

Pν(z) ∼
sin(πν)

π

[
log

(
1 + z

2

)
+ 2γe + 2ψ(ν + 1) + π cot(πν)

]
, (3.82)
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where ψ(z) is the psi or digamma function, which is defined in terms of the Gamma function Γ(z) by (cf. [23])

ψ(z) =
Γ′(z)

Γ(z)
= log z +

∫ ∞

0

e−zt

(
1

t
− 1

1− e−t

)
dt . (3.83)

Here γe is Euler’s constant. Upon substituting (3.82) into (3.81), and recalling that 1 − x · x0 = |x− x0|2/2, we
readily obtain that as x→ x0 the Helmholtz Green’s function has the local behavior

GH(x;x0, ν) = − 1

2π
log |x− x0|+Rh(ν) + o(1) , as x→ x0 ,

RH(ν) ≡ − 1

4π
[−2 log 2 + 2γe + 2ψ(ν + 1) + π cot(πν)] . (3.84 a)

This local expansion identifies the constant regular part RH(ν) of this Green’s function.

The solution to (3.79) is then written as

ψ = −2πµ

K∑

i=1

AiGH(x;xi, ν) . (3.85)

Then, by using (3.84 a), we can expand ψ as x→ xj for each j = 1, . . . ,K to obtain

ψ ∼ µAj log |x− xj | − 2πµAjRH − 2πµ

K∑

i=1

i6=j

AiGHji , as x→ xj . (3.86)

By comparing (3.86) with the required singular behavior (3.79 b), we conclude that Aj must satisfy the following

homogeneous linear system:

Aj + 2πµAjRH + 2πµ
K∑

i=1

i6=j

AiGHji = 0 , j = 1, . . . ,K . (3.87)

Here GHji = GH(xj ;xi, ν) is given in terms of σ = ν(ν + 1) by (3.81). We seek the smallest value of σ(ε) for which

(3.87) has a nontrivial solution. This smallest value, denoted by σ∗(ε) is the infinite-order logarithmic approximation

to the fundamental eigenvalue. The corresponding eigenvector A1, . . . , AK is determined up to a scalar multiple. This

scalar multiple can then be found by substituting (3.85) into the normalization condition
∫
S
ψ2 ds = 1. This leads to

the following result:

Principal Result 3.5: Consider (3.72) for K locally circular traps of common radius ε, and define µ ≡ −1/ log ε.

Then, with an error of order O(εµ), the principal eigenvalue σ(ε) of (3.72) is the smallest root of the transcendental

equation

Det (I + 2πµ (RhI + GH)) = 0 . (3.88 a)

Here I is the K ×K identity matrix, while GH is the Helmholtz Green’s function matrix with matrix entries

GHjj = 0 , j = 1, . . . ,K ; GHij = − 1

4 sin(πν)
Pν

( |xj − xi|2
2

− 1

)
, i 6= j , (3.88 b)

where Pν(z) is the Legendre function of the first kind of order ν.

We remark that both RH , given in (3.84 a), and GHij depend on ν. Therefore, we must solve (3.88) numerically

for ν = ν(ε), which determines σ(ε) from the relation σ = ν(ν + 1).

For the special case of one trap K = 1, (3.88) reduces to the transcendental equation 2πRH = −1/µ, identical in
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K = 5 traps K = 2 traps

ε σ σ∗ σ2 σ σ∗ σ2

0.02 0.7918 0.7894 0.7701 0.2458 0.2451 0.2530

0.05 1.1003 1.0991 1.0581 0.3124 0.3121 0.3294

0.1 1.5501 1.5452 1.4641 0.3913 0.3903 0.4268

0.2 2.5380 2.4779 2.3278 0.5177 0.5110 0.6060

Table 4. Smallest eigenvalue of (3.72) for either two or five equally-spaced circular traps of a common radius ε on

the surface of the unit sphere. Here, σ is the numerical solution found by COMSOL [17], σ∗ = ν(1 + ν) corresponds

to the root ν of the transcendental equation (3.88 a), and σ2 is calculated from the two-term expansion (3.74).

form to that in (3.52) for the planar domain. By using (3.84 a) for RH , we obtain that that the approximation to

σ(ε) that accounts for all the logarithmic terms in the expansion is the smallest root of

− log 2 + γe + ψ(ν + 1) +
π

2
cot(πν) =

1

µ
, σ = ν + ν2 , (3.89)

where γe is Euler’s constant, and ψ(z) is the digamma function defined in (3.83). We can readily recover the two-term

expansion (3.74) for N = 1 by substituting ψ(ν+1) ∼ −γe and π cotπν ∼ 1/ν for ν ≪ 1 into (3.89) and then solving

for σ.

To validate the asymptotic result in (3.88), we used the eigenvalue solver of the COMSOL software package [17]

to compute the smallest eigenvalue, together with the corresponding eigenmode, of (3.72) for both a 2- and a 5-trap

configuration with equally spaced traps on the unit sphere. The two-term results, the infinite-logarithmic expansion

results, and the full numerical results, are shown in Table 4. From this table, we observe that for ε = 0.2 and K = 5

traps, for which the trap surface area fraction is f = 5πε2/(4π)×100% = 5%, the infinite-order logarithmic expansion

still provides a very close approximation to the full numerical result.

3.5 The Narrow Escape Problem in 2-D Domains

The narrow escape problem in a two-dimensional domain is described as the motion of a Brownian particle confined

in a bounded domain Ω ∈ R2 whose boundary ∂Ω = ∂Ωr ∪ ∂Ωa is almost entirely reflecting (∂Ωr), except for small

absorbing windows, labeled collectively by ∂Ωa, through which the particle can escape (see Fig. 5). Denoting the

trajectory of the Brownian particle by X(t), the mean first passage time (MFPT) v(x) is defined as the expectation

value of the time τ taken for the Brownian particle to become absorbed somewhere in ∂Ωa starting initially from

X(0) = x ∈ Ω, so that v(x) = E[τ |X(0) = x]. The calculation of v(x) becomes a narrow escape problem in the

limit when the measure of the absorbing set |∂Ωa| = O(ε) is asymptotically small, where 0 < ε ≪ 1 measures the

dimensionless radius of an absorbing window.

Narrow escape problems have many biophysical applications (cf. [62], [66]). In this context, the Brownian particles

could be diffusing ions, globular proteins or cell-surface receptors. It is then of interest to determine, for example,
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the mean time that an ion requires to find an open ion channel located in the cell membrane or the mean time of a

receptor to hit a certain target binding site (cf. [62]).

It is well-known (cf. [62], [66]) that the MFPT v(x) satisfies a Poisson equation with mixed Dirichlet-Neumann

boundary conditions, formulated as

△v = − 1

D
, x ∈ Ω , (3.90 a)

v = 0 , x ∈ ∂Ωa = ∪N
j=1∂Ωεj , j = 1, . . . , N ; ∂nv = 0 , x ∈ ∂Ωr , (3.90 b)

where D is the diffusion coefficient associated with the underlying Brownian motion. In (3.90), the absorbing set

consists of N small disjoint absorbing windows ∂Ωεj centered at xj ∈ ∂Ω (see Fig. 5). In our two-dimensional

setting, we assume that the length of each absorbing arc is |∂Ω| = εlj , where lj = O(1) for j = 1, . . . , N . It is further

assumed that the windows are well-separated in the sense that |xi − xj | = O(1) for all i 6= j. With respect to a

uniform distribution of initial points x ∈ Ω, the average MFPT, denoted by v̄, is defined by

v̄ = χ ≡ 1

|Ω|

∫

Ω

v(x) dx , (3.91)

where |Ω| denotes the area of Ω.

Figure 5. Sketch of a Brownian trajectory in the two-dimensional unit disk with absorbing windows on the boundary

Since the MFPT diverges as ε→ 0, the calculation of the MFPT v(x), and that of the average MFPT v̄, constitutes

a singular perturbation problem. The asymptotic solution to this problem as constructed in [53], and summarized

below, involves an infinite logarithmic expansion.

To construct the inner solution near the jth absorbing arc, we write (3.90) in terms of a local orthogonal coordinate

system where η denotes the distance from ∂Ω to x ∈ Ω, and s denotes arclength on ∂Ω. In terms of these coordinates,

the problem (3.90 a) for v(x) transforms to the following problem for w(η, s):

∂ηηw − κ

1− κη
∂ηw +

1

1− κη
∂s

(
1

1− κη
∂sw

)
= − 1

D
. (3.92)

Here κ is the curvature of ∂Ω and the center xj ∈ ∂Ω of the jth absorbing arc transforms to s = sj and η = 0.

Next, we introduce the local variables η̂ = η/ε and ŝ = (s− sj)/ε near the jth absorbing arc. Then, from (3.92)
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and (3.90 b), we neglect O(ε) terms to obtain the inner problem

w0η̂η̂ + w0ŝŝ = 0 , 0 < η̂ <∞ , −∞ < ŝ <∞ , (3.93 a)

∂η̂w0 = 0 , on |ŝ| > lj/2 , η̂ = 0 ; w0 = 0 , on |ŝ| < lj/2 , η̂ = 0 . (3.93 b)

We specify that w0 has logarithmic growth at infinity, i.e. w0 ∼ Aj log |y| as |y| → ∞, where Aj is a constant to be

determined, and |y| ≡ ε−1|x−xj | =
(
η̂2 + ŝ2

)1/2
. The solution w0, unique up to the constant Aj , is readily calculated

by introducing elliptic cylinder coordinates in (3.93). It has the far-field behavior

w0 ∼ Aj [log |y| − log dj + o(1)] , as |y| → ∞ , dj = lj/4 . (3.94)

In the outer region, the jth absorbing arc shrinks to the point xj ∈ ∂Ω as ε → 0. With regards to the outer

solution, the influence of each absorbing arc is, in effect, determined by a certain singularity behavior at each xj that

results from the asymptotic matching of the outer solution to the far-field behavior (3.94) of the inner solution. In

this way, we obtain that the outer solution for v satisfies

△v = − 1

D
, x ∈ Ω ; ∂nv = 0 , x ∈ ∂Ω\{x1, . . . , xN} , (3.95 a)

v ∼ Aj

µj
+Aj log |x− xj | , as x→ xj , j = 1, . . . , N ; µj ≡ − 1

log(εdj)
, dj =

lj
4
. (3.95 b)

Each singularity behavior in (3.95 b) specifies both the regular and singular part of a Coulomb singularity. As such,

it provides one constraint for the determination of a linear system for the source strengths Aj for j = 1, . . . , N .

To solve (3.95), we introduce the surface Neumann Green’s function Gs(x; ξ) defined as the unique solution of

△Gs =
1

|Ω| , x ∈ Ω ; ∂nGs = 0 , x ∈ ∂Ω\{ξ} , (3.96 a)

Gs(x; ξ) ∼ − 1

π
log |x− ξ|+Rs(ξ; ξ) , as x→ ξ ∈ ∂Ω , (3.96 b)
∫

Ω

Gs(x; ξ) dx = 0 . (3.96 c)

Then, the solution to (3.95) is written in terms of Gs(x;xj) and an unknown constant χ, denoting the spatial average

of v, by

v = −π
N∑

i=1

AiGs(x;xi) + χ , χ = v̄ ≡ 1

|Ω|

∫

Ω

v dx . (3.97)

To determine a linear algebraic system for Aj , for j = 1, . . . , N , and for χ, we expand (3.97) as x → xj and

compare it with the required singularity behavior (3.95 b). This yields that

Aj log |x− xj | − πAjRsjj − π

N∑

i=1

i6=j

AiGsji + χ = Aj log |x− xj |+
Aj

µj
, j = 1, . . . , N . (3.98)

Here Gsji ≡ Gs(xj ;xi), while Rsjj ≡ Rs(xj ;xj) is the regular part of Gs given in (3.96 b) at x = xj . Equation

(3.98) yields N linear equations for χ and Aj , for j = 1, . . . , N . The remaining equation is obtained by noting that
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△v = −π∑N
i=1Ai△G = −π|Ω|−1

∑N
i=1Ai = −D−1. Thus, the N + 1 constants χ and Aj , for j = 1, . . . , N , satisfy

Aj

µj
+ πAjRsjj + π

N∑

i=1

i6=j

AiGsji = χ , j = 1, . . . , N ;

N∑

i=1

Ai =
|Ω|
Dπ

. (3.99)

This linear system of N + 1 equations can be written in matrix form as

(I + πUGs)A = χUe , e
TA =

|Ω|
Dπ

. (3.100)

Here e
T ≡ (1, . . . , 1), AT ≡ (A1, . . . , AN ), I is the N × N identity matrix, while the diagonal matrix U and the

symmetric surface Neumann Green’s function matrix Gs are defined by

U ≡




µ1 0 · · · 0

0
. . . · · · 0

...
...

. . .
...

0 0 · · · µN



, Gs ≡




Rs11 Gs12 · · · Gs1N

Gs21 Rs22 · · · Gs2N

...
...

. . .
...

GsN1 · · · GsNN−1 RsNN


 . (3.101)

We can then decouple A and χ in (3.100) to obtain the following main result:

Principal Result 3.6: Consider N well-separated absorbing arcs for (3.90) of length εlj for j = 1, . . . , N centered

at xj ∈ ∂Ω. Then, the asymptotic solution to (3.90) is given in the outer region |x−xj | ≫ O(ε) for j = 1, . . . , N by

v ∼ −π
N∑

i=1

AiGs(x;xi) + χ . (3.102 a)

Here Gs is the surface Neumann Green’s function satisfying (3.96), and AT = (A1, . . . , AN ) is the solution of the

linear system (
I + πU

(
I − 1

µ̄
EU
)
Gs

)
A =

|Ω|
DπNµ̄

Ue , E ≡ 1

N
ee

T . (3.102 b)

In addition, the constant χ, representing the spatial average of v, is given in terms of A, and of µj of (3.95 b), by

v̄ ≡ χ =
|Ω|

DπNµ̄
+

π

Nµ̄
e
TUGsA , µ̄ ≡ 1

N

N∑

j=1

µj . (3.102 c)

Our asymptotic solution to (3.90) in this result has in effect summed all of the logarithmic correction terms in the

expansion of the solution, leaving an error that is transcendentally small in ε. Secondly, the constant χ in (3.102 a),

as given in (3.102 c), has the immediate interpretation as the MFPT averaged with respect to an initial uniform

distribution of starting points in Ω for the random walk.

For µj ≪ 1 we can solve (3.102 b) and (3.102 c) asymptotically by calculating the approximate inverse of the matrix

multiplying A in (3.102 b). In this way, we obtain the following two-term result:

Principal Result 3.7: For ε ≪ 1, a two-term expansion for the solution of (3.90) is provided by (3.102 a), where

Aj and χ are given explicitly by

Aj ∼
|Ω|µj

NDπµ̄

(
1− π

N∑

i=1

µiGsij +
π

Nµ̄
pw(x1, . . . , xN )

)
+O(|µ|2) , (3.103 a)

v̄ ≡ χ ∼ |Ω|
NDπµ̄

+
|Ω|

N2Dµ̄2
pw(x1, . . . , xN ) +O(|µ|) , (3.103 b)
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where |µ| ≡ max
j=1,...,N

µj. Here pw(x1, . . . , xN ) is the following weighted discrete sum defined in terms of the entries

Gsij of the surface Neumann Green’s function matrix of (3.101):

pw(x1, . . . , xN ) ≡
N∑

i=1

N∑

j=1

µiµjGsij , µj = − 1

log(εdj)
, dj =

lj
4
. (3.104)

Hence, the average MFPT χ is minimized for an arrangement of arcs that minimize the discrete sum pw(x1, . . . , xN ).

We now illustrate the theory for the case where Ω is the unit disk, Ω ≡ {x || |x| ≤ 1}. When the singular point is

on the boundary of the unit disk, i.e. ξ ∈ ∂Ω, then the surface Neumann Green’s function and its regular part are

given explicitly by (cf. [53])

Gs(x; ξ) = − 1

π
log |x− ξ|+ |x|2

4π
− 1

8π
, Rs(ξ; ξ) =

1

8π
. (3.105)

Consider the special case where N absorbing arcs of a common length 2ε are equally spaced on the boundary of

the unit disk. Then, we have that xj = e2πij/N and |∂Ωεj | = 2ε, for j = 1, . . . , N . For this special case, the surface

Neumann Green’s matrix Gs is a symmetric circulant matrix, and consequently

Gse =
p

N
e , p ≡ p(x1, . . . , xN ) ≡

N∑

i=1

N∑

j=1

Gsij , (3.106)

where e
T = (1, . . . , 1). For this special case, the exact solution to (3.102 c), which accounts for all logarithmic terms,

is

χ =
|Ω|

NDπµ
+

|Ω|
N2D

p(x1, . . . , xN ) , µ =
−1

log[(εl/4)]
. (3.107)

Next, by using (3.105) for Gs(xi;xj) and Rs(xj ;xj), we then calculate p(x1, . . . , xN ) as

p(x1, . . . , xN ) =

N∑

k=1

N∑

j=1

Gskj =
N2

8π
− 1

π

N∑

k=1

N∑

j 6=k

log |xj − xk| ,

=
N2

8π
− 1

π

N∑

k=1

log




N∏

j=1

j 6=k

(
1− e2πi(j−k)/N

)

 =

1

π

(
N2

8
−N logN

)
, (3.108)

where we have used the simple identity
∏N

j=1

j 6=k

(
α− βe2πi(j−k)/N

)
= |αN−1

(
1 + β

α + · · ·+
(

β
α

)N−1
)
| .

Therefore, for the special case xj = e2πij/N for j = 1, . . . , N we obtain from (3.108) and (3.107) that

χ ∼ 1

DN

[
− log

(
εN

2

)
+
N

8

]
. (3.109)

As remarked following (3.107), the error associated with the asymptotic result (3.109) is smaller than any power of µ.

Further examples of the theory are considered in [19]. In [19] a numerical method is formulated and implemented to

numerically compute the surface Neumann Green’s function and its regular part numerically for arbitrary bounded

two-dimensional domains with smooth boundaries.
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3.6 A Nonlinear Problem

In this subsection we show how the method for summing infinite logarithmic expansions can be extended to treat

nonlinear elliptic second-order problems on bounded domains.

There are essentially two different ways that nonlinearities can arise. For the first subclass of problems, the outer

problem away from the perturbing subdomain is nonlinear, whereas in the vicinity of the hole the problem reduces

to Laplace’s equation. This is the problem that is considered below. For the second subclass, the inner problem is

nonlinear whereas the outer problem is linear. This latter subclass is key to the study of spot solutions to reaction-

diffusion systems as discussed in §6.

A model problem of the first type in a bounded two-dimensional domain Ω, which contains a small hole Ωε, is

△w + F (w) = 0 , x ∈ Ω\Ωε , (3.110 a)

∂nw + b(w − wb) = 0 , x ∈ ∂Ω , (3.110 b)

w = α , x ∈ ∂Ωε . (3.110 c)

Here α is constant, ∂n denotes the outward normal derivative, b > 0, and Ωε is a small hole of radius O(ε) with

Ωε → x0 ∈ Ω uniformly as ε→ 0. The function F (w) is assumed to be smooth. Nonlinear problems of this type arise

in many applications, including steady-state combustion theory where F (w) is an exponential function (cf. [77]).

The primary difference between the linear problem (3.10) and the unperturbed problem corresponding to (3.110) is

that, depending on the precise nature of the nonlinearity F (w), the unperturbed problem may have no solution, a

unique solution, or multiple solutions. We shall assume that the unperturbed problem has at least one solution, and

we will focus on determining how a specific solution to this problem is perturbed by the presence of the subdomain

Ωε.

In the outer region we expand w as in (3.11). The leading-order term W0(x; ν) in this expansion satisfies

△W0 + F (W0) = 0 , x ∈ Ω\{x0} , (3.111 a)

∂nW0 + b(W0 − wb) = 0 , x ∈ ∂Ω , (3.111 b)

W0 is singular as x→ x0 . (3.111 c)

The analysis of the solution in the inner region is the same as for the pipe problem of §2 since the effect of the

nonlinear term in the inner region is O(ε2), which is transcendentally small compared to the logarithmic terms.

Hence, we require that W0 has the following singular behavior as x→ x0 (see equation (3.18)):

W0 = α+ γ + γν log |x− x0|+ o(1) , as x→ x0 . (3.112)

Here γ = γ(ν) is to be found and ν is defined in terms of the logarithmic capacitance d of (3.15) by ν = −1/ log(εd).

At this stage the asymptotic treatment of the nonlinear problem (3.110) differs slightly from its linear counterpart

(3.10). We suppose that for some range of the parameter S we can find a solution to (3.111) with the singular
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behavior

W0 ∼ S log |x− x0| , as x→ x0 . (3.113)

Then, in terms of this solution we define the regular part R = R(S;x0) of this Coulomb singularity by

R(S;x0) = lim
x→x0

(W0 − S log |x− x0|) . (3.114 a)

In general R is a nonlinear function of S at each x0. Therefore, we have

W0 ∼ S log |x− x0|+R(S;x0) + o(1) , as x→ x0 . (3.114 b)

Equating (3.114 b) to (3.112) we get S = νγ and R = α+γ, where ν = −1/ log(εd). For fixed εd and α, these relations

are two nonlinear algebraic equations for the two unknowns S and γ. Alternatively, we can view these relations as

providing a parametric representation of the desired curve γ = γ(ν) in the form ν = ν(S) and γ = γ(S), where

γ = R(S;x0)− α , ν =
S

R(S;x0)− α
. (3.115)

The equation for ν in (3.115) is an implicit equation determining S in terms of ε from ν = −1/ log(εd). Therefore,

we can analytically sum all of the logarithmic terms in the expansion of the solution to (3.110) provided that we

compute the solution to (3.111), with singular behavior (3.113), and then identify R(S;x0) from (3.114 a). In general

this must be done numerically. However, we now illustrate the method with an example where R(S;x0) can be

calculated analytically.

Let Ω be the unit disk, and take b = ∞, wb = 0, F (w) = ew, and assume that Ωε is an arbitrarily-shaped hole

centered at the origin. Then, (3.111) and (3.113) reduce to a radially symmetric problem for W0(r), given by

W ′′
0 +

1

r
W ′

0 + eW0 = 0 , 0 < r ≤ 1 ; W0 = 0 , on r = 1 , (3.116 a)

W0 ∼ S log r , as r → 0 , (3.116 b)

where r = |x|. This problem (3.116) can be solved analytically by first introducing the new variables v and η defined

by

v =W0 − S log r , η = r1+S/2 . (3.117)

When S > −2, we then obtain that v = v(η) is smooth and satisfies

v′′ +
1

η
v′ +

(
1 +

S

2

)−2

ev = 0 , 0 ≤ η ≤ 1 ; v = 0 , on η = 1 . (3.118)

The well-known solution to (3.118) (see [77]) can be written in parametric form as

v(η) = 2 log

(
1 + ρ

1 + ρη2

)
, (3.119 a)

where ρ = ρ(S) is given by
(
1 +

S

2

)−2

=
8ρ

(1 + ρ)2
. (3.119 b)

The maximum of the right-hand side of (3.119 b) is 2 and occurs when ρ = 1. Therefore, for there to be a solution

to (3.116) we require that (1 + S/2)
2
> 1/2, which yields that S >

√
2 − 2. When S >

√
2 − 2, (3.119 b) has two
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roots for ρ, and hence (3.116) has two solutions. Let us consider the solution with the smaller root, which we label

by ρ−(S). Then, we calculate that

ρ−(S) = (S + 1)(S + 3)− (S + 2)
[
(S + 2)2 − 2

]1/2
. (3.120)

Setting η = 0 in (3.119 a), and using (3.117), we compare with (3.114 a) to conclude that R(S;0) = v(0), which yields

R(S;0) = 2 log(1 + S/2) + log [8ρ−(S)] . (3.121)

Substituting (3.121) into (3.115) gives a parametric representation of the curve γ = γ(ν) in the form ν = ν(S) and

γ = γ(S).

