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Strong Localized Perturbations for PDE
A strong localized perturbation (SLP) induces an O(1) change in the
solution to a PDE in a spatial region of small O(ε) extent. However, it’s
effect can be much larger, i.e. O (−1/ log ε), across the entire domain.

Eigenvalues of the Laplacian and Bi-Laplacian in domains with holes

I: Narrow capture problems for a Brownian particle: (Berg-Purcell
problem of biophysics)

II: Localized “far-from-equilibrium” spot patterns for reaction-diffusion
systems in the large diffusivity ratio

III: Localized signalling compartments or “cells” in 2-D coupled by a
PDE bulk diffusion field: collective oscillatory dynamics

SLP theory is based on singular perturbation techniques tailored for
problems with localized defects: (Dirac singularities, Green’s functions are
key). SLP reductions often lead to discrete variational problems or DAE
systems).

Survey Ref: MJW, Spots, Traps, and Patches: Asymptotic Analysis of Localized Solutions to

some Linear and Nonlinear Diffusive Processes, Nonlinearity, 31(8), (2018), R189 (53pp).

JULIAN COLE – p.2



Common Themes: SLP Problems
All are singular perturbation problems in 2-D or 3-D domains that
require different spatial scales to resolve the localized features.

SLP theory is a singular perturbation approach that is tailored
specifically for resolving small spatial “defects”. Localized regions or
“defects” are replaced in the limit ε→ 0 by certain singularity
structures defined at “points” for the problem on the macroscale.

On macroscale, solution is represented by a Green’s function, and
Green’s matrices characterize interactions between localized regions.

For 2-D problems, the expansion parameter is often ν = −1/ log ε
arising from the log r behavior of the Green’s function for the Laplacian.

To achieve high accuracy in 2-D, need a methodology to “sum” the

effect of logarithmic interactions
∑

ajν
j , rather than a finite truncation.

Tutorial Ref: MJW, Asymptotics for Strong Localized Perturbation Theory: Theory and

Applications, (lecture notes for 4th winter school in Applied Mathematics, 2010, City U. Hong

Kong), (101 pages). (https://personal.math.ubc.ca/ ward/papers/hk_strong.pdf)

End Notes: What does ANY of this have to do with the interests of Julian Cole?
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I: Narrow Capture in 3-D

O(σ)O(σ)
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Nanotraps
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Caption: spherical target Ωε of radius ε ≪ 1 centered at x0 ∈ Ω, with N locally circular

absorbing surface nanotraps(pores) of radii σ ≪ ε modeled by a zero Dirichlet condition.

A particle (protein etc..) undergoes Brownian walk (dXt = DdWt) until
captured by one of the N small absorbing surface nanotraps
(applications: antigen binding etc..).

How long on average does it take to get captured? (MFPT).

What is the effect on the MFPT of the spatial distribution {x1, . . . ,xN}
of the surface nanotraps? Scaling law for N → ∞ but in dilute limit?
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The MFPT PDE for Narrow Capture
The Mean First Passage Time (MFPT) T satisfies

∆T = − 1

D
, x ∈ Ω\Ωε ; ∂nT = 0 , x ∈ ∂Ω ,

T = 0 , x ∈ ∂Ωεa ; ∂nT = 0 , x ∈ ∂Ωεr ,

where ∂Ωεa and ∂Ωεr are the absorbing and reflecting part of the surface
of the small sphere Ωε within the 3-D cell Ω.

Calculate the averaged MFPT T̄ for capture of a Brownian particle.

T̄ depends on the capacitance C0 of the structured target (related to
the Berg-Purcell problem, 1977). This is the “inner” or local problem.

Derive discrete optimization problems characterizing the optimal T̄ .

Ref1: [LBW2017] Lindsay, Bernoff, MJW, First Passage Statistics for the Capture of a

Brownian Particle by a Structured Spherical Target with Multiple Surface Traps, SIAM

Multiscale Mod. and Sim. 15(1), (2017), pp. 74–109.

