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Topics of the Lectures

Lecture I: Mean First Passage Time, Narrow Escape, and Feket e Points

Lecture II: The Dynamics and Stability of Localized Spot Pat terns in the 2-D
Gray-Scott Model

Lecture III:

A) Optimization of the Persistence Threshold in the Diffusive Logistic Model
with Environmental Heterogeneity (Mathematical Ecology)

B) Concentration Behavior in Nonlinear Biharmonic Eigenvalu es of MEMS
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Outline of Lecture I

KEY CONCEPTS AND THEMES:

1. Eigenvalue problems in domains with perforated boundaries.

2. The optimization of the principal eigenvalue for these problems leads
to certain discrete variational problems.

3. A generalization of the Fekete point problem on the sphere.

4. Central role of the Neumann Green function.

THREE SPECIFIC PROBLEMS CONSIDERED:

1. Part I: Diffusion on the Surface of the Sphere with Localized Traps
(2-D).

2. Part II: The Mean First Passage Time for Escape from a Sphere (3-D)

3. Part I: The Mean First Passage Time for Escape from a 2-D Domain
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Narrow Escape: Background I
Narrow Escape: Brownian motion with diffusivity D in Ω with ∂Ω insulated
except for an (multi-connected) absorbing patch ∂Ωa of measure O(ε). Let
∂Ωa → xj as ε→ 0 and X(0) = x ∈ Ω be initial point for Brownian motion.

The MFPT v(x) = E [τ |X(0) = x] satisfies (Z. Schuss (1980))

∆v = − 1

D
, x ∈ Ω ,

∂nv = 0 x ∈ ∂Ωr ; v = 0 , x ∈ ∂Ωa = ∪N
j=1∂Ωεj .
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Narrow Escape: Background II
KEY GENERAL REFERENCES:

Z. Schuss, A. Singer, D. Holcman, The Narrow Escape Problem for
Diffusion in Cellular Microdomains, PNAS, 104, No. 41, (2007),
pp. 16098-16103.

O. Bénichou, R. Voituriez, Narrow Escape Time Problem: Time
Needed for a Particle to Exit a Confining Domain Through a Small
Window, Phys. Rev. Lett, 100, (2008), 168105.

S. Condamin, et al., Nature, 450, 77, (2007)

S. Condamin, O. Bénichou, M. Moreau, Phys. Rev. E., 75, (2007).

RELEVANCE OF NARROW ESCAPE TIME PROBLEM IN BIOLOGY:

time needed for a reactive particle released from a specific site to
activate a given protein on the cell membrane

biochemical reactions in cellular microdomains (dendritic spines,
synapses, microvesicles), consisting of a small number of particles
that must exit the domain to initiate a biological function.

determines reaction rate in Markov model of chemical reactions
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Narrow Escape (3-D Domain): Intro I
In 3-D, let λ1 be the principal eigenvalue when ∂Ω is perforated:

∆u+ λu = 0 , x ∈ Ω ;

∫

Ω

u2 dx = 1 ,

∂nu = 0 x ∈ ∂Ωr , u = 0 , x ∈ ∂Ωa = ∪N
j=1∂Ωεj .

The corresponding MFPT v satisfies

∆v = − 1

D
, x ∈ Ω ; ∂nv = 0 x ∈ ∂Ωr

v = 0 , x ∈ ∂Ωa = ∪N
j=1∂Ωεj , v̄ =

1

|Ω|

∫

Ω

v dx ∼ 1

Dλ1
.

OLD AND RECENT RESULTS IN 3-D:

The principal eigenvalue is λ1 ∼ 2πε
|Ω|

∑N
j=1

Cj (MJW, Keller, SIAP,
1993) where Cj is the capacitance of the electrified disk problem:

∆yw = 0 , y3 ≥ 0, −∞ < y1, y2 <∞ ,

w = 1 , y3 = 0 , (y1, y2) ∈ ∂Ωj ; ∂y3
w = 0 , y3 = 0 , (y1, y2) /∈ ∂Ωj ;

w ∼ Cj/|y| , |y| → ∞ .
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Narrow Escape (3-D Domain): Intro II
Analysis of v(x) for two traps on the unit sphere (with undetermined
O(1) terms fit through Brownian particle simulations). Ref: D. Holcman
et al., J. of Phys. A: Math Theor., 41, (2008), 155001.

For one circular trap of radius ε on the unit sphere Ω with |Ω| = 4π/3,

v̄ ∼ |Ω|
4εD

[

1− ε

π
log ε+O (ε)

]

.

Ref: A. Singer et al. J. Stat. Phys., 122, No. 3, (2006).

For arbitrary Ω with smooth ∂Ω and one circular trap at x0 ∈ ∂Ω

v̄ ∼ |Ω|
4εD

[

1− ε

π
H(x0) log ε+O (ε)

]

.

Here H(x0) is the mean curvature of ∂Ω at x0 ∈ ∂Ω. Ref: A. Singer,
Z. Schuss, D. Holcman, Phys. Rev. E., 78, No. 5, 051111, (2009).

Part II: Main Goal: Calculate a higher-order expansion for v(x) and v̄ as
ε→ 0 in 3-D to determine the significant effect on v̄ of the spatial
configuration {x1, · · · , xN} of multiple absorbing boundary traps for a fixed
area fraction of traps. Minimize v̄ with respect to {x1, · · · , xN}.
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The MFPT on the Surface of a Sphere: Intro I
Consider Brownian motion on the surface of a sphere. The MFPT satisfies

△sv = − 1

D
, x ∈ Ωε ≡ Ω\ ∪N

j=1 Ωεj ,

v = 0 , x ∈ ∂Ωεj ; v̄ ∼ 1

|Ωε|

∫

Ωε
v ds .

Here Ω is the unit sphere, Ωεj are localized non-overlapping circular traps
of radius O(ε) on Ω centered at xj with |xj | = 1 for j = 1, . . . , N .

