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Abstract

We study the dynamical and steady-state behavior of self-organized spatially localized patches or “spots”
of vegetation for the Klausmeier reaction-diffusion (RD) system of spatial ecology that models the interaction
between surface water and vegetation biomass on a 2-D spatial landscape with a spatially uniform terrain slope
gradient. In this context, we develop and implement a hybrid asymptotic-numerical theory to analyze the
existence, linear stability, and slow dynamics of multi-spot quasi-equilibrium spot patterns for the Klausmeier
model in the singularly perturbed limit where the biomass diffusivity is much smaller than that of the water
resource. From the resulting differential-algebraic (DAE) system of ODEs for the spot locations, one primary
focus is to analyze how the constant slope gradient influences the steady-state spot configuration. In the unit
square, global bifurcation diagrams for two- and three-spot vertically aligned equilibria of the DAE dynamics are
determined in terms of this spatially uniform slope gradient. It is shown that if this gradient exceeds a certain
threshold depending on the rainfall rate, the DAE dynamics allows for a linearly stable two-spot vertically
aligned steady-state with spots located on the uphill side of the terrain. Our second primary focus is to examine
bifurcations in quasi-equilibrium multi-spot patterns that are triggered by a slowly varying time-dependent
rainfall rate. In particular, we show that a slowly increasing rainfall rate can trigger self-replication events for
the localized vegetation patches, whereas a slowly decreasing rainfall rate can initiate spot-annihilation events
leading to fewer patches of vegetation. A detailed analysis of delayed bifurcation behavior for each of these
two possible transitions is provided in a simple setting. Many full numerical simulations of the Klausmeier RD
system are performed both to illustrate the effect of the terrain slope and rainfall rate on localized spot patterns,
as well as to validate the predictions from our hybrid asymptotic-numerical theory.

1 Introduction

Reaction diffusion (RD) systems provide a ubiquitous modeling framework for studying pattern formation phe-
nomena in biology, chemistry and spatial ecology. In recent years, there has been a focus on using RD systems to
model spatial patterns of vegetation in semi-arid environments (cf. [16], [17]). Depending on the level of aridity,
nontrivial vegetation patterns consisting of either gaps, stripes, or spots, have been observed in nature. Full nu-
merical simulations for various RD systems that model the interaction between biomass and the available water
resource have qualitatively reproduced this richness in the pattern forming properties (cf. [25], [16], [8], [28]).

In spatial ecology, the Klausmeier model [10] is a two-component RD system with advection that describes the
dynamic interaction between surface water and vegetation biomass in a semi-arid ecosystem on a sloped spatial
terrain. In this original Klausmeier model, where there is no diffusion term for the water component, the advection
term models the downward flow of water induced by a uniformly sloped spatial terrain. However, since patterned
vegetation can also be found on flat terrain, water advection alone is typically not the only mechanism underlying
patterns of biomass. As a result, several extended Klausmeier RD models (cf. [18], [19], [24]) have been proposed
that include a water diffusion term. With such a regularization, and with a suitable scaling of the parameters, the
existence and linear stability of localized 1-D vegetation patterns have been well-studied using geometric singular
perturbation theory (cf. [18]). In this 1-D context, it was shown in [3] that spikes can move either uphill or downhill
the slope, depending on the convexity of the terrain. Moreover, in [3], criteria for the detection of spike annihilation
under a decreasing rainfall rate, for both regularly and irregularly spaced spikes, were derived.

In contrast, in a multi-dimensional context, the analysis of pattern formation for the extended Klausmeier model
has been primarily restricted to the study of stripe patterns, which are obtained by extending 1-D spike patterns
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in the transverse direction (cf. [2], [19], [12]). One main result of these studies is that a sufficiently large terrain
slope gradient can stabilize a transverse 1-D homoclinic pattern in a rectangular domain, which would otherwise be
unstable to breakup into spots without a slope gradient. With regards to spatially localized 2-D spot patterns, in
[21] the slow dynamics and self-replication behavior of a one-spot solution to the extended Klausmeier RD system
was analyzed on a 2-D manifold, which models an arbitrary topography for the spatial landscape. Inspired by the
modeling and computational study of [7], the goal in [21] was to analyze how the dynamics of a spot depends on
geometrical features of the landscape, such as its curvature. One key aspect of the study in [21] (see also [20])
was the pioneering use of tools in microlocal analysis and differential geometry that are essential for an efficient
numerical calculation of a surface Green’s function and its regular part, which are required for the numerical
solution of the ODE for slow spot dynamics on an arbitrary landscape.

An important aspect in predicting patterns of biomass is the availability of the water resource, which can be
modeled by a time-dependent rainfall rate. In this direction, the transition from a spatially uniform to a sparser
vegetation state under a slowly receding rainfall was studied in [5]. This study demonstrated that the decreasing
speed and the background noise in the rainfall rate are the key factors for determining whether a spatial uniform
vegetated state will lead to patterned state, or to a complete absence of biomass (desertification).

The goal of this paper is to analyze the existence, stability, and slow dynamics of localized multi-spot patterns
for the extended Klausmeier model, written in non-dimensional form (cf. [19]) in a bounded 2-D domain Ω as

vt = ε2∆v −mv + uv2 , ut = ∆u+Hux − u+ a− ε−2uv2 , in Ω ; ∂bv = ∂nu = 0 , in ∂Ω . (1.1)

In this model, v and u represent the vegetation biomass and surface water, respectively, m is the mortality rate of
vegetation, H > 0 is the constant terrain slope, and a > 0 is the rainfall rate. The small parameter ε� 1 accounts
for the small diffusivity ratio between the biomass and the water (water diffuses much faster than biomass).

In §2, we use the method of matched asymptotic expansions to construct quasi-equilibrium multi-spot solu-
tions and to derive a differential-algebraic (DAE) system of ODEs that governs the slow dynamics of spots over
asymptotically long time scales t = O(ε−2). The numerical implementation of this DAE system in a rectangu-
lar domain relies on the derivation in Appendix A of a novel rapidly converging infinite series representation for
a Green’s function with a uniform advection term. In §3, we perform a linear stability analysis to study O(1)
time-scale instabilities for these multi-spot quasi-equilibria. We show that a peanut-shaped deformation of a spot
is unstable if the rainfall rate exceeds a threshold. This linear instability can trigger a nonlinear spot-splitting
event. In contrast, for the class of locally radially symmetric perturbations near the spots, we derive a globally
coupled eigenvalue problem (GCEP) that characterizes competition instabilities for multi-spot quasi-equilibria. A
numerical winding number algorithm is used to detect unstable eigenvalues for this GCEP. Competition instabili-
ties are O(1) time-scale linear instabilities of the spot amplitudes, which decrease the amplitude of some spots at
the expense of others. As observed from full PDE computations of (1.1), this linear instability typically triggers
spot-annihilation events. Although the methodology for the analysis of quasi-equilibrium multi-spot patterns for
(1.1) and their linear instabilities is closely related to that used in previous studies for related RD systems with no
advection (cf. [13], [4], [27]), our focus will be to highlight new solution features for spot patterns of (1.1) that are
due to the terrain slope gradient and a slowly varying rainfall rate.