Ref2: A. Cheviakov, MJW, R. Straube, An Asymptotic Analysis of the Mean First Passage

Time for Narrow Escape Problems: Part II: The Sphere, Mult. Mod. and Sim. 8(3), (2010).
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Asymptotic Result for the Average MFPT

Using strong localized perturbation theory, for ε→ 0 the average MFPT is

T̄ ≡ 1

|Ω\Ωε|

∫

Ω\Ωε
T dx =

|Ω|
4πC0Dε

[

1 + 4πεC0R(x0) +O(ε2)
]

,

where R(x0) is the regular part of the Neumann Green’s function for Ω:

∆G =
1

|Ω| − δ(x− x0) , x ∈ Ω ; ∂nG = 0 , x ∈ ∂Ω ,

G(x;x0) ∼
1

4π|x− x0|
+R(x0) , as x → x0 ;

∫

Ω

Gdx = 0 .

If Ω is the unit sphere, R(x0) can be found analytically in closed form.

For a cube, R(x0) can be found from a rapidly converging infinite
series (Ewald summation).

Otherwise use a boundary-integral solver.
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The Inner (Local) Problem Near Target
Let Ω0 ≡ ε−1Ωε, y ≡ ε−1(x− x0), and Ωρ ≡ {y | |y| ≤ ρ}. The
capacitance C0 is defined from an “exterior” problem in potential theory:

∆w = 0 , y ∈ R
3 \ Ω0 (outside unit ball)

w = 1 , y ∈ Γa (absorbing pores)

∂nw = 0 , y ∈ Γr (reflecting surface)

w ∼ C0

|y| +O
(

1

|y|2
)

, as |y| → ∞ .

Target

Sites

Remarks:

C0 = 1 if entire surface is absorbing.

The diffusive flux J into the sphere is

J = D

∫

Γa

∂nw dS = 4πDC0 .

The leading-order sub-inner problem
near a pore is the electrified disk problem.
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Berg-Purcell Problem: I
This is the Berg-Purcell (BP) problem (Physics of Chemoreception,
Biophys J. 20(2), (1977): ≈ 2100 citations)

BP assumed

N ≫ 1 disjoint equidistributed small pores.

common nanopore radius σ ≪ 1.

dilute fraction limit (f ≡ Nπσ2/(4π) ≪ 1).

Target

Sites

Using a “physically-inspired” derivation, BP postulated that

C0bp ≈ Nσ

Nσ + π
, Jbp ≈ 4πD

Nσ

Nσ + π
= 4DNσ +O(σ2) .

Suggests that J is proportional to the total pore perimeter when σ ≪ 1.

Goal: Calculate C0, and the flux J , for N disjoint pores centered at
{y1, . . . ,yN} over the surface. Effect of location and fragmentation? For
N ≫ 1, and “equidistributed” pores derive (and improve) the BP result and
get an effective (homogenized) trapping parameter κ for a Robin condition.
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Main Result for C0 and flux J: I
Main Result: For σ → 0, [LBW2017] derived that

1

C0

=
π

Nσ

[

1 +
σ

π

(

log
(

2e−3/2σ
)

+
4

N
H(y1, . . . ,yN )

)

+O(σ2 log σ)

]

,

J = 4DNσ

[

1 +
σ

π
log(2σ) +

σ

π

(

−3

2
+

2

N
H(y1, . . . ,yN )

)

+ · · ·
]−1

.

The inter-pore interaction energy H, subject to |yj | = 1 ∀j, is

H(y1, . . . ,yN ) ≡
N
∑

j=1

N
∑

k=j+1

g(|yj−yk|) ; g(µ) ≡ 1

µ
+
1

2
logµ− 1

2
log(2+µ) .

Here yj for j = 1, . . . , N are the nanopore centers with |yj | = 1.

Remarks:

Flux J minimized when H minimized

g(µ) is monotone decreasing, positive,
and convex.

Indicates that optimal configuration
should be (roughly) equidistributed.