4 Two Specific Applications of Strong Localized Perturbation Theory

In this section we discuss two recent applications, one in 2-D and the other in 3-D, where strong localized perturbation

theory has been applied.

4.1 The Persistence Threshold Problem in Mathematical Ecology

The application of strong localized perturbation theory in this subsection is based on [45]. The diffusive logistic model,

which describes the evolution of a population with density u(x, t) diffusing with constant diffusivity D = 1/λ > 0

throughout some habitat represented by a bounded domain Ω ⊂ R
2, is formulated as

ut = ∆u+ λu [m(x)− u] , x ∈ Ω ; ∂nu = 0 , x ∈ ∂Ω ; u(x, 0) = u0(x) ≥ 0 , x ∈ Ω . (4.1)

The no-flux boundary condition in (4.1) specifies that no individuals cross the boundary of the habitat Ω. The

initial population density u0(x) is non-negative. The function m(x) represents the growth rate for the species, with

m(x) > 0 in favorable parts of the habitat, and m(x) < 0 in unfavorable parts of the habitat. The integral
∫
Ω
mdx

measures the total resources available in the spatially heterogeneous environment. With respect to applications in

ecology, this model was first formulated in [68].

To determine the stability of the extinction equilibrium solution u = 0, we set u = φ(x)e−σt in (4.1), where

φ(x) ≪ 1, to obtain that φ satisfies

∆φ+ λm(x)φ = −σφ , x ∈ Ω; ∂nφ = 0 , x ∈ ∂Ω . (4.2)

The threshold for species persistence is determined by the stability border of the extinct solution u = 0. At this

bifurcation point, the eigenvalue of the linearized problem about the zero solution must pass through zero. Therefore,

by setting σ = 0 in (4.2) the problem reduces to the determination of a scalar λ and a function φ that satisfies the

indefinite weight eigenvalue problem

∆φ+ λm(x)φ = 0 , x ∈ Ω ; ∂nφ = 0 , x ∈ ∂Ω ;

∫

Ω

φ2 dx = 1 . (4.3)

We say that λ1 > 0 is a positive principal eigenvalue of (4.3) if the corresponding eigenfunction φ1 of (4.3) is

positive in Ω. It is well-known (cf. [7], [28], [63]) that (4.3) has a unique positive principal eigenvalue λ1 if and only if
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∫
Ω
mdx < 0 and the set Ω+ = {x ∈ Ω ; m(x) > 0} has positive measure. Such an eigenvalue is the smallest positive

eigenvalue of (4.3).

The positive principal eigenvalue λ1 is interpreted as the persistence threshold for the species. It is well-known that

if λ < λ1, then u(x, t) → 0 uniformly in Ω̄ for all non-negative and non-trivial initial data, so that the population

tends to extinction. Alternatively, if λ > λ1, then u(x, t) → u∗(x) uniformly in Ω̄ as t → ∞, where u∗ is the unique

positive steady-state solution of (4.1). For this range of λ the species will persist. Many mathematical results for

(4.1) under different boundary conditions are given in the pioneering works of [8], [9], and [10]. Related results for

multi-species interactions and other mathematical problems in ecology are given in [11] (see also the survey article

of [48]).

An interesting problem in mathematical ecology is to determine, among all functions m(x) for which a persistence

threshold exists, which m(x) yields the smallest λ1 for a fixed amount of total resources
∫
Ω
mdx. In other words, we

seek to determine the optimum arrangement of favorable habitats in Ω in order to allow the species to persist for the

largest possible diffusivity D. This optimization problem was originally posed and studied in [8] and [10]. For (4.1)

under Neumann boundary conditions in a two-dimensional domain Ω, it was proved in Theorem 1.1 of [47] that the

optimum m(x) is piecewise continuous and of bang-bang type. An earlier result showing the existence of a similar

bang-bang optimal control for m(x) for the Dirichlet problem was given in [8]. For (4.1) posed in a one-dimensional

interval 0 < x < 1, it was proved in Theorem 1.2 of [47] that the optimal m(x) consists of a single favorable habitat

attached to one of the two endpoints of the interval. Related results were given in [10] under Dirichlet, Neumann,

or Robin type boundary conditions.

In this subsection, we asymptotically calculate, and then optimize, the persistence threshold λ1 for a particular

class of piecewise constant growth rate function m = mε(x) in an arbitrary two-dimensional domain. We assume

that mε(x) is localized to n small circular patches of radii O(ε), each of which is centered either inside Ω or on ∂Ω.

We assume that the boundary ∂Ω is piecewise differentiable, but allow for the domain boundary to have a finite

numbers of corners, each with a non-zero contact angle, which arises from a jump discontinuity of the slope of the

tangent line to the boundary. We denote ΩI ≡ {x1, . . . , xn} ∩ Ω to be the set of the centers of the interior patches,

while ΩB ≡ {x1, . . . , xn} ∩ ∂Ω is the set of the centers of the boundary patches. We assume that the patches are

well-separated in the sense that |xi − xj | ≫ O(ε) for i 6= j and that the interior patches are not too close to the

boundary, i.e. dist(xj , ∂Ω) ≫ O(ε) whenever xj ∈ ΩI . To accommodate a boundary patch, we will associate with

each xj for j = 1, . . . , n, an angle παj representing the angular fraction of a circular patch that is contained within

Ω. More specifically, αj = 2 whenever xj = ΩI , αj = 1 when xj ∈ ΩB and xj is a point where ∂Ω is smooth, and

αj = 1/2 when xj ∈ ∂Ω is at a corner point of ∂Ω for which the two (one-sided) tangent lines to the boundary

intersect at a π/2 contact angle (see Fig. 6). The growth rate function m = mε(x) in (4.3) is taken to have the

specific form

m = mε(x) ≡





mj/ε
2 , x ∈ Ωεj , j = 1, . . . , n ,

−mb , x ∈ Ω\⋃n
j=1 Ωεj .

(4.4)
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Here Ωεj ≡ {x | |x− xj | ≤ ερj ∩ Ω}, so that each patch Ωεj is the portion of a circular disk of radius ερj that is

strictly inside Ω. The constant mj is the local growth rate of the jth patch, with mj > 0 for a favorable habitat

and mj < 0 for an unfavorable habitat. The constant mb > 0 is the background bulk decay rate for the unfavorable

habitat. In terms of this growth rate function, the condition of [7], [28], and [63] for the existence of a persistence

threshold is that one of themj for j = 1, . . . , nmust be positive, and that the following asymptotically valid inequality

on the total resources hold as ε→ 0:

∫

Ω

mε dx = −mb|Ω|+
π

2

n∑

j=1

αjmjρ
2
j +O(ε2) < 0 . (4.5)

Here |Ω| denotes the area of Ω. We assume that the parameters are chosen so that (4.5) is satisfied. A schematic plot

of a domain with interior circular patches, and with portions of circular patches on its boundary, is shown in Fig. 6.

Ω

−

+

+

−

Figure 6. Schematic plot of a two-dimensional domain Ω with localized strongly favorable (+) or unfavorable (−) habitats,
or patches, as described by (4.4). The patches inside the domain are small circular disks. On the domain boundary, the patches
are the portions of circular disks that lie within the domain. The unfavorable boundary habitat in the lower left part of this
figure is at a π/2 corner of ∂Ω.

This specific form for mε(x) is motivated by Theorem 1.1 of [47] that states that the optimal growth rate function

must be of bang-bang type, and the result of [59] that shows that a sufficiently small optimum favorable habitat

must be a circular disk.

We first consider the case of one interior circular patch centered at x0 ∈ Ω, with dist(x0, ∂Ω) ≫ O(ε). We

asymptotically calculate the positive principal eigenvalue λ > 0 and corresponding eigenfunction φ > 0 of

∆φ+ λmε(x)φ = 0 , x ∈ Ω; ∂nφ = 0 , x ∈ ∂Ω ;

∫

Ω

φ2 dx = 1 , (4.6 a)

in the small patch radius limit ε→ 0, where the growth rate function mε(x) is defined as

mε(x) =





m+/ε
2 , x ∈ Ωε0 ,

−mb, x ∈ Ω\Ωε0 .
(4.6 b)

Here the patch Ωε0 is the circular disk Ωε0 ≡ {x | |x− x0| ≤ ε }. In (4.6 b), m+ > 0 is the local growth rate of the

favorable habitat, while mb > 0 gives the background bulk decay rate for the unfavorable habitat.
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The condition
∫
Ω
mdx < 0 for the existence of a positive principal eigenvalue is asymptotically equivalent to

∫

Ω

mdx = −mb|Ω|+ πm+ +O(ε2) < 0 , (4.7)

in the limit ε→ 0. We assume that mb and m+ are chosen so that this condition holds.

We expand the positive principal eigenvalue λ of (4.6) as

λ ∼ µ0ν + µ1ν
2 + · · · , ν = −1/ log ε , (4.8)

for some coefficients µ0 and µ1 to be found. In the outer region, defined away from an O(ε) neighborhood of x0, we

expand the corresponding eigenfunction as

φ ∼ φ0 + νφ1 + ν2φ2 + · · · . (4.9)

Upon substituting (4.8) and (4.9) into (4.6), we obtain that φ0 is a constant. The normalization condition
∫
Ω
φ20 dx = 1

yields φ0 = |Ω|−1/2, where |Ω| is the area of Ω. In addition, we obtain that φ1 and φ2 satisfy

∆φ1 = µ0mbφ0 , x ∈ Ω\{x0} ; ∂nφ1 = 0 , x ∈ ∂Ω ;

∫

Ω

φ1 dx = 0 , (4.10 a)

∆φ2 = µ1mbφ0 + µ0mbφ1 , x ∈ Ω\{x0} ; ∂nφ2 = 0 , x ∈ ∂Ω ;

∫

Ω

(
φ21 + 2φ0φ2

)
dx = 0 . (4.10 b)

The matching of φ1 and φ2 to an inner solution defined in an O(ε) neighborhood of the patch at x0, as done below,

will yield singularity conditions for φ1 and φ2 as x→ x0.

In the inner region near the patch centered at x0 we introduce the local variables y and ψ by

y = ε−1(x− x0) , ψ(y) = φ(x0 + εy) . (4.11)

Then, (4.6) becomes

∆ψ =





−λm+ψ , |y| < 1 ,

O(ε2) , |y| > 1 .
(4.12)

We then represent the inner approximation to the eigenfunction as

ψ ∼ ψ0 + νψ1 + ν2ψ2 + · · · , ν = −1/ log ε . (4.13)

We substitute (4.13) and (4.8) into (4.12), and collect powers of ν, to obtain that ψ0 is an unknown constant, and

that ψ1 and ψ2 satisfy

∆ψk =





Fk , |y| ≤ 1 ,

0 , |y| ≥ 1 .
(4.14 a)

Here Fk for k = 1, 2 is defined by

F1 = −µ0m+ψ0 , F2 = −µ0m+ψ1 − µ1m+ψ0 . (4.14 b)
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We then calculate the solution ψ1 to (4.14) as

ψ1 =





A1ρ
2/2 + ψ̄1 , ρ ≤ 1 ,

A1 log ρ+
A1

2 + ψ̄1 , ρ ≥ 1 ,
(4.15 a)

where ρ = |y|. Here ψ̄1 is an unknown constant, and A1 is given by

A1 =
F1

2
= −1

2
µ0m+ψ0 . (4.15 b)

In addition, for the solution ψ2 to (4.14) we calculate its far-field behavior as

ψ2 ∼ A2 log ρ+O(1) , as ρ→ ∞ , A2 ≡
∫ 1

0

F2 ρ dρ . (4.16 a)

We then calculate A2 by using (4.15) and (4.14 b) for F2 to get

A2 = −µ0m+

∫ 1

0

(
A1

ρ2

2
+ ψ̄1

)
ρ dρ− 1

2
µ1m+ψ0 =

A1

ψ0

(
A1

4
+ ψ̄1 +

µ1

µ0
ψ0

)
. (4.16 b)

The matching condition is that the near-field behavior as x→ x0 of the outer representation of the eigenfunction

must agree asymptotically with the far-field behavior of the inner eigenfunction as |y| = ε−1|x− x0| → ∞, so that

φ0 + νφ1 + ν2φ2 + · · · ∼ ψ0 + νψ1 + ν2ψ2 + · · · . (4.17)

Upon using the far-field behavior of ψ1 and ψ2, as given in (4.15) and (4.16) respectively, we obtain that (4.17)

becomes

φ0 + νφ1 + ν2φ2 + · · · ∼ ψ0 +A1 + ν

(
A1 log |x− x0|+

A1

2
+ ψ̄1 +A2

)
+ ν2 (A2 log |x− x0|+O(1)) . (4.18)

Since φ0 and ψ0 are constants, we obtain the first matching condition that

φ0 = ψ0 +A1 . (4.19)

Then, from the O(ν) terms in the matching condition (4.18), we obtain that φ1 satisfies (4.10 a) subject to the

singularity behavior

φ1 ∼ A1 log |x− x0|+
A1

2
+ ψ̄1 +A2 , as x→ x0 . (4.20)

We remark that the singularity behavior in (4.20) specifies both the regular and singular part of a Coulomb singularity.

Consequently, this singularity structure provides one constraint relating A1, A2, and ψ̄1.

The problem for φ1 can be written in terms of the Dirac distribution as

∆φ1 = µ0mbφ0 + 2πA1δ(x− x0) , x ∈ Ω ; ∂nφ1 = 0 , x ∈ ∂Ω . (4.21)

The divergence theorem then yields

A1 = − 1

2π
(µ0mb|Ω|φ0) . (4.22)

Next, we write the solution to (4.21) in terms of the Neumann Green’s function G(x;x0) as

φ1 = −2πA1G(x;x0) = µ0mb|Ω|φ0G(x;x0) . (4.23)
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Here G(x;x0) is the unique solution to

∆G =
1

|Ω| − δ(x− x0) , x ∈ Ω ; ∂nG = 0 , x ∈ ∂Ω ;

∫

Ω

Gdx = 0 , (4.24 a)

G(x;x0) ∼ − 1

2π
log |x− x0|+R(x0;x0) , as x→ x0 , (4.24 b)

where R(x0;x0) is the regular part of G(x;x0) at x = x0. By expanding φ1 in (4.23) as x → x0 and equating the

non-singular part of the resulting expression with that of (4.20), we obtain

−2πA1R(x0;x0) =
A1

2
+ ψ̄1 +A2 . (4.25)

Finally, we obtain from the O(ν2) terms in the matching condition (4.18) that φ2 ∼ A2 log |x − x0| as x → x0,

where φ2 is the solution to (4.10 b). In terms of the Dirac mass, this problem for φ2 can be written as

∆φ2 = µ1mbφ0 + µ0mbφ1 + 2πA2δ(x− x0) , x ∈ Ω ; ∂nφ2 = 0 , x ∈ ∂Ω , (4.26)

with normalization condition
∫
Ω

(
φ21 + 2φ0φ2

)
dx = 0. The divergence theorem, together with

∫
Ω
φ1 dx = 0, then

yields that

2πA2 = −µ1mb|Ω|φ0 . (4.27)

The leading-order eigenvalue correction µ0 is obtained by combining (4.19) and (4.22), together with using A1 =

−µ0m+ψ0/2 from (4.15 b). This yields that

φ0 =
πm+

|Ω|mb
ψ0 , φ0 =

(
1− µ0m+

2

)
ψ0 . (4.28)

Therefore, since φ0 = |Ω|−1/2, we obtain

µ0 =
2

m+

[
1− πm+

|Ω|mb

]
, ψ0 =

|Ω|mb

πm+
φ0 , φ0 = |Ω|−1/2 . (4.29)

Since
∫
Ω
mdx < 0, then m+π/(|Ω|mb) < 1 from (4.7). Consequently, it follows from (4.29) that µ0 > 0. Next, we

combine (4.22) and (4.27) to evaluate the ratio A2/A1 as A2/A1 = µ1/µ0. Upon using A2/A1 = µ1/µ0 in (4.25) and

(4.16 b), we readily determine ψ̄1 and the eigenvalue correction µ1 as

ψ̄1 = −A1

4
, µ1 = −

(
1

4
+ 2πR(x0;x0)

)
µ0 . (4.30)

Finally, a two-term expansion for the eigenfunction in the outer region is obtained from (4.9) by using (4.23) for φ1.

The corresponding two-term inner approximation to the eigenfunction is given by (4.13), where ψ1 is given in (4.15)

with ψ̄1 = −A1/4. We summarize our result as follows:

Principal Result 4.1: In the limit of small patch radius, ε→ 0, the positive principal eigenvalue λ of (4.6) has the

following two-term asymptotic expansion in terms of the logarithmic gauge function ν = −1/ log ε:

λ = µ0ν − µ0ν
2

[
1

4
+ 2πR(x0;x0)

]
+O(ν3) ; µ0 ≡ 2

m+

[
1− πm+

|Ω|mb

]
. (4.31 a)

A two-term asymptotic expansion for the corresponding eigenfunction in the outer region |x− x0| ≫ O(ε) is

φ ∼ φ0 (1 + νµ0mb|Ω|G(x;x0)) . (4.31 b)
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Here G(x;x0) is the Neumann Green’s function of (4.24) with regular part R(x0;x0). The corresponding inner ap-

proximation to the eigenfunction, with y = ε−1(x− x0) and ρ = |y| = O(1), is

ψ ∼ mb|Ω|
m+π

φ0

(
1− µ0m+

2
νψ̃1(ρ)

)
, (4.31 c)

where φ0 = |Ω|−1/2, and ψ̃1(ρ) is defined by

ψ̃1(ρ) ≡





ρ2/2− 1/4 , ρ ≤ 1 ,

log ρ+ 1/4 , ρ ≥ 1 .
(4.31 d)

Next, we let the center x0 of the circular patch be on ∂Ω. We assume that ∂Ω is piecewise differentiable, but allow

for ∂Ω to have corners with nonzero contact angle. The boundary patch Ωε0 ≡ {x | |x− x0| ≤ ερ0 ∩ Ω} with x0 ∈ ∂Ω

is the portion of a circular disk of radius ερ0 that is strictly contained within Ω. Here ρ0 = O(1) is introduced in

order to construct a boundary patch that has the same area as an interior patch.

In the limit ε → 0, and for x − x0 = O(ε), we define πα0 to be angular fraction of the circular patch that is

contained within Ω. More specifically, α0 = 1 whenever x0 is at a smooth point of ∂Ω, and α0 = 1/2 when x0 is at a

π/2 corner of ∂Ω. The eigenvalue problem associated with this boundary patch is

∆φ+ λmε(x)φ = 0 , x ∈ Ω; ∂nφ = 0 , x ∈ ∂Ω ;

∫

Ω

φ2 dx = 1 , (4.32 a)

where mε(x) is defined as

mε(x) =





m+/ε
2 , x ∈ Ωε0 ,

−mb , x ∈ Ω\Ωε0 .
(4.32 b)

The condition
∫
Ω
mdx < 0 is asymptotically equivalent when ε→ 0 to

∫

Ω

mdx = −mb|Ω|+
α0π

2

(
m+ρ

2
0

)
+O(ε2) < 0 . (4.33)

We assume that this condition on
∫
Ω
mdx holds. Since the asymptotic calculation of λ for a boundary patch is similar

to that for the interior patch case, we mainly highlight the new features that are required in the analysis.

We first expand λ as in (4.8) in terms of ν = −1/ log ε. In the outer region, defined for |x−x0| ≫ O(ε), we expand

the outer solution as in (4.9) to obtain that φ0 is a constant, and that φ1 and φ2 satisfy (4.10 a) and (4.10 b) in Ω,

respectively, with ∂nφk = 0 for x ∈ ∂Ω\{x0} for k = 1, 2.

Since the expansion of the inner solution is again in powers of ν = −1/ log ε as in (4.13), we can neglect to any

power of ν the effect of the curvature of the domain boundary near x = x0, provided that this curvature is finite.

Consequently, when x0 is at a smooth point of ∂Ω, we can approximate ∂Ω near x = x0 by the tangent line to ∂Ω

through x = x0. Alternatively, when x0 is at corner point of ∂Ω, the inner region is the angular wedge of angle πα0

bounded by the intersection of the one-sided tangent lines to ∂Ω at x = x0. We then introduce the inner variable

y = ε−1(x − x0) so that the inner region is the angular wedge β0 < arg y ≤ α0π + β0 for some β0. The favorable

habitat is the circular patch |y| ≤ ρ0 that lies within this wedge. Since the no-flux boundary conditions ∂nψ = 0

holds on the two sides of the wedge, we look for a local radially symmetric inner solution within the angular wedge.
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Therefore, in the inner region, we expand the inner solution as in (4.13) and obtain that ψ0 is a constant, and that

ψk for k = 1, 2 satisfies

∆ψk =





Fk , |y| ≤ ρ0 , β0 ≤ arg y ≤ πα0 + β0 ,

0 , |y| ≥ ρ0 , β0 ≤ arg y ≤ πα0 + β0 .
(4.34)

Here Fk for k = 1, 2 are defined in (4.14 b). The solution for ψ1, with ρ = |y|, is

ψ1 =





A1

(
ρ2

2ρ2

0

)
+ ψ̄1 , 0 ≤ ρ ≤ ρ0 , β0 ≤ arg y ≤ πα0 + β0 ,

A1 log
(

ρ
ρ0

)
+ A1

2 + ψ̄1 , ρ ≥ ρ0 , β0 ≤ arg y ≤ πα0 + β0 ,

(4.35)

where ψ̄1 is an unknown constant and A1 = F1ρ
2
0/2. For ψ2, we obtain that ψ2 ∼ A2 log ρ as ρ→ ∞. The calculation

of A2 proceeds exactly as in (4.16 b) to obtain

A1 = −µ0

2
m+ρ

2
0ψ0 , A2 =

A1

ψ0

(
A1

4
+ ψ̄1 +

µ1

µ0
ψ0

)
. (4.36)

The matching condition between the outer solution as x→ x0 and the inner solution for |y| = ε−1|x− x0| → ∞ is

given by (4.17). Upon using (4.35) for ψ1 when ρ≫ 1, together with ψ2 ∼ A2 log ρ for ρ≫ 1, we obtain that (4.17)

becomes

φ0 + νφ1 + ν2φ2 + · · · ∼ ψ0 +A1 + ν

(
A1 log |x− x0| −A1 log ρ0 +

A1

2
+ ψ̄1 +A2

)
+ ν2 (A2 log |x− x0|+O(1)) .