In §4 we use the DAE dynamics, the linear stability theory, and global bifurcation diagrams of spot equilibria
computed from the DAE, to study the effect of the terrain slope gradient on the existence, slow dynamics and
linear stability on an O(1) time-scale of N -spot patterns, with N ≤ 3, in the unit square. From the criterion in
Appendix B, we also study the linear stability of the steady-state spot locations with respect to the DAE dynamics.
Unstable eigenvalues of the linearization of the DAE dynamics are weak instabilities, i.e. λ = O(ε2), and so are
manifested only over long time-scales. For a one-spot steady-state solution we identify the region in the a versus H
parameter space where the spot is linearly stable to a peanut-shaped deformation. Moreover, we show that linearly
stable vertically aligned two-spot steady-state patterns will occur on the uphill side of the terrain slope when the
uniform slope gradient exceeds a threshold. For three-spot patterns, and in a certain parameter regime, it is shown
that vertically aligned three-spot steady states are unstable. For this case, the linearly stable pattern consists of
two vertically aligned spots on the uphill side of the terrain slope with the remaining spot centered on the domain
midline on the downhill side of the slope. Full numerical computations of spot trajectories from the PDE (1.1) are
used both to illustrate the effect of the terrain slope on slow spot dynamics and to validate the asymptotic theory.

In §5 we study the effects of a slowly varying time-dependent rainfall rate on the slow dynamics and steady-
states for multi-spot quasi-equilibria. In §5.1 we show that a slowly decreasing rainfall rate can lead to the onset
of competition instabilities, which trigger spot-annihilation events. By augmenting the DAE system for slow spot
dynamics with a zero-eigenvalue crossing condition, which is based on the GCEP from the linear stability theory, we
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can predict the onset time for a competition instability and, most typically, identify the particular spot that will be
annihilated. With this augmented DAE algorithm, which incorporates sudden transitions due to spot-annihilation
events, the DAE dynamics can be integrated in time until a final steady-state pattern is obtained. The predictions
of the spot trajectories and the coarsening behavior of multi-spot quasi-equilbria, as computed from this DAE
algorithm, are shown to agree very favorably with full numerical results computed from the PDE (1.1).

In §5.2 and §5.3 we study delayed bifurcation behavior for spot-annihilation and spot-splitting that occurs for
either a slowly decreasing or a slowly increasing rainfall rate, respectively. Although criteria for the delayed onset of
instabilities due to slowly varying control parameters have been well-studied for ODE models (cf. [9], [14], [6], [1]),
there are relatively much fewer such studies for PDE systems (cf. [22] and the references therein). In particular, in
§5.2 we derive from the PDE (1.1) a normal form ODE that describes the delayed transition to spot-annihilation
that occurs as the rainfall rate decreases slowly below the saddle-node bifurcation point for the existence of a
one-spot steady-state solution for (1.1) in the unit square with H = 0. In §5.3 we predict the delayed onset for
the peanut-splitting instability that occurs as the rainfall rate increases past the static peanut-splitting threshold.
These predictions for the delayed bifurcation behavior are confirmed from full PDE simulations of (1.1). Finally,
in §6 we briefly summarize some of our main results and discuss a few problems that warrant further investigation.

2 Quasi-equilibrium spot patterns and slow spot dynamics

In the limit ε → 0 we construct a quasi-equilibrium solution for (1.1) in a rectangular domain Ω with localized
spots centered at x1, . . . ,xN , which are assumed to be well-separated in the sense that |xi − xj | = O(1) for i 6= j
and dist(xj , ∂Ω) = O(1) as ε → 0, for j = 1, . . . , N . Under the assumption that the spots are linearly stable on
O(1) time intervals, we will derive a differential-algebraic (DAE) ODE system characterizing their slow dynamics.

Near the the jth spot centered at x = xj , we introduce the slow time scale σ = ε2t and the local coordinates

y = ε−1
√
m [x− xj(σ)] , ρ = |y| , v =

√
mVj , u =

√
mUj , (2.1)

where Vj = Vj(y, σ) and Uj = Vj(y, σ). From (1.1), we obtain in terms of these local coordinates that on y ∈ R2,

− ε√
m
ẋj · ∇yVj = ∆yVj − Vj + UjV

2
j ,

− ε

m
ẋj · ∇yUj = ε−2

(
∆yUj − UjV 2

j

)
+

H

ε
√
m
∂y1Uj +

a

m3/2
− 1

m
Uj ,

(2.2)

where ẋj ≡ dxj/dσ, y = (y1, y2)T , while ∇y and ∆y denote the gradient and the Laplacian in the y variable.
Next, we expand the local variables as

Vj = Vj0(ρ) + εVj1(y, σ) + · · · , Uj = Uj0(ρ) + εUj1(y, σ) + · · · . (2.3)

Upon substituting (2.3) into (2.2) we obtain, at leading order, the radially symmetric core problem

∆ρVj0 − Vj0 + Uj0V
2
j0 = 0 , ∆ρUj0 − Uj0V 2

j0 = 0 , 0 < ρ <∞ , (2.4a)

V ′j0(0) = U ′j0(0) = 0 ; Vj0 → 0 , Uj0 ∼ Sj log ρ+ χ(Sj) , ρ→∞ , (2.4b)

where ∆ρ ≡ ∂ρρ + ρ−1∂ρ. Here, we have imposed a logarithmic growth for Uj0 as ρ → ∞ defined in terms of an
unknown constant, Sj , referred to as the spot source strength. The constant χ = χ(Sj) in (2.4b) must be computed
numerically from this BVP (see the left panel of Fig. 1a). By integrating the Uj0 equation in (2.4a) over 0 < ρ <∞,
we use the divergence theorem to obtain the identity

Sj =

∫ ∞
0

Uj0V
2
j0 ρ dρ . (2.5)

At the next order, we find upon substituting (2.3) into (2.2) that v1 ≡ (Vj1, Uj1)
T

satisfies

∆yv1 +M0v1 = fc cos θ + fs sin θ , y ∈ R2 , (2.6a)

where we write y = ρ(cos θ, sin θ)T and

M0 ≡

(
−1 + 2Uj0Vj0 V 2

j0

−2Uj0Vj0 −V 2
j0

)
, fc ≡ −

1√
m

(
V ′j0 ẋj1 , HU

′
j0

)T
, fs ≡ −

(
V ′j0 ẋj2√

m
, 0

)T
. (2.6b)
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We then decompose v1 as
v1 = v1c cos θ + v1s sin θ , (2.7a)

where v1c(ρ) = (V1c, U1c)
T

and v1s(ρ) = (V1s, U1s)
T

satisfy

L1v1c +M0v1c = fc , L1v1s +M0v1s = fs , with L1 ≡ ∆ρ −
1

ρ2
. (2.7b)

We can impose that V1c → 0 and V1s → 0 exponentially as ρ → ∞. However, from a simple dominant balance
argument, we must seek a far-field behavior for U1c and U1s in the form

U1c ∼ Ac ρ log ρ+Bc ρ , U1s ∼ Bs ρ , as ρ→∞ , (2.8)

for some coefficients Ac, Bc, and Bs to be found.