µ
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Main Result for C0 and flux J: II
Note: g(|yj − yk| = 2πGs(yj ;yk), Gs is the surface-Neumann G-function

Gs(yj ;yk) =
1

2π

[

1

|yj − yk|
− 1

2
log

(

1− yj ·yk + |yj − yk|
|yj | − yj ·yk

)]

.

Key steps in SLP analysis for C0:

Asymptotic expansion of global (outer) solution and local (inner)
solutions near each pore (using tangential-normal coordinates).

The surface Gs-function has a subdominant logarithmic singularity on
the boundary (related to surface diffusion). This fact requires adding
“logarithmic switchback terms in σ” in the outer expansion.

The leading-order local solution is the tangent plane approximation
and yields electrified disk problem in a half-space, with (local)
capacitance cj = 2σ/π.

Key: Need corrections to the tangent plane approximation in the inner
region near the pore. This higher order term in the inner expansion
satisfies a Poisson-type problem, with monopole far-field behavior.

Asymptotic matching and solvability conditions yield 1/C0.

JULIAN COLE – p.10



Discrete Energy: Equidistributed Points
Find global minimum Hmin of H when N ≫ 1

H =
∑

j

∑

k 6=j

g(|yj − yk|) , where g(µ) ≡ 1

µ
+

1

2
log

(

µ

2 + µ

)

.

What is asymptotics of Hmin as N → ∞?

For large N , many local minima, so finding global min is difficult.

Cannot tile a spherical surface with hexagons (must have defects).

A new cousin of the classic Fekete point problems of minimizing pure
Coulombic energies on the sphere (Smale’s 7th problem).

Three Coverings of N = 800 points
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y
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0
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Scaling Law: Equidistributed Points
Formal Large N Limit: For N large and

“equidistributed points”, we have

Hmin ∼ N2

4
− d1N

3/2 +
N

8
logN

+d2N + d3N
1/2 + · · · ,

with d1 = .5, d2 = .125 and d3 = .25.
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Main Result (Scaling Law): For N ≫ 1, but small pore surface area fraction

f = O(σ2 log σ) and with equidistributed pores, the optimal C0 and J are

1

C0

∼ 1+
πσ

4f

(

1− 8d1
π

√

f +
σ

π
log

(

β
√

f
)

+
2d3σ

2

π
√
f

)

, β ≡ 4e−3/2e4d2 ,

J ∼ 4πD

[

1 +
πσ

4f

(

1− 8d1
√
f

π
+

σ

π
log

(

β
√

f
)

+
2d3σ

2

π
√
f

)]

−1

.

Berg-Purcell result is the leading-order term.

Our analysis yields correction terms for the sphere. Most notable is the√
f term, where f ≡ Nσ2/4.
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Compare Scaling Law with Full Numerics
Compare full numerics (Bernoff-Lindsay) with the asymptotic scaling law

J ∼ 4πD

[

1 +
πσ

4f

(

1− 8d1
√
f

π
+
σ

π
log
(

β
√

f
)

+
2d3σ

2

π
√
f

)]−1

.

Fix 2% pore coverage (f = 0.02) and choose spiral Fibonacci points.

N Erel
51 1.02%

101 0.90%

201 0.76%

501 0.58%

1001 0.37%

2001 0.34%

Caption: f = 0.02 (2% pore

coverage). Scaling law ac-

curately predicts the flux to

the target for the biological

parameter range f = 0.02

and N = 2001.
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Effective Robin Condition: Leakage κh

Ref: Muratov, 
Shvartsmam,  
Berezhkovskii, 
SIAM MMS 2006.

Consider the planar case with σ pore radius and f coverage. Previous empirical
laws (Berezhkovskii 2013) for a hexagonal arrangement

κ =
4Df

πσ
χ(f) , χ(f) =

1 + 1.37
√
f − 2.59f2

(1− f)2
.