(4.37)

The leading order matching condition from (4.37) is that

φ0 = ψ0 +A1 . (4.38)

From the O(ν) terms in (4.37) and (4.10 a), we obtain that φ1 satisfies

∆φ1 = µ0mbφ0 , x ∈ Ω ; ∂nφ1 = 0 , x ∈ ∂Ω\{x0} ;
∫

Ω

φ1 dx = 0 , (4.39 a)

φ1 ∼ A1 log |x− x0| −A1 log ρ0 +
A1

2
+ ψ̄1 +A2 , as x→ x0 . (4.39 b)

Moreover, from the O(ν2) terms in (4.37) and the problem for φ2 (4.10 b), we get that φ2 satisfies

∆φ2 = µ1mbφ0 + µ0mbφ1 , x ∈ Ω ; ∂nφ2 = 0 , x ∈ ∂Ω\{x0} ;
∫

Ω

(
φ21 + 2φ0φ2

)
dx = 0 . (4.40 a)

φ2 ∼ A2 log |x− x0|+O(1) , as x→ x0 . (4.40 b)

Next, we apply the divergence theorem to (4.39) over Ω\Ωσ, where Ωσ is a wedge of angle πα0 and small radius

σ ≪ 1 centered at x0 ∈ ∂Ω. Imposing the singularity condition (4.39 b) on |x− x0| = σ and taking the limit σ → 0,

we readily derive that

µ0mb|Ω|φ0 = −α0πA1 . (4.41)

In a similar way, the divergence theorem applied to (4.40), and noting that
∫
Ω
φ1 dx = 0, determines A2 as

µ1mb|Ω|φ0 = −α0πA2 . (4.42)
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Therefore, we conclude from (4.41) and (4.42) that A2/A1 = µ1/µ0, which yields ψ̄1 = −A1/4 from the equation for

A2 in (4.36). Then, by combining (4.38), (4.36) for A1, and (4.41), we readily obtain that

ψ0 =
2mb|Ω|
α0πm+ρ20

φ0 , µ0 =
2

m+ρ20

[
1− α0πm+ρ

2
0

2mb|Ω|

]
. (4.43)

Since
∫
Ω
mdx < 0 from (4.33), it follows that µ0 > 0 in (4.43).

To solve (4.39), we introduce the surface Neumann Green’s function Gs(x;x0), defined as the unique solution of

∆Gs =
1

|Ω| , x ∈ Ω ; ∂nGs = 0 , x ∈ ∂Ω\{x0} ;
∫

Ω

Gs dx = 0 , (4.44 a)

Gs(x;x0) ∼ − 1

α0π
log |x− x0|+Rs(x0;x0) , as x→ x0 ∈ ∂Ω . (4.44 b)

Here |Ω| is the area of Ω, and Rs(x0;x0) is the regular part of the surface Neumann Green’s function at x = x0.

Then, the solution to (4.39) is

φ1 = −α0πA1Gs(x;x0) . (4.45)

By expanding φ1 as x → x0 using (4.44 b), we equate the resulting nonsingular part of φ1 as x → x0 with that in

(4.39 b) to obtain

−α0πA1Rs(x0;x0) = −A1 log ρ0 +
A1

2
+ ψ̄1 +A2 . (4.46)

We then substitute ψ̄1 = −A1/4 and A2/A1 = µ1/µ0 into (4.46), and solve for µ1 to get

µ1 = µ0

[
log ρ0 −

1

4
− α0πRs(x0;x0)

]
. (4.47)

We summarize our result as follows:

Principal Result 4.2: In the limit of small boundary patch radius, ε→ 0, a two-term asymptotic expansion for the

positive principal eigenvalue λ of (4.32) in terms of ν = −1/ log ε is

λ = µ0ν − µ0ν
2

[
1

4
+ α0πRs(x0;x0)− log ρ0

]
+O(ν3) ; µ0 ≡ 2

m+ρ20

[
1− α0πm+ρ

2
0

2|Ω|mb

]
. (4.48 a)

A two-term asymptotic expansion for the corresponding eigenfunction in the outer region |x− x0| ≫ O(ε) is

φ ∼ φ0 (1 + νµ0mb|Ω|Gs(x;x0)) . (4.48 b)

Here Gs(x;x0) is the surface Neumann Green’s function of (4.44) with regular part Rs(x0;x0).

Next, we generalize the analysis above to treat the case of an arbitrary but fixed number n of circular patches,

each of which is centered either inside Ω or on ∂Ω. To this end, we asymptotically calculate the positive principal

eigenvalue of

∆φ+ λmε(x)φ = 0 , x ∈ Ω; ∂nφ = 0 , x ∈ ∂Ω ;

∫

Ω

φ2 dx = 1 , (4.49 a)

where the growth rate function mε(x) is defined by

mε(x) =





mj/ε
2 , x ∈ Ωεj , j = 1, . . . , n ,

−mb , x ∈ Ω\
⋃n

j=1 Ωεj .
(4.49 b)

Here Ωεj ≡ {x | |x− xj | ≤ ερj ∩ Ω}, so that the patches Ωεj are the portions of the circular disks of radius ερj that
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are strictly inside Ω. The constant mj is the local growth rate of the jth patch, with mj > 0 for a favorable habitat

and mj < 0 for an unfavorable habitat. The constant mb > 0 is the background bulk decay rate for the unfavorable

habitat. In terms of this patch arrangement, the condition
∫
Ω
mdx < 0 is asymptotically equivalent for ε→ 0 to

∫

Ω

mdx = −mb|Ω|+
π

2

n∑

j=1

αjmjρ
2
j +O(ε2) < 0 . (4.50)

We assume that the parameters are chosen so that this condition holds. The parameters in the growth rate are the

centers x1, . . . , xn of the circular patches, their radii ερ1, . . . , ερn, the local growth rates m1, . . . ,mn, the angular

fractions πα1, . . . , παn of the circular patches that are contained in Ω, and the constant bulk growth rate mb. Recall

that αj = 2 whenever xj ∈ Ω, αj = 1 when xj ∈ ∂Ω and xj is a point where ∂Ω is smooth, and αj = 1/2 when

xj ∈ ∂Ω is at a π/2 corner of ∂Ω, etc.

To asymptotically analyze (4.49) we must incorporate both the Neumann Green’s function and the surface Neu-

mann Green’s function. As such, we define a generalized modified Green’s function Gm(x;xj) by

Gm(x;xj) ≡





G(x;xj) , xj ∈ Ω ,

Gs(x;xj) , xj ∈ ∂Ω .
(4.51 a)

Here G(x;xj) is the Neumann Green’s function of (4.24), and Gs(x;xj) is the surface Neumann Green’s function of

(4.44). Therefore, the local behavior of Gm(x;xj) is

Gm(x;xj) ∼ − 1

αjπ
log |x− xj |+Rm(xj ;xj) , as x→ xj , Rm(xj ;xj) ≡





R(xj ;xj) , xj ∈ Ω ,

Rs(xj ;xj) , xj ∈ ∂Ω .
(4.51 b)

Here R(xj ;xj) and Rs(xj ;xj) are the regular part of the Neumann Green’s function (4.24) and the surface Neumann

Green’s function (4.44), respectively.

For the multiple patch case, the following main result was obtained in §3 of [45].

Principal Result 4.3: In the limit of small patch radius, ε → 0, the positive principal eigenvalue λ of (4.49) has

the following two-term asymptotic expansion in terms of the logarithmic gauge function ν = −1/ log ε:

λ = µ0ν − µ0ν
2

(
κt (πGm − P)κ

κtκ
+

1

4

)
+O(ν3) . (4.52)

Here µ0 > 0 is the first positive root of B(µ0) = 0, where B(µ0) is defined by

B(µ0) ≡ −mb|Ω|+ π

n∑

j=1

αjmjρ
2
j

2−mjρ2jµ0
. (4.53)

In (4.52), κ = (κ1, . . . , κn)
t, where κj is defined by

κj ≡
√
αjmjρ

2
j

2−mjρ2jµ0
, (4.54)

while Gm and P are the n× n matrices as defined by

Gmij =
√
αiαjGmij , i 6= j ; Gmjj = αjRmjj ; Pij = 0 , i 6= j ; Pjj = log ρj . (4.55)
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In addition, a two-term expansion for the outer solution is given by

φ ∼ φ0


1 + νπµ0

n∑

j=1

√
αjκjGm(x;xj)


 . (4.56)

Problem 4.1: Give the derivation of equation (4.53) for the leading-order coefficient µ0 in the asymptotic expansion

of the persistence threshold.

The solution to Problem 4.1 is given in Appendix C.

Next, we show the existence of a unique root µ0 to (4.53) on a certain interval with µ0 > 0 to be determined. Since
∫
Ω
mdx < 0 from (4.50), it follows that B(0) < 0 from (4.53). In addition, B(µ0) → +∞ as µ0 → 2/(mJρ

2
J ) from

below, where mJρ
2
J is defined by

mJρ
2
J = max

mj>0
{mjρ

2
j | j = 1, . . . , n } . (4.57)

There must be at least one j for which mj > 0, so that (4.57) is attained at some j = J . Moreover, (4.53) readily

yields that B′(µ0) > 0 on 0 < µ0 < 2/(mJρ
2
J ). Therefore, there exists a unique root µ0 = µ⋆

0 on 0 < µ0 < 2/(mJρ
2
J)

to B(µ0) = 0. The corresponding leading-order eigenfunction in the inner region, ψ0j , satisfies ψ0j > 0 from (C.10).

Therefore, µ⋆
0 is the leading-order term in the asymptotic expansion of the positive principal eigenvalue of (4.49).

In this section, the formulae derived in §2 and §3 for the persistence threshold, λ(ε), are used to determine the

optimal strategy for distributing a fixed quantity of resources in some domain where favorable and unfavorable patches

may already be present. The constraint that the resources being distributed are fixed is expressed mathematically

by

−mb|Ω|+
π

2

n∑

j=1

αjmjρ
2
j +O(ε2) =

∫

Ω

mdx = −K , (4.58)

where K > 0 is kept constant as mb, or αj , mj , and ρj , for j = 1, . . . , n are varied.

We first consider the case of one favorable habitat. For an interior patch of area πε2, we recall that λ is given in

(4.31 a) of Principal Result 4.1. For a boundary patch of the same area, we must set πα0ε
2ρ20/2 = πε2 in (4.48 a) of

Principal Result 4.2. Thus, ρ0 =
√

2/α0, so that (4.48 a) becomes

λ = µ0ν − µ0ν
2

[
1

4
+ α0πRs(x0;x0)−

1

2
log

(
2

α0

)]
+O(ν3) ; µ0 ≡ α0

m+

[
1− πm+

|Ω|mb

]
. (4.59)

By comparing the leading-order O(ν) terms in (4.59) and (4.31 a), and noting that α0 < 2 for a boundary patch, we

obtain the following main result:

Qualitative Result I: For a favorable habitat of area πε2, the positive principal eigenvalue λ is always smaller for

a boundary patch than for an interior patch. For a domain boundary with corners, λ is minimized when the boundary

patch is centered at the corner with the smallest corner contact angle πα0, as opposed to a patch on the smooth part

of the boundary, only if α0 < 1. For a domain with smooth boundary, for which α0 = 1 for any x0 ∈ ∂Ω, then λ in

(4.59) is minimized when the center x0 of the boundary patch is located at the global maximum of the regular part

Rs(x0;x0) of the surface Neumann Green’s function of (4.44) on ∂Ω. Thus, the movement of either a single favorable

habitat to the boundary of the domain is advantageous for the persistence of the species

Next, for a fixed value of the constraint in (4.58), we consider the effect of both the location and the fragmentation
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of resources on the leading-order term, µ0, in the asymptotic expansion of λ in (4.52) of Principal Result 4.3. The

analysis below leads to three specific qualitative results. The following simple lemma is central to the derivation of

these results:

Lemma: Consider two smooth functions Cold(ζ) and Cnew(ζ) defined on 0 ≤ ζ < µoldm and 0 ≤ ζ < µnewm ,

respectively, with Cold(0) = Cnew(0) < 0, and Cold(ζ) → +∞ as ζ → µoldm from below, and Cnew(ζ) → +∞ as

ζ → µnewm from below. Suppose further that there exist unique roots ζ = µold0 and ζ = µnew0 to Cold(ζ) = 0 and

Cnew(ζ) = 0 on the intervals 0 < ζ < µoldm and 0 < ζ < µnewm , respectively. Then,

• Case I: If µnewm ≤ µoldm and Cnew(ζ) > Cold(ζ) on 0 < ζ < µnewm , then µnew0 < µold0 .

• Case II: If µnewm ≥ µoldm and Cnew(ζ) < Cold(ζ) on 0 < ζ < µoldm , then µnew0 > µold0 .

The proof of this lemma is a routine exercise in calculus and is omitted. We now use this simple lemma to obtain

our three main qualitative results.

First, we suppose that the center of the jth patch of radius ερj with associated angle παj is moved to an unoccupied

location, with the new patch having radius ερk and associated angle παk. To satisfy (4.58), we require that αjmjρ
2
j =

αkmkρ
2
k. The change in B(ζ), with B(ζ) as defined in (4.53), induced by this action is

Bnew(ζ)− Bold(ζ) =
παkmkρ

2
k

2− ζmkρ2k
−

παjmjρ
2
j

2− ζmjρ2j
= π

(
αj

αk

)
m2

jρ
4
jζ(

2− ζmjρ2j
)
(2− ζmkρ2k)

(αj − αk) . (4.60)

Recall from §3 that Bold(ζ) = 0 has a positive root ζ = µold0 on 0 < ζ < µoldm ≡ 2/(mJρ
2
J), where mJρ

2
J was defined

in (4.57).

Assume that αj > αk. For instance, this occurs when the center of an interior patch, for which αj = 2, is moved

to a smooth point on the domain boundary, for which αk = 1. First, suppose that the patches are favorable so

that mj > 0 and mk > 0. When αj > αk, it follows from the constraint αjmjρ
2
j = αkmkρ

2
k that mkρ

2
k > mjρ

2
j ,

and so the first vertical asymptote for Bnew(ζ) cannot be larger than that of Bold(ζ). Consequently, we define

mKρ
2
K ≡ max{mJρ

2
J ,mkρ

2
k}, and from §3 we conclude that there is a unique root ζ = µnew0 to Bnew(ζ) = 0 on

0 < ζ < µnewm ≡ 2/(mKρ
2
K). Since µnewm ≤ µoldm , and (4.60) shows that Bnew(ζ) > Bold(ζ) for 0 < ζ < µnewm , then

Case I of the Lemma proves that µnew0 < µold0 . Alternatively, for the situation where habitats are unfavorable, so

that mj < 0 and mk < 0, then the first vertical asymptotes of Bold(ζ) and Bnew(ζ) must be the same, since these

asymptotes are defined only in terms of the favorable patches. For this case, (4.60) again shows that Bnew(ζ) >

Bold(ζ) for 0 < ζ < 2/(mJρ
2
J ). Case I of Lemma then establishes that µnew0 < µold0 . �

Next, we consider the effect of fragmentation on species persistence. More specifically, we consider the effect of

splitting the ith patch, of radius ερi and growth rate mi, into two distinct patches, one with radius ερj and growth

rate mj , and the other with radius ερk and growth rate mk. The condition miρ
2
i = mjρ

2
j + mkρ

2
k is imposed to

satisfy the constraint (4.58). We assume that αi = αj = αk, so that we are either splitting an interior patch into

two interior patches, or a boundary patch into two boundary patches, with each boundary patch centered at either
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a smooth point of ∂Ω or at a corner point of ∂Ω with the same contact angle. This action leads to the following

qualitative result:

Qualitative Result II: The fragmentation of one favorable interior habitat into two separate favorable interior

habitats is not advantageous for species persistence. Similarly, the fragmentation of a favorable boundary habitat into

two favorable boundary habitats with each either centered at either a smooth point of ∂Ω, or at a corner point of

∂Ω with the same contact angle, is not advantageous. Finally, the fragmentation of an unfavorable habitat into two

separate unfavorable habitats increases the persistence threshold λ.

We prove this result for αi = αj = αk as follows. First, consider the case where we are fragmenting one favorable

habitat into two smaller favorable habitats. Then, mi > 0, mj > 0, and mk > 0. For the original patch distribution,

it follows from §3 that Bold(ζ) = 0 has a positive root ζ = µold0 on 0 < ζ < µoldm ≡ 2/(mJρ
2
J), where mJρ

2
J was

defined in (4.57). Since, clearly, the first vertical asymptote for Bnew(ζ) cannot be smaller than that of Bold(ζ)
under this fragmentation, it follows from §3 that Bnew(ζ) = 0 has a positive root ζ = µnew0 on 0 < ζ < µnewm with

µnewm ≥ µoldm . From (4.53), we then calculate under the constraint miρ
2
i = mjρ

2
j +mkρ

2
k that the change in B(ζ)

induced by this fragmentation action is

Bnew(ζ)− Bold(ζ) =
παimjρ

2
j

(2− ζmjρ2j )
+

παimkρ
2
k

(2− ζmkρ2k)
− παimiρ

2
i

(2− ζmiρ2i )

=
−παiζ

(
mjρ

2
jmkρ

2
k

) [(
2− ζmjρ

2
j

)
+
(
2− ζmkρ

2
k

)]

(2− ζmiρ2i )
(
2− ζmjρ2j

)
(2− ζmkρ2k)

. (4.61)

Hence, from (4.61), we have that Bnew(ζ) < Bold(ζ) on 0 < ζ < µoldm ≡ 2/(mJρ
2
J ). Since, in addition µnewm ≥ µoldm ,

it follows from Case II of the Lemma that µnew0 > µold0 . This proves the first two statements of Qualitative Result

II.

To prove the final statement of this result, we suppose that we are fragmenting an unfavorable habitat into two

smaller unfavorable habitats, so that mi < 0, mj < 0, and mk < 0. For this situation, the first vertical asymptotes of

Bold(ζ) and Bnew(ζ) are the same, and (4.61) again shows that Bnew(ζ) < Bold(ζ) on 0 < ζ < µoldm ≡ 2/mJρ
2
J . By

Case II of the Lemma, we conclude that µnew0 > µold0 , which proves the last statement of Qualitative Result II. �

The combination of Qualitative Results I and II show that, given some fixed amount of favorable resources to

distribute, the optimal strategy is to clump them all together at a point on the boundary of the domain, and more

specifically at the corner point of the boundary (if any are present) with the smallest contact angle less than π

degrees. This strategy will ensure that the value of µ0, and consequently the leading-order term for λ, is as small as

possible, thereby maximizing the range of diffusivities D in (4.1) for the persistence of the species.

Our final qualitative result addresses whether it is advantageous to fragment a single interior favorable habitat into

a smaller interior favorable habit together with a favorable boundary habitat. To study this situation, we introduce

the constraint

miρ
2
i = mjρ

2
j +

αk

2
mkρ

2
k , (4.62)

with αi = αj = 2, and αk < 2. The subscript i represents the original interior habitat, whereas j and k represent
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the new smaller interior habitat and new boundary habitat, respectively. It is not clear apriori whether this action is

advantageous, given that fragmentation of a favorable interior habitat into two favorable interior habitats increases

the persistence threshold λ, but the relocation of a favorable interior habitat to the boundary decreases λ. A sufficient

condition to treat this case, together with two additional related results, are summarized as follows:

Qualitative Result III: The fragmentation of one favorable interior habitat into a new smaller interior favorable

habitat together with a favorable boundary habitat, is advantageous for species persistence when the boundary habitat

is sufficiently strong in the sense that

mkρ
2
k >

4

2− αk
mjρ

2
j > 0 . (4.63)

Such a fragmentation of a favorable interior habitat is not advantageous when the new boundary habitat is too weak

in the sense that

0 < mkρ
2
k < mjρ

2
j . (4.64)

Finally, the clumping of a favorable boundary habitat and an unfavorable interior habitat into one single interior

habitat is not advantageous for species persistence when the resulting interior habitat is still unfavorable.

Problem 4.3: Give the proof of Qualitative Result III (the solution is given in Appendix C).

Further results for the optimization of the persistence threshold in patchy environments are discussed in [45].

There are two key problems that warrant further study. Firstly, it is highly desirable to provide a rigorous derivation

of the asymptotic expansion for λ in Principal Result 4.3. Such a derivation could possibly be based on variational

considerations and gamma convergence theory, similar to that used in [13] (see also the references therein) to analyze

bubble solutions for the Cahn-Hillard equation of phase transition theory. Secondly, it would be interesting to extend

our single-species analysis to the case of multi-species interaction, such as predator-prey interactions, for which a

partial fragmentation of the prey habitat may become more beneficial for the persistence of the prey, rather than

clumping the prey into a single habitat.

4.2 The Narrow Escape Problem From a Sphere

The narrow escape problem concerns the motion of a Brownian particle confined in a bounded domain Ω ∈ Rd

(d = 2, 3) whose boundary ∂Ω = ∂Ωr ∪ ∂Ωa is almost entirely reflecting (∂Ωr), except for small absorbing windows,

or traps, labeled collectively by ∂Ωa, through which the particle can escape. Denoting the trajectory of the Brownian

particle by X(t), the mean first passage time (MFPT) v(x) is defined as the expectation value of the time τ taken

for the Brownian particle to become absorbed somewhere in ∂Ωa starting initially from X(0) = x ∈ Ω, so that

v(x) = E[τ |X(0) = x]. The calculation of v(x) becomes a narrow escape problem in the limit when the measure of

the absorbing set |∂Ωa| = O(εd−1) is asymptotically small, where 0 < ε ≪ 1 measures the dimensionless radius of

an absorbing window. Since the MFPT diverges as ε → 0, the calculation of the MFPT v(x) constitutes a singular

perturbation problem.

In a three-dimensional bounded domain Ω, it is well-known (cf. [57]) that the MFPT v(x) satisfies a Poisson
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equation with mixed Dirichlet-Neumann boundary conditions, formulated as

△v = − 1

D
, x ∈ Ω , (4.65 a)

v = 0 , x ∈ ∂Ωa = ∪N
j=1∂Ωεj , j = 1, . . . , N ; ∂nv = 0 , x ∈ ∂Ωr . (4.65 b)

Here D is the diffusivity of the underlying Brownian motion, and the absorbing set consists of N small disjoint

absorbing windows, or traps, ∂Ωεj for j = 1, . . . , N each of area |∂Ωεj | = O(ε2). We assume that ∂Ωεj → xj as

ε → 0 for j = 1, . . . , N , and that the traps are well-separated in the sense that |xi − xj | = O(1) for all i 6= j. With

respect to a uniform distribution of initial points x ∈ Ω for the Brownian walk, the average MFPT, denoted by v̄, is

defined by

v̄ = χ ≡ 1

|Ω|

∫

Ω

v(x) dx , (4.66)

where |Ω| is the volume of Ω. The geometry of a confining sphere with traps on its boundary is depicted in Fig. 7.

Figure 7. Sketch of a Brownian trajectory in the unit sphere in R
3 with absorbing windows on the boundary.

There are only a few results for the MFPT, defined by (4.65), for a bounded three-dimensional domain. For the

case of one locally circular absorbing window of radius ε on the boundary of the unit sphere, it was shown in [65]

(with a correction as noted in [67]) that a two-term expansion for the average MFPT is given by

v̄ ∼ |Ω|
4εD

[
1− ε

π
log ε+O (ε)

]
, (4.67)

where |Ω| denotes the volume of the unit sphere. This result was derived in [65] by using Collins’ method for solving

a certain pair of integral equations resulting from a separation of variables approach. A similar result for v̄ was

obtained in [65] for the case of one small elliptical-shaped absorbing window on the boundary of a sphere. For an

arbitrary three-dimensional bounded domain with one locally circular absorbing window of radius ε on its smooth

boundary, it was shown in [67] that

v̄ ∼ |Ω|
4εD

[
1− ε

π
H log ε+O (ε)

]
, (4.68)

where H denotes the mean curvature of the domain boundary at the center of the absorbing window. In [30] an

approximate analytical theory was developed to determine the average MFPT for the case of two circular absorbing

windows on the boundary of the unit sphere, with arbitrary window separation. For this two-window case, the average
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MFPT was determined in terms of an integral and an unspecifed O(1) term, which was estimated from Brownian

particle simulations.