To determine these coefficients we proceed as follows. By differentiating the core problem (2.4a) with respect to

ρ, we first observe that vh =
(
V ′j0 , U

′
j0

)T
is a null-vector for the linear operator L1 +M0. Therefore, there is a

nontrivial solution v?1 ≡ (V ?1 , U
?
1 )
T

to the homogeneous adjoint problem

L1v
?
1 +MT

0 v
?
1 = 0 , (2.9a)

for which V ?i → 0 exponentially and U?1 = O(ρ−1) as ρ→∞. We normalize this solution by imposing that

V ?1 → 0 , U?1 ∼ 1/ρ , as ρ→∞ . (2.9b)

Next, we invoke a solvability condition for v1c in (2.7b) that leads to the determination of the values of Ac and
Bc. By applying Lagrange’s second identity in a large disk BR ≡ {y : |y| ≤ R}, we get∫

BR

[
(L1v1c +M0v1c) · v?1 −

(
L1v

?
1 +MT

0 v
?
1

)
· v1c

]
dy =

∫
∂BR

(∂ρv1c · v?1 − ∂ρv?1 · v1c) ds . (2.10)

By using the definitions of v1c and v?1 in (2.7b) and (2.9a), respectively, we use integration by parts to calculate
the left hand side of (2.10) as∫

BR

fc · v?1 dy = − 2π√
m

∫ R

0

(
V ′j0 V

?
1 ẋj1 +H U ′j0 U

?
1

)
ρ dρ

∼ −2πẋj1√
m

(∫ R

0

V ′j0 V
?
1 ρ dρ

)
− 2πH√

m

(
Sj logR+ χ(Sj)−

∫ R

0

Uj0 (U?1 ρ)
′
dρ

)
,

(2.11)

as R → ∞. To evaluate the right hand side of (2.10), we use the far-field behavior of U1c and U?1 in (2.8) and
(2.9b), respectively, to derive for R� 1 that∫

∂BR

(∂ρv1c · v?1 − ∂ρv?1 · v1c) ds ∼ 2πR (U ′1cU
?
1 − U?′1 U1c) |ρ=R ,

∼ 2πR
[
(Ac logR+Ac +Bc)R

−1 + (AcR logR+BcR)R−2
]

∼ 2π (2Ac logR+Ac + 2Bc) .

(2.12)

Upon equating the limiting behaviors as R→∞ in (2.11) and (2.12), we conclude that

Ac + 2Bc = − ẋj1√
m

(∫ ∞
0

V ′j0V
?
1 ρ dρ

)
− H√

m

(
χ(Sj)−

∫ ∞
0

Uj0 (U?1 ρ)
′
dρ

)
, 2Ac = − H√

m
Sj . (2.13)

This determines Ac and Bc as

Ac = − HSj
2
√
m
, Bc =

H

2
√
m

(
Sj
2
− χ(Sj) +

∫ ∞
0

Uj0 (U?1 ρ)
′
dρ

)
− ẋj1

2
√
m

(∫ ∞
0

V ′j0V
?
1 ρ dρ

)
. (2.14a)

Similarly, by invoking a solvability condition on the problem (2.7b) for vv1s, we obtain that

Bs = − ẋj2
2
√
m

(∫ ∞
0

V ′j0 V
?
1 ρ dρ

)
. (2.14b)
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By combining (2.1), (2.3), (2.4b) and (2.8), and in terms of Ac, Bc, and Bs as given in (2.14), we obtain that the

far-field behavior of the inner solution near the jth spot is

u =
√
mUj ∼

√
m [Sj log ρ+ χ(Sj) + ε (Ac ρ log ρ+Bc ρ) cos θ + εBs ρ sin θ] , as ρ→∞ . (2.15)

Next, we construct the asymptotic solution in the outer region, defined away from O(ε) regions near the spots. In
the outer region, since v is exponentially small, then ε−2uv2 is localized near the spots. In the sense of distributions,
we use the inner expansion v =

√
mVj and u =

√
mUj , where Vj and Uj are given in (2.3), and the inner variable

|y| = ε−1
√
m|x− xj | to calculate for ε→ 0 that

ε−2uv2 →
N∑
i=1

[∫ 2π

0

∫ ∞
0

m3/2 (Ui0 + εUi1 + · · · ) (Vi0 + εVi1 + · · · )2 ρ

m
dρ dθ

]
δ(x− xi) ,

= 2π
√
m

N∑
i=1

[
Si +O(ε2)

]
δ(x− xi) .

(2.16)

Here, in obtaining the O(ε2) estimate, we used the fact that an integral of V1j or U1j when multiplied by a radially
symmetric function must vanish. In this way, upon using (2.16) the outer problem for u to the order of O(ε2) is

∆u+Hux − u = −a+ 2π
√
m

N∑
i=1

Si δ(x− xi) , in Ω ; ∂nu = 0 , on ∂Ω . (2.17)

We will represent the solution to (2.17) in terms of the Green’s function G(x; z) satisfying

∆G+HGx −G = −δ(x− z) , in Ω ; ∂nG = 0 on ∂Ω , (2.18)

where x = (x, y)T and z = (z1, z2)T . To eliminate the gradient term in (2.18) we introduce F (x; z) by

G(x; z) ≡ eK(z1−x)F (x; z) , where K ≡ H/2 . (2.19)

In the rectangular domain Ω = {(x, y) | 0 < x < l , 0 < y < h}, we obtain that F (x; z) is the solution to

∆F − (1 +K2)F = −δ(x− z) in Ω , (2.20a)

Fx −KF = 0 , on x = 0, l ; Fy = 0 , on y = 0, h , (2.20b)

F = − 1

2π
log |x− z|+R(z; z) + o(1) , as x→ z , (2.20c)

where R(z; z) is the regular part of the Green’s function.

In terms of this Green’s function in (2.19), the outer solution satisfying (2.17) is

u(x) = a− 2π
√
m

N∑
i=1

SiG(x;xi) = a− 2π
√
m

N∑
i=1

Si e
K(xi−x)F (x;xi) , (2.21)

where xi = (xi, yi)
T is the center of the ith spot. Next, we expand u as x → xj by using the local behavior of

G(x;xj) as x→ xj , together with a Taylor-expansion of the remaining terms. For x→ xj , we obtain that

u ∼ a− 2π
√
m

SjRjj +

N∑
i 6=j

Si e
K(xi−xj)Fj,i

+
√
mSj log |x− xj | −

√
mSjK(x− xj) log |x− xj |

− 2π
√
m

Sj (−Ke1Rj,j +∇xRj,j) +

N∑
i 6=j

Sie
K(xi−xj) (−Ke1Fj,i +∇xFj,i)

 · (x− xj)

+O
(
|x− xj |2 log |x− xj |

)
,

(2.22)
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where x = (x, y)T . Here e1 ≡ (1, 0)T , Fj,i ≡ F (xj ;xi), ∇xFj,i ≡ ∇xF (x;xi)|x=xj , Rj,j ≡ R(xj ;xj), and
∇xRj,j ≡ ∇xR(x;xj)|x=xj . In terms of the inner variable y = ε−1

√
m(x− xj) we obtain from (2.22) that

u ∼ a+
√
mSj log

(
ερ√
m

)
− 2π

√
m

SjRj,j +

N∑
i 6=j

Si e
K(xi−xj) Fj,i

− εKSj log

(
ερ√
m

)
ρ cos θ

− 2πε

Sj (−KRj,je1 +∇xRj,j) +

N∑
i 6=j

Si e
K(xi−xj) (−KFj,ie1 +∇xFj,i)

 · y +O(ε2 log ε) ,

(2.23)

where we recall that K ≡ H/2 and e1 ≡ (1, 0)T .