Eigenvalue Problem: The corresponding eigenvalue problem is

△sψ + λψ = 0 , x ∈ Ωε ≡ Ω\ ∪N
j=1 Ωεj ,

ψ = 0 , x ∈ ∂Ωεj ;

∫

Ωε
ψ2 ds = 1 .

Goal: Calculate the principal eigenvalue λ1 in the limit ε→ 0. Note that
v̄ ∼ 1/(Dλ1) as ε→ 0. What is the effect of the trap locations?

Reference: [CSW] D. Coombs, R. Straube, MJW, “Diffusion on a Sphere
with Traps...”, SIAM J. Appl. Math., Vol. 70, No. 1, (2009), pp. 302–332.
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Fekete Points: Two Conjectures
Part I: 2-D (Elliptic Fekete Points): minimum point of the logarithmic energy
HL on the unit sphere

HL(x1, . . . , xN ) = −
N
∑

j=1

N
∑

k>j

log |xj − xk| , |xj | = 1 .

(References: Smale and Schub, Saff, Sloane, Kuijlaars, D. Boal,
P. Palffy-Muhoray,...) Conjecture I: Are these points related to
minimizing the average MFPT v̄ for diffusion on the sphere?

Part II: 3-D (Fekete Points): Let Ω be the unit sphere with N -circular holes
on ∂Ω of a common radius. Conjecture II: Is minimizing v̄ equivalent to
minimizing the Coulomb energy on the sphere? This energy is

HC(x1, . . . , xN ) =

N
∑

j=1

N
∑

k>j

1

|xj − xk|
, |xj | = 1 .

Such Fekete points give the minimal energy configuration of
“electrons” on a sphere (References: J.J. Thomson, E. Saff, N. Sloane,
A. Kuijlaars, etc..)
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The MFPT on the Surface of a Sphere: I
Previous Results for MFPT: For one trap at the north pole we get an ODE
problem for v(θ):

1

sin θ

∂

∂θ
(sin θ ∂θv) = − 1

D
, θc < θ < π ; v(θc) = 0 , v′(π) = 0 .

The solution when θc = ε≪ 1 is

v ∼ 1

D

[

−2 log
(ε

2

)

+ log(1− cos θ)
]

, v̄ ∼ 1

D

[

−2 log
(ε

2

)

− 1
]

.

Ref: Lindeman, et al., Biophys. (1986); Singer et al. J. Stat. Phys. (2006).

Previous Results for λ1: For one trap at the north pole θc = ε≪ 1,

∂θθψ + cot(θ)∂θψ + λψ = 0 , θc < θ < π ; ψ(θc) = 0 , ψ′(π) = 0 .

An explicit solution (Weaver (1983), Chao et. al. (1981), Biophys. J.) gives

λ1 ∼ µ

2
+ µ2

(

− log 2

2
+

1

4

)

; µ = − 1

log ε
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Two-Term Asymptotic Result for the MFPT: I
A matched asymptotic expansion yields (Ref: [CSW] ):

Principal Result : Consider N perfectly absorbing circular traps of a common
radius ε≪ 1 centered at xj , for j = 1, . . . , N on S. Then, the asymptotics
for the MFPT v in the “outer” region |x− xj | ≫ O(ε) for j = 1, . . . , N is

v(x) = −2π

N
∑

j=1

AjG(x;xj) + χ , χ ≡ 1

4π

∫

S

v ds ,

where Aj for j = 1, . . . , N , with µ ≡ −1/ log ε is

Aj =
2

ND






1 + µ

N
∑

i=1

i 6=j

log |xi − xj | −
2µ

N
p(x1, . . . , xN ) +O(µ2)






.

The averaged MFPT v̄ = χ is given asymptotically by

v̄ ∼ χ =
2

NDµ
+

1

D

[

(2 log 2− 1) +
4

N2
p(x1, . . . , xN )

]

+O(µ) .
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Two-Term Asymptotic Result for the MFPT: II
Here the discrete energy p(x1, . . . , xN ) is the logarithmic energy

p(x1, . . . , xN ) ≡ −
N
∑

i=1

N
∑

j>i

log |xi − xj | .

The Neumann Green function G(x;x0) that appears satisfies

△sG =
1

4π
− δ(x− x0) , x ∈ S ;

∫

S

Gds = 0

G is 2π periodic in φ and smooth at θ = 0, π .

It is given analytically by

G(x;x0) = − 1

2π
log |x− x0|+R , R ≡ 1

4π
[2 log 2− 1] .

Remark: G appears in various studies of the motion of fluid vortices on the
surface S of a sphere (P. Newton, S. Boatto, etc..).
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Two-Term Asymptotic Result for the MFPT: III
Principal Result : For N identical perfectly absorbing traps of a common
radius ε centered at xj , for j = 1, . . . , N , on S, the principal eigenvalue
has asymptotics, with µ ≡ −1/ log ε

λ(ε) ∼ µN

2
+ µ2

[

−N
2

4
(2 log 2− 1)− p(x1, . . . , xN )

]

+O(µ3) .

Key Point: λ(ε) is maximized and v̄ minimized at the minumum point of
p, i.e. at the elliptic Fekete points for the sphere. Conjecture I holds.

Can readily adapt the analysis to treat the case of N partially
absorbing traps of different radii (see [CSW,2009]).

For N = 1, v and λ1 can be found from ODE problems, and we
reproduce old results of Weaver (1983), Chao et. al. (1981), Biophys.
J., and Lindeman and Laufenburger, Biophys, J. (1986)). In particular,

λ(ε) ∼ µ

2
+
µ2

4
(1− 2 log 2) .

HK – p.13



Summing the Logarithmic Expansion
Can formulate a problem involving the Helmholtz Green function on the
sphere that sums the infinite logarithmic expansion for λ(ε). It reads as:

Principal Result : Consider N perfectly absorbing traps of a common radius
ε for j = 1, . . . , N . Let ν(ε) be the smallest root of the transcendental
equation

Det (I + 2πµGh) = 0 , µ = − 1

log ε
.