In [15] this previous work was extended to calculate a a three-term asymptotic expansion for the MFPT for the

case of N small locally circular absorbing windows, or traps, on the boundary of the unit sphere. This three-term

asymptotic expansion for the MFPT shows explicitly the significant effects of both the fragmentation of the trap set

and the spatial arrangement of the traps on the boundary of the sphere. For the special case where the N traps have

a common radius ε ≪ 1, and are centered at xj with |xj | = 1 for j = 1, . . . , N and |xi − xj | = O(1) for i 6= j, the

results in [15] show that the average MFPT has the three-term asymptotic expansion

v̄ =
|Ω|

4εDN

[
1 +

ε

π
log

(
2

ε

)
+
ε

π

(
−9N

5
+ 2(N − 2) log 2 +

3

2
+

4

N
H(x1, . . . , xN )

)
+O(ε2 log ε)

]
, (4.69 a)

where the discrete energy-like function H(x1, . . . , xN ) is defined by

H(x1, . . . , xN ) =
K∑

j=1

j 6=i

(
1

|xi − xj |
− 1

2
log |xi − xj | −

1

2
log (2 + |xi − xj |)

)
. (4.69 b)

The asymptotic analysis in [15] leading to (4.69) relies on two essential ingredients. Firstly, it requires detailed

properties of the surface Neumann Green’s function for the unit sphere and, in particular, the determination of both

the subdominant logarithmic singularity and the regular part of this function. The identification of a weak logarithmic

singularity for this Green’s function was first made in [34] for the unit sphere, and for a general three-dimensional

domain in [54], [61], and [67]. Secondly, the analysis in [15] requires the introduction of certain logarithmic switchback

terms that commonly occur in the asymptotic analysis of certain problems in fluid mechanics (see [42] for a discussion

of logarithmic switchback terms). Further we remark that the analysis is rather complicated owing to the fact that

one must determine the far-field behavior of a rather difficult inhomogeneous problem that arises at a higher order

in the asymptotic expansion.

We now highlight the steps in the asymptotic analysis of [15] leading to (4.69). We assume that there are N small

well-separated windows on the boundary of the sphere centered at xj with j = 1, . . . , N where |xj | = 1. Each window

is assumed to have a circular projection onto the tangent plane to the sphere at xj and has a radius of εaj where

ε≪ 1. The problem for the MFPT v = v(x), written in spherical coordinates, is

△v ≡ vrr +
2

r
vr +

1

r2 sin2 θ
vφφ +

cot θ

r2
vθ +

1

r2
vθθ = − 1

D
, r = |x| ≤ 1 , (4.70 a)

v = 0 , x ∈ ∂Ωa = ∪N
j=1∂Ωεj , j = 1, . . . , N ; ∂rv = 0 , x ∈ ∂Ω\∂Ωa . (4.70 b)

Here each ∂Ωεj for j = 1, . . . , N is a small “circular” cap centered at (θj , φj) defined by

∂Ωεj ≡ {(θ, φ) | (θ − θj)
2 + sin2(θj)(φ− φj)

2 ≤ ε2a2j} . (4.70 c)

The area of ∂Ωεj is |∂Ωεj | ∼ πε2a2j . In (4.70 a), 0 ≤ φ ≤ 2π is the longitude, 0 ≤ θ ≤ π is the latitude, and the center

of the jth window is at xj ∈ ∂Ω where |xj | = 1 for j = 1, . . . , N .

To solve (4.70) asymptotically, we first must calculate the surface Neumann Green’s function. For the unit sphere
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Ω with volume |Ω| = 4π/3, the surface Neumann Green’s function Gs(x;xj) satisfies

△Gs =
1

|Ω| , x ∈ Ω ; ∂rGs = δ(cos θ − cos θj)δ(φ− φj) , x ∈ ∂Ω ;

∫

Ω

Gs dx = 0 . (4.71)

In terms of spherical coordinates, the points x ∈ ∂Ω, xj ∈ ∂Ω, and the dot product x · xj , are given by

x = (cosφ sin θ, sinφ sin θ, cos θ) , xj = (cosφj sin θj , sinφj sin θj , cos θj) , cos γ = x · xj , (4.72)

where γ denotes the angle between x and xj given by cos γ = cos θ cos θj+sin θ sin θj cos(φ−φj). The following result

for Gs(x;xj) is derived in Appendix A of [15].

Lemma: For the unit sphere, the surface Neumann Green’s function satisfying (4.71) is given explicitly by

Gs(x;xj) =
1

2π |x− xj |
+

1

8π

(
|x|2 + 1

)
+

1

4π
log

(
2

1− |x| cos γ + |x− xj |

)
− 7

10π
. (4.73)

The calculations below for the MFPT require the limiting behavior of Gs in (4.73) as x→ xj ∈ ∂Ω when expressed

in terms of a local coordinate system (η, s1, s2) whose origin is at the center of the jth absorbing window. We define

the local cartesian coordinate, y, together with the local curvilinear coordinates η, s1, and s2 by

y ≡ ε−1(x− xj) , η ≡ ε−1(1− r) , s1 ≡ ε−1 sin(θj) (φ− φj) , s2 ≡ ε−1(θ − θj) . (4.74)

From the law of cosines we calculate that

1− |x| cos γ =
1

2

[
|x− xj |2 −

(
|x|2 − 1

)]
∼ 1

2

[
O(ε2)−

(
(1− εη)2 − 1

)]
∼ εη +O(ε2) . (4.75)

Therefore, upon substituting (4.75) and (4.74) into (4.73), we obtain as x→ xj that

Gs(x;xj) =
1

2πε |y| −
1

4π
log
(ε
2

)
− 1

4π
log (|y|+ η)− 9

20π
+O(ε) . (4.76)

The weak logarithmic singularity in (4.76) on η = 0 was observed previously for the sphere in [34] (see page 247 of

[34]), and for general domains in [61], [54], and [67]. The calculation in Appendix A of [15] identifies the regular

part of the singularity structure for Gs in (4.76), which is needed below to obtain a three-term expansion for the

MFPT.

By retaining linear and quadratic terms for the mapping x − xj 7→ (η, s1, s2), a lengthy but straightforward

calculation, which we omit, shows that for x→ xj

1

|y| =
1

ρ
+

ε

2ρ3
[
η(s21 + s22)− s21s2 cot θj

]
+O(ε2) , ρ ≡

(
η2 + s21 + s22

)1/2
. (4.77)

In order to obtain the local representation of the surface Neumann Green’s function with an error of O(ε), as required

for the asymptotic analysis below, we substitute (4.77) into (4.76) to obtain for x→ xj that

Gs(x;xj) =
1

2περ
− 1

4π
log
(ε
2

)
+

1

4π

[
η(s21 + s22)

ρ3
− s21s2 cot θj

ρ3

]
− 1

4π
log (ρ+ η)− 9

20π
+O(ε) . (4.78)

We now solve (4.70) in the limit ε→ 0 by using the method of matched asymptotic expansions. In the outer region

away from the absorbing windows we expand the outer solution as

v ∼ ε−1v0 + v1 + ε log
(ε
2

)
v2 + εv3 + · · · . (4.79)

Here v0 is an unknown constant, while v1, v2, and v3 are functions to be determined. As shown below, the third
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non-analytic term in ε in (4.79) arises as a result of the term in (4.78) with logarithmic dependence on ε. In addition,

we show below that one must add a further term of the form log (ε/2)χ0 directly between the first and second terms

in (4.79), where χ0 is a certain constant. Such terms are called switchback terms in singular perturbation theory,

and they have a long history in the study of certain ODE and PDE models in fluid mechanics (cf. [42]).

We first substitute (4.79) into (4.70) to obtain that vk, for k = 1, . . . , 3, satisfies

△vk = − 1

D
δk1 , x ∈ Ω ; ∂nvk = 0 , x ∈ ∂Ω\{x1, . . . , xN} , (4.80)

where δk1 = 1 if k = 1 and δk1 = 0 for k > 1. The analysis below yields appropriate singularity behaviors for each vk

as x → xj , for j = 1, . . . , N . In the inner region near the jth absorbing window we introduce the local coordinates

(η, s1, s2) as defined in (4.74), and we pose the inner expansion

v ∼ ε−1w0 + log
(ε
2

)
w1 + w2 + · · · . (4.81)

We substitute (4.81) into (4.70) after first transforming (4.70 a) in terms of the local coordinate system (4.74) as

outlined in Appendix B. In the limit ε→ 0, this yields a sequence of problems for wk for k = 0, 1, 2 given by

Lwk ≡ wkηη + wks1s1 + wks2s2 = δk2 F2 , η ≥ 0 , −∞ < s1, s2 <∞ , (4.82 a)

∂ηwk = 0 , on η = 0 , s21 + s22 ≥ a2j ; wk = 0 , on η = 0 , s21 + s22 ≤ a2j , (4.82 b)

where δ22 = 1 and δk2 = 0 if k = 0, 1. In (4.82 a) F2, is defined by

F2 ≡ 2 (ηw0ηη + w0η)− cot θj (w0s2 − 2s2w0s1s1) , η ≥ 0 , −∞ < s1, s2 <∞ . (4.82 c)

The leading order matching condition is that w0 ∼ v0 as ρ ≡ (η2 + s21 + s22)
1/2 → ∞. Therefore, we write

w0 = v0 (1− wc) , (4.83)

where v0 is a constant to be determined, and wc is the solution satisfying wc → 0 as ρ→ ∞ to

Lwc = 0 , η ≥ 0 , −∞ < s1, s2 <∞ , (4.84 a)

∂ηwc = 0 , on η = 0 , s21 + s22 ≥ a2j ; wc = 1 , on η = 0 , s21 + s22 ≤ a2j . (4.84 b)

This is the well-known electrified disk problem in electrostatics (cf. [31]), whose solution is (see page 38 of [24])

wc =
2

π

∫ ∞

0

sinµ

µ
e−µη/aj J0

(
µσ

aj

)
dµ =

2

π
sin−1

(aj
L

)
, σ ≡ (s21 + s22)

1/2 , (4.85 a)

where J0(z) is the Bessel function of the first kind of order zero, and L = L(η, σ) is defined by

L(η, σ) ≡ 1

2

([
(σ + aj)

2 + η2
]1/2

+
[
(σ − aj)

2 + η2
]1/2)

. (4.85 b)

From either an asymptotic expansion of the integral representation of wc using Laplace’s method or, alternatively,

from a direct calculation of the simple exact solution for wc given in (4.85 a), we readily obtain the far-field behavior

wc ∼
2aj
π

(
1

ρ
+
a2j
6

(
1

ρ3
− 3η2

ρ5

)
+ · · ·

)
, as ρ→ ∞ , (4.86)
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which is uniformly valid in η, s1, and s2. Therefore, from (4.83) and (4.86), the far-field expansion for w0 is

w0 ∼ v0

(
1− cj

ρ
+O(ρ−3)

)
, as ρ→ ∞ , cj ≡

2aj
π

, (4.87)

where cj is the electrostatic capacitance of the circular disk of radius aj . Next, we write the matching condition that

the near-field behavior of the outer expansion (4.79) must agree with the far-field behavior of the inner expansion

(4.81), so that

v0
ε

+ v1 + ε log
(ε
2

)
v2 + εv3 + · · · ∼ v0

ε

(
1− cj

ρ
· · ·
)
+ log

(ε
2

)
w1 + w2 + · · · . (4.88)

Therefore, since ρ ∼ ε−1|x−xj |, we obtain that v1 must satisfy (4.80) with the singular behavior v1 ∼ −v0cj/|x− xj |
as x→ xj for j = 1, . . . , N . This problem for v1 can be written in distributional form as

△v1 = − 1

D
, x ∈ Ω ; ∂rv1|r=1 = −2πv0

N∑

j=1

cj
sin θj

δ(θ − θj)δ(φ− φj) . (4.89)

By applying the divergence theorem, (4.89) has a solution only when v0 is given by

v0 =
|Ω|

2πDNc̄
, c̄ ≡ 1

N

N∑

j=1

cj , cj =
2aj
π

. (4.90)

Thus, the solvability condition for the problem for v1 determines the unknown leading-order constant term v0 in the

outer expansion. The solution to (4.89) is then written as a superposition over the surface Neumann Green’s function

Gs(x;xj), with
∫
Ω
Gs(x;xj) dx = 0, together with an unknown constant χ, as

v1 = −2πv0

N∑

i=1

ciGs(x;xi) + χ , χ ≡ |Ω|−1

∫

Ω

v1 dx . (4.91)

Next, we expand v1 as x → xj by using the near-field expansion of the surface Neumann Green’s function given

in (4.78). Upon substituting the resulting expression into the matching condition (4.88) we obtain

v0
ε

(
1− cj

ρ

)
+
v0cj
2

log
(ε
2

)
+ χ+

v0cj
2

[
log(η + ρ)− η(s21 + s22)

ρ3
+
s21s2 cot θj

ρ3

]
+Bj

+ ε log
(ε
2

)
v2 + εv3 + · · · ∼ v0

ε

(
1− cj

ρ
+O(ρ−3)

)
+ log

(ε
2

)
w1 + w2 + · · · . (4.92)

Here the constant Bj is defined by

Bj = −2πv0


− 9

20π
cj +

N∑

j=1

j 6=i

ciGsji


 , Gsji ≡ Gs(xj ;xi) . (4.93)

We compare the O(log ε) terms on both sides of (4.92), which suggests that w1 ∼ v0cj/2 as ρ → ∞. However, this

leads to a problem for v2 with no solution. In order to obtain a solvable equation for v2, we must write χ in the form

χ = log
(ε
2

)
χ0 + χ1 , (4.94)

where χ0 and χ1 are constants, independent of ε, to be found. This choice for χ is equivalent to inserting a constant

term of order O(log ε) between v0 and v1 in the outer expansion (4.79). With this choice of χ in (4.92), the matching

condition (4.92) enforces that w1 ∼ χ0 + v0cj/2 as ρ → ∞. The solution w1 to (4.82) that satisfies this far-field
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behavior is

w1 =
(v0cj

2
+ χ0

)
(1− wc) , (4.95)

where wc, given explicitly in (4.85), is the solution to (4.84). Therefore, using (4.86), we obtain the far-field behavior

w1 ∼
(v0cj

2
+ χ0

)(
1− cj

ρ
+O(ρ−3)

)
. (4.96)

Next, we substitute (4.96) into the matching condition (4.92) and use ρ ∼ ε−1|x−x0|. This yields that the solution
v2 to (4.80) has the singular behavior v2 ∼ −

( v0cj
2 + χ0

)
cj/|x− xj | as x→ xj . Therefore, v2 satisfie

△v2 = 0 , x ∈ Ω ; ∂rv2|r=1 = −2π

N∑

j=1

cj

(v0cj
2

+ χ0

) δ(θ − θj)δ(φ− φj)

sin θj
. (4.97)

By using the divergence theorem, we obtain that (4.97) is solvable only when χ0 is given by

χ0 = − v0
2Nc̄

N∑

j=1

c2j . (4.98)

Then, the solution for v2 can be written in terms of the surface Neumann Green’s function as

v2 = −2π
N∑

i=1

ci

(v0ci
2

+ χ0

)
Gs(x;xi) + χ2 . (4.99)

Next, we match the O(1) terms in (4.92) with χ as given in (4.94). We obtain that w2 satisfies (4.82) with the

far-field behavior

w2 ∼ Bj + χ1 +
v0cj
2

[
log(η + ρ)− η(s21 + s22)

ρ3

]
+

(
v0cj
2ρ3

)
s21s2 cot θj , as ρ→ ∞ . (4.100)

By superposition, we decompose the solution to this problem for w2 in the form

w2 = (Bj + χ1) (1− wc) + v0w2e + v0w2o , (4.101)

where wc is the solution to the electrified disk problem (4.84). Upon writing w0 = v0(1 − wc) to calculate F2 in

(4.82 c), we set w2e to be the solution to

w2eηη + w2es1s1 + w2es2s2 = −2wcη − 2ηwcηη , η ≥ 0 , −∞ < s1, s2 <∞ , (4.102 a)

∂ηw2e = 0 , on η = 0 , s21 + s22 ≥ a2j ; w2e = 0 , on η = 0 , s21 + s22 ≤ a2j , (4.102 b)

w2e ∼
cj
2
log(η + ρ)− cj

2ρ3
η(s21 + s22) , as ρ→ ∞ . (4.102 c)

Moreover, w2o is taken to be the solution of

w2oηη + w2os1s1 + w2os2s2 = cot θj (wcs2 − 2s2wcs1s1) , η ≥ 0 , −∞ < s1, s2 <∞ , (4.103 a)

∂ηw2o = 0 , on η = 0 , s21 + s22 ≥ a2j ; w2o = 0 , on η = 0 , s21 + s22 ≤ a2j , (4.103 b)

w2o ∼ cj
2ρ3

s21s2 cot θj , as ρ→ ∞ . (4.103 c)

In Appendix B of [15] it is shown that the inhomogeneous terms given by the right-hand sides of (4.102 a) and

(4.103 a) lead explicitly to the leading-order far-field asymptotic behavior as written in (4.102 c) and (4.103 c).

The solution v1 in (4.91) involves an as yet unknown constant χ1 from (4.94). In the determination of χ1 below
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from a solvability condition applied to the problem for v3, we must have identified all of the monopole terms of the

form b/ρ as ρ→ ∞ for some constant b arising from the far-field behavior of each term in the decomposition (4.101)

of w2. It is only these monopole terms that give non-vanishing contributions in the solvability condition determining

χ1. Clearly, the first term (Bj + χ1) (1− wc) in (4.101) yields a monopole term from (4.86). However, upon solving

the problem for w2e exactly as in Lemma B.1 of Appendix B of [15], it was found that w2e also yields a monopole

term, and it has the far-field behavior

w2e =
cj
2
log(η + ρ)− cj

2ρ3
η(s21 + s22)−

cjκj
ρ

+O(ρ−2) , as ρ→ ∞ , (4.104)

where κj is given explicitly by

κj =
cj
2

[
2 log 2− 3

2
+ log aj

]
. (4.105)

Alternatively, the solution w2o to (4.103) is odd in s2 and, hence, does not generate a monopole term at infinity. An

explicit analytical solution for w2o is given in Lemma B.2 of Appendix B of [15].

In this way, we obtain that the solution w2 to (4.82) with leading-order far-field behavior (4.100) generates further

terms in the far-field behavior of the form

w2 ∼ (Bj + χ1)

(
1− cj

ρ

)
+
v0cj
2

[
log(η + ρ)− η

ρ3
(s21 + s22) +

s21s2
ρ3

cot θj −
2κj
ρ

+O(ρ−2)

]
, as ρ→ ∞ . (4.106)

Finally, we substitute (4.106) into the matching condition (4.92). The two monopole terms in (4.106) determine

the singular behavior for the solution v3 of (4.80) as

v3 ∼ −cj (Bj + χ1 + v0κj)

|x− xj |
as x→ xj . (4.107)

In distributional form, this problem for v3 is equivalent to

△v3 = 0 , x ∈ Ω ; ∂rv3|r=1 = −2π

N∑

j=1

cj (Bj + χ1 + v0κj)
δ(θ − θj)δ(φ− φj)

sin θj
. (4.108)

The solvability condition for (4.108), obtained by using the divergence theorem, determines χ1 as

χ1 = − 1

Nc̄

N∑

j=1

cj [Bj + v0κj ] . (4.109)

Then, upon using (4.93) for Bj , we can write χ1 as the sum of two terms, one of which involves a quadratic form in

terms of the capacitance vector CT ≡ (c1, . . . , cN ), as

χ1 =
2πv0
Nc̄

pc(x1, . . . , xN )− v0
Nc̄

N∑

j=1

cjκj , pc(x1, . . . , xN ) ≡ CTGsC . (4.110)

Here κj is given in (4.105) and Gs is the Green’s function matrix defined in terms of Gs(xi;xj) by

Gs ≡




R Gs12 · · · Gs1N

Gs21 R · · · Gs2N

...
...

. . .
...

GsN1 · · · GsN,N−1 R


 , R = − 9

20π
, Gsij ≡ Gs(xi;xj) . (4.111)

Finally, we substitute (4.90) for v0 together with (4.91) for v1, with χ as determined by (4.94), (4.98), and (4.110),

into the outer expansion (4.79). This leads to the following main result:
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Principal Result 4.4: For ε→ 0, the asymptotic solution to (4.70) is given in the outer region |x−xj | ≫ O(ε) for

j = 1, . . . , N by

v =
|Ω|

2πεDNc̄


1 + ε log

(
2

ε

) ∑N
j=1 c

2
j

2Nc̄
− 2πε

N∑

j=1

cjGs(x;xj) +
2πε

Nc̄
pc(x1, . . . , xN )− ε

Nc̄

N∑

j=1

cjκj +O(ε2 log ε)


 .

(4.112)

Here cj = 2aj/π is the capacitance of the jth circular absorbing window of radius εaj, c̄ ≡ N−1(c1+ . . .+ cN ), |Ω| =
4π/3, κj is defined in (4.105), Gs(x;xj) is the surface Neumann Green’s function given in (4.73), and pc(x1, . . . , xN )

is the quadratic form defined in (4.110). Since
∫
Ω
Gs dx = 0, then v̄ = |Ω|−1

∫
Ω
v dx is given by

v̄ =
|Ω|

2πεDNc̄


1 + ε log

(
2

ε

) ∑N
j=1 c

2
j

2Nc̄
+

2πε

Nc̄
pc(x1, . . . , xN )− ε

Nc̄

N∑

j=1

cjκj +O(ε2 log ε)


 . (4.113)

For the case of one circular window of radius εa, we set N = 1, c1 = 2a/π, and a1 = a, in (4.112), (4.105), and

(4.113) to get

v̄ =
|Ω|

4εaD

[
1 +

εa

π
log

(
2

εa

)
+
εa

π

(
−9

5
− 2 log 2 +

3

2

)
+O(ε2 log ε)

]
, v(x) = v̄ − |Ω|

D
Gs(x;x1) . (4.114)

For an initial position at the origin, i.e. x = (0, 0), then with Gs(0;x1) = −3/(40π) from (4.73), (4.114) becomes

v(0) =
|Ω|

4εaD

[
1 +

εa

π
log

(
2

εa

)
− 2εa log 2

π
+O(ε2 log ε)

]
. (4.115)

For the case of one circular absorbing window of radius ε (i.e. a = 1), it was derived in [65] that

v̄ ∼ |Ω|
4εD

[
1 +

ε

π
log

(
1

ε

)
+O(ε)

]
. (4.116)

The original result in equation (3.52) of [65] omits the π term in (4.116) due to an omission of an extra factor of

π on the left-hand side of the equation above (3.52) of [65]. This was corrected in [67]. Our result (4.114) agrees

asymptotically with that of (4.116) and determines the O(ε) term to v̄ explicitly. More importantly, our main result

in Principal Result 4.4 generalizes that of [65] to the case of N circular absorbing windows of different radii on the

unit sphere, and provides the O(ε) term that accounts for the specific locations of the traps on the unit sphere.