Our homogenized Robin condition: use scaling law for C0 and find κh from

∆vh = 0 , |y| > 1 ; ∂nvh+κhvh = 0 , |y| = 1 ; vh(y) ∼
1

|y|−
1

C0

, |y| → ∞ .

For the unit sphere, and in terms of d1, d2, d3 and β ≡ 4e−3/2e4d2 , we get

κh ∼
4Df

πσ

[

1−
8d1

π

√

f +
σ

π
log

(

β
√

f
)

+
2d3σ2

π
√
f

]

−1

≈
4Df

πσ

[

1 + 1.41
√

f + · · ·
]

.
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Remarks and Further Directions
Approximation theory: SLP theory has led to a new discrete variational
problem related to the classic Fekete point problem: Challenge: derive
rigorous large N scaling law.

Numerics for Full PDE (Sphere): Boundary integral methods challenging
owing to N ≫ 1 and edge singularities at Dirichlet/Neumann corners
(Lindsay, Bernoff [LBW2017] and L. Greengard, J. Kaye JCP X 5
10047 (2020) (fast potential theory)).

Further Directions:

What about full time-dependent probability density? (Some recent
results in 2-D Cherry, Lindsay, Hernandez, and Quaife, archive)

The effect of more realistic trap models? (i.e. finite receptor kinetics
(Ref: Handy, Lawley, Biophys. J. 120(11), 2021))

Capacitance of a non-spherical surface containing N nanopores:
Asymptotics: Local analysis near a pore is possible, but no explicit
globally-defined surface Neumann Green’s function. Need detailed
behavior of the local singularity (microlocal analysis techniques? (M.
Nursultanov, L. Tzou, and J. Tzou, J. Math. Pures. Appl. (2021))
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III: Localized Spots for Singularly Perturbed RD Models

vt = ε2△v + g(u, v) ; τut = D△u+ f(u, v) , x ∈ Ω ∈ R
2 .

Assume ε≪ 1 and D = O(1). Key: Since ε≪ 1, v can be localized in

space as a spot pattern, i.e. concentration at a discrete set of points.

Prototypical Kinetics: Brusselator, Gray-Scott, GM, Schnakenberg, etc..

Specific Applications: Biological morphogenesis, Self-replicating patterns in
chemical interactions, plant root-hair formation driven by auxin gradient,
hot-spot patterns of urban crime, vegetation patches in semi-arid
environments (spatial ecology).

Two Distinct Methodologies

Classical Approach: stability of spatially uniform states, Turing and
weakly nonlinear analysis of small amplitude patterns, leading to
normal form amplitude equations. Not so useful in singular limit.

Localized Patterns: “Far-from equilibrium patterns” (Y. Nishiura)
consisting of “particles” (v) interacting through a “diffusion field” (u).

Key: SLPT: ν = −1/ log ε is expansion parameter.

Spot interactions via Green’s functions and Green’s matrices

Optimization of stability thresholds yield new (discrete) VPs.
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Spotty Vegetation Patterns in 2-D
The dimensionless extended Klausmeir-model in 2-D (with no flux BC):

vt = ǫ2∆v−mv+uv2 , ut = ∆u+Hux−u+a−ε−2uv2 , in Ω = [0, 1]2 .

v (biomass) and u (surface water).

m mortality rate of vegetation, a is rainfall rate (in regime where striped
patterns do not exist).

H > 0 uniform terrain slope in x direction.

ǫ≪ 1 since water diffuses much faster than biomass.

v concentrates on points as ǫ→ 0 (i.e. spot pattern).

Framework: Develop a mathematical theory to analyze the existence,
stability, and dynamics, of localized “far-from equilibrium” spot patterns.

Q1: Localized patterns can undergo instabilities (competition,
self-replication, etc.) 2-D NLEP theory: Wei-Winter-MJW

Q2: If no instabilities, derive a DAE system for the slow time evolution
of the center of the spots. (SLPT key here).