We now match (2.15) and (2.23). At the leading order, and upon defining ν ≡ −1/ log ε, we have(
1 +

ν logm

2

)
Sj + 2πν

SjRj,j +

N∑
i6=j

Si e
K(xi−xj)Fj,i

+ νχ(Sj) =
νa√
m
, j = 1, . . . , N . (2.24)

To write (2.24) in matrix form we let G ∈ RN×N be the Green’s matrix of x1, . . . ,xN , with matrix entries

(G)i,j =

Rj,j if i = j ,

eK(xj−xi) Fi,j if i 6= j .
(2.25)

Upon defining s ≡ (S1, . . . , SN )T , χχχ ≡ (χ(S1), . . . , χ(SN ))T and e ≡ (1, . . . , 1)T ∈ RN , we can write (2.24) as the
nonlinear algebraic system (NAS) (

1 +
ν logm

2

)
s + 2πν Gs + νχχχ =

νa√
m

e . (2.26)

Next, we match (2.15) and (2.23) at higher order. To do so, we equate the coefficients of ρ cos θ and ρ sin θ to
obtain, respectively, that

√
m (Ac log ρ+Bc) ∼ −KSj log

(
ερ√
m

)
− 2π

Sj (−KRj,j + ∂xRj,j) +

N∑
i 6=j

Si e
K(xi−xj) (−KFj,i + ∂xFj,i)

 ,
√
mBs ∼ −2π

Sj∂yRj,j +

N∑
i 6=j

Si e
K(xi−xj) ∂yFj,i

 .

(2.27)

Upon substituting (2.14) for Ac, Bc, and Bs directly in (2.27), we solve for ẋj to obtain, after some algebra, that

ẋj = γ(Sj)

{
K

[
Sj
ν

+
Sj logm

2
+ χ(Sj)−

Sj
2
− µ(Sj)

]
e1

− 2π

−K
SjRj,j +

N∑
i 6=j

Sie
K(xi−xj)Fj,i

 e1 + Sj∇xRj,j +

N∑
i 6=j

Sie
K(xi−xj)∇xFj,i

} , j = 1, . . . , N ,

(2.28)
where K = H/2, and where we have defined γ(Sj) and µ(Sj) by

γ(Sj) ≡ −
2∫∞

0
V ′j0 V

?
1 ρ dρ

and µ(Sj) ≡
∫ ∞

0

Uj0 (ρU?1 )
′
dρ . (2.29)

In Fig. 1b and Fig. 1c we plot the numerically-computed γ and µ versus Sj , respectively.

Finally, we can further simplify (2.28) by using the NAS (2.24) for the source strengths. In this way, we obtain
that the DAE-ODE system governing slow spot dynamics is

dxj
dσ

= γ(Sj)

K
[
a√
m
− Sj

2
− µ(Sj)

]
e1 − 2π

Sj∇xRj,j +

N∑
i 6=j

Sie
K(xi−xj)∇xFj,i

 , j = 1, . . . , N , (2.30)
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where σ = ε2t and K = H/2. Here Sj , for j = 1, . . . , N , are coupled to the spot locations through the NAS (2.24),
or equivalently (2.26). The DAE-ODE system (2.30) and (2.24) characterizes slow spot dynamics in the absence
of any O(1) time-scale instability of the spot amplitudes. These instabilities are analyzed in the next section.
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Figure 1: Numerical results for χ(S), γ(S), and µ(S), as defined in (2.4b) and (2.29), as computed numerically
from the core problem (2.4a) and the homogeneous adjoint problem (2.9).

3 Linear stability analysis

In this section we study the linear stability on an O(1) time-scale of the quasi-equilibrium solution, labeled by ve
and ue, which was constructed in §2. By introducing the perturbation

v = ve + eλtφ , u = ue + eλtη , (3.1)

into (1.1), and linearizing, we obtain the following eigenvalue problem with ∂nφ = ∂nη = 0 on ∂Ω:

ε2∆φ−mφ+ 2ueveφ+ v2
eη = λφ , ∆η +H∂xη − η − ε−2

(
2ueveφ+ v2

eη
)

= λη , in Ω . (3.2)

There are two distinct types of instabilities for localized spot patterns: instabilities associated with locally non-
radially symmetric deformation of a spot, which trigger spot self-replication events [26], and instabilities in the spot
amplitudes due to locally radially symmetric perturbations of the spot profile, which can trigger spot-annihilation
events (cf. [13], [4], [27], [20], [26]).

To analyze the linear stability of the jth spot centered at xj , we introduce the local variables Φj and Nj by

φ ∼ eikθΦj(ρ) , η ∼ eikθNj(ρ) , where y = ε−1
√
m (x− xj) = ρ (cos θ, sin θ)

T
, (3.3)

where the integer k ≥ 0 is the local angular mode. Then, since ve ∼
√
mVj0 and ue ∼

√
mUj0 near the jth spot

(see (2.1)), we obtain from (3.2) the following leading-order problem in the inner region, defined on 0 ≤ ρ <∞:

∆ρΦj −
k2

ρ2
Φj − Φj + 2Uj0Vj0 Φj + V 2

j0Nj =
λ

m
Φj , ∆ρNj −

k2

ρ2
Nj − 2Uj0Vj0 Φj − V 2

j0Nj = 0 . (3.4)

We first consider non-radially symmetric perturbations of the spot profile, corresponding to the modes k > 0. In
particular, the mode k = 1 is the translation mode (Φj , Nj)

T = (U ′j0, V
′
j0)T , which is associated with the neutral

eigenvalue λ = 0. For the modes k ≥ 2, we can impose Φj → 0 exponentially as ρ→∞, and that Nj ∼ O(ρ−k) as
ρ→∞. In this way, owing to the far-field decay of the inner solution, instabilities for the non-radially symmetric
modes are localized near the core of a spot. Since the inner problem (3.4) is the same as for the Schnakenberg
RD model studied in [13], the results in [13] for non-radially symmetric instabilities of a localized spot apply to
our Klausmeier model. The numerical computation of the eigenvalue λmax/m with the largest real part is given in
Fig. 4 of [13] for a range of Sj . For each mode k ≥ 2, it was found that λmax is real, and λmax is negative (positive)
when Sj < Σk (Sj > Σk). Therefore, the threshold Σk (for k ≥ 2) serves as the largest value of the source strength

Sj for which the jth spot is linearly stable to a shape-deforming instability of angular mode k. Moreover, it was
shown numerically in [13] that there is an ordering principle Σ2 < Σ3 < Σ4 < . . . for the instability thresholds,
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and that Σ2 ≈ 4.302. In this way, we conclude that an N -spot quasi-equilibrium pattern is linearly stable to local
spot-shape deformations if and only if Sj < Σ2 for j = 1, 2, . . . , N . Here, S1, . . . , SN are determined in terms of the
instantaneous spot locations x1, . . . ,xN by the NAS (2.26) that applies to our extended Klausmeier model (1.1).
The mode k = 2, referred to as to the peanut-splitting mode, is the first angular mode to lose stability when Sj is
increased. More recently, the weakly nonlinear analysis in [26] for the related Schnakenberg model showed that as
the spot source strength exceeds Σ2 ≈ 4.302, a subcritical pitchfork bifurcation triggers a nonlinear spot-replication
event for a steady-state one-spot solution.

The analysis of instabilities associated with locally radially symmetric perturbations, for which k = 0, is more
intricate since we can no longer impose that Nj → 0 as ρ→∞. As a result, this instability can only be analyzed
through a global coupling of all the local problems near the spots. For k = 0, (3.4) yields that

∆ρΦj − Φj + 2Uj0Vj0Φj + V 2
j0Nj =

λ

m
Φj , ∆ρNj − 2Uj0Vj0Φj − V 2

j0Nj = 0 . (3.5a)

We impose that Φj → 0 exponentially as ρ→∞, while we must impose that Nj has logarithmic growth, i.e.