A further interesting special case of Principal Result 4.4 is when there are N circular absorbing windows of a

common radius ε. Then, upon setting cj = 2/π, together with aj = 1 for j = 1, . . . , N in (4.105), (4.113) reduces to

v̄ =
|Ω|

4εDN


1 +

ε

π
log

(
2

ε

)
+
ε

π


−9

5
+

8π

N

K∑

j=1

j 6=i

Gs(xi;xj)− 2 log 2 +
3

2


+O(ε2 log ε)


 . (4.117)

From (4.73), we readily calculate the interaction term Gs(xi;xj) in (4.117) as

Gs(xi;xj) = − 9

20π
+

1

2π

(
1

|xi − xj |
− 1

2
log
[
sin2

(γij
2

)
+ sin

(γij
2

)])
, cos(γij) = xi · xj , (4.118)

where γij denotes the angle between xi and xj . Therefore, (4.117) becomes

v̄ =
|Ω|

4εDN

[
1 +

ε

π
log

(
2

ε

)
+
ε

π

(
−9N

5
− 2 log 2 +

3

2
+

4

N
H̃(x1, . . . , xN )

)
+O(ε2 log ε)

]
, (4.119 a)
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where the discrete sum H̃(x1, . . . , xN ) with |xj | = 1 and cos γij = xi · xj for i, j = 1, . . . , N is defined by

H̃(x1, . . . , xN ) =

N∑

k=1

k 6=i

(
1

|xi − xj |
− 1

2
log
[
sin2

(γij
2

)
+ sin

(γij
2

)])
. (4.119 b)

Equivalently, we can write v̄ in the alternative form

v̄ =
|Ω|

4εDN

[
1 +

ε

π
log

(
2

ε

)
+
ε

π

(
−9N

5
+ 2(N − 2) log 2 +

3

2
+

4

N
H(x1, . . . , xN )

)
+O(ε2 log ε)

]
, (4.120 a)

where H(x1, . . . , xN ) is defined by

H(x1, . . . , xN ) =

K∑

j=1

j 6=i

(
1

|xi − xj |
− 1

2
log |xi − xj | −

1

2
log (2 + |xi − xj |)

)
. (4.120 b)

The first term in H is the usual Coulomb singularity in three-dimensions, whereas the second term in (4.120 b)

represents a contribution from surface diffusion on the boundary of the sphere, similar to that studied in [19].

As a remark, for the case ofN circular absorbing windows of a common radius ε, the average MFPT, v̄, is minimized

in the limit ε → 0 at the trap configuration {x1 . . . , xN} that minimizes the discrete sum H(x, . . . , xN ) on the unit

sphere |xj | = 1 for j = 1, . . . , N . The classic discrete variational problems of minimizing either the Coulomb energy
∑K

j=1

j 6=i
|xi−xj |−1 or the logarithmic energy −

∑K
j=1

j 6=i
log |xi−xj | on the unit sphere has a long history in approximation

theory (see [55], [56], [41], [27], and the references therein)..
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Figure 8. Plot of the average MFPT v̄ versus ε from (4.120) with D = 1 for either one, two, or four, identical windows on
the surface of the unit sphere. The solid curves are the three-term expansion from (4.120) while the dotted curves are the
truncation of (4.120) to two terms. The triangles denote the full numerical results computed from COMSOL [17]. Top curves:
N = 1. Middle curves: N = 2 with antipodal windows. Bottom curves: N = 4 with windows at the north and south poles,
and two windows equally spaced on the equator.

Next, we validate our asymptotic result (4.120) with full numerical results. In Fig. 8 we compare our asymptotic

results for the average MFPT v̄ versus ε with those computed from full numerical simulations using the COMSOL

finite element package [17]. The comparisons are done for N = 1, N = 2, and N = 4, identical traps equally spaced on

the surface of the unit sphere (see the caption of Fig. 8). Table 5 compares the two-term and three-term predictions

for v̄ from (4.120) with corresponding full numerical results computed using COMSOL. Note that the three-term

expansion for v̄ in (4.120) agrees well with full numerical results even when ε = 0.5. For ε = 0.5 and N = 4, we
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N = 1 N = 2 N = 4

ε v̄2 v̄3 v̄n v̄2 v̄3 v̄n v̄2 v̄3 v̄n

0.02 53.89 53.33 52.81 26.95 26.42 26.12 13.47 13.11 12.99
0.05 22.17 21.61 21.35 11.09 10.56 10.43 5.54 5.18 5.12
0.10 11.47 10.91 10.78 5.74 5.21 5.14 2.87 2.51 2.47
0.20 6.00 5.44 5.36 3.00 2.47 2.44 1.50 1.14 1.13
0.50 2.56 1.99 1.96 1.28 0.75 0.70 0.64 0.28 0.30

Table 5. Comparison of asymptotic and full numerical results for v̄ for either N = 1, N = 2, or N = 4, identical

circular windows of radius ε equidistantly placed on the surface of the unit sphere (see the caption of Fig. 8). Here

v̄2 is the two-term asymptotic result obtained by omitting the O(ε) term in (4.120), v̄3 is the three-term asymptotic

result of (4.120), and v̄n is the full numerical result computed from COMSOL [17].

calculate Nπε2/(4π) ≈ 0.20, so that the absorbing windows occupy roughly 25% of the surface area of the unit

sphere. For this challenging test of perturbation theory, the last row and last three columns in Table 5 show that the

three-term asymptotic result for the average MFPT differs from the full numerical result by only about 10%.

In [15], the main result in Principal Result 4.4 was used to study the effect of the fragmentation of the trap set.

In addition, a scaling law for the minimum of the disrete energy for large N was derived by formally obtaining the

form of this energy, and then fitting the coefficients in the expansion to numerical data computed from the numerical

optimization code [26]. The result in [15] for N ≫ 1 showed that the optimum H has the form

H ≈ F(N) =
N2

2
(1− log 2) + b1N

3/2 + b2N logN + b3N + b4N
1/2 + b5 logN + b6 , (4.121 a)

The resulting least squares fit of (4.121 a) to numerical optimization data (see [15]) is

b1 ≈ −0.5668 , b2 ≈ 0.0628 , b3 ≈ −0.8420 , b4 ≈ 3.8894 , b5 ≈ −1.3512 , b6 ≈ −2.4523 . (4.121 b)

Finally, by using the scaling law H ≈ N2

2
(1− log 2) + b1N

3/2 for large N , the following rough estimate of the

minimum value of the average MFPT v̄ in (4.120) for the case of N ≫ 1 circular traps of a common radius ε can be

obtained:

v̄ ∼ |Ω|
4εDN

[
1− ε

π
log ε+

εN

π

(
1

5
+

4b1√
N

)]
. (4.122 a)

In terms of the trap surface area fraction f , given by f = Nε2/4, (4.122 a) can be written equivalently as

v̄ ∼ |Ω|
8D

√
fN

[
1−

√
f/N

π
log

(
4f

N

)
+

2
√
fN

π

(
1

5
+

4b1√
N

)]
. (4.122 b)

Remarks: (Open Problems)

(1) Determine the relationship between the limiting results for large N and those that can be obtained by the

dilute fraction limit of homogenization theory.

(2) Extend the analysis to other 3-D domains, by either determining detailed properties of the surface Green’s
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function either analytically or numerically. Devise a numerical method to compute the surface Green’s function

and to identify the regular part of the singularity structure.

(3) Extend the analysis to the case of a large sphere with reflecting boundary that contains a smaller interior

sphere, for which the surface of the smaller sphere consists of many small pores. This narrow capture problem

would involve naturally two small scales, and the results for the MFPT would (crudely) model the time taken

for a viral particle that enters the cell to deposit its genetic material inside the cell nucleus.

5 Some Biharmonic Problems in Singular Perturbed Domains

In this section we first consider a few simple singularly perturbed biharmonic problems in the annulus 0 < ε < |x| < 1

in R
2 with ε→ 0+. These model problems serve to illustrate the asymptotic methodology required to treat the linear

and nonlinear biharmonic eigenvalue problems in perforated domains, and how the analysis differs from that of

second-order elliptic problems in 2-D perforated domains considered previously in §3 and §4. We formulate a simple

model problem as

∆2u = 0 , x ∈ Ω\Ωε , (5.1 a)

u = f , ur = 0 , on r = 1 ; u = ur = 0 , r = ε . (5.1 b)

Here Ω is the unit disk centered at the origin and Ωε ≡ {x | |x| ≤ ε}. Two choices for f are considered: Case I:

f = 1. Case II: f = sin θ. We obtain an exact solution for each of these two cases, and then reconstruct them with a

singular perturbation analysis. The analysis will show some novel features of singularly perturbed biharmonic BVP’s.

For Case I where f = 1, the radially symmetric solution to (5.1) is a linear combination of {r2, r2 log r, log r, 1}.
The solution to ∆2u = 0, which satisfies the conditions on r = 1, has the form

u = A
(
r2 − 1

)
+Br2 log r − (2A+B) log r + 1 , (5.2)

for any constants A and B. Upon imposing that u = ur = 0 on r = ε, we get two equations for A and B

A = −B
2

(
1− 2ε2 log ε

1− ε2

)
, A

(
1 + 2 log ε− ε2

)
+B

(
1− ε2

)
log ε = 1 . (5.3)

Upon substituting the first equation for A into the second, we obtain that B satisfies

−B
2
− B log ε

1− ε2
+
Bε2 log ε

1− ε2
+

2ε2B(log ε)2

(1− ε2)2
+B log ε =

1

1− ε2
, (5.4)

which reduces to −B + 4ε2(log ε)2B ∼ 2 +O(ε2). This determines B, and the first equation of (5.3) determines A.

In this way, we get

B ∼ −2− 8ε2 (log ε)
2
, A ∼ 1 + 4ε2 (log ε)

2
. (5.5)

From (5.5) and (5.2), we obtain that a two-term expansion in the outer region r ≫ O(ε) is

u ∼ u0(r) + ε2 (log ε)
2
u1(r) +O(ε2 log ε) , (5.6 a)
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where u0(r) and u1(r) are defined by

u0(r) = r2 − 2r2 log r , u1 = 4
(
r2 − 1

)
− 8r2 log r . (5.6 b)

We emphasize that the leading-order outer solution u0(r) satisfies the point constraint u0(0) = 0 and is not a C2

smooth function. Hence, in the limit of small hole radius, the ε-dependent solution does not tend to the unperturbed

solution in the absence of the hole. This unperturbed solution would have B = 0 and A = 0 in (5.2), and consequently

u ∼ 1 in the outer region. In fact, we note that u0(r) can be written as u0(r) = 1− 16πG(r; 0), where

G(r; 0) =
1

8π

(
r2 log r − r2

2
+

1

2

)
, (5.7)

is the biharmonic Green’s function satisfying ∆2G = δ(x) with G = Gr = 0 on r = 1.

Next, we show how to recover (5.6) from a matched asymptotic expansion analysis. In the outer region we expand

the solution to (5.1) with f = 1 as

u ∼ w0 + σw1 + · · · , (5.8)

where σ ≪ 1 is an unknown gauge function, and where w0 satisfies the following problem with a point constraint:

∆2w0 = 0 , 0 < r < 1 ; w0(1) = 1 , w0r(1) = 0 , w0(0) = 0 . (5.9)

Since G(0; 0) = 1/(16π) from (5.7), the solution to (5.9) is w0 = 1− 16πG(r; 0), which yields

w0 = r2 − 2r2 log r . (5.10)

The problem for w1 is

∆2w1 = 0 , 0 < r < 1 ; w1(1) = w1r(1) = 0 , (5.11)

which has the following solution in terms of unknown coefficients α1 and β1:

w1 = α1

(
r2 − 1

)
+ β1r

2 log r − (2α1 + β1) log r . (5.12)

The behavior of w1 as r → 0, as found below by matching to the inner solution, will determine α1 and β1.

In the inner region we set r = ερ and obtain from (5.10) that terms of order O(ε2 log ε) and O(ε2) will be generated

in the inner region. Therefore, this suggests that in the inner region we must expand the solution as

v(ρ) = u(ερ) =
(
ε2 log ε

)
v0(ρ) + ε2v1(ρ) + · · · , (5.13)

where v0 and v1 must satisfy vj(1) = vjρ(1) = 0 for j = 0, 1. Therefore, we obtain for j = 0, 1 that

vj = Aj

(
ρ2 − 1

)
+Bjρ

2 log ρ− (2Aj +Bj) log ρ . (5.14)

We substitute (5.14) into (5.13) and write the resulting expression in terms of the outer variable r = ερ. A short

calculation shows that the far-field behavior of (5.13) as ρ→ ∞, when written in the outer r variable, is

v ∼ − (log ε)
2
B0r

2 + (log ε)
[
(A0 −B1)r

2 +B0r
2 log r

]
+A1r

2 +B1r
2 log r + (2A0 +B0) ε

2 (log ε)
2
+O(ε2 log ε) .

(5.15)
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In contrast, the two-term outer solution from (5.8), (5.10), and (5.12), is

u ∼ r2 − 2r2 log r + σ
[
α1

(
r2 − 1

)
+ β1r

2 log r − (2α1 + β1) log r
]
+ · · · . (5.16)

Upon comparing (5.16) with (5.15), we conclude that

B0 = 0 , B1 = A0 , A1 = 1 , B1 = −2 , σ = ε2 (log ε)
2
. (5.17)

This leaves the unmatched constant term −4ε2(log ε)2 on the right-hand side of (5.15). Consequently, it follows that

the outer correction w1 in (5.12) is bounded as r → 0 and has the point constraint w1(0) = −4. Consequently,

2α1 + β1 = 0 and α1 = 4 in (5.16). This gives β1 = −8, and specifies the second-order outer correction term as

w1 = 4
(
r2 − 1

)
− 8r2 log r . (5.18)

This expression reproduces that obtained in (5.6) from the perturbation of the exact solution.

The key feature in this model problem is that it is impossible to generate an inner solution that will match

to an outer solution that has a prescribed value of u0(0) 6= 0. The inner solution is a linear combination of

{ρ2, ρ2 log ρ, log ρ, 1}. Upon setting the coefficients of the ρ2 and ρ2 log ρ term to zero, and even allowing for a

logarithmic gauge function pre-multiplying the log ρ term, we would have an over-constrained problem in satisfying

the two conditions on ρ = 1 and a prescribed matching condition at infinity. Thus, we must instead specify the point

constraint u0(0) = 0, so that the outer solution has a singularity of order O(r2 log r) as r → 0. This model problem

is closely related to the biharmonic nonlinear eigenvalue problem analyzed in §4.

Next, we consider Case II where f = sin θ in (5.1). The solution to this model problem contains an infinite-order

logarithmic expansion, which we show how to sum. The exact solution to (5.1) with f = sin θ is a linear combination

of {r3, r log r, r, r−1} sin θ. Thus, the exact solution to (5.1), which satisfies the two conditions on r = 1, is

u =

(
Ar3 +Br log r +

(
−2A+

1

2
− B

2

)
r +

(
1

2
+A+

B

2

)
1

r

)
sin θ , (5.19)

for any constants A and B. Then, by imposing that u = ur = 0 on r = ε, we get two equations for A and B

Aε3 +Bε log ε+

(
−2A+

1

2
− B

2

)
ε+

(
1

2
+A+

B

2

)
ε−1 = 0 , (5.20 a)

3Aε2 +B +B log ε+

(
−2A+

1

2
− B

2

)
−
(
1

2
+A+

B

2

)
ε−2 = 0 . (5.20 b)

By comparing the O(ε−1) and O(ε−2) terms in (5.20), it is convenient to define κ by

1

2
+A+

B

2
= κε2 , (5.21)

where κ is an O(1) constant to be found. Substituting (5.21) into (5.20), and neglecting the higher order Aε3 and

3Aε2 terms in (5.20), we obtain the approximate system

B log ε+

(
−2A+

1

2
− B

2

)
≈ −κ , B +B log ε+

(
−2A+

1

2
− B

2

)
≈ κ . (5.22)

By adding the two equations above to eliminate κ, we obtain that

B + 2B log ε+ (−4A+ 1−B) = 0 . (5.23)
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From (5.23), together with A ∼ −(1 +B)/2 from (5.21), we conclude that

B ∼ 3ν

2− ν
, A = 1− 3

2− ν
, where ν ≡ −1

log
[
εe1/2

] . (5.24)

Finally, substituting (5.24) into (5.19), we obtain that the outer solution in r ≫ O(ε) has the asymptotics

u ∼
(
(1− Ã)r3 + νÃr log r + Ãr

)
sin θ , (5.25 a)

where Ã is defined by

Ã ≡ 3

2− ν
, ν ≡ −1

log
[
εe1/2

] . (5.25 b)

We remark that (5.25) is an infinite-order logarithmic series approximation to the exact solution. However, it does

not contain transcendentally small terms of algebraic order in ε as ε→ 0.

Next, we show how to recover (5.25) by formulating an appropriate singularity behavior near r = 0, which has the

effect of specifying both the singular and the regular part of a singularity structure.

In the inner region, with inner variable ρ ≡ ε−1r, we look for an inner solution of the form v0(ρ) sin θ where v0 has

growth O(ρ log ρ) as ρ→ ∞ and satisfies v0(1) = v0ρ(1) = 0. Upon multiplying this solution by ενC(ν), where C(ν)

is a constant with C = O(1) as ν → 0, we obtain that the inner solution has the form

v(ρ, θ) = u(ερ, θ) ∼ ενC(ν)

(
ρ log ρ− ρ

2
+

1

2ρ

)
sin θ . (5.26)

Here ν ≡ −1/ log
[
εe1/2

]
and C(ν) is a function of ν to be found. The extra factor of ε in (5.26) is needed since the

solution in the outer region is not algebraically large as ε → 0. Now letting ρ → ∞, and writing (5.26) in terms of

the outer variable r = ερ, we obtain that the far-field form of (5.26) is

v ∼ (Cνr log r + Cr) sin θ . (5.27)

Therefore, the outer solution uH to (5.1), which sums all the logarithmic terms in powers of ν, must satisfy

∆2uH = 0 , 0 < r < 1 ; uH = sin θ , ∂ruH = 0 , on r = 1 , (5.28 a)

uH = (Cνr log r + Cr) sin θ + o(r) , as r → 0 . (5.28 b)

The singularity structure in (5.28 b) specifies both the strength of the singular term Cνr log r sin θ in addition to the

specific form Cr sin θ for the regular part. As such, (5.28 b) provides an equation for the determination of C.

The solution to (5.28 a) is

uH =

(
αr3 + βr log r +

(
−2α+

1

2
− β

2

)
r +

(
1

2
+ α+

β

2

)
1

r

)
sin θ , (5.29)

while the singularity condition (5.28 b) yields the three equations

β = Cν , −2α+
1

2
− β

2
= C ,

1

2
+ α+

β

2
= 0 , (5.30)

for α, β, and C. We solve this system to obtain

β = Cν , C =
3

2− ν
, α = 1− C . (5.31)
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Upon substituting (5.31) into (5.29), and identifying Ã = C, we obtain that the resulting expression agrees exactly

with the result (5.25) derived from the asymptotic expansion of the exact solution.

This simple model problem, whose solution contains an infinite-order logarithmic expansion, is closely related to

the linear biharmonic eigenvalue problem that is studied below.

5.1 A Biharmonic Linear Eigenvalue Problem in a Perforated 2-D Domain

Next, we follow [39] and consider a singularly perturbed linear biharmonic eigenvalue problem in a two-dimensional

domain Ω that is perforated by a small arbitrarily-shaped hole Ωε of “radius” ε such that Ωε → x0 ∈ Ω as ε → 0.

The perturbed eigenvalue problem is formulated as

∆2u− λu = 0 , x ∈ Ω\Ωε ;
∫

Ω\Ωε
u2 dx = 1 , (5.32 a)

u = ∂nu = 0 , x ∈ ∂Ω ; u = ∂nu = 0 , x ∈ ∂Ωε . (5.32 b)

We will determine an asymptotic expansion for λ(ε) as ε → 0, with limiting behavior λ(ε) → λ0 as ε → 0. This

leading term λ0, and its corresponding eigenfunction u0, are an eigenpair of the following limiting problem with a

point constraint, referred to as the punctured plate problem:

∆2u0 − λ0 u0 = 0 , x ∈ Ω \ {x0} ;
∫

Ω

u20 dx = 1 , (5.33 a)

u0 = ∂nu0 = 0 , x ∈ ∂Ω ; u0(x0) = 0 . (5.33 b)

The key feature in this problem, as shared by the model problem in Case I of §2, is that we must introduce the

point constraint u0(x0) = 0. Therefore, in the limit of small hole radius, the eigenvalue for the perforated eigenvalue

problem (5.32) does not tend to an eigenvalue of the biharmonic eigenvalue problem in the domain without a hole.

The limiting punctured plate eigenvalue problem (5.33) has a countably infinite set of eigenvalues with corresponding

orthogonal eigenfunctions (cf. [12]), each with singular behavior O(|x− x0|2 log |x− x0|) as x→ x0.

To solve the limiting problem (5.33) it is convenient to introduce the Green’s function G(x;x0, λ0) satisfying

∆2G− λ0G = δ(x) , x ∈ Ω \ {x0} ; G = ∂nG = 0 , x ∈ ∂Ω . (5.34 a)

Then, G(x;x0, λ0) can be decomposed in terms of its singular part and its C2 smooth “regular” part R(x;x0, λ0) as

G(x;x0, λ0) =
1

8π
|x− x0|2 log |x− x0|+R(x;x0, λ0) . (5.34 b)

In terms of G, the solution to (5.33), up to a normalization factor, is simply u0 = G(x;x0, λ0), where λ0 is a root

of

R(x0;x0, λ0) = 0 . (5.35)

In developing an asymptotic expansion for λ(ε) below, we will consider only the simplest case for which λ0 is a root
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of (5.35) of multiplicity one with ∇xR(x;x0, λ0)|x=x0
6= 0. The asymptotic methodology needed to treat this problem

is similar to that of Case II of §2.
We remark that the degenerate case for which λ0 is a root of (5.35) of multiplicity one with ∇xR(x;x0, λ0)|x=x0

= 0

is discussed in detail in [39].

We expand the eigenvalue λ(ε) of (5.32), together with the outer solution for this problem, as

λ(ε) = λ0 +
∞∑

k=1

νkλk + · · · , u = u0 +
∞∑

k=1

νkuk + · · · , ν ≡ −1

log ε
, (5.36)

where u0 = G(x;x0, λ0). Upon substituting these expansions into (5.32), we obtain that u1 and uk for k > 1 satisfy

∆2u1 − λ0u1 = λ1u0 , x ∈ Ω \ {x0} ; u1 = ∂nu1 = 0 , x ∈ ∂Ω ;

∫

Ω

u0u1 dx = 0 , (5.37 a)

∆2uk − λ0uk = λku0 +

k−1∑

i=1

λiuk−i , x ∈ Ω \ {x0} ; uk = ∂nuk = 0 , x ∈ ∂Ω , (5.37 b)

with some normalization condition on uk for k > 1. The singularity behaviors for uk for k ≥ 1 as x→ x0, which are

required for determining λk for k ≥ 1, are derived below after matching uk as x → x0 to the far-field behavior of

certain inner solutions near the hole.