T. Wong, MJW Dynamics of Patchy Vegetation Patterns in the Two-Dimensional Generalized

Klausmeier Model, to appear, DCDS Series S, (2022), (47 pages).
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A Decreasing Rainfall Rate and Spot Annihilation

(a) t = 5 (b) t = 400 (c) t = 1000

(d) t = 1010 (e) t = 1275 (f) t = 1285

(g) t = 1300 (h) t = 1585 (i) t = 3390

Left: Snapshots of PDE results with

ε = 0.02, H = 1.0, and a dynamic

rainfall rate a = max(70− 0.01t, 55).

Vegetation patches are slowly annihi-

lated.
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Above: Spot trajectories from the

DAE (arising from SLPT) and the

PDE compare very well before and

after spot-annihilation events.
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III: Diffusion-Mediated Communication
Formulate and analyze a 2-D PDE-ODE model of m dynamically active
small stationary “cells”, with arbitrary intracellular kinetics (ODE), that are
coupled spatially by a linear bulk-diffusion field (PDE) “autoinducer” (AI).

Quorum sensing (QS): collective behavior triggered as m exceeds a

threshold. (Usually studied in the well-mixed limit)
Diffusion-Mediated Communication: collective behavior resulting from spatial
effects from diffusive transport. (Spatial clustering of cells, shielding
effects, spatially isolated cells, signalling gradient).

Oscillatory: sudden emergence of intracellular oscillations as m

increases (eg: glycolysis, social amoeba, catalyst bead particles).

With no bulk coupling, “cells” are quiet. Oscillations and ultimate
sychronization occurs via a switchlike Hopf bifuraction response.

Transitions: between small and large amplitude bistable steady-states
as m increases (eg: bioluminescence, Pseudomonas aeruginosa).

As m increases, or cells become spatially clustered, there can be a
passage past a saddle-node point leading to a bistable transition.

Modeling Frameworks? Kuramoto? (ODE only); RD system? (phemenological);

Homogenization? (possible); Agent-Based-Lattice-Simulations? (please no!).
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Formulation of the PDE-ODE Model I
The m cells are circular and
each contains n chemicals
µj = (µ1j , . . . , µnj)

T . When
isolated from the bulk they
interact via ODE’s
dµj/dt = kRFj(µj).

A scalar bulk diffusion field
(autoinducer) diffuses in the
space between the cells via

UT = DB∆XU − kBU .

There is an exchange across the

cell membrane, regulated by per-

meability parameters, between

the autoinducer and one intracel-

lular species (Robin condition).

Scaling Limit: ǫ ≡ σ/L ≪ 1, where L is lengthscale for Ω.

Parameters: Bulk diffusivity DB , bulk decay rate kB , intracellular reaction rate kR.

Framework inspired by: Refs: J. Muller, C. Kuttler, et al. JMB 53 (2006); J. Muller, H.

Uecker, JMB 67 (2013).

JULIAN COLE – p.20



Formulation of the PDE-ODE Model II
Dimensionless Formulation: The concentration of signalling molecule U(x, t)
in the bulk satisfies the PDE:

τUt = D∆U − U , x ∈ Ω\ ∪m
j=1 Ωǫj ; ∂nU = 0 , x ∈ ∂Ω ,

ǫD∂nj
U = d1jU − d2ju

1
j , x ∈ ∂Ωǫj , j = 1, . . . ,m .

The cells are disks of radius ǫ≪ 1 so that Ωǫj ≡ {x | |x− xj | ≤ ǫ}.

Inside each cell there are n interacting species uj = (u1j , . . . , u
n
j )

T , with

intracellular dynamics for each j = 1, . . . ,m,

duj

dt
= F j(uj) +

e1

ǫτ

∫

∂Ωǫj

(d1jU − d2ju
1
j ) ds , e1 ≡ (1, 0, . . . , 0)T .