Nj ∼ cj
(

log ρ+ B̂(Sj ;λ)
)
, as ρ→∞ . (3.5b)

The constant B̂ = B̂(Sj ;λ), depending on Sj and the eigenvalue λ, must be computed from the solution to (3.5).
Upon applying the divergence theorem to the Nj equation in (3.5a), we obtain the identify∫

R2

(
2Uj0Vj0Φj + V 2

j0Nj
)
dy = 2πcj . (3.6)

From our analysis of the outer region, we will derive a homogeneous matrix system for the constants c1, . . . , cN .
This system will have a non-trivial solution only for certain values of λ, which approximate as ε → 0 the discrete
eigenvalues of the linearization (3.1).

In the outer region, φ is exponentially small and by using (3.6), we derive in the sense of distributions that

ε−2
(
2ueveφ+ v2

eη
)
→

N∑
i=1

 ∫
R2

(
2Ui0Vi0Φi + V 2

i0Ni
)
dy

 δ(x− xi) = 2π

N∑
i=1

ci δ(x− xi) . (3.7)

With (3.7), we conclude that the outer problem for η in (3.2) is

∆η +H∂xη − (1 + λ)η = 2π

N∑
i=1

ci δ(x− xi) , in Ω ; ∂nη = 0 on ∂Ω . (3.8)

To represent the solution to (3.8) we define the eigenvalue-dependent Green’s function Gλ(x; z) by

∆Gλ +H∂xGλ − (1 + λ)Gλ = −δ(x− z) in Ω , ∂nGλ = 0 on ∂Ω ,

Gλ = − 1

2π
log |x− z|+Rλ(z; z) + o(1) , as x→ z .

(3.9)

By using the transformation Gλ(x; z) = eK(zi−xi)Fλ(x; z), we obtain in the rectangular domain Ω that Fλ satisfies

∆Fλ − (1 + λ+K2)Fλ = −δ(x− z) in Ω , (3.10a)

∂xFλ −KFλ = 0 on x = 0, l ; ∂yFλ = 0 on y = 0, h . (3.10b)

In Appendix A we show how to numerically calculate Fλ and the regular part Rλ(z; z) efficiently from a rapidly
converging infinite series representation. In terms of this Green’s function, we represent η in (3.8) as

η = −2π

N∑
i=1

ciGλ(x;xi) = −2π

N∑
i=1

ci e
K(xi−x)Fλ(x;xi) , where K = H/2 . (3.11)
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Next, we match the far-field behavior of the inner solution Nj with the behavior of the outer solution η as x→ xj .
From (3.11) we calculate as

η ∼ cj log |x− xj | − 2π

cjRλ(xj ;xj) +

N∑
i 6=j

ci e
K(xi−xj)Fλ(xj ;xi)

+ o(1) , (3.12)

as x→ xj . Upon matching (3.5b) with (3.12), we obtain the homogeneous linear system

cj + 2πν

cjRλ(xj ;xj) +

N∑
i6=j

ci e
K(xi−xj)Fλ(xj ;xi)

+ νcjB̂(Sj ;λ) = 0 , j = 1, . . . , N . (3.13)

For λ ∈ C, we define c ≡ (c1, . . . , cN )
T

, the eigenvalue-dependent Green’s matrix Gλ ∈ CN×N , and the diagonal
matrix B̂ ∈ CN×N by

[Gλ]i,j =

{
Rλ(xj ;xj) , if i = j ,

eK(xj−xi)Fλ(xi;xj) , if i 6= j .
, [B]i,j =

{
B̂(Sj ;λ) , if i = j ,

0 , if i 6= j ,
(3.14)

so that we can write (3.13) in matrix form as

M(λ)c = 0 , where M(λ) ≡ I + 2πν Gλ + νB̂ . (3.15a)

We refer to the homogeneous linear system (3.15a) for c as the globally coupled eigenvalue problem (GCEP). This
GCEP has a nontrivial solution if and only if

detM(λ) = 0 . (3.15b)

The values of λ satisfying (3.15b) approximate, as ε → 0, the discrete eigenvalues of the linearization of the
quasi-equilibrium solution for a fixed spatial configuration x1, . . . ,xN of spots.

The existence of a discrete root λ to (3.15b) satisfying Re(λ) > 0 corresponds to a locally radially symmetric
instability of the quasi-equilibrium spot pattern. The perturbation of the spot amplitudes are characterized by the
corresponding eigenvector c in (3.15a). To count the numberN of roots of detM = 0 in the right half of the spectral
plane Re(λ) > 0, we implement a numerical winding number algorithm based on (3.15b). In our numerical winding
number implementation, we use a contour C(R, r) consisting of semi-circles {|λ| = R > 0} and {|λ| = δ � 1} for
−π/2 ≤ arg λ ≤ π/2, which are connected by the imaginary segment {λ = iλI : λI ∈ R , δ ≤ |λI | ≤ R}. From the
argument principle of complex analysis, we have

N = P +
1

2π
lim

R→∞, r→0
[argF(λ)]C(R,r) , where F(λ) ≡ detM(λ) , (3.16)

and where [argF(λ)]C(R,r) indicates the change in the argument of F(λ) over the contour. Here, P is the number

of poles of detM(λ) in the right half of the spectral plane. Since G is analytic in Re(λ) > 0, a pole for detM(λ)
can only arise from the diagonal matrix B. However, from a numerical computation of the inner problem (3.5), we
find that B is analytic in Re(λ) > 0 and so P = 0 in (3.16). To determine N , we numerically compute the change
of the argument of detM(λ) over the contour C(R, r). In our implementation, we took R = 5 and δ = 10−3. The
results given below were the same for R > 5 or for δ < 10−3.

When Ω is the unit square, we now illustrate how a competition instability, leading to spot annihilation, is
triggered due to an insufficient rainfall rate a. We take ε = 0.02, m = 1 and H = 0.5, and we consider two spots
that are centered at (0.7, 0.25)T and (0.7, 0.75)T , respectively. We consider the two choices, a = 20 and a = 30.
Using the winding number criterion (3.16), we obtain there is one root to the GCEP (3.15b) in Re(λ) > 0 when
a = 20, while there are no such roots when a = 30. Therefore, we predict that when a = 20 (a = 30) the two-
spot quasi-equilibrium pattern is linearly unstable (stable) to locally radially-symmetric perturbations in the spot
amplitudes. The full numerical results from the PDE system (1.1) confirm this prediction from the linear stability
theory ,and shows that the competition instability triggers the annihilation of one of the two spots.

In order to detect the emergence of instabilities as parameters are varied, we observe that when λ = 0 the matrix
M in (3.15a) is reduced to

M0 = I + 2πνG + νB̂0 , (3.17)
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Figure 2: Full PDE results computed from (1.1) for a two-spot quasi-equilibrium pattern in the unit square for
ε = 0.02, m = 1 and H = 0.5. The spots are centered at (0.7, 0.25)T and (0.7, 0.75)T . Left panel: For the rainfall
rate a = 20, the amplitudes of the two spots, as represented by the solid and dashed lines, show a nonlinear
spot-annihilation event. Right panel: For a = 30, a solid line and red dots are used to represent the two, nearly
indistinguishable, spot amplitudes.

where G is the Green’s matrix defined in (2.25), while B̂0 ∈ RN×N is defined by

[
B̂0

]
i,j

=

χ
′(Sj) , if i = j ,

0 , if i 6= j .
(3.18)

This result for B̂0 follows since we can identify that B̂(Sj ; 0) = χ′(Sj) owing to the fact that the solution to (3.5)
is Φj = cj∂SVj0 and Nj = cj∂SUj0 when λ = 0. The criterion for a zero-eigenvalue crossing for the GCEP is that

detM0 = 0 . (3.19)

4 Self-organization of spots

In this section, we fix m = 1 and we illustrate the effect of the uniform slope gradient H on the dynamics and
linear stability of quasi-equilibrium spot patterns with a small number of spots.