In the inner region, we let y = ε−1(x− x0) and we introduce the canonical vector-valued inner solution ψc defined

as the unique solution of

∆2
yψc = 0 , y ∈ R

2 \ Ω0 ; ψc = ∂nψc = 0 , y ∈ ∂Ω0 ; ψc ∼ y log |y| , as |y| → ∞ . (5.38 a)

Here Ω0 ≡ ε−1Ωε. In terms of this solution, there exists a unique 2 × 2 matrix M, which depends on the shape of

the hole, such that

ψc ∼ y log |y|+My + o(1) , as |y| → ∞ . (5.38 b)

For an arbitrarily-shaped subdomain Ω0, the matrix M in (5.38 b) can be computed numerically from the integral

equation method described in §5.1 of [74]. There are a few cases when M is known analytically. When Ω0 is the unit

disk, then the solution to (5.38) is

ψc = y log |y| − y

2
+

y

2|y|2 , (5.39)

so that M = −I/2, where I is the identity matrix. In addition, when Ω0 is an ellipse with semi-major axis a and

semi-minor axis b, where a > b, and where the semi-major axis is inclined at an angle α to the horizontal coordinate

y1 > 0, it can be shown that the matrix entries of M are (see Appendix B of [74])

m11 =
(b− a) cos2 α− b

a+ b
− log

(
a+ b

2

)
, m22 =

(a− b) cos2 α− a

a+ b
− log

(
a+ b

2

)
, (5.40 a)

m12 = m21 = − (a− b) sinα cosα

a+ b
. (5.40 b)

In the inner region, we expand u = εν
∑∞

k=0 ν
kψk, where ∆

2
yψk = 0. We take ψk = ak ·ψc, where ak is an unknown



76 M. J. Ward

vector, · denotes dot product, and where the vector-valued function ψc satisfies (5.38). Thus, the inner expansion is

u = εν
∞∑

k=0

νkak · ψc . (5.41)

Then, by using the far-field behavior (5.38 b) of ψc in (5.41), we write the resulting expression in terms of the outer

variable x− x0 = εy to get

u ∼ a0 · (x− x0) +
∞∑

k=1

νk [ak−1 · (x− x0) log |x− x0|+ ak · (x− x0) + ak−1 · M(x− x0)] . (5.42)

This gives the required singular behavior as x→ x0 for each term in the outer expansion (5.36).

By comparing the leading-order terms in (5.36) and (5.42) for u, we obtain that u0 ∼ a0 · (x−x0) as x→ x0. Since

u0 = G(x;x0, λ0), we conclude from (5.34 b) that

a0 = ∇xR(x;x0, λ0)|x=x0
. (5.43)

Then, by equating the O(νk) terms in u in (5.36) and (5.42), we conclude that each uk for k ≥ 1 satisfies (5.37)

subject to the singular behavior

uk ∼ ak−1 · (x− x0) log |x− x0|+ [ak−1 · M(x− x0) + ak · (x− x0)] , as x→ x0 , (5.44)

where a0 is given in (5.43).

The problems (5.37) for k ≥ 1, with singularity behavior (5.44), allows for the recursive determination of the

unknown vectors ak for k ≥ 1, with a0 as given in (5.43). In particular, with a known value for ak−1, the singular

behavior uk ∼ ak−1 · (x− x0) log |x− x0| as x→ x0 will determine λk from a solvability condition applied to (5.37).

Then, the coefficient ak in (5.44) is found from the regular part of the solution for uk. Finally, uk can be made unique

by imposing a normalization condition.

The first step in this procedure is the calculation of λk. This is done with the following Lemma:

Lemma: Let u0, λ0 be an eigenpair of (5.33) with multiplicity one, and assume that ∇xR(x;x0, λ0)|x=x0
6= 0. Then,

a necessary condition for the problem

∆2uk − λ0uk = λku0 + f(x) , x ∈ Ω\{x0} ; u = ∂nu = 0 , x ∈ ∂Ω , (5.45 a)

uk ∼ ak−1 · (x− x0) log |x− x0| , as x→ x0 , (5.45 b)

to have a solution is that λk satisfies

λk (u0, u0) = − (f, u0) + 4πak−1 · ∇xR0 . (5.46)

Here ∇xR0 ≡ ∇xR(x;x0, λ0), and we have defined the inner product (g, h) ≡
∫
Ω
gh dx.

The proof of this result follows by applying Green’s identity to u0 and uk over the punctured domain Ω\Bδ, where

Bδ is a circular disk of radius δ ≪ 1 centered at x0. This identity readily yields that

λk

∫

Ω\Bδ

u20 dx+

∫

Ω\Bδ

fu0 dx =

∫

∂Bδ

[u0 ∂n (∆u1)−∆u1 ∂nu0 − u1 ∂n (∆u0) + ∆u0 ∂nu1] ds . (5.47)

Here ∂n denotes the normal derivative directed inwards to Bδ, so that ∂n = −∂r where r = |x − x0|. Next, we let
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δ → 0, and use (5.34 b) for u0 = G(x;x0, λ0) together with (5.45 b) to calculate for r → 0 that

uk ∼ (ak−1 · e) r log r , ∂ruk ∼ (ak−1 · e) [log r + 1] , ∆uk ∼ 2

r
(ak−1 · e) , ∂r (∆uk) ∼ − 2

r2
(ak−1 · e) ,

u0 ∼ (a0 · e) r +
r2

8π
log r , ∂ru0 ∼ (a0 · e) +

r

4π
log r +

r

8π
, ∆u0 ∼ 1

2π
log r +

1

2π
, ∂r (∆u0) ∼

1

2πr
,

where a0 = ∇xR(x;x0, λ0)|x=x0
. Here we have defined e by e ≡ (cos θ, sin θ)T . Upon substituting these limiting

relations into (5.47), and then taking the limit δ → 0, we obtain that

λk (u0, u0) + (f, u0) =

∫ 2π

0

4 (ak−1 · e) (a0 · e) dθ = 4πak−1 · a0 = 4πak−1 · ∇xR0 , (5.49)

which completes the proof of the Lemma �

By using the Lemma, we can calculate the coefficients λk in the asymptotic expansion of λ(ε) from (5.37) and

(5.44) to obtain the following main result:

Principal Result 5.1: Let u0, λ0 be an eigenpair of (5.33) with multiplicity one, and assume that ∇xR(x;x0, λ0)|x=x0
6=

0. Then, the eigenvalue λ(ε) for the perturbed problem (5.32) has the expansion

λ(ε) ∼ λ0 + νλ1 +

∞∑

k=2

νkλk , ν ≡ −1

log ε
, (5.50 a)

where λ1 and λk for k ≥ 2 are given by

λ1 = 4π
|∇xR0|2
(u0, u0)

, λk =
1

(u0, u0)

[
4πak−1 · ∇xR0 −

k−1∑

i=1

λi (uk−i, u0)

]
, (5.50 b)

and ∇xR0 ≡ ∇xR(x;x0, λ0)|x=x0
. In (5.50 b) the vectors ak for k ≥ 1, with a0 = ∇xR0, are determined recursively

from the problems (5.37) and (5.44) for uk for k ≥ 1.

For the case of a circular hole of radius ε, then ψc satisfies (5.39) and M = −I/2. For this special case we can

conveniently replace ν and ak in (5.50 a) and (5.50 b) with ν̃ ≡ −1/ log
(
εe1/2

)
and bk, respectively, where each uk

for k ≥ 1, with b0 ≡ ∇xR0, satisfies (5.37) subject to the singularity behavior

uk ∼ bk−1 · (x− x0) log |x− x0|+ bk · (x− x0) , as x→ x0 .

Finally, we remark that instead of evaluating the individual vector coefficients ak for k ≥ 1 needed in the Principal

Result 5.1, it is possible to formulate a hybrid problem that effectively sums the infinite logarithmic expansion in

(5.50 a). To do so, we write the inner solution in terms of an unknown vector A = A(ν) as

u = ενA · ψc(y) , (5.51)

where ψc(y) is the unique solution to (5.38). By using (5.38 b), the far-field behavior of this solution, as written in

terms of the outer variable x = x0 + εy, is

u ∼ A · (x− x0) + νA · [(x− x0) log |x− x0|+M(x− x0)] , ν =
−1

log ε
. (5.52)

This expression gives the required singularity behavior for the outer solution accurate to within all logarithmic terms.

In this way, the hybrid method for summing the infinite logarithmic expansion for λ(ε) is to solve the following hybrid
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problem for u⋆, λ⋆, and the vector A = A(ν):

∆2u⋆ − λ⋆u⋆ = 0 , x ∈ Ω \ {x0} ; u⋆ = ∂nu
⋆ = 0 , x ∈ ∂Ω ;

∫

Ω

(u⋆)
2
dx = 1 , (5.53 a)

u ∼ A · (x− x0) + νA · [(x− x0) log |x− x0|+M(x− x0)] , ν =
−1

log ε
. (5.53 b)

Then, to within a negligible transcendentally small algebraic error term in ε, we have λ(ε) ∼ λ⋆, as ε→ 0.

We now illustrate the theory by way of a specific example that can be solved analytically. Let Ω be the unit disk

that contains an arbitrarily-shaped hole of “radius” ε centered at the origin. For ε→ 0, we look for an eigenfunction

of the limiting problem (5.33) that has either a cos θ or sin θ dependence. A simple calculation shows that this type

of solution to the limiting punctured plate eigenvalue problem (5.33) is given by

u0 = c0

(
J1(η0r)−

J1(η0)I1(η0r)

I1(η0)

)
cos θ + d0

(
J1(η0r)−

J1(η0)I1(η0r)

I1(η0)

)
sin θ , (5.54 a)

where η0 ≡ λ
1/4
0 is taken to be the first positive root of the transcendental equation

J1(η)I
′
1(η)− J ′

1(η)I1(η) = 0 . (5.54 b)

Here c0 and d0 are arbitrary constants, while I1 and J1 denote Bessel functions in the standard notation. Therefore,

the limiting eigenvalue problem has two independent eigenfunctions corresponding to the eigenvalue λ0 = η40 .

For a non-circular hole, this degeneracy in the leading-order eigenpair is broken only at orderO(ν2) in the expansion

of the eigenvalue. To determine precisely how the eigenvalue is split by the asymmetry induced by the small arbitrarily-

shaped hole, we will determine an infinite order expansion to the eigenvalue by using the hybrid formulation (5.53).

This approach is more tractable analytically than evaluating all of the individual coefficients in the expansion of the

eigenvalue as in the Principal Result 5.1.

From the hybrid formulation (5.53), u⋆, λ⋆ and A = (A1, A2)
T satisfy (5.53 a) subject to the singular behavior

(5.53 b) as r → 0, which we write in expanded form as

u⋆ ∼ [A1νr log r +A1r + νA1m11r + νA2m21r] cos θ + [A2νr log r +A2r + νA1m12r + νA2m22r] sin θ . (5.55)

Here mjk, for j, k = 1, 2, are the entries of the matrix M defined by (5.38 b). Since the required solution to (5.53 a)

is a linear combination of {J1(ηr), Y1(ηr), I1(ηr),K1(ηr)}(cos θ, sin θ), where η ≡ (λ⋆)
1/4

, it can be written in terms

of six unknown coefficients as

u⋆ =

[
c0J1(ηr) + c2I1(ηr) + c1

(
Y1(ηr) +

2

π
K1(ηr)

)]
cos θ

+

[
d0J1(ηr) + d2I1(ηr) + d1

(
Y1(ηr) +

2

π
K1(ηr)

)]
sin θ . (5.56)

Notice that this particular linear combination of Y1 and K1 eliminates the 1/r singularity in u⋆ as r → 0.

From the well-known local behaviors of J1, I1, Y1, and K1, we calculate for r → 0 that

Y1(ηr) +
2

π
K1(ηr) ∼

2

π
ηr log r +

2ηr

π

[
log
(η
2

)
+ γe −

1

2

]
, J1(ηr) ∼

ηr

2
, I1(ηr) ∼

ηr

2
, (5.57)

where γe is Euler’s constant. Then, we use (5.57) in (5.56) to obtain the local behavior of u⋆ as r → 0. By comparing
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this local behavior of u⋆ with the required behavior in (5.55) we obtain upon examining the O (r log r) term that

c1 =
A1νπ

2η
, d1 =

A2νπ

2η
. (5.58 a)

Similarly, by comparing the O(r) terms in the local behavior of u⋆, we obtain

(c0 + c2)

2
η +A1b11 +A2b12 = 0 ,

(d0 + d2)

2
η +A1b21 +A2b22 = 0 , (5.58 b)

where the coefficients bjk for j, k = 1, 2 are defined by

bjj = ν

(
log
(η
2

)
+ γe −

1

2

)
− 1− νmjj , j = 1, 2 ; b12 = −νm12 , b21 = −νm21 . (5.58 c)

Finally, to ensure that u⋆ in (5.56) satisfies u⋆ = ∂ru
⋆ = 0 on r = 1, we must impose that

(
c0
d0

)
J1(η) +

(
c2
d2

)
I1(η) = −νπ

2η

(
A1

A2

)(
Y1(η) +

2

π
K1(η)

)
= 0 , (5.58 d)

(
c0
d0

)
J ′
1(η) +

(
c2
d2

)
I ′1(η) = −νπ

2η

(
A1

A2

)(
Y ′
1(η) +

2

π
K ′

1(η)

)
= 0 . (5.58 e)

The system (5.58) is a linear homogeneous system for the unknowns c0, d0, c2, d2, A1, A2, with eigenvalue parameter

η = (λ⋆)
1/4

. By using (5.58 d) and (5.58 e) to eliminate A1 and A2, a simple calculation shows that this system can

be written as the equivalent 4× 4 homogeneous system

Aζ = 0 , A ≡




b11J1(η)− ν
2γ1

b11I1(η)− ν
2γ1

b12J1(η) b12I1(η)

J ′
1(η)− γ0J1(η) I ′1(η)− γ0I1(η) 0 0

b21J1(η) b21I1(η) b22J1(η)− ν
2γ1

b22I1(η)− ν
2γ1

0 0 J ′
1(η)− γ0J1(η) I ′1(η)− γ0I1(η)


 , (5.59 a)

where ζ ≡ (c0, c2, d0, d2)
T
and ν = −1/ log ε. In (5.59 a), γ0 and γ1 are defined by

γ0 ≡
(
Y ′
1(η) +

2
πK

′
1(η)

Y1(η) +
2
πK1(η)

)
, γ1 ≡ 2

π

[
Y1(η) +

2

π
K1(η)

]−1

. (5.59 b)

In (5.59 a) the coefficients bjk, for j, k = 1, 2, are defined in (5.58 c).

For the special case of a circular hole of radius ε, so thatm12 = m21 = 0 andm11 = m22 = −1/2, then b12 = b21 and

b11 = b22 = bc ≡ ν (log (η/2) + γe − 1/2)− 1 + ν/2. For this special case, where the eigenfunction degeneracy is not

broken, the matrix A can be written in block diagonal form and there are two independent vectors ζ1 = (c0, c2, 0, 0)
T

and ζ2 = (0, 0, d0, d2)
T
for the common eigenvalue λ⋆ = η4, where η is the first positive root of

J1(η)I
′
1(η)− J ′

1(η)I1(η) =
ν

2bcγ1
[I ′1(η)− J ′

1(η)− γ0 (I1(η)− J1(η))] . (5.60)

For a circular hole of radius ε, in Fig. 9(a) we compare the asymptotic approximation λ⋆ versus ε, as obtained from

(5.60), with the exact result for λ(ε) as obtained by requiring that the solution

u = [c0J1(ηr) + c2I1(ηr) + c3K1(ηr) + c4Y1(ηr)] cos θ (5.61)

to (5.32) satisfy the four conditions u = ur = 0 on r = ε and r = 1. As seen from this figure, the asymptotic and full

numerical results agree rather well on the range 0 < ε < 0.1.

Next, consider an elliptical-shaped hole x21/a
2 + x22/b

2 = ε2, for which the matrix entries of M are given in (5.40)
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Figure 9. Left figure: For the annulus ε < |x| < 1, the asymptotic approximation λ⋆ (solid curve), as obtained from (5.60),
is compared with the exact solution λ(ε) (heavy solid curve), as obtained by requiring that (5.61) satisfy u = ur = 0 on r = ε
and r = 1. Right figure: for the elliptical-shaped hole x2

1/4 + 4x2
2 = ε2 of area πε2, the asymptotic approximations λ± = η4

±
(solid curves) are plotted versus ε, where η± are the first two roots of det(A) = 0 with A is defined in (5.59). The dotted curve
is the asymptotic approximation λ⋆, as computed from (5.60), corresponding to the eigenvalue of multiplicity two for the case
of a circular hole of the same area πε2.

with inclination angle α = 0. For this example, when ε is small there are two nearby roots η± to det(A) = 0, where

A is defined in (5.59), which have the common limiting behavior η± → η00 as ν → 0. Here η00 is the first positive

root of J1(η)I
′
1(η)−J ′

1(η)I1(η) = 0. In Fig. 9(b) we plot the two curves λ± = η4± versus ε for an elliptical-shaped hole

with semi-axes a = 2 and b = 1/2. This example clearly shows how the asymmetry of the hole breaks the degeneracy

of the eigenvalue of multiplicity two for the limiting problem (5.33), and leads to the creation of two closely-spaced

simple eigenvalues for the perturbed problem (5.32).

6 Pattern Formation via Reaction-Diffusion Systems in 2-D Domains

Localized spatio-temporal patterns consisting of spots or clusters of spots have been observed in many physical and

chemical experiments. Such localized patterns can exhibit a variety of dynamical behaviors and instabilities including

slow spot drift, temporal oscillations of spots, spot annihilation, and spot self-replication. Physical experiments where

some of this phenomena has been observed include the ferrocyanide-iodate-sulphite reaction (cf. [44]), the chloride-

dioxide-malonic acid reaction (cf. [21]), and certain semiconductor gas discharge systems.

Numerical simulations of certain singularly perturbed two-component reaction-diffusion systems with very simple

kinetics, such as the Gray-Scott model, have shown the occurrence of very complex spatio-temporal localized patterns

consisting of either spots, stripes, or space-filling curves in a two-dimensional domain (cf. [52]). Some of these reduced

two-component reaction-diffusion systems model, at least qualitatively, the more complex chemically interacting

systems of the experimental studies of [44] and [21]. A survey of experimental and theoretical studies, through

reaction-diffusion modeling, of localized spot patterns in various physical or chemical contexts is given in [76].

Mathematically, a spot pattern for a reaction-diffusion system in a multi-dimensional domain Ω is a spatial pat-

tern where at least one of the solution components is highly localized near certain discrete points in Ω that can



Asymptotics for Strong Localized Perturbations: Theory and Applications 81

evolve dynamically in time. For certain singularly perturbed two-component reaction-diffusion models in one space

dimension, such as the Gray-Scott and Gierer-Meinhardt models, there has been considerable analytical progress in

understanding both the dynamics and the various types of instabilities of spike patterns, including self-replicating

instabilities. In contrast, in a two-dimensional spatial domain there are relatively few studies characterizing spot

dynamics and stability. For a detailed literature survey, see [37] and [16].

In this section we study a class of nonlinear reaction-diffusion problems with localized spot patterns in a two-

dimensional domain, An example of such a problem is the Schnakenburg reaction-diffusion model, studied in [37],

formulated as

vt = ε2△v − v + uv2 , ε2ut = D△u+ a− ε−2uv2 , x ∈ Ω ; ∂nu = ∂nv = 0 , x ∈ ∂Ω . (6.1)

Here 0 < ε≪ 1, D > 0, and a > 0, are parameters.

We now construct a quasi steady-state solution to (6.1) with K localized spots. Such a solution is characterized by

the concentration of v as ε→ 0 to the vicinity of K distinct locations x1, . . . , xN in Ω. We assume that the distance

between any two spots is O(1) as ε→ 0. In the inner region near the jth spot we introduce the new variables

u =
1√
D

Uj , v =
√
DVj , y = ε−1(x− xj) . (6.2)

In the inner region, we look for a leading-order radially symmetric solution of the form Uj ∼ Uj(ρ) and Vj ∼ Vj(ρ)

with ρ = |y|. Thus, for each j = 1, . . . ,K, we have that Uj and Vj , with primes denoting derivatives in ρ, satisfy

V ′′
j +

1

ρ
V ′
j − Vj + UjV

2
j = 0 ; U ′′

j +
1

ρ
U ′
j − UjV

2
j = 0 , 0 < ρ <∞ , (6.3 a)

U ′
j(0) = V ′

j (0) = 0 ; Vj → 0 , Uj ∼ Sj log ρ+ χ(Sj) as ρ→ ∞ . (6.3 b)

The local variable Vj decays exponentially as ρ→ ∞. In contrast, the far-field logarithmic behavior for Uj in (6.3 b) is

similar to that in (3.15) for the case where the inner problem is Laplace’s equation. We emphasize that the nonlinear

function χ = χ(Sj) in (6.3 b) must be computed numerically from the solution to (6.3) as a function of the source

strength Sj > 0.

Next, we determine the source strengths S1, . . . , SN by matching the far-field behavior of Uj to an outer solution

for u valid away from O(ε) distances from xj . Firstly, upon writing the far-field condition for Uj in (6.3 b) in terms

of outer variables, we obtain from the matching condition that the outer solution for u must have the local behavior

u ∼ 1√
D

[
Sj log |x− xj |+

Sj

ν
+ χ(Sj)

]
, x→ xj , (6.4)

for j = 1, . . . , N , where ν ≡ −1/ log ε. Secondly, in the outer region, v is exponentially small, and from (6.2) and

(6.3 b) we get

ε−2uv2 → 2π
√
D

ε2

(
ε2
∫ ∞

0

ρUjV
2
j dρ

)
δ(x− xj) = 2π

√
DSjδ(x− xj) . (6.5)
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Therefore, from (6.1), the outer steady-state solution for u satisfies

∆u = − a

D
+

2π√
D

K∑

j=1

Sj δ(x− xj) , x ∈ Ω ; ∂nu = 0 , x ∈ ∂Ω , (6.6 a)

u ∼ 1√
D

[
Sj log |x− xj |+ χ(Sj) +

Sj

ν

]
as x→ xj , j = 1, . . . ,K , (6.6 b)

where ν ≡ −1/ log ε. We again observe that the singularity behavior in (6.6 b) specifies both the singular and regular

parts of a Coulomb singularity. As such, each singularity behavior provides one equation for the determination of an

algebraic system for the source strengths S1, . . . , SN .

To solve this problem, we first note that the Divergence theorem enforces that 2π
∑K

j=1 Sj = a|Ω|/
√
D, where |Ω|

is the area of Ω. The solution to (6.6) then can be represented in terms of the Neumann Green’s function GN of

(3.55) by

u(x) = − 2π√
D

(
K∑

i=1

SiGN (x;xi) + χ

)
. (6.7)

Here χ is a constant to be found. By expanding (6.7) as x → xj , and comparing the resulting expression with the

required singularity behavior in (6.6 b), we obtain for each j = 1, . . . ,K that

Sj log |x− xj | − 2πSjRN (xj ;xj)− 2πχ− 2π
K∑

i=1

i6=j

SiGN (xj ;xi) ∼ Sj log |x− xj |+ χ(Sj) +
Sj

ν
. (6.8)

These matching conditions gives K equations relating S1, . . . , SN and χ. We summarize our construction as follows:

Principal Result 6.1: For given spot locations xj for j = 1, . . . ,K, let Sj for j = 1, . . . ,K and χ satisfy the

nonlinear algebraic system

Sj + 2πν


SjRNjj +

K∑

i=1

i6=j

SiGNji


+ νχ(Sj) = −2πνχ ;

K∑

j=1

Sj =
a|Ω|
2π

√
D
. (6.9)

Here ν ≡ −1/ log ε with GNji ≡ GN (xj ;xi) and RNjj ≡ RN (xj ;xj), where GN is the Neumann Green’s function of

(3.55) with regular part RN . The nonlinear term χ(Sj) in (6.9) is as given in (6.3 b). Then, for ε → 0, the outer

solution for a K-spot quasi steady-state solution of (6.1) is given by (6.7), and the leading-order inner solutions are

given by u ∼ D−1/2Uj and v ∼
√
DVj, where Uj and Vj is the solution to the core problem (6.3).