Remark: The time-scale is measured wrt intracellular kinetics. The
dimensionless bifurcation parameters are: d1j , d2j (permeabilities); τ
(reaction-time ratio); D (effective diffusivity);

τ ≡ kR
kB

, D ≡
(

√

DB/kB
L

)2

.
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Role of Intracellular Kinetics Fj
Triggered Oscillations: Intracellular kinetics are a conditional oscillator:
Quiescent when uncoupled from the bulk. Bulk coupling triggers a
Hopf bifurcation for the collection of cells. (Sel’kov kinetics n = 2)
Refs: J. Gou, MJW, JNLS, 26(4), (2016); S. Iyaniwura, MJW, SIADS, 20(1), (2021).

Transitions: Intracellular kinetics have a saddle-node structure and
bistable states when uncoupled from bulk. Bulk-coupling induces an
effective bifurcation parameter, depending on m, that can sweep past
fold points (Lux kinetics n = 4) Refs: W. Ridgway, B. Wetton, MJW, JMB, (2022).

Two key regimes for effective bulk diffusivity D:

D = O(1); Effect of spatial distribution of cells is a key factor whether
either intracellular oscillations or saddle-node transitions occur.

D = O(ν−1) with ν = −1/ log ǫ; PDE-ODE system can be reduced to a
limiting ODE system where there is a weak effect of cell locations.

D → ∞; The classic “well-mixed” regime: Obtain an ODE system
with global coupling and no spatial effects. (QS behavior).

Analysis: Use SLPT to construct steady-states and to analyze the linear stability

problem. Derive the reduced ODE system for D = O(ν−1). Ensure that the

asymptotic theory effectively sums all ν = −1/ log ǫ terms.
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Sel’kov Kinetics: m = 10 cells with two clusters

Q: what is the effect of varying the influx permeability rate d1 into the cells
from the bulk medium when D = D0/ν? Here Ω is unit disk and ε = 0.05.

1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

Caption: HB boundaries in the τ versus D0 plane for m = 10 cells with two groups/clusters of

cells. Dashed curve: identical cells with d1 = 0.8. Thin solid: d1 = 0.8 for the first group and

d1 = 0.4 for second group. Heavy solid: non-identical cells with d1 uniformly in

0.4 ≤ d1 ≤ 0.8. FlexPDE simulations given below at indicated points.

Key: Oscillations predicted within the lobes. HB boundaries depend
sensitively on d1. Computed from the roots of nonlinear matrix problem
det(M(λ; τ,D)) = 0 with λ = iλI that arises from SLPT reduction
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Two Identical Clusters: Red Dot

650 660 670 680 690 700
0.2

0.3

0.4

0.5
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650 660 670 680 690 700
1

1.5
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650 660 670 680 690 700
0.4

0.6

Caption: Top row: FlexPDE results at (D0, τ) = (5.0, 0.3) with identical influx rates d1j = 0.8

for j = 1, . . . ,m. Lower row: Ū , u1, and u2, as computed from the ODEs.

Observe: Nearly synchronized intracellular oscillations.
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Two Distinct Clusters: Blue Dot
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Caption: Top/ middle rows: FlexPDE results at (D0, τ) = (0.4, 0.35). Cells in the left and right

clusters have d1 = 0.4 and d1 = 0.8, resp. Lower row: Ū , u1, and u2, from the ODEs.
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Two Identical Clusters: Red/Blue Stars
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Caption: Top Row: FlexPDE results at the blue star with (D0, τ) = (5.0, 0.9) (left panel) and

at the red star with (D0, τ) = (5.0, 0.03) (right panel). Identical influx rates d1 = 0.8 for all

cells. Lower row: Ū , u1, and u2, from the ODE system.

Observe: oscillatory versus monotonic approach to the steady-state.
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End Notes: Julian Cole
Julian made seminal contributions across MANY specific areas (transonic
flow and aerodynamics, perturbation theory, symmetry analysis, fluids).
70th B-day collection: “Mathematics is for Solving Problems”, eds. V. Roytburd, P.

Cook, M. Tulin. (SIAM Press).