Here Gh is the Helmholtz Green function matrix with matrix entries

Ghjj = Rh(ν) ; Ghij = − 1

4 sin(πν)
Pν

( |xj − xi|2
2

− 1

)

, i 6= j .

Then, with an error of order O(ε), we have λ(ε) ∼ ν(ν + 1).

Pν(z) is the Legendre function of the first kind, with regular part

Rh(ν) ≡ − 1

4π
[−2 log 2 + 2γ + 2ψ(ν + 1) + π cot(πν)] ,

where γ is Euler’s constant and ψ is the Di-Gamma function.
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Comparison of Asymptotics and Full Numerics

Table 1: Principal eigenvalue λ(ε) for the 2- and 5-trap configurations. For
the 2-trap case the traps are at (θ1, φ1) = (π/4, 0) and (θ2, φ2) = (3π/4, 0).
Here, λ is the numerical solution found by COMSOL; λ∗ corresponds to
summing the log expansion; λ2 is calculated from the two-term expansion.

5 traps 2 traps

ε λ λ∗ λ2 λ λ∗ λ2

0.02 0.7918 0.7894 0.7701 0.2458 0.2451 0.2530

0.05 1.1003 1.0991 1.0581 0.3124 0.3121 0.3294

0.1 1.5501 1.5452 1.4641 0.3913 0.3903 0.4268

0.2 2.5380 2.4779 2.3278 0.5177 0.5110 0.6060

Note: For ε = 0.2 and N = 5, we get 5% trap area fraction. The agreement
is still very good: 2.4% error (summing logs) and 8.3% error (2-term).
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Effect on v̄ of Locations of Traps on Sphere
EFFECT OF SPATIAL ARRANGEMENT OF N = 4 IDENTICAL TRAPS:
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Note: ε = 0.1 corresponds to 1% trap surface area fraction.

Fig: Results for λ(ε) (left) and χ(ε) (right) for three different 4-trap patterns
with perfectly absorbing traps and a common radius ε. Heavy solid:
(θ1, φ1) = (0, 0), (θ2, φ2) = (π, 0), (θ3, φ3) = (π/2, 0), (θ4, φ4) = (π/2, π);
Solid: (θ1, φ1) = (0, 0), (θ2, φ2) = (π/3, 0), (θ3, φ3) = (2π/3, 0),
(θ4, φ4) = (π, 0); Dotted: (θ1, φ1) = (0, 0), (θ2, φ2) = (2π/3, 0),
(θ3, φ3) = (π/2, π), (θ4, φ4) = (π/3, π/2). The marked points are computed
from finite element package COMSOL.
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Optimal Trap Configurations: Minimizing v̄

For N → ∞, the optimal energy for the discrete variational problem
associated with elliptic Fekete points gives

max [−p(x1, . . . , xN )] ∼ 1

4
log

(

4

e

)

N2 +
1

4
N logN + l1N + l2 , N → ∞ ,

with l1 = 0.02642 and l2 = 0.1382.

Ref: E. A. Rakhmanov, E. B. Saff, Y. M. Zhou, (1994); B. Bergersen,
D. Boal, P. Palffy-Muhoray, J. Phys. A: Math Gen., 27, No. 7, (1994).

This yields a key scaling law for the minimum of the averaged MFPT:

Principal Result : For N ≫ 1, and N circular disks of common radius ε, and
with small trap area fraction N(πε2) ≪ 1 with |S| = 4π, then

min v̄ ∼ 1

ND

[

− log

(

∑N
j=1

|Ωεj |
|S|

)

− 4l1 − log 4 +O(N−1)

]

.
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Effect of Trap Fragmentation: Biophysics
Application: Estimate the averaged MFPT T for a surface-bound molecule
to reach a molecular cluster on a spherical cell.

Physical Parameters: The diffusion coefficient of a typical surface molecule
(e.g. LAT) is D ≈ 0.25µm2/s. Take N = 100 (traps) of common radius
10nm on a cell of radius 5µm. This gives a 1% trap area fraction:

ε = 0.002 , Nπε2/(4π) = 0.01 .

Scaling Law: The scaling law gives an asymptotic lower bound on the
averaged MFPT. For N = 100 traps, the bound is 7.7s, achieved at the
elliptic Fekete points.

One Big Trap: As a comparison, for one big trap of the same area the
averaged MFPT is 360s, which is very different.

Bounds: Therefore, for any other arrangement, 7.7s < T < 360s.

Conclusion: Both the Spatial Distribution and Fragmentation Effect of
Localized Traps are Rather Significant even at Small Trap Area Fraction
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Narrow Escape From a Sphere
Narrow Escape Problem for MFPT v(x) and averaged MFPT v̄:

∆v = − 1

D
, x ∈ Ω ,

∂nv = 0 x ∈ ∂Ωr ; v = 0 , x ∈ ∂Ωa = ∪N
j=1∂Ωεj .

Key Question: What is effect of spatial arrangement of traps on the unit
sphere? Relation to Fekete Points? Need high order asymptotics.

Ref: [CWS] An Asymptotic Analysis of the Mean First Passage Time for
Narrow Escape Problems: SIAM J. Multiscale Modeling and Simulation:
Part II: The Sphere (A. Cheviakov, M.J. Ward, R. Straube) (2010)
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The Surface NeumannG-Function for a Sphere
The surface Neumann G-function, Gs, is central to the analysis:

△Gs =
1

|Ω| , x ∈ Ω ; ∂rGs = δ(cos θ − cos θj)δ(φ− φj) , x ∈ ∂Ω ,

Lemma : Let cos γ = x · xj and
∫

Ω
Gs dx = 0 . Then Gs = Gs(x;xj) is

Gs =
1

2π|x− xj |
+

1

8π
(|x|2 + 1) +

1

4π
log

[

2

1− |x| cos γ + |x− xj |

]

− 7

10π
.