4.1 One-spot patterns

We consider a one-spot pattern in the unit square. By symmetry, the steady-state spot location is always on the
midline y = 1/2. Therefore, we will focus on the slow dynamics of the one-spot pattern, centered at x1 = (x1, 1/2)T ,
on this midline. From (2.26), the source strength S1 for this single spot satisfies the nonlinear scalar equation

S1 + 2πνS1R(x1;x1) + νχ(S1) = νa . (4.1a)

For a fixed rainfall rate a, S1 depends on the spot location as well as the slope gradient through the regular part
R(x1;x1) of the Green’s function. In Fig. 3a, we plot S1 versus x1 for various values of H when a = 36. Upon
substituting N = 1 into (2.30), the slow spot dynamics is given by the ODE

ẋ1 = γ(S1)
[
K
(
a− S1/2− µ(S1)

)
− 2πS1∇xR(x1;x1)

]
, with K = H/2 , (4.1b)

subject to the algebraic constraint (4.1a). We set a = 32 and choose the initial position of the spot to be x1 =

(0.4, 1/2)
T

. In Fig. 3b, we compare the spot dynamics computed from the full PDE (1.1) and from the DAE (4.1)
for various values of H. From this figure we conclude that the DAE system (4.1) provides a very accurate prediction
of the spot trajectory in the absence of any linear instabilities of the pattern.

As discussed in §3, the magnitude of the source strength S1 gives a prediction for the linear stability of the
one-spot pattern to local shape-deforming perturbations. However, we now illustrate through a full PDE numerical
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Figure 3: Left panel: For ε = 0.02 and a = 36 in (4.1a), we plot S1 versus x1 for various values of H along the
midline of the unit square. Right panel: We fix ε = 0.02, a = 32 so that S1 < Σ2 ≈ 4.3 and no spot-splitting
occurs. The curves from bottom to top are the x-coordinates of the spot trajectory from simulations (full PDE
(1.1), solid curves; DAE (4.1), solid markers) for H = 0, H = 0.5 and H = 1, respectively. We do not show the
y-coordinates of the spot. Both PDE and DAE simulations show that the y-coordinates are very close to y = 1/2.

simulation that S1 alone may not indicate the final fate of the spot. Let H = 0.5, ε = 0.02, and a = 36, and consider
a one-spot pattern with a spot initially centered at x1 = (0.2, 1/2)

T
. From Fig. 3a we observe that S1 > Σ2. The

full PDE simulation of (1.1) for this one-spot configuration is shown in Fig. 4. From this figure, we initially observe
the peanut-shaped deformation as predicted by our linear stability theory. However, as the spot slowly drifts to
the right along the midline of the square, the deformation gradually disappears as the source strength decreases
below Σ2 (see Fig. 3a). Eventually, the single spot reaches its steady-state location. This example shows that the
slow dynamics of the one-spot pattern can lead to a spot drifting outside the parameter range where it is predicted
to be linearly unstable to a local shape-deforming instability.

(a) t = 2 (b) t = 40 (c) t = 120 (d) t = 190

Figure 4: We fix ε = 0.02, H = 0.5 and a = 36 for a one-spot pattern. The spot is initially centered at x1 = 0.2
on the midline y = 1/2, for which the initial source strength S1 exceeds the threshold Σ2. This results in the initial
peanut-shaped deformation of the spot at t = 40. However, as the spot slowly drifts to the right along the midline,
S1 eventually decreases below Σ2 (see Fig. 3a), and no spot self-replication event occurs.

Next, we study the one-spot steady-state solution. We denote the equilibrium spot location as xe = (xe, 1/2)T ,
so that from (4.1b) xe satisfies the nonlinear equation

K
(
a− S1/2− µ(S1)

)
− 2πS1∂xR(xe;xe) = 0 , (4.2)

subject to the constraint (4.1a) for x1 = xe. The linear stability analysis of §3 predicts that the steady-state
one-spot solution will be linearly stable to local peanut-shape deformations only if S1 < Σ2 ≈ 4.3.

In Fig. 5a we show that the equilibrium location of the spot changes significantly with H, but not with a. In
Fig. 5b, we plot the corresponding source strength S1 for various values of H. There are two main observations
from this figure. For fixed H, S1 increases with a, while for a fixed value of a, S1 decreases with H. As a result,
we predict that a steady-state spot can be stabilized by an increase in the terrain slope gradient H. In Fig. 5c we
plot the linear stability region, where S1 < Σ2, in the a versus H parameter space.
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Figure 5: A steady-state one-spot solution with spot location at xe = (xe, 1/2)T and source strength S1 when
ε = 0.02. Left panel: The x-coordinates of the equilibrium position versus the rainfall rate a for various H. Middle
panel: The source strength S1 at the steady-state location. Right panel: The blue-shaded linear stability region is
where S1 < Σ2 in the a versus H parameter space.

The linear stability prediction based on S1 is more accurate for the steady-state solution as compared to quasi-
equilibrium spot patterns, due to the absence of slow dynamics. In Fig. 6, we consider a one-spot steady-state
solution with H = 0.5 and a = 39, for which S1 > Σ2. We predict that the one-spot solution is unstable to a local
peanut-shaped deformation. Our prediction is confirmed by the full PDE simulation of (1.1) given in Fig. 6, which
shows that the linear instability triggers a nonlinear spot-splitting event.

(a) t = 0 (b) t = 98 (c) t = 124 (d) t = 148

Figure 6: We fix ε = 0.02, H = 0.5 and a = 39, for which S1 ≈ 4.485 > Σ2. The single spot is initially at its
steady-state location x1e ≈ 0.6077 on the midline y = 1/2. The steady-state spot is predicted to be unstable to a
local peanut-shape deformation. PDE simulations of (1.1) shows that the linear instability triggers spot-splitting.

Next, we show two full PDE simulations of (1.1) that highlight how the terrain gradient H can lead to different
steady-state two-spot patterns after a single spot undergoes a spot-splitting event. We consider a single spot
centered at x1 = (0.6, 1/2)T with a = 40 and ε = 0.02. In Figs. 7 and 8, we show full PDE simulations of (1.1)
with H = 0.4 and H = 0.7, respectively. Although the single spot splits into two spots for both values of H, we
observe that the resulting two-spot quasi-equilibrium pattern tends to very different steady-state configurations as
time increases. The theoretical explanation for this behavior long-time behavior is given below in Fig. 9a of §4.2.