The Low Re Quagmire: In the late 1950’s and early 1960s, there was an

intense focus at Caltech (GALCIT) and Cambridge on using singular
perturbation methods for accurately calculating the drag coefficient CD for
a long cylinder of circular cross-section in a steady-state low Re flow with
free stream (Kaplun, Lagerstrom, Proudman-Pearson, Van Dyke, Cole).

For ε ≡ Re → 0, they obtained CD ∼ 4πε−1F (ε), where F (ε) is an
infinite logarithimic series in powers of −1/ log ε.

Only three coefficients can be calculated analytically and this severe
truncation for CD agrees rather poorly with the experimental results.

Challenge: infinite log expansion converges for ε small or is it only an
asymptotic series (optimal number of terms)? If it converges, can we
sum it? What about transcendetally small effects?

As a Szego PDF with my mentor Joe Keller from 1988-1991, M. Van
Dyke (Aero, Stanford) would routinely still lament this challenge to us.
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SLPT and the Low Re Drag Problem I
For steady-state low Re flow over a circular cylinder with a Navier (rough
boundary) condition, the 2-D streamfunction ψ satisfies

∆2
rψ = −ε Jr [ψ,∆rψ] , r > 1 ; ψ ∼ r sin θ , as r → ∞ ,

ψ = 0 , lψrr −
(

l

r
+ 1

)

ψr = 0 , on r = 1 .

Here ε ≡ U∞Lρf/µ≪ 1 is the Reynolds number, l = lc/L is the

dimensionless Navier sliplength and Jr [a, b] ≡ r−1 (∂ra ∂θb− ∂θa ∂rb).

SLPT Approach: Let ρ = εr, and let ΨH ≡ ΨH(ρ, θ;S) satisfy

∆2
ρΨH = −Jρ [ΨH ,∆ρΨH ] , ρ > 0 ; ΨH ∼ ρ sin θ , as ρ→ ∞ ,

ΨH ∼ [S log ρ+R(S) + o(1)] ρ sin θ , as ρ→ 0 ; (”sing.structure”).

For a range of S values, we must compute the regular part R = R(S).

Stokes (inner) region: Let r = O(1), we set ψ = Sψc, where

∆2
rψc = 0 , r > 1 ; ψc ∼ r log r sin θ , as ρ→ ∞ ,

ψc = 0 , lψcrr −
(

l

r
+ 1

)

ψcr = 0 , on r = 1 .
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SLPT and the Low Re Drag Problem II
which has the solution

ψc =
[

r log r + c(r − r−1)
]

sin θ , where c ≡ − 1

2 + 4l
.

By asymptotic matching the regular parts: To all orders in ν, CD satisfies

CD ∼ 4πε−1νR [S(ν)] , where
S

R(S)
= ν ≡ − 1

log [εe−c]
≪ 1 .
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(a)

Left: CD vs. ε (solid and dashed) with experimentals (Tritton). Right: R(S) computation.

Refs: Kropinski, MJW, J. Keller, SIAP 55(6), (1995); S. Hormozi, MJW, J. Eng. Math., 102(2),

(2017). Open PDE challenge: Prove that R(S) is analytic for S small.
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Final Comments

Although singular perturbation theory is a classic but OLD topic in Applied
Math, it still provides a highly relevant methodology for revealing
solution behavior for ODEs and PDEs arising in modern applications.

Indeed the spirit of “Mathematics is for Solving Problems” (Julian Cole) is
alive and well in SLP theory illustrated by the applications it has been
applied to. However, incorporating results and techniques from the
“purer” side (PDE theory, approximation theory, spectral theory,
microlocal analysis), as well as contemporary numerical
methodologies, is often very relevant and powerful.

For the QS problem a key computational challenge is finding λ such
that detM(λ) = 0 for possibly large non-Hermitian matrices with no
simple dependence on λ (Betze, Highan, Mehrmann)

If anyone out in zoomland has a specific problem for which SLPT might be

useful you know where to find me.

Thanks to SIAM for the honour of the Julian Cole Lectureship!
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