Define the matrix Gs using R = − 9

20π and Gsij ≡ Gs(xi;xj) as

Gs ≡













R Gs12 · · · Gs1N

Gs21 R · · · Gs2N

...
...

. . .
...

GsN1 · · · GsN,N−1 R













,

Remark: As x→ xj , Gs has a subdominant logarithmic singularity:

Gs(x;xj) ∼
1

2π|x− xj |
− 1

4π
log |x− xj |+R+ o(1) .
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Main Result for the MFPT: I
Principal Result : For ε→ 0, and for N circular traps of radii εaj centered at
xj , for j = 1, . . . , N , the averaged MFPT v̄ satisfies

v̄ =
|Ω|

2πεDNc̄

[

1 + εlog

(

2

ε

)

∑N
j=1

c2j

2Nc̄
+

2πε

Nc̄
pc(x1, . . . , xN )

− ε

Nc̄

N
∑

j=1

cjκj +O(ε2 log ε)



 .

Here cj = 2aj/π is the capacitance of the jth circular absorbing window of
radius εaj , c̄ ≡ N−1(c1 + . . .+ cN ), |Ω| = 4π/3, and κj is defined by

κj =
cj
2

[

2 log 2− 3

2
+ log aj

]

.

Moreover, pc(x1, . . . , xN ) is a quadratic form in terms of C = (c1, . . . , cN )T

pc(x1, . . . , xN ) ≡ CTGsC .

Remarks: 1) A similar result holds for non-circular traps. 2) The logarithmic
term in ε arises from the subdominant singularity in Gs.
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Main Result for the MFPT: II
One Trap: Let N = 1, c1 = 2/π, a1 = 1, (compare with Holcman et al)

v̄ =
|Ω|
4εD

[

1 +
ε

π
log

(

2

ε

)

+
ε

π

(

−9

5
− 2 log 2 +

3

2

)

+O(ε2 log ε)

]

.

N Identical Circular Traps of a common radius ε:

v̄ =
|Ω|

4εDN
[1+

ε

π
log

(

2

ε

)

+
ε

π

(

−9N

5
+ 2(N − 2) log 2

+
3

2
+

4

N
H(x1, . . . , xN )

)

+O(ε2 log ε)
]

,

with discrete energy H(x1, . . . , xN ) given by

H(x1, . . . , xN ) =

N
∑

i=1

N
∑

k>i

(

1

|xi − xk|
− 1

2
log |xi − xk| −

1

2
log (2 + |xi − xk|)

)

.

Key point: Minimizing v̄ corresponds to minimizing H. This discrete
energy is a generalization of the purely Coulombic or logarithmic
energies associated with Fekete points. So Conjecture II is false.
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Key Steps in Derivation of Main Result: I
Asymptotic expansion of global (outer) solution and local (inner
solutions near each trap.

Tangential-normal coordinate system used near each trap.

The Neumann G-function has a subdominant logarithmic singularity on
the boundary (related to surface diffusion). This fact requires adding
“logarithmic switchback terms in ε” in the outer expansion (ubiquitous
in Low Reynolds number flow problems)

The leading-order local solution is the tangent plane approximation
and yields electrified disk problem in a half-space, with capacitance cj .

Key: Need corrections to the tangent plane approximation in the inner
region, i.e. near the trap. This higher order correction term in the inner
expansion satisfies a Poission type problem. The far-field behavior of
this inhomogeneous problem is a monopole term and determines κj .

Asymptotic matching and solvability conditions (Divergence theorem)
determine v and v̄
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Key Steps in Derivation of Main Result: II
The outer expansion has the form

v ∼ ε−1v0 + log (ε/2) v1/2 + v1 + ε log
(ε

2

)

v2 + εv3 + · · · .

Here v0 is an unknown constant, while v1, v2, and v3 are functions to be
determined. The unknown constant v1/2 is a logarithmic switchback term.

For k = 1, 2, 3, vk satisfies

△vk = − 1

D
δk1 , x ∈ Ω ; ∂nvk = 0 , x ∈ ∂Ω\{x1, . . . , xN} ,

where δk1 = 1 if k = 1 and δk1 = 0 for k > 1, and xj for j = 1, . . . , N are
centers of the trap locations on ∂Ω.

Singularity behaviors for each vk as x→ xj in terms of an unknown
constant will be derived upon matching to the inner solution. The
solvability condition (i.e. divergence theorem), will determine these
unknown constants.
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Key Steps in Derivation of Main Result: III
In the inner region we expand

v ∼ ε−1w0 + log
(ε

2

)

w1 + w2 + · · · ,

in terms of a local orthogonal coordinate system (s1, s2, η). The trap Ωj (in
the stretched local variable) is

Ωj = {(s1, s2) | s21 + s22 ≤ a2j}

We obtain that wk for k = 0, 1, 2 satisfies

Lwk ≡ wkηη + wks1s1 + wks2s2 = δk2 F2 , η ≥ 0 , −∞ < s1, s2 <∞ ,

∂ηwk = 0 , on η = 0 , (s1, s2) /∈ Ωj ; wk = 0 , on η = 0 , (s1, s2) ∈ Ωj ,

where δ22 = 1 and δk2 = 0 if k = 0, 1. Here F2, is defined by

F2 ≡ 2 (ηw0ηη + w0η)− cot θj (w0s2 − 2s2w0s1s1) .

Note: w2 satisfies a Poisson-type problem (correction to tangent plane

approximation of w0 and w1.)
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Key Steps in Derivation of Main Result: IV
The leading order matching condition is that w0 ∼ v0 as
ρ ≡ (η2 + s21 + s22)

1/2 → ∞.

Therefore, w0 = v0 (1− wc), where v0 is an unknown constant and wc

satisfies

Lwc = 0 , η ≥ 0 , −∞ < s1, s2 <∞ ,

∂ηwc = 0 , η = 0 , (s1, s2) /∈ Ωj ; wc = 1 , on η = 0 , (s1, s2) ∈ Ωj .