4.2 Two-spot patterns

Next, we consider two-spot patterns in the unit square, with spots centered at x1 = (x1, y1)T and x2 = (x2, y2)T .
From the NAS (2.26), the two source strengths, S1 and S2, satisfy the nonlinear system

Sj + 2πν
(
SjR(xj ;xj) + Sie

K(xi−xj)F (xj ;xi)
)

+ νχ(Si) = νa , i 6= j , i, j = 1, 2 . (4.3a)

In particular, we are interested in determining the steady-state locations of the two spots, which we label by
x1e = (x1e, y1e)

T and x2e = (x2e, y2e)
T . From the steady-state of the slow dynamics (2.30), they satisfy

K
[
a− Sj/2− µ(Sj)

]
e1 − 2π

[
Sj∇xR(xje;xje) + Sie

K(xie−xje)∇xF (xje;xie)
]

= 0 , i 6= j , i, j = 1, 2 , (4.3b)
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Figure 7: H = 0.4, a = 40, ε = 0.02, with the initial spot location x1 = (0.6, 0.5)
T

. After spot-splitting, there is
a very favorable comparison between the trajectories of the two spots from the DAE (2.30) (red solid curve) and
from the PDE simulation of (1.1) (black markers).
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Figure 8: Same caption as in Fig. 7 except that H is increased to H = 0.7. The two steady-state spots are now
vertically aligned.

with K = H/2, which is coupled to (4.3a). We remark that, due to the reflective symmetry across the midline

y = 1/2, another two-spot equilibrium configuration is where x̃1e = (x1e, 1− y1e)
T

and x̃2e = (x2e, 1− y2e)
T

. We
will choose a parameter range of the rainfall rate a for which the two-spot steady-state pattern is linearly stable to
local peanut-shaped deformations.

We fix ε = 0.02 and a = 40, and study how the terrain gradient H influences the steady-state locations of the two
spots. When H = 0, the steady-state spots are centered on one of the diagonals of the unit square. In Fig. 9, we
plot the difference between the x-coordinates of the two spots versus H. As H increases, the steady-state locations
of both spots shift in the uphill direction, while the distance between the two spots in the x-direction decreases
with increasing H (see Fig. 9a). At the critical value H = Hc ≈ 0.6076, the two-spot steady-state pattern becomes
vertically aligned in that x1e = x2e. For H > Hc, the two-spot pattern remains vertically aligned and is given
by x1e = x2e, {y1e, y2e} = {1/4, 3/4}, with S1e = S2e. This observed bifurcation in the steady-state locations for
two-spot equilibria as H is varied is the mechanism underlying the full PDE results shown in Fig. 7 and Fig. 8.

The bifurcation behavior in the terrain slope gradient H shown in Fig. 9 can be interpreted qualitatively for the
Klausmeier model (1.1). There are two ecological mechanisms that determine a steady-state spot pattern. Firstly,
vegetation patches tend to be as far apart as possible so as to minimize the competition for the water resource.
For small H, this leads to patches along the diagonals of the square. Secondly, the patches prefer to be located on
the uphill portion of the terrain slope in the search of water. This second factor is enhanced by increasing H.

By determining the threshold Hc versus a when ε = 0.02 from (4.3), in Fig. 10 we plot the region in the a versus
H parameter space where the vertically aligned two-spot equilibrium is linearly stable as a steady-state of the DAE
dynamics (2.30) (see Proposition B.1 of Appendix B for the linear stability formulation). From Fig. 10 we observe
that Hc increases with a. Therefore, vertically aligned 2-spot equilibria are stabilized by small a, or large H.

To confirm the predictions of Fig. 10, we present PDE simulation results of (1.1) for ε = 0.2 when the initial
locations of the two spots are at (0.3, 0.3) and (0.7, 0.7). The parameter pairs (a,H1) = (46, 0.64) and (a,H2) =
(46, 0.62) lie inside and outside the stability region, respectively. The PDE simulation results reported in Fig.11
show that when H1 = 0.64 the two-spot quasi-equilibrium pattern tends to a vertically aligned spot configuration.
In contrast, when H1 = 0.62, the steady-state two-spot pattern is not vertically aligned, i.e. x1e 6= x2e. When
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a = 46, the predicted threshold for the onset of vertical alignment from Fig. 10 is Hc ≈ 0.631.
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Figure 9: For ε = 0.02 and a = 40, the steady-state locations for a two-spot pattern, labeled by (x1e , y1e) and
(x2e , y2e), in the unit square computed from the steady-state DAE system (4.3) as H is varied. Left panel: The
bifurcation diagram of x1e − x2e versus H. The trivial branch, for which x1e = x2e and y1e = 0.25, y2e = 0.75,
becomes linearly stable as a solution of the DAE dynamics when H > Hc ≈ 0.6076. The lower (non-trivial) branch
is due to the symmetry across the midline y = 1/2. Other panels: Visualization of some two-spot equilibria (either
open or filled circles) corresponding to the left-panel.
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Figure 10: Linear stability (blue) region for a vertically aligned two-spot steady-state in the a versus H parameter
space, as computed from (4.3). In the blue shaded region the two-spot equilibrium is linearly stable as a steady-state
of the DAE dynamics (2.30). The boundary is the bifurcation threshold Hc = Hc(a) that predicts the minimum
value of H where vertical alignment of two-spot steady-states occurs.

4.3 Three-spot patterns

Next, we study three-spot equilibrium configurations of the form
{

(x1e , 1/2)T , (x2e , y2e)
T , (x2e , 1− y2e)

T
}

in the
unit square, for which one spot is on the midline y = 1/2 while the other two spots are aligned vertically at x = x2e.
There are three possible such steady-state patterns; either x1e < x2e (more spots on the right), x1e > x2e (more
spots on the left), or x1e = x2e (all spots are vertically aligned). We now consider each possibility.

4.3.1 Cases x1e < x2e or x1e > x2e

We first fix ε = 0.02 and a = 60, and numerically compute x1e, x2e and y2e from the steady-state of the DAE
dynamics (2.30) coupled to the NAS (2.26) with H chosen as the continuation variable. The results for the two
cases x1e < x2e and x1e > x2e are shown in Fig. 12 on the range 0 < H < 2. By using the criterion in Proposition
B.1 of Appendix B, the three-spot equilibrium configurations in Fig. 12a and Fig. 12b with x1e < x2e are all linearly
stable as steady-states of the DAE dynamics (2.30) and (2.26). In contrast, for the case x1e > x2e, we observe
from Fig. 12c and Fig. 12d that there is a saddle-node bifurcation at H = Hf ≈ 1.7497. In Fig. 12c and Fig. 12d,
steady-state configurations along the solid branch are linearly unstable as equilibria of the DAE dynamics (2.30)
and (2.26), as predicted by the criterion in Proposition B.1 of Appendix B. However, along the dashed branches in
Fig. 12c and Fig. 12d three-spot equilibria are all unstable due to a positive real eigenvalue for the GCEP (3.15b).
This unstable eigenvalue of the GCEP leads to a competition instability in the amplitude of the spots and occurs
on an O(1) time-scale that is fast in comparison with the relatively weak O(ε−2) time-scale instabilities arising
from unstable steady-states of the DAE dynamics (2.30) and (2.26).
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Figure 11: Full PDE results of (1.1) in the unit square for a = 46 and ε = 0.02 for two-spot patterns with the
initial spot locations (0.3, 0.3)T and (0.7, 0.7)T . For H = 0.64, there is a very favorable comparison between the
full PDE results (black markers) and the DAE results (solid red curves), as computed from (2.30), for the x and
y coordinates of the two-spot pattern as shown in (a) and (b), respectively. A similar comparison for H = 0.62 is
shown in (d) and (e). At t = 105, the two-spot quasi-equilibria become very close to their steady-states, as shown
in (c) and (f) for H = 0.64 and H = 0.62, respectively. Vertical alignment occurs only for H = 0.64. From Fig. 10,
the predicted threshold for vertical alignment from the asymptotic theory is Hc ≈ 0.631 when a = 46.