We emphasize that the system (6.9) contains all of the logarithmic correction terms of order O(νk) for any k

that are required in the construction of the quasi steady-state solution. Hence, we say that (6.9) has ‘summed’ all

of the logarithmic terms in powers of ν for the source strengths S1, . . . , SN . The key difference here between this

nonlinear problem and the linear problem of §3 is that the source strengths now satisfy a nonlinear algebraic system

of equations.

A detailed study of (6.9) and other aspects of localized pattern formation, including self-replicating spot patterns,

is studied in [37].

In particular, we can proceed as in §2 of [37] to derive an ODE system for the slow evolution of the spots xj for
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j = 1, . . . ,K. In the inner region near x = xj we expand the solution to (6.1) as

u =
1√
D

(Uj(ρ) + εU1j(yj) + · · · ) , v =
√
D (Vj(ρ) + εV1j(yj) + · · · ) , yj = ε−1 [x− xj(τ)] , τ = ε2t .

(6.10)

Here Uj(ρ) and Vj(ρ), with ρ = |yj |, are the radial symmetric solutions of the core problem (6.3). We then substitute

(6.10) into (6.1) and collect terms of order O(ε) to derive that V1j and U1j for each j = 1, . . . ,K satisfies

∆yjW1j +MjW1j = fj , yj ∈ R
2 , (6.11 a)

where yj = ρeθ, and the vectors W1j , fj , eθ and the 2× 2 matrices Mj are defined by

W1j ≡
(
V1j
U1j

)
, f ≡

(
−V ′

j x
′
j ·eθ

0

)
, eθ ≡

(
cos θ

sin θ

)
, Mj ≡

(
−1 + 2UjVj V 2

j

−2UjVj −V 2
j

)
. (6.11 b)

The determination of a far-field condition for W1j is derived by performing a higher order matching of the outer and

inner solutions. In this way, we obtain that the solution to (6.11) must satisfy

W1j ∼
(

0

αj ·yj

)
as yj → ∞ , αj ≡ −2πSj∇R(xj ;xj)− 2π

N∑

j=1

j 6=i

Si∇G(xj ;xi) . (6.12)

The problem (6.11) subject to (6.12) determines x′j in terms of the vector αj . In this way, we obtain the following

main result for the dynamics of a K-spot quasi-equilibrium solution was obtained in [37].

Principal Result 6.2: For ε → 0 the slow dynamics of a collection x1, . . . , xK of spots satisfies the differential-

algebraic system (DAE),

x′j ∼ −2πε2γ(Sj)


Sj∇R(xj ;xj) +

N∑

j=1

j 6=i

Si∇G(xj ;xi)


 , j = 1, . . . ,K . (6.13)

Here the source strengths Sj, for j = 1, . . . ,K, are determined in terms of x1, . . . , xK by the nonlinear algebraic

system (6.9). The function γ(Sj) is a certain positive function determined in terms of a solvability condition.

Next, we study the stability of the quasi-equilibrium one-spot solution constructed above to instabilities occurring

on a fast O(1) time-scale. Since the speed of the slow drift of the spots in (6.13) is O(ε2) ≪ 1, in our stability analysis

we will assume that the spot is asymptotically stationary. We begin the stability analysis by letting ue and ve denote

the quasi-equilibrium solution, and we introduce the perturbation

u = ue + eλtη , v = ve + eλtφ . (6.14)

By substituting (6.14) into (6.1) and linearizing, we obtain the following eigenvalue problem for φ and η:

ε2∆φ−φ+2ueveφ+v
2
eη = λφ , D∆η−2ε−2ueveφ−ε−2v2eη = ε2λη , x ∈ Ω ; ∂nφ = ∂nη = 0 , x ∈ ∂Ω . (6.15)

In the inner region near x0 we look for an O(1) time-scale instability associated with the local angular integer

mode m by introducing the new variables N(ρ) and Φ(ρ) by

η =
1

D
eimθN(ρ) , φ = eimθΦ(ρ) , ρ = |y| , y = ε−1(x− x0) , (6.16)

where yt = ρ(cos θ, sin θ). Substituting (6.16) into (6.15), and by using ue ∼ D−1/2U(ρ) and ve ∼
√
DV (ρ), where U
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m Σm

2 4.303
3 5.439
4 6.143
5 6.403
6 6.517

Table 6. Numerical results computed from (6.17) for the threshold values of S, denoted by Σm, as a function of the

integer angular mode m where an instability first occurs for the core problem (6.3) as S increases.

and V satisfy the core problem (6.3), we obtain the following radially symmetric eigenvalue problem:

LmΦ− Φ+ 2UV Φ+ V 2N = λΦ , LmN − 2UV Φ− V 2N = 0 , 0 ≤ ρ <∞ . (6.17)

Here LmΦ ≡ ∂ρρΦ+ρ−1∂ρΦ−m2ρ−2Φ. We impose the usual regularity condition for Φ and N at ρ = 0. As we show

below, the appropriate far-field boundary conditions for (6.17) as ρ→ ∞ depends on whether m = 0 or m ≥ 2.

The eigenvalue problem (6.17) does not appear to be amenable to analysis, and thus we solve it numerically for

various integer values of m. We denote λ0 to be the eigenvalue of (6.17) with the largest real part. Since U and V

depend on S from (6.3), we have implicitly that λ0 = λ0(S,m). To determine the onset of any instabilities, we compute

any threshold values S = Σm where Re(λ0(Σm,m)) = 0. In our computations, we only consider m = 0, 2, 3, 4, . . .,

since λ0 = 0 for any value of S for the translational mode m = 1. A higher order perturbation analysis for the m = 1

mode generates only weak instabilities occurring on an asymptotically long O(ε−2) time-scale. Any such instabilities

are reflected in instabilities in the ODE (6.13).

When m ≥ 2 we can impose the asymptotic decay conditions that Φ decays exponentially as ρ → ∞ while

N ∼ O(ρ−m) → 0 as ρ → ∞. With these conditions (6.17) is discretized with centered differences on a large but

finite domain. We then determine λ0(S,m) by computing the eigenvalues of a matrix eigenvalue problem. For m ≥ 2

our computations show that λ0(S,m) is real and that λ0(S,m) > 0 when S > Σm. The threshold value Σm is

tabulated in Table 6 for m = 2, . . . , 6. In our computations we took 300 meshpoints on the interval 0 ≤ ρ < 20. To

the number of significant digits shown in Table 6, the results there are insensitive to increasing either the domain

length or the number of grid points. It follows from Table 6 that the smallest value of S where an instability is

triggered occurs for the “peanut-splitting” instability m = 2 at the threshold value S = Σ2 ≈ 4.3. In Fig. 10(a) we

plot λ0(S,m) as a function of S for m = 2, m = 3 and m = 4.

By extending this result to the K-spot case, the following result characterizing spot-splitting was obtained in [37].

Spot-Splitting Criterion: Let D = O(1) and ε → 0 and consider a K-spot quasi-equilibrium solution to (6.1).

Let Sj for j = 1, . . . ,K, satisfy the nonlinear algebraic system (6.9) when K > 1. For K ≥ 1 the quasi-equilibrium

solution is stable with respect to the other local angular modes m = 2, 3, 4, . . . provided that Sj < Σ2 ≈ 4.303 for

all j = 1, . . . ,K. The J th spot will become unstable to the m = 2 mode if SJ exceeds the threshold value Σ2. This

peanut-splitting instability from the linearized problem is found to initiate a nonlinear spot self-replication process.

Numerical confirmation of this theory was shown in [37], and will be illustrated in class.
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(a) λ0 vs. S for m = 2, 3, 4
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Figure 10. Left figure: Plot of the largest (real) eigenvalue λ0(S,m) of (6.17) vs. S for m = 2 (heavy solid), m = 3 (solid),
and m = 4 (dotted). Right figure: Plot in the complex plane of the path of the eigenvalue λ0(S, 0) of largest real part of (6.17)
with m = 0 and 2.8 < S < 7.5. For S < 2.8, λ0 ≈ −1.0 and arises from the discretization of the continuous spectrum (not
shown). For 2.8 < S < 4.98, λ0(S, 0) occurs as a complex conjugate pair which monotonically approaches the real axis as S
increases. This pair merges onto the real axis at S ≈ 4.79. As S increases further, λ0(S, 0) remains real but negative.

7 Conclusion

In these notes we have surveyed the development and application of a singular perturbation methodology for solving

linear and nonlinear PDE models in two- or three-dimensional domains that have small inclusions or obstructions,

or localized regions where the solution changes significantly. Although this strong localized perturbation theory has

has been illustrated on some specific problems, the framework of the methodology applies rather widely. We have

also listed a few specific open problems that warrant further study. Moreover, we emphasize that the approach of

applying ideas from strong localized perturbation theory to the study of reaction-diffusion theory patterns in cell

signalling or in chemical physics is largely open-ended with many interesting avenues for research.

Appendix A Solutions to the Problems in §2

Solution to Problem 2.1:

We now use the method of matched asymptotic expansions to derive a two-term expansion for the principal

eigenvalue λ(ε) of (2.17) as ε → 0. For the problem with no traps, λ0 = 0 and u0 = |Ω|−1/2 is the unperturbed

eigenfunction, where |Ω| denotes the volume of Ω. We expand the principal eigenvalue for (2.17) as

λ = ελ1 + ε2λ2 + · · · . (A.1)

In the outer region away from an O(ε) neighborhood of xj , we expand the outer solution as

u = u0 + εu1 + ε2u2 + · · · . (A.2)

Upon substituting (A.1) and (A.2) into (2.17 a) and (2.17 b), we obtain that u1 and u2 satisfy

∆u1 = −λ1u0 , x ∈ Ω\{x1, . . . xN} ; ∂nu1 = 0 , x ∈ ∂Ω ;

∫

Ω

u1 dx = 0 . (A.3)

∆u2 = −λ2u0 − λ1u1 , x ∈ Ω\{x1, . . . xN} ; ∂nu2 = 0 , x ∈ ∂Ω ;

∫

Ω

u2 dx = −|Ω|1/2
2

∫

Ω

u21 dx . (A.4)
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The matching of u1 and u2 to inner solutions defined in an O(ε) neighborhood of each trap will yield singularity

conditions for u1 and u2 as x→ xj for j = 1, . . . , N . .

In the inner region near the jth trap we introduce the local variables y and w(y) by

y = ε−1(x− xj) , w(y) = u(xj + εy, ε) . (A.5)

Upon substituting (A.5) into (2.17 a) and (2.17 c), we obtain that ∆yw = −ε2λw, where ∆y denotes the Laplacian

in the y variable. We expand the inner solution as

w = w0 + εw1 + ε2w2 + · · · , (A.6)

and then use λ = O(ε) to obtain the following inner problems for k = 0, 1, 2:

∆ywk = 0 , y 6∈ Ωj ; wk = 0 , y ∈ ∂Ωj . (A.7)

Here Ωj denotes an O(ε−1) magnification of Ωεj so that Ωj = ε−1Ωεj . The appropriate far-field boundary condition

for (A.7) is determined by matching w to the outer asymptotic expansion of the eigenfunction.

The matching condition is that the near-field behavior of the outer eigenfunction as x→ xj must agree asymptot-

ically with the far-field behavior of the inner eigenfunction as |y| = ε−1|x− xj | → ∞, so that

u0 + εu1 + ε2u2 + · · · ∼ w0 + εw1 + ε2w2 + · · · . (A.8)

Since u0 = |Ω|−1/2, the first matching condition is that w0 ∼ |Ω|−1/2 as |y| → ∞. We then introduce wc by

w0 =
1

|Ω|1/2 (1− wc) , (A.9)

so that from (A.7) with k = 0, we get that wc satisfies

∆ywc = 0 , y 6∈ Ωj ; wc = 1 , y ∈ ∂Ωj ; wc → 0 as |y| → ∞ . (A.10 a)

This is a classic problem in electrostatics, and it is well-known that the far-field behavior of wc is

wc ∼
Cj

|y| +
Pj · y
|y|3 + · · · as |y| → ∞ . (A.10 b)

Here Cj is the capacitance of Ωj and Pj denotes the dipole vector, both determined by the shape of Ωj . These intrinsic

quantities can be found explicitly for different trap shapes such as spheres, ellipsoids, etc..

Upon substituting (A.10 b) into (A.8), we obtain that the matching condition becomes

1

|Ω|1/2 + εu1 + ε2u2 + · · · ∼ 1

|Ω|1/2
(
1− εCj

|x− xj |
− ε2Pj · (x− xj)

|x− xj |3
)
+ εw1 + ε2w2 + · · · . (A.11)

Therefore, we require that u1 has the singular behavior u1 ∼ −|Ω|−1/2Cj/|x− xj | as x → xj for j = 1, . . . , N . The

problem (A.3) for u1 with this singularity behavior can be written in Ω in terms of the Dirac distribution as

∆u1 = −λ1u0 +
4π

|Ω|1/2
N∑

j=1

Cjδ(x− xj) , x ∈ Ω ; ∂nu1 = 0 , x ∈ ∂Ω , (A.12)
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with
∫
Ω
u1 dx = 0. Upon using the divergence theorem, and recalling that u0 = |Ω|−1/2, we determine λ1 as

λ1 =
4π

|Ω|

N∑

j=1

Cj . (A.13)

This leading order asymptotics is Ozawa’s result [51], and since it does not depend on the trap locations it does not

indicate how to optimize λ. As such, we must extend the calculation to one higher order.

To solve (A.12), we introduce the Neumann Green’s function G(x; ξ), which satisfies

∆G =
1

|Ω| − δ(x− ξ) , x ∈ Ω ; ∂nG = 0 , x ∈ ∂Ω , (A.14 a)

G(x; ξ) =
1

4π|x− ξ| +R(x; ξ) ;

∫

Ω

G(x; ξ) dx = 0 . (A.14 b)

Here R(x; ξ) is called the regular part of G(x; ξ), and R(ξ; ξ) is referred to as the self-interaction term. In terms of

G, the unique solution to (A.12), which satisfies
∫
Ω
u1 dx = 0, is simply

u1 = − 4π

|Ω|1/2
N∑

k=1

CkG(x;xk) . (A.15)

Next, we expand u1 in (A.15) as x→ xj . Upon using (A.14 b) to obtain the local behavior of G, we obtain

u1 ∼ − Cj

|Ω|1/2|x− xj |
+Aj as x→ xj ; Aj = − 4π

|Ω|1/2


CjRj,j +

N∑

k=1

k 6=i

CkGj,k


 . (A.16)

Here we have defined Rj,j ≡ R(xj ;xj) and Gj,k ≡ G(xj ;xk). Upon substituting this expression into the matching

condition (A.11), we obtain

1

|Ω|1/2 +ε
(
− Cj

|Ω|1/2|x− xj |
+Aj

)
+ε2u2+· · · ∼ 1

|Ω|1/2
(
1− εCj

|x− xj |
− ε2Pj · (x− xj)

|x− xj |3
)
+εw1+ε

2w2+· · · . (A.17)

We then conclude that w1 ∼ Aj as |y| → ∞. The solution w1 to (A.7) is

w1 = Aj (1− wc) ∼ Aj

(
1− Cj

|y| + · · ·
)

as |y| → ∞ , (A.18)

where wc is the solution to (A.10). Next, we write the far-field behavior in (A.18) in outer variables and substitute

the resulting expression into the right-hand side of the matching condition (A.17) to identify the terms of O(ε2). In

this way, we obtain that the outer eigenfunction u2 must have the following singularity behavior as x→ xj :

u2 ∼ − AjCj

|x− xj |
− Pj · (x− xj)

|x− xj |3
as x→ xj , j = 1, . . . , N . (A.19)

The problem (A.4) for u2, together with singularity behavior (A.19), can be written in Ω in terms of the Dirac

distribution as

∆u2 = −λ2u0 − λ1u1 + 4π

N∑

j=1

AjCjδ(x− xj)− 4π

N∑

j=1

Pj · ∇δ(x− xj) , x ∈ Ω , (A.20)

with ∂nu2 = 0 for x ∈ ∂Ω. Then, applying the divergence theorem to (A.20), and using
∫
Ω
u1 dx = 0, we get

λ2 =
4π

|Ω|1/2
N∑

j=1

AjCj . (A.21)
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We remark that this eigenvalue correction λ2 does not depend on the dipole vector Pj defined in (A.10 b).

Next, it is convenient to introduce the capacitance vector c and the symmetric Neumann Green’s matrix G by

(2.23). In (2.23), Cj is the capacitance defined in (A.10 b), and Gi,j ≡ G(xi;xj) for i 6= j is the Neumann Green’s

function of (A.14) with self-interaction Rj,j ≡ R(xj ;xj). Upon substituting (A.13) and (A.21) into (A.1), we obtain

Principal Result 2.1.

Solution to Problem 2.2:

In the outer region, we expand u as

u = u0 + εu1 + ε2u2 + · · · . (A.22)

Here u0 is an unknown constant, and uk for k = 1, 2 satisfies

∆uk = 0 , x ∈ Ω\{x1, . . . , xN} ; ∂nuk = 0 , x ∈ ∂Ω , (A.23)

with certain singularity conditions as x→ xj for j = 1, . . . , N determined upon matching to the inner solution.

In the inner region near the jth trap, we expand the inner solution w(y) ≡ u(xj + εy), with y ≡ ε−1(x− xj), as

w = w0 + εw1 + · · · . (A.24)

Upon substituting (A.24) into (2.29 a) and (2.29 b), we obtain that w0 and w1 satisfy

∆yw0 = 0 , y 6∈ Ωj ; w0 = δj1 , y ∈ ∂Ωj , (A.25 a)

∆yw1 = 0 , y 6∈ Ωj ; w1 = 0 , y ∈ ∂Ωj . (A.25 b)

Here Ωj = ε−1Ωεj , and δj1 is Kronecker’s symbol. The far-field boundary conditions for w0 and w1 are determined

by the matching condition as x → xj between the the inner and outer expansions (A.24) and (A.22), respectively,

written as

u0 + εu1 + ε2u2 + · · · ∼ w0 + εw1 + · · · . (A.26)

The first matching condition is that w0 ∼ u0 as |y| → ∞, where u0 is an unknown constant. Then, the solution

for w0 in the jth inner region is given by

w0 = u0 + (δj1 − u0)wc(y) , (A.27)

where wc is the solution to (A.10 a). Upon, using the far-field asymptotic behavior (A.10 b) for wc, we obtain that

w0 ∼ u0 + (δj1 − u0)

(
Cj

|y| +
Pj · y
|y|3

)
, as y → ∞ . (A.28)

Here Cj and Pj are the capacitance and dipole vector of Ωj , respectively, as defined in (A.10 b).

From (A.28) and (A.26), we conclude that u1 satisfies (A.23) with singular behavior u1 ∼ (δj1 − u0)Cj/|x− xj |
as x→ xj for j = 1, . . . , N . Therefore, in terms of the Dirac distribution, u1 satisfies

∆u1 = −4π

N∑

j=1

(δj1 − u0)Cjδ(x− xj) , x ∈ Ω ; ∂nu1 = 0 , x ∈ ∂Ω . (A.29)
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The solvability condition for u1, obtained by the divergence theorem, determines the unknown constant u0 as

u0 =
C1

NC̄
, C̄ ≡ 1

N
(C1 + · · ·CN ) . (A.30)

In terms of the Neumann Green’s function of (A.14), and an unknown constant χ1, the solution to (A.29) is

u1 = 4π

N∑

i=1

(δi1 − u0)CiG(x;xi) + χ1 , χ1 =
1

|Ω|

∫

Ω

u1 dx . (A.31)

Next, by expanding u1 as x → xj , and using the local behavior G(x;xi) ∼ 1/(4π|x− xi|) + Ri,i of G as x → xi

from (A.14 b), we obtain that

u1 ∼
{

(1−u0)C1

|x−x1|
+A1 + χ1 , as x→ x1 ,

−−u0Cj

|x−xj |
+Aj + χ1 , as x→ xj , j = 2, . . . , N .

(A.32 a)

Here, the constants Aj for j = 1, . . . , N are defined by

A1 = 4πC1R1,1 − 4πu0

(
C1R1.1 +

N∑

i=2

CiG1,i

)
; Aj = 4πC1Gj,1 − 4πu0


CjRj,j +

N∑

j=1

j 6=i

CiGj,i


 , j = 2, . . . , N .

(A.32 b)

Upon substituting (A.32) into the matching condition (A.26), we obtain that the solution w1 to (A.25 b) must satisfy

w1 ∼ Aj + χ1 as |y| → ∞. Thus, w1 = (Aj + χ1)(1 − wc), where wc is the solution to (A.10 a). Upon, using the

far-field behavior (A.10 b) for wc, and substituting the resulting expression into the matching condition (A.26), we

obtain that u2 satisfies (A.23) with singularity behavior

u2 ∼ −Cj (Aj + χ1)

|x− xj |
+ (δj1 − u0)

Pj · (x− xj)

|x− xj |3
, as x→ xj , j = 1, . . . , N . (A.33)

Therefore, in terms of distributions, u2 satisfies

∆u2 = 4π
N∑

j=1

Cj (Aj + χ1) δ(x− xj) + 4π
N∑

j=1

(δj1 − u0)Pj · ∇δ(x− xj) , x ∈ Ω , (A.34)

with ∂nu2 = 0 on x ∈ ∂Ω. The solvability condition for u2, obtained by the divergence theorem, determines χ1 as

χ1 = − 1

NC̄

N∑

j=1

AjCj . (A.35)

Finally, we substitute (A.32 b) for Aj into (A.35) and write the resulting expression for χ1 in matrix form by using

the Green’s matrix G of (2.23). In this way, we obtain Principal Result 2.3.

Appendix B Solutions to the Problems in §3

Solution to Problem 3.1:

In the outer region, defined away from Ωεj for j = 1, . . . , N , we expand

u(x; ε) ∼ U0H(x) + U0(x;ν) + σ(ε)U1(x;ν) + · · · . (B.1)

Here ν = (ν1, . . . , νN ) is a set of logarithmic gauge functions to be determined and σ ≪ νkj as ε→ 0 for j = 1, . . . , N .
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In (B.1), U0H(x) is the smooth function satisfying the unperturbed problem in the unperturbed domain Ω

△U0H −m(x)U0H = 0 , x ∈ Ω ; U0H = f , x ∈ ∂Ω . (B.2)

Substituting (B.1) into (3.39 a) and (3.39 c), and letting Ωεj → xj as ε→ 0, we get that U0 satisfies

△U0 −m(x)U0 = 0 , x ∈ Ω\{x1, . . . , xN} , (B.3 a)

U0 = 0 , x ∈ ∂Ω , (B.3 b)

U0 is singular as x→ xj , j = 1, . . . , N . (B.3 c)

The singularity behavior for U0 as x→ xj will be found below by matching the outer solution to the far-field behavior

of the inner solution to be constructed near each Ωεj .