With σ ≡ (s21 + s22)
1/2, the solution to this electrified disk problem is

wc =
2

π
sin−1

(aj
L

)

,

L(η, σ) ≡ 1

2

(

[

(σ + aj)
2 + η2

]1/2
+
[

(σ − aj)
2 + η2

]1/2
)

.

Thus, the far-field behavior is wc ∼ cj/ρ+O(ρ−3) as ρ→ ∞, where
cj = 2aj/π. This gives the far-field behavior

w0 ∼ −cjv0/ρ , ρ→ ∞ .
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Key Steps in Derivation of Main Result: V
The matching condition then yields that v1 ∼ −v0cj/|x− xj | as x→ xj for
j = 1, . . . , N . Thus, v1 satisfies

△v1 = − 1

D
, x ∈ Ω ; ∂rv1|r=1 = −2πv0

N
∑

j=1

cj
sin θj

δ(θ − θj)δ(φ− φj) .

The divergence theorem then determines v0 as

v0 =
|Ω|

2πDNc̄
, c̄ ≡ 1

N

N
∑

j=1

cj , cj =
2aj
π

,

which yields the leading-order term in the expansion of v̄.

The solution for v1 up to an arbitrary constant χ1 is

v1 = −2πv0

N
∑

i=1

ciGs(x;xi) + χ1 , χ1 ≡ |Ω|−1

∫

Ω

v1 dx .

We expand v1 as x→ xj in terms of the local behavior of Gs. Note: Gs

has a subdominant logarithmic singularity.
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Key Steps in Derivation of Main Result: VI
At next order we get that v2 solves

△v2 = 0 , x ∈ Ω ,

∂rv2|r=1 = −2π

N
∑

j=1

cj

(v0cj
2

+ v1/2

) δ(θ − θj)δ(φ− φj)

sin θj
.

By using the divergence theorem, we calculate v1/2 as

v1/2 = − v0
2Nc̄

N
∑

j=1

c2j ,

which specifies the second term in the MFPT.

Then, we solve for v2 in terms of an arbitrary constant χ2 as

v2 = −2π

N
∑

i=1

ci

(v0ci
2

+ v1/2

)

Gs(x;xi) + χ2 ,
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Key Steps in Derivation of Main Result: VII
The second inner correction w2 satisfies a Poisson-type problem. The
explicit solution to this problem yields that

w2 ∼ (Bj + χ1)

(

1− cj
ρ

)

+
v0cj
2

[

log(η + ρ)− η

ρ3
(s21 + s22)

+
s21s2
ρ3

cot θj −
2κj
ρ

+O(ρ−2)

]

, as ρ→ ∞ .

Here χ1 is unknown as yet, and Bj is given by

Bj = −2πv0






− 9

20π
cj +

N
∑

i=1

i 6=j

ciGsji






, Gsji ≡ Gs(xj ;xi) .

Many of these terms match identically with the outer expansion.
The unmatched monopole terms give rise to a singularity behavior for the
outer correction v3 of the form

v3 ∼ −cj (Bj + χ1 + v0κj)

|x− xj |
as x→ xj .
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Key Steps in Derivation of Main Result: VIII
Therefore, the problem for v3 is

△v3 = 0 , x ∈ Ω ,

∂rv3|r=1 = −2π

N
∑

j=1

cj (Bj + χ1 + v0κj)
δ(θ − θj)δ(φ− φj)

sin θj
.

The divergence theorem yields that χ1 = − 1

Nc̄

∑N
j=1

cj [Bj + v0κj ], which
can be written in terms of CT ≡ (c1, . . . , cN ) and the Green matrix as

χ1 =
2πv0
Nc̄

pc(x1, . . . , xN )− v0
Nc̄

N
∑

j=1

cjκj , pc(x1, . . . , xN ) ≡ CTGsC .

This yields the trap-location dependent third term in v̄. The final result is

v̄ =
|Ω|

2πεDNc̄

[

1 + εlog

(

2

ε

)

∑N
j=1

c2j

2Nc̄
+

2πε

Nc̄
pc(x1, . . . , xN )

− ε

Nc̄

N
∑

j=1

cjκj +O(ε2 log ε)



 .
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Key Steps in Derivation of Main Result: IX
Remark: The Principal Result still holds for arbitrary-shaped traps Ωj with
two changes: First, cj is the capacitance of the electrified disk problem;

wcηη + wcs1s1 + wcs2s2 = 0 , η ≥ 0 , −∞ < s1, s2 <∞ ,

∂ηwc = 0 , on η = 0 , (s1, s2) /∈ Ωj ; wc = 1 , on η = 0 , (s1, s2) ∈ Ωj ,

wc ∼ cj/ρ , as ρ→ ∞ .

Secondly, the constant κj is now found from a modified electrified disk
problem with non-constant potential on the disk:

w2hηη + w2hs1s1 + w2hs2s2 = 0 , η ≥ 0 , −∞ < s1, s2 <∞ ,

∂ηw2h = 0 , η = 0 , (s1, s2) /∈ Ωj ; w2h = −K(s1, s2) , η = 0 , (s1, s2) ∈ Ωj ,

w2h ∼ −κjcj/ρ , as ρ = (η2 + s21 + s22)
1/2 → ∞ ,

where K(s1, s2) is defined from

K(s1, s2) = − 1

4π

∫

Ωj

log |s̃− s|wcη|η=0 ds .
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Compare Asymptotic and Full Numerics for v̄: I
20

16

12

8

4

0

0.50.40.30.20.10.0

v̄

ǫ

△

△

△

△

△

△

△

△

△

△

△
△

△

Fig: v̄ vs. ε with D = 1 and either N = 1, 2, 4 equidistantly spaced circular
windows of radius ε. Solid: 3-term expansion. Dotted: 2-term expansion.
Discrete: COMSOL. Top: N = 1. Middle: N = 2. Bottom: N = 4.

N = 1 N = 4

ε v̄2 v̄3 v̄n v̄2 v̄3 v̄n

0.02 53.89 53.33 52.81 13.47 13.11 12.99
0.05 22.17 21.61 21.35 5.54 5.18 5.12
0.10 11.47 10.91 10.78 2.87 2.51 2.47
0.20 6.00 5.44 5.36 1.50 1.14 1.13
0.50 2.56 1.99 1.97 0.64 0.28 0.30
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Compare Asymptotic and Full Numerics for v̄: II
Remark: For ε = 0.5 and N = 4, traps occupy ≈ 20% of the surface. Yet,
the 3-term asymptotics for v̄ differs from COMSOL by only ≈ 7.5%.
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Fig: v̄ vs. trap radius ε for D = 1 for one, two, and three traps equally
spaced on the equator: curves (asymptotics), crosses (full numerics).

For one trap, we get only 1% error for a trap of radius ε . 0.8, i.e.
ε2/4× 100 = 16% percent surface trap area fraction.

For 3 traps, 1% error when ε . 0.3, which is 6.8% percent surface trap
area fraction.
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Effect of Location of Traps on Sphere
2.0

1.6

1.2

0.8

0.4

0.0

0.200.180.160.140.120.100.080.06

v̄

ǫ

Plot: v̄(ε) for D = 1, N = 11, and three trap configurations. Heavy: global
minimum of H (right figure). Solid: equidistant points on equator. Dotted:
random.

The effect of trap location is still rather significant.

For ε = 0.1907, N = 11 traps occupy ≈ 10% of surface area; The
optimal arrangement gives v̄ ≈ 0.368. For a single large trap with a
10% surface area, v̄ ≈ 1.48; a result 3 times larger. Thus, trap
fragmentation effects are important.
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Trap Locations that Minimize v̄: I
Numerical Computations: to compare optimal energies and point
arrangements of H, given by

H(x1, . . . , xN ) =

N
∑

i=1

N
∑

k>i

(

1

|xi − xk|
− 1

2
log |xi − xk| −

1

2
log (2 + |xi − xk|)

)

,

with those of classic Coulomb or Logarithmic energies

HC =

N
∑

i=1

N
∑

j>i

1

|xi − xj |
, HL = −

N
∑

i=1

N
∑

j>i

log |xi − xj |.

(A. Cheviakov, R. Spiteri, MJW).

Numerical Methods:

Extended Cutting Angle method (ECAM). (cf. G. Beliakov, Optimization
Methods and Software, 19 (2), (2004), pp. 137-151).

Dynamical systems – based optimization (DSO). (cf. M.A. Mammadov, A.
Rubinov, and J. Yearwood, (2005)).

Our computational results obtained by using the open software library
GANSO where both the ECAM and DSO methods are implemented.
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Trap Locations that Minimize v̄: II
Left: N=5: Right: N=11.

Left: N=12: Right: N=16:

Computational Results and Questions:

For N = 2, . . . , 20 optimal point arrangments of the three energies
coincide (proof?) Q1: Does this still occur for N > 20?.

Q2: Derive a rigorous scaling law for the optimal energy of H when
N ≫ 1.

Q3: Does the limiting result from H approach a homogenization theory
result in the dilute trap area limit? HK – p.36



Trap Locations that Minimize v̄: III
OPTIMAL ENERGIES: (Computations by R. Spiteri and A. Chevia kov)

N H HC HL

3 -1.067345 1.732051 -1.647918

4 -1.667180 3.674234 -2.942488

5 -2.087988 6.474691 -4.420507

6 -2.581006 9.985281 -6.238324

7 -2.763658 14.452978 -8.182476

8 -2.949577 19.675288 -10.428018

9 -2.976434 25.759987 -12.887753

10 -2.835735 32.716950 -15.563123

11 -2.456734 40.596450 -18.420480

12 -2.161284 49.165253 -21.606145

16 1.678405 92.911655 -36.106152

20 8.481790 150.881571 -54.011130

25 21.724913 243.812760 -80.997510

30 40.354439 359.603946 -113.089255

35 64.736711 498.569272 -150.192059

40 94.817831 660.675278 -192.337690

45 130.905316 846.188401 -239.453698

50 173.078675 1055.182315 -291.528601

55 221.463814 1287.772721 -348.541796

60 275.909417 1543.830401 -410.533163

65 336.769710 1823.667960 -477.426426
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Trap Locations that Minimize v̄: III

For N ≫ 1, the optimal H has the scaling law

H ≈ F(N) ≡ N2

2
log
(e

2

)

+ b1N
3/2 +N (b2 logN + b3) + b4N

1/2

+b5 logN + b6 ,

where a least-squares fit to the optimal energy yields

b1 ≈ −0.5668 , b2 ≈ 0.0628 , b3 ≈ −0.8420 ,

b4 ≈ 3.8894 , b5 ≈ −1.3512 , b6 ≈ −2.4523 .

Scaling Law For v̄: For 1 ≪ N ≪ 1/ε, the optimal average MFPT v̄, in
terms of the trap surface area fraction f = Nε2/4, satisfies

v̄ ∼ |Ω|
8D

√
fN

[

1−
√

f/N

π
log

(

4f

N

)

+
2
√
fN

π

(

1

5
+

4b1√
N

)

]

.

HK – p.38



Effect of Fragmentation of the Trap Set
6.0

5.0

4.0

3.0

2.0

1.0

0.0

3.02.01.00.2

v̄

% surface area fraction of traps

Plot: averaged MFPT v̄ versus % trap area fraction for
N = 1, 5, 10, 20, 30, 40, 50, 60 (top to bottom) at optimal trap locations.

Fragmentation effect of traps on the sphere is a significant factor.