In the jth inner region near Ωεj we introduce the inner variables y and v(y; ε) by

y = ε−1(x− xj) , v(y; ε) = u(xj + εy; ε) . (B.4)

We then expand v(y; ε) as

v(y; ε) = αj + νjγjvcj(y) + µ0(ε)V1j(y) + · · · , (B.5)

where γj = γj(ν) is a constant to be determined. Here µ0 ≪ νkj as ε → 0 for any k > 0. In (B.5), the logarithmic

gauge function νj is defined by

νj = −1/ log(εdj) , (B.6)

where dj is specified below. By substituting (B.4) and (B.5) into (3.39 a) and (3.39 b), we conclude that vcj(y) is the

unique solution to

△yvcj = 0 , y /∈ Ωj ; vcj = 0 , y ∈ ∂Ωj , (B.7 a)

vcj(y) ∼ log |y| − log dj + o(1) , as |y| → ∞ . (B.7 b)

Here Ωj ≡ ε−1Ωεj , and the logarithmic capacitance, dj , is determined by the shape of Ωj .

Writing (B.7 b) in outer variables and substituting the result into (B.5), we get that the far-field expansion of v

away from each Ωj is

v ∼ αj + γj + νjγj log |x− xj | , j = 1, . . . , N . (B.8)

Then, by expanding the outer solution (B.1) as x → xj , we obtain the following matching condition between the

inner and outer solutions:

U0H(xj) + U0 ∼ αj + γj + νjγj log |x− xj | , as x→ xj , j = 1, . . . , N . (B.9)

In this way, we obtain that U0 satisfies (B.3) subject to the singularity structure

U0 ∼ αj − U0H(xj) + γj + νjγj log |x− xj |+ o(1) , as x→ xj , j = 1, . . . , N . (B.10)

Observe that in (B.10) both the singular and regular parts of the singularity structure are specified. Therefore, (B.10)

will effectively lead to a linear system of algebraic equations for γj for j = 1, . . . , N .
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The solution to (B.3 a) and (B.3 b), with U0 ∼ νjγj log |x− xj | as x→ xj , can be written as

U0(x;ν) = −2π
N∑

i=1

νiγiG(x;xi) , (B.11)

where G(x;xj) is the Green’s function satisfying

△G−m(x)G = −δ(x− xj) , x ∈ Ω ; G = 0 , x ∈ ∂Ω , (B.12 a)

G(x;xj) ∼ − 1

2π
log |x− xj |+R(xj ;xj) + o(1) , as x→ xj . (B.12 b)

Here Rjj ≡ R(xj ;xj) is the regular part of G.

Finally, we expand (B.11) as x → xj and equate the resulting expression with the required singularity behavior

(B.10) to get

νjγj log |x− xj | − 2πνjγjRjj − 2π

N∑

i=1

i6=j

νiγiG(xj ;xi) = αj −U0H(xj) + γj + νjγj log |x− xj | , j = 1, . . . , N . (B.13)

In this way, we get the following linear algebraic system for γj for j = 1, . . . , N :

−γj (1 + 2πνjRjj)− 2π

N∑

i=1

i6=j

νiγiGji = αj − U0H(xj) , j = 1, . . . , N . (B.14)

Here Gji ≡ G(xj ;xi) and νj = −1/ log(εdj). We summarize the asymptotic construction as follows:

Principal Result: For ε≪ 1, the outer expansion for (3.39) is

u ∼ U0H(x)− 2π

N∑

i=1

νiγiG(x;xi) , for |x− xj | = O(1) . (B.15 a)

The inner expansion near Ωεj with y = ε−1(x− xj), is

u ∼ αj + νjγjvcj(y) , for |x− xj | = O(ε) . (B.15 b)

Here νj = −1/ log(εdj), dj is defined in (B.7 b), vcj(y) satisfies (B.7), U0H satisfies the unperturbed problem (B.2),

while G(x;xj) and R(xj ;xj) satisfy (B.12). Finally, the constants γj for j = 1, . . . , N are obtained from the N

dimensional linear algebraic system (B.14).

To illustrate the theory, let Ω be the unit disk containing one arbitrarily-shaped hole centered at the origin. Suppose

that m(x) = 1 and f = 0. Then, U0H ≡ 0, and the Green’s function satisfying (B.12) is radially symmetric with a

singularity at the center of the disk. The explicit Green’s function is

G(x;0) =
1

2π

[
K0(r)−

K0(1)

I0(1)
I0(r)

]
, 0 < r < 1 , (B.16)

where r ≡ |x|. Here I0(r) and K0(r) are the modified Bessel functions of the first and second kind, respectively,

of order zero. To identity the regular part of G at the origin, i.e. R(0;0), we use the well-known asymptotics

K0(r) ∼ − log r + log 2− γe as r → 0, where γe is Euler’s constant. Then, from (B.16) and (B.12 b), we get that

R11 ≡ R(0;0) =
1

2π

[
log 2− γe −

K0(1)

I0(1)

]
. (B.17)
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For N = 1, U0H ≡ 0, and α1 = 1, the system (B.14) then determines γ1 in terms of R11 and ν = −1/ log(εd1) as

γ1 = − [1 + 2πν1R11]
−1

. (B.18)

Therefore, γ1 is determined explicitly in terms of the logarithmic capacitance, d1, of the arbitrarily-shaped hole

centered at the origin.

Solution to Problem 3.2:

This is just a simple application of the theory in Problem 2 for the special case of a disk of radius 2 with m(x) ≡ 0

and f = 4 cos(2θ) = 4(cos2 θ − sin2 θ) = x2 − y2 on (x2 + y2)1/2 = 4.

For this problem, the solution to the unperturbed problem (B.2) is simply

U0H(x, y) = x2 − y2 . (B.19)

Next, the Green’s function satisfying (B.12) of Problem 2 with m(x) ≡ 0 and its regular part are calculated from the

method of images as

G(x;xj) = − 1

2π
log

(
2|x− xj |

|x− xj ′||xj |

)
, Rjj ≡ R(xj ;xj) = − 1

2π
log

[
2

|xj − xj ′||xj |

]
. (B.20)

Here xj
′ is the image point of xj in the unit disk of radius two..

Next, we note that since each of the holes has an elliptic shape with semi-axes ε and 2ε, then from Table 1 of the

notes their common logarithmic capacitance is d = 3/2. The holes are assumed to be centered at x1 = (1/2, 1/2),

x2 = (1/2, 0) and x3 = (−1/4, 0), and have the constant boundary values α1 = 1, α2 = 0 and α3 = 2.

Therefore, upon defining ν = −1/ log (3ε/2) we obtain from (B.14) of Problem 2 that γj for j = 1, . . . , 3 is the

solution of the linear system

−γ1 [1 + 2πνR11]− 2πν [γ2G(x1;x2) + γ3G(x1;x3)] = 1 , (B.21 a)

−γ2 [1 + 2πνR22]− 2πν [γ1G(x2;x1) + γ3G(x2;x3)] = −1/4 , (B.21 b)

−γ3 [1 + 2πνR33]− 2πν [γ1G(x3;x1) + γ2G(x3;x2)] = 31/16 . (B.21 c)

Here Rjj and G(xj ;xi) are to be evaluated from (B.20).

We solve this linear system numerically for γj as a function of ε. The curves γj(ε) as a function of ε are plotted in

Fig. B 1. We observe that the leading-order approximation to (B.21), valid for ν ≪ 1, is simply γ1 = −1, γ2 = 1/4

and γ3 = −31/16. From Fig. B 1 we observe that this approximation, which neglects interaction effects between the

holes, is rather inaccurate unless ε is very small.

Solution to Problem 3.3:

The analysis in §5.3 of the notes can be repeated, and we readily obtain that the infinite-order logarithmic series

approximation λ⋆ to the principal eigenvalue λ satisfies the transcendental equation

Rh(x0;x0, λ
∗) = − 1

2πν
, ν = − 1

log(εd)
, (B.22)
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Figure B 1. Plot of γj = γj(ǫ) for j = 1, 2, 3 obtained from the numerical solution to (B.21).

where Rh(x0;x0, λ
∗) is the regular part of the Helmholtz Green’s function, satisfying

∆Gh + λ∗Gh = −δ(x− x0) , x ∈ Ω ; Gh = 0 , x ∈ ∂Ω , (B.23 a)

Gh(x;x0, λ
∗) ∼ − 1

2π
log |x− x0|+Rh(x0;x0, λ

∗) + o(1) , as x→ x0 . (B.23 b)

Notice that Gh = 0 on ∂Ω. Since the hole is centered at the origin then x0 = 0.

When Ω is the unit disk with a hole centered at the origin, then (B.23) becomes a radially symmetric problem

whose solution can be found explicitly. A simple calculation gives

G = −1

4


Y0

(√
λ⋆r
)
−
Y0

(√
λ⋆
)

J0

(√
λ⋆
)J0

(√
λ⋆r
)

 , 0 < r < 1 , (B.24)

where r = |x|. Here J0(z) and Y0(z) are the Bessel functions of the first and second kind, of order zero. By using the

well-known asymptotic behavior Y0(z) ∼ 2π−1 [log z − log 2 + γe + o(1)] and J0(z) ∼ 1 + o(1) as z → 0+, we obtain

from (B.24) that the local behavior for G as x→ 0 is given by

G(x;0) ∼ − 1

2π
log |x|+Rh + o(1) , as x→ 0 , (B.25 a)

Rh ≡ − 1

2π

(
− log 2 + γe + log

(√
λ⋆
))

+
1

4



Y0

(√
λ⋆
)

J0

(√
λ⋆
)


 , (B.25 b)

where γe is Euler’s constant. Finally, upon substituting (B.25 b) for Rh into (B.22), we conclude that λ⋆(εd) is the

first root of the transcendental equation

log 2− γe − log
(√

λ⋆
)
+
π

2



Y0

(√
λ⋆
)

J0

(√
λ⋆
)


 = −1

ν
= log(εd) . (B.26)

Here d is the logarithmic capacitance of the arbitrarily-shaped hole centered at the origin of the unit disk.

It is interesting to note that the result (B.26) can also be obtained by first finding the exact eigenvalue relation

for the concentric annulus ε < |x| < 1 with u = 0 on |x| = ε and on |x| = 1, and then letting ε→ 0 in this resulting
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expression. The eigenfunction is proportional to

u =


J0

(√
λr
)
−
J0

(√
λ
)

Y0

(√
λ
)Y0

(√
λr
)

 , 0 < r < 1 , (B.27)

and upon setting u = 0 at r = ε, we get the eigenvalue relation

Y0

(√
λε
)
= J0

(√
λε
) Y0

(√
λ
)

J0

(√
λ
) . (B.28)

Next, in (B.28) we use the small argument expansions of Y0(z) and J0(z) as z → 0+, and then, finally, replace ε

by εd in the resulting expression by recalling Kaplun’s equivalence principle. In this way, we readily recover the

transcendental equation (B.26) for the approximation λ⋆ to λ.

Solution to Problem 3.4:

We write the eigenvalue problem as

△u+ λu = 0 , x ∈ Ω\Ωp ; Ωp ≡ ∪K
j=1Ωεj , (B.29 a)

∂nu = 0 , x ∈ ∂Ω ;

∫

Ω\Ωp

u2 dx = 1 (B.29 b)

u = 0 , x ∈ ∂Ωεj , j = 1, . . . , N . (B.29 c)

We assume that each hole Ωεj is centered at xj ∈ Ω and has the same logarithmic capacitance d.

We look for a two-term expansion for the principal eigenvalue λ0(ε) as

λ0(ε) = λ1ν + λ2ν
2 + · · · , ν = −1/ log(εd) . (B.30)

In the outer region, away from O(ε) neighborhoods of the holes, we expand the outer solution for u as

u = u0 + νu1 + ν2u2 + · · · . (B.31)

The leading-order term is

u0 = |Ω|−1/2 , (B.32)

where |Ω| is the area of Ω. Upon substituting (B.30) and (B.31) into (B.29 a) and (B.29 b), and collecting powers of

ν, we obtain that u1 satisfies

△u1 = −λ1u0 , x ∈ Ω\{x1, . . . , xK} ;
∫

Ω

u1 dx = 0 , (B.33 a)

∂nu1 = 0 , x ∈ ∂Ω ; u1 singular as x→ xj , j = 1, . . . ,K , (B.33 b)

while u2 satisfies

△u2 = −λ2u0 − λ1u1 , x ∈ Ω\{x1, . . . , xK} ;
∫

Ω

(
u21 + 2u0u2

)
dx = 0 , (B.34 a)

∂nu2 = 0 , x ∈ ∂Ω ; u2 singular as x→ xj , j = 1, . . . ,K . (B.34 b)
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Now in the jth inner region we introduce the new variables by

y = ε−1(x− xj) , v(y) = u(xj + εy) . (B.35)

We then expand the inner solution as

v(y) = νA0jvcj(y) + ν2A1jvcj(y) + · · · . (B.36)

Upon substituting (B.35) and (B.36) into (B.29 a) and (B.29 c), we obtain that vcj satisfies

△yvcj = 0 , y /∈ Ωj ; vcj = 0 , y ∈ ∂Ωj , (B.37 a)

vcj(y) ∼ log |y| − log d+ o(1) , as |y| → ∞ . (B.37 b)

Here △y is the Laplacian in the y variable, and Ωj ≡ ε−1Ωεj . We consider the special case where d is independent

of j.

Upon using the far-field form (B.37 b) in (B.36), and writing the resulting expression in outer variables, we get

v = A0j + ν [A0j log |x− xj |+A1j ] + ν2 [A1j log |x− xj |+A2j ] + · · · . (B.38)

The far-field behavior (B.38) must agree with the local behavior of the outer expansion (B.31). Therefore, we obtain

that

A0j = u0 = |Ω|−1/2 , j = 1, . . . K , (B.39 a)

u1 ∼ u0 log |x− xj |+A1j , as x→ xj , j = 1, . . . ,K , (B.39 b)

u2 ∼ A1j log |x− xj |+A2j , as x→ xj , j = 1, . . . ,K . (B.39 c)

Equations (B.39 b) and (B.39 c) give the required singularity structure for u1 and u2 in (B.33) and (B.34), respectively.

The problem for u1 with singular behavior (B.39 b) can be written in terms of the delta function as

△u1 = −λ1u0 + 2πA0

K∑

j=1

δ(x− xj) , x ∈ Ω ;

∫

Ω

u1 dx = 0 , (B.40 a)

∂nu1 = 0 , x ∈ ∂Ω . (B.40 b)

Upon using the divergence theorem we obtain that −λ1u0
∫
Ω
1dx+ 2πA0K = 0, so that with u0 = A0 from (B.39 a),

we get

λ1 =
2πK

|Ω| . (B.41)

The solution to (B.40) can be written in terms of the Neumann Green’s function as

u1 = −2πu0

K∑

i=1

GN (x;xi) , (B.42)

where the Neumann Green’s function GN (x; ξ) satisfies (3.55). Since GN has a zero spatial average, it follows from

(B.42) that
∫
Ω
u1 dx = 0, as required in (B.40 a).
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Next, we expand u1 as x→ xj . We use the local behavior for GN , given in (3.55 d), to obtain from (B.42) that

u1 ∼ u0 log |x− xj | − 2πu0


RNjj +

K∑

i=1

i6=j

GNij


 , x→ xj , (B.43)

where GNji = GN (xj ;xi) and RNjj = RN (xj ;xj). Comparing (B.43) and the required singularity behavior (B.39 b),

we obtain that

A1j = −2πu0


RNjj +

K∑

i=1

i6=j

GNij


 , j = 1, . . . , N . (B.44)

Next, we write the problem (B.34) in Ω as

△u2 = −λ2u0 − λ1u1 + 2π

K∑

j=1

A1jδ(x− xj) , x ∈ Ω ; ∂nu2 = 0 , x ∈ ∂Ω . (B.45)

Since
∫
Ω
u1 dx = 0 and u0 = |Ω|−1/2, the divergence theorem applied to (B.45) determines λ2 as λ2u0|Ω| =

2π
∑

j=1A1j . Finally, we use (B.44) for A1j , we get

λ2 = −4π2

|Ω| p(x1, . . . , xK) , p(x1, . . . , xK) ≡
N∑

j=1


RNjj +

K∑

i=1

i6=j

GNji


 . (B.46)

Combining (B.30) with (B.41) and (B.46) we get the two-term expansion given in equations (5.27) and (5.28) of the

Corollary in §5 of the workshop notes given by

λ0(ε) ∼
2πνK

|Ω| − 4π2ν2

|Ω| p(x1, . . . , xK) + · · · , ν = −1/ log(εd) . (B.47)

Appendix C Solutions to the Problems in §4

Solution to Problem 4.1:

We now derive the leading-order term in the asymptotic expansion for the positive principal eigenvalue of (4.49), as

given in Principal Result 4.3. We expand λ as in (4.8), and we expand the outer representation for the eigenfunction

φ as in (4.9). Upon substituting (4.8) and (4.9) into (4.49), we obtain that φ0 = |Ω|−1/2 is a constant, and that φ1

satisfies

∆φ1 = µ0mbφ0 , x ∈ Ω\ΩI ; ∂nφ1 = 0 , x ∈ ∂Ω\ΩB ;

∫

Ω

φ1 dx = 0 . (C.1)

In (C.1), we recall that ΩI ≡ {x1, . . . , xn} ∩ Ω denotes the set of the centers of the interior patches, while ΩB ≡
{x1, . . . , xn} ∩ ∂Ω denotes the set of the centers of the boundary patches.

In the inner region, near the jth patch we introduce the local variables y = ε−1(x − xj) and ψ(y) = φ(xj + εy).

We then expand ψ for y = O(1) by

ψ ∼ ψ0j + νψ1j + ν2ψ2j + · · · , (C.2)
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where ψ0j is a constant to be determined. For an interior patch with xj ∈ ΩI , we obtain that ψ1j satisfies satisfy

∆ψ1j =





F1j , |y| ≤ ρj ,

0 , |y| ≥ ρj ,
(C.3)

where F1j = −µ0mjψ0j . The solution for ψ1j , with ρ = |y|, is

ψ1j =





A1j

(
ρ2

2ρ2

j

)
+ ψ̄1j , 0 ≤ ρ ≤ ρj ,

A1j log
(

ρ
ρj

)
+

A1j

2 + ψ̄1j , ρ ≥ ρj ,

(C.4)

where ψ̄1j is an unknown constant. The divergence theorem is used to calculate A1j from (C.3), and we get

A1j = −µ0

2
mjρ

2
jψ0j , . (C.5)

For a boundary patch, for which xj ∈ ΩB , then (C.3) holds in the wedge βj < arg(y) < βj + παj , for some βj and

0 < αj < 2. For this boundary case, the constants A1j are also given by (C.5).

The matching condition between the outer solution as x→ xj and the inner solution as |y| = ε−1|x− xj | → ∞ is

φ0+νφ1+· · · ∼ ψ0j+A1j+ν

(
A1j log |x− xj | −A1j log ρj +

A1j

2
+ ψ̄1j +A2j

)
+ν2 (A2j log |x− xj |+O(1)) . (C.6)

The leading-order matching condition from (C.6) yields

φ0 = ψ0j +A1j , j = 1, . . . , n . (C.7)

From the O(ν) terms in (C.6), we obtain that φ1 has the following singular behavior as x→ xj

φ1 ∼ A1j log |x− xj | −A1j log ρj +
A1j

2
+ ψ̄1j +A2j , as x→ xj . (C.8)

Next, by using the divergence theorem on the solution φ1 to (C.1) with singular behavior (C.8) we obtain

µ0mb|Ω|φ0 = −π
n∑

j=1

αjA1j . (C.9)

By combining (C.7) and (C.5) for A1j , we obtain that

ψ0j =
2φ0

2−mjρ2jµ0
, A1j = −

mjρ
2
jµ0φ0

2−mjρ2jµ0
, j = 1, . . . , n . (C.10)

From (C.9), together with (C.10) for A1j , we obtain that the leading-order eigenvalue correction µ0 is a root of the

nonlinear algebraic equation

mb|Ω|
π

=

n∑

j=1

αjmjρ
2
j

2−mjρ2jµ0
. (C.11)

This yields a transcendental equation for the leading-order term µ0 in the expansion of the eigenvalue, as given in

Principal Result 4.3.

The calculation of the higher-order term of order O(ν2), as written in Principal Result 4.3, is more involved and

is given in §3 of [45].

Solution to Problem 4.2:
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To prove Qualitative Result III, we first impose the constraint (4.62), and then calculate from (4.53) that

Bnew(ζ)− Bold(ζ) =
2πmjρ

2
j

(2− ζmjρ2j )
+

παkmkρ
2
k

(2− ζmkρ2k)
− 2πmiρ

2
i

(2− ζmiρ2i )
,

=
παkζβk

(2− ζβi)(2− ζβj)(2− ζβk)

[
−4βj + (2− αk)βk + ζβj

(
βj +

αk

2
βk

)]
, (C.12 a)

=
παkζβk

(2− ζβi)(2− ζβj)(2− ζβk)

[
−βj(2− ζβj) + 2(βk − βj)−

αkβk
2

(2− ζβj)

]
, (C.12 b)

where we have defined βi ≡ miρ
2
i , βj ≡ mjρ

2
j , and βk ≡ mkρ

2
k. There are three parameter ranges of interest,

corresponding to the three statements in Qualitative Result III.

We first suppose that βi > 0 and βk >
4

2−αk
βj > 0. Then, from (4.62), it follows that βi > βj , and

βi <
(2− αk)

4
βk +

αk

2
βk = βk − 1

2

(
1− αk

2

)
βk ,

so that βi < βk since 0 < αk < 2. It then readily follows that the first vertical asymptote µnewm and µoldm for Bnew(ζ)

and Bold(ζ), respectively, must satisfy µnewm ≤ µoldm . Furthermore, it follows from (C.12 a) that Bnew(ζ) > Bold(ζ)
on 0 < ζ < µnewm . Consequently, Case I of the Lemma ensures that µnew0 < µold0 . This establishes the first statement

of Qualitative Result III.

Secondly, we suppose that βi > 0 and βj > βk > 0. Then, from (4.62), it follows that βi > βj , and βi >

βk+αkβk/2 > βk since 0 < αk < 2. The condition that βi > βj and βi > βk ensures that the first vertical asymptotes

of Bnew(ζ) and Bold(ζ) must satisfy µnewm ≥ µoldm . Furthermore, it follows from (C.12 b) that Bnew(ζ) < Bold(ζ) on
0 < ζ < µoldm . Consequently, Case II of the Lemma yields that µold0 < µnew0 . This establishes the second statement

of Qualitative Result III.

Finally, we suppose that βj < 0, βk > 0, and βi = βj + αkβk/2 < 0. Then, since βi < 0, it follows that the

first vertical asymptote µoldm for Bold(ζ) cannot occur from the ith patch. The condition βk > 0 then ensures

that µnewm ≤ µoldm , where µnewm is the vertical asymptote of Bnew(ζ). Furthermore, it follows from (C.12 a) that

Bnew(ζ) > Bold(ζ) on 0 < ζ < µnewm . Consequently, Case I of the Lemma establishes that µold0 < µnew0 , which

proves the final statement of Qualitative Result III. �

As a remark, we now give an interpretation of the first statement of Qualitative Result III in terms of the areas

of the patches for the special case where mj = mk = 1. Then, from (4.63) it follows that the fragmentation of a

favorable interior habitat is advantageous when the area ε2Ak ≡ πε2ρ2k/2 of a new favorable habitat centered at a

smooth point of the boundary is at least twice as large as the area ε2Aj ≡ πε2ρ2j of the new smaller favorable interior

habitat. If the new boundary habit is located at a π/2 corner of the domain, for which αk = 1/2, then a sufficient

condition for this fragmentation to be advantageous is when the area ratio satisfies Ak/Aj = ρ2k/(4ρ
2
j ) > 2/3.
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