Only a minimal benefit by increasing N when N is already large. Does v̄
approach a limiting curve (homoegnization limit?)
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Narrow Escape in 2-D: SurfaceG-Function
Consider the narrow escape problem from a 2-D domain. The surface
Neumann G-function, G, with

∫

Ω
Gdx = 0 is

△G =
1

|Ω| , x ∈ Ω ; ∂nG = 0 , x ∈ ∂Ω\{xj} ,

G(x;xj) ∼ − 1

π
log |x− xj |+R(xj ;xj) , as x→ xj ∈ ∂Ω ,

when xj is a smooth point of ∂Ω. Define the G-matrix by

G ≡













R1 G12 · · · G1N

G21 R2 · · · G2N

...
...

. . .
...

GN1 · · · GN,N−1 RN













.

The local or inner problem near the jth arc determines a constant dj

w0ηη + w0ss = 0 , 0 < η <∞ , −∞ < s <∞ ,

∂ηw0 = 0 , on |s| > lj/2 , η = 0 ; w0 = 0 , on |s| < lj/2 , η = 0 .

w0 ∼ log |y| − log dj + o(1) , as |y| → ∞ , dj = lj/4 .
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Two-Term Asympototic Result for the MFPT: I
Principal Result : Consider N well-separated absorbing arcs of length εlj for
j = 1, . . . , N centered at smooth points xj ∈ ∂Ω. Then, in the outer region
|x− xj | ≫ O(ε) for j = 1, . . . , N the MFPT is

v ∼ −π
N
∑

i=1

AiG(x;xi) + χ , χ = v̄ =
1

|Ω|

∫

Ω

v dx ,

where a two-term expansion for Aj and χ (average MFPT) are

Aj ∼
|Ω|µj

NDπµ̄

(

1− π

N
∑

i=1

µiGij +
π

Nµ̄
pw(x1, . . . , xN )

)

+O(|µ|2) ,

v̄ ≡ χ ∼ |Ω|
NDπµ̄

+
|Ω|

N2Dµ̄2
pw(x1, . . . , xN ) +O(|µ|) .

Here pw is a weighted discrete sum in terms of Gij :

pw(x1, . . . , xN ) ≡
N
∑

i=1

N
∑

j=1

µiµjGij , µj = − 1

log(εdj)
, dj =

lj
4
.
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Summing the Logarithmic Expansion
Ref [PWPK]: S. Pillay, M. J. Ward, A. Pierce, T. Kolokolnikov, An Asymptotic
Analysis of the Mean First Passage Time for Narrow Escape Problems:
Part I: Two-Dimensional Domains, SIAM Multiscale Modeling and
Simulation, (2010).

Remark: In [PWPK] there an analogous result that sums all logarithmic
terms for v̄ and for Aj for j = 1, . . . , N .

Principal Result : Define the matrices M = diag(µ1, ..., µN ) and E = eeT /N ,
where e = (1, . . . , 1)T . Then, with an error of order O(ε/[− log ε]),
A = (A1, . . . , AN )T is the solution of the linear system

(

I + πM
(

I − 1

µ̄
EM

)

G
)

A =
|Ω|

DπNµ̄
,

where µ̄ = (1/N)
∑N

j=1
µj . In addition, the average MFPT v̄ is

v̄ =
|Ω|

DπNµ̄
+

π

Nµ̄
eTMGA .

Remark: If G is a cyclic matrix, and the traps have the same length, then
A = β(1, . . . , 1)T , and the theory simplifies.
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Calculating the Surface NeumannG-Function
The key issue to obtain an explicit theory is to calculate the surface
Neumann G-function and its regular part R.

For the unit disk, G and R are

G(x; ξ) = − 1

π
log |x− ξ|+ |x|2

4π
− 1

8π
, R(ξ; ξ) =

1

8π
.

G and R can be calculated explicitly for a rectangle by using
Ewald-summation formulae.

Can calculate G and R for smooth perturbation of unit disk (T.
Kolokolnikov).

For an arbitrary 2D domain, G and R are calculated numerically by the
regularization of letting µ→ 0 in ∆G− µG = 0 with G ∼ − 1

π log |x− xj |
as xj ∈ ∂Ω (A. Peirce, MJW).
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Narrow Escape in 2-D: Simple Results

For N = 1 arc of length |∂Ωε1 | = 2ε (i.e. d = 1/2), then

v(x) ∼ |Ω|
Dπ

[

− log
(ε

2

)

+ π (R(x1;x1)−G(x;x1))
]

+O (ε/[− log ε]) ,

v̄ = χ ∼ |Ω|
Dπ

[

− log
(ε

2

)

+ πR(x1;x1)
]

+O (ε/[− log ε]) .

Extends work of Singer et al. to arbitrary Ω with smooth ∂Ω.

For N equidistant arcs on unit disk, i.e. xj = e2πij/N for j = 1, . . . , N ,

v(x) ∼ 1

DN



− log

(

εN

2

)

+
N

8
− π

N
∑

j=1

G(x;xj)



+O (ε/[− log ε]) ,

χ ∼ 1

DN

[

− log

(

εN

2

)

+
N

8

]

+O (ε/[− log ε]) ,

,
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Compare Asymptotics and Full Numerics: I
For the unit disk, the following four trap configurations were studied:

a single trap (arc) of arclength ε;

two oppositely placed traps each of arclength ε;

seven equally-spaced traps each of arclength ε;

a three-trap configuration: two traps of length ε centered at θ = π/2
and 3π/2, and one larger trap of length 3ε located at θ = π.

x
1

x
2

Asymptotic MFPT v(x)
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Fig: 3-trap contour plot (left: asymptotics) and (right: full numerics)
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Compare Asymptotics and Full Numerics: II
Fig: v̄ vs. trap size ε for D = 1 for one-, two-, three-, and seven-trap
configurations on unit disk. Curves (asymptotics); crosses (Full numerics).
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For N = 1, we get 5% agreement for a trap length ε . 2, which is
roughly 1/3 of the perimeter of unit disk.

For N = 7, we get 5% agreement for a trap length ε . 0.35, which is
roughly 40% of perimeter.
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Spatial Arrangement of Arcs is Very Significant
2.0

1.5

1.0

0.5

0.0

0.300.250.200.150.100.050.00

χ

ǫ

Plot: Plot of χ = v̄ versus ε from log-summed result (solid curves) vs. ε for
D = 1 and for four traps on the boundary of the unit disk.

Trap locations at x1 = eπi/6, x2 = eπi/3, x3 = e2πi/3, x4 = e5πi/6 (top

curves ); x1 = (1, 0), x2 = eπi/3, x3 = e2πi/3, x4 = (−1, 0) (middle curves );
x1 = eπi/4, x2 = e3πi/4, x3 = e5πi/4, x4 = e7πi/4 (bottom curves ).

Considerable effect of location of traps on v̄ even at small ε.
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Optimization of the MFPT for One Trap: I
Optimization: For one absorbing arc of length 2ε on a smooth boundary,

v̄ = χ ∼ |Ω|
Dπ

[

− log
(ε

2

)

+ πR(x1;x1)
]

, µ1 ≡ − 1

log[ε/2]
,

λ(ε) ∼ λ∗ ∼ πµ1

|Ω| − π2µ2
1

|Ω| R(x1;x1) +O(µ3

1) ,

Question: For ∂Ω smooth, is the global maximum of R(x1;x1) attained at
the global maximum of the boundary curvature κ? In other words, will a
boundary trap centered at the maximum of κ minimize the heat loss from
the 2-D domain? (i.e. yield the smallest λ1, and thus the largest v̄).

Remark: Related to conjecture of J. Denzler, Windows of a Given Area
with Minimal Heat Diffusion, Trans. Amer. Math. Soc., 351, (1999).

3-D Case: The conjecture is true in 3-D since for ε→ 0,

v̄ ∼ |Ω|
4εD

[

1 +
(−ε log ε)

π
H(x1) +O(ε)

]

, λ1 ∼ 1

Dv̄
,

where H(x1) is the mean curvature of ∂Ω at x0 ∈ ∂Ω. Ref: D. Holcman
et al., Phys. Rev. E. 78, No. 5, 051111, (2009).
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Optimization of the MFPT for One Trap: II
Principal Result in 2-D [PWPK] : The global maximum of R(x1, x1) does not
necessarily coincide with the global maximum of the curvature κ of the
boundary of a smooth perturbation of the unit disk. Consequently, for
ε→ 0, λ1(ε) does not necessarily have a global minimum at the location
of the global maximum of the boundary curvature κ.

Proof: based on the following explicit perturbation formula for R for
arbitrary smooth perturbations of the unit disk (T. Kolokolnikov)

Principal Result [PWPK]: Let Ω be a smooth perturbation of the unit disk with
boundary given in terms of polar coordinates by

r = r(θ) = 1 + δσ(θ) , σ(θ) =

∞
∑

n=1

(an cos(nθ) + bn sin(nθ)) , δ ≪ 1 ,

where σ is C2 smooth. Let x1 = x1(θ1) = (r1 cos θ1, r1 sin θ1) be a point on
the boundary where r1 = 1 + δσ(θ1). Then, for δ ≪ 1,

ρ′(θ1) ≡
d

dθ
R(x;x)|x=x1

=
δ

π

∞
∑

n=1

(

n2 + n− 2
)

(bn cosnθ1 − an sinnθ1)+O(δ2) .
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Optimization of the MFPT for One Trap: III
We construct a counterexample with the choice

σ(θ) = cos(2θ) + b sin(3θ) , so that κ ∼ 1 + δ [3 cos(2θ) + 8b sin(3θ)] .

We then calculate

κ′(θ) = −6δ [sin(2θ)− 4b cos(3θ)] , κ′′(θ) = −12δ [cos(2θ) + 6b sin(3θ)] ,

ρ′(θ) = −4δ

π

[

sin(2θ)− 5b

2
cos(3θ)

]

, ρ′′(θ) = −8δ

π

[

cos(2θ) +
15b

4
sin(3θ)

]

.

Note: θ = π/2 and θ = 3π/2 are the only two critical points shared by κ
and ρ. For the range −4/15 < b < −1/6, then

κ has a local maximum while ρ has a local minimum at θ = π/2.

κ has a local minimum while ρ has a local minimum at θ = 3π/2.

Since the only critical points shared by κ and ρ are local minima of ρ, then
the absolute maximum value of ρ occurs at a point where κ′(θ) 6= 0.
Therefore, the point(s) where the absolute maximum value of ρ is attained
do not coincide precisely with the maximum curvature of the boundary.
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Optimization of the MFPT for One Trap: IV

Left Fig: Plot of the domain boundary when δ = 0.1 and b = −1/5.

Right Fig: Plot of ρ(θ)− C and κ(θ)− 1 for δ = 0.1 and b = −1/5 showing
that the global maxima of ρ and κ− 1 occur at different, but nearby,
locations.
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Further Directions and Open Problems

Establish relation between the optimal MFPT as N → ∞ with results
that can be obtained from dilute fraction limit of homogenization theory.

Narrow escape problems in arbitrary 3-d domains: require Neumann
G-functions in 3-D with boundary singularity. How does one
numerically compute the regular part of the singularity?

Surface diffusion on arbitrary 2-d surfaces: require Neumann
G-function and regular part on surface. What is the effect of the mean
curvature of the surface on the MFPT.

Include chemical reactions occurring within each trap, with binding and
unbinding events. Can diffusive transport between traps induce
synchronous time-dependent oscillations for localized reactions (ode’s)
valid inside each trap (with Y. Nec and D. Coombs)? Yields a new
Steklov-type eigenvalue problem.

Couple surface diffusion to diffusion processes within the cell.
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