As a partial confirmation of the results in Fig. 12, we verify from a full PDE simulation of (1.1) that a three-
spot equilibrium solution represented by the point on the dashed branch in Figs. 12c–12d is unstable on an O(1)
time-scale due to a competition instability. We set H = 1, ε = 0.02, and consider a three-spot initial state where
x1e ≈ 0.9046, x2e ≈ 0.5630, and y2e ≈ 0.7635. The snapshots of the PDE simulation of (1.1) in Fig. 13 show
that the weaker spot on the uphill side of the terrain slope gradient is rapidly annihilated, which agrees with our
prediction based on the GCEP.

Next, we set H = 0.5 and ε = 0.02 and perform a full PDE simulation of (1.1) with three spots initially located at
x1 = (1/2, 1/2)T , x2 = (1/2, 5/6)T and x3 = (1/2, 1/6)T . Some snapshots for the v-component are shown in Fig. 14.
We observe that, although the three-spot pattern first approaches the unstable equilibrium locations indicated in
Figs. 12c and 12d, the pattern slowly rotates and settles to the stable equilibrium configuration indicated in Fig. 12a,
12b where two spots are on the uphill side of the terrain gradient. This computation provides confirmation that
the equilibrium configurations indicated by Figs. 12a and 12b (Figs. 12c, 12d) are linearly stable (unstable).

4.3.2 Case x1e = x2e

Next, we study the linear stability of equilibrium three-spot configurations that are vertically aligned with spots
centered at

{
(x1e, 1/2)T , (x1e, 5/6)T , (x1e, 1/6)T

}
, where the y coordinates are due to the Neumann conditions on

the boundary of the unit square. For ε = 0.02, in Fig. 15 we plot x1e versus either the slope gradient H (with
a = 58.231) or the rainfall rate a (with H = 0.5077), as obtained by path-following these equilibria from the
steady-states of the DAE dynamics (2.30) and (2.26). We obtain that all of these equilibria in Fig. 15 are linearly
unstable. For Fig. 15a, the criterion (B.1) in Proposition B.1 of Appendix B predicts that the steady-states are
unstable as equilibria of the DAE dynamics (2.30) and (2.26) on the entire range 0 < H < 2. Along the dashed part
of the solution branch in Fig. 15b, three-spot equilibria are unstable due to a positive root of the GCEP (3.15b),
which leads to a competition instability. In contrast, at each point on the solid part of this branch, a three-spot
equilibrium is unstable as a steady-state of the slow dynamics (2.30) and (2.26).
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Figure 12: For ε = 0.02 and a = 60, steady-state three-spot patterns of the form{
(x1e , 1/2)T , (x2e , y2e)

T , (x2e , 1− y2e)
T
}

in the unit square are computed from the steady-state of the DAE
dynamics (2.30) and (2.26) as H is varied. In the top and bottom panels, we show the dependence of x1e, x2e and
y2e with respect to H for the cases x1e < x2e and x1e > x2e, respectively. Branches of equilibria for x1e < x2e (top
panels) are all linearly stable. For x1e > x2e (bottom panels), the solid branches are unstable as steady-states of
the DAE dynamics. The dashed branches are unstable to spot amplitude perturbations from the GCEP (3.15b).

(a) t = 0.5 (b) t = 3 (c) t = 3.5 (d) t = 6

Figure 13: Full PDE simulation of (1.1) for H = 1, a = 60, and ε = 0.02 for a three-spot steady-state pattern
with spots centered at (x1e, 1/2), (x2e, y2e), and (x2e, 1− y2e), with x1e ≈ 0.9046, x2e ≈ 0.5630, and y2e ≈ 0.7635,
corresponding to a point on the dashed curves in Figs. 12c and 12d where the steady-state is unstable due to a
positive real eigenvalue of the GCEP (3.15b). The snapshots of the v-component in (1.1) show that the weaker
spot on the uphill side of the terrain gradient is rapidly annihilated.

We now verify from a full PDE simulation of (1.1) that a three-spot equilibrium on the dashed branch in Fig. 15b
with a = 34.8720, for which x1e ≈ 0.5687, is unstable due to a spot amplitude instability. This is confirmed from
the snapshots of the PDE simulation shown in Fig. 16. This linear instability is seen to trigger the annihilation of
two spots, with only the spot on the midline of the unit square persisting. Although our results have shown that
vertically aligned three-spot equilibria are all unstable in the unit square for this range of a and H, we conjecture
that with an increase in the domain width it should be possible to stabilize three or more vertically aligned spots.
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(a) t = 0 (b) t = 200 (c) t = 400 (d) t = 1000

(e) t = 3000 (f) t = 4000 (g) t = 6000 (h) t = 9980

Figure 14: Snapshots of full PDE simulations of (1.1) with H = 1 and ε = 0.02 for an initial three-spot pattern
that is vertically aligned with spots centered at x1 = (1/2, 1/2)T , x2 = (1/2, 5/6)T and x3 = (1/2, 1/6)T . The
vertical alignment breaks down as time increase, with the pattern eventually tending to the linearly stable steady-
state in Figs. 12a and 12b after first approaching the unstable steady-state in Figs. 12c and 12d.
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Figure 15: Steady-states of the DAE dynamics (2.30) and (2.26) for a three-spot equilibrium of the form{
(x1e, 1/2)T , (x1e, 5/6)T , (x1e, 1/6)T

}
. Left panel: x1e versus H for a = 58.231. These steady-states are un-

stable as equilibria of the DAE dynamics (2.30) and (2.26). Right panel: x1e versus a with H = 0.5077. Along the
solid portion the equilibria are unstable for the DAE dynamics, while along the dashed portion (30 < a < 35.9284)
the spot amplitudes are unstable owing to a positive real eigenvalue of the GCEP (3.15b).

5 Delayed bifurcations due to a time-dependent rainfall rate

In this section we study the slow dynamics and instabilities of multi-spot patterns in the unit square in the presence
of a slowly receding rainfall rate. In §3 it was shown that an insufficient rainfall rate can lead to a competition
instability, which can trigger a nonlinear spot-annihilation event.

5.1 DAE simulations of spot dynamics with the zero-eigenvalue crossing criterion

We consider the slowly decreasing rainfall rate given by,

a = max (a0 − δt, a1) , with δ � 1 , (5.1)
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(a) t = 10 (b) t = 100 (c) t = 140 (d) t = 150

Figure 16: Full PDE simulation of (1.1) with a = 34.8720 and H = 0.5077 for an initial three-spot steady-state
with spots centered at

{
(x1e, 1/2)T , (x1e, 5/6)T , (x1e, 1/6)T

}
, with x1e = 0.5697, corresponding to a point on the

dashed branch Fig. 15b where a competition instability in the spot amplitudes is predicted. The snapshots of v
confirm this linear instability, and that it triggers the annihilation of two spots on an O(1) time-scale.

where a1 > 0 is the baseline rate. The DAE system for slow spot dynamics is obtained by substituting (5.1) into
(2.30) and (2.26). As a decreases, a competition instability of a multi-spot pattern can occur owing to an unstable
eigenvalue λ of the GCEP (3.15b) in Re(λ) > 0. To detect such an instability, we augment the zero-eigenvalue
crossing criterion (3.19) to the DAE dynamics (2.30) and (2.26). If a zero-eigenvalue crossing is detected, we simply
remove from the DAE simulation the spot with the smallest source strength.

(a) t = 5 (b) t = 400 (c) t = 540 (d) t = 550

(e) t = 555 (f) t = 600 (g) t = 800 (h) t = 1990

Figure 17: Snapshots of full PDE results for (1.1) with ε = 0.02 and H = 0.5. The dynamic rainfall rate is
a = max(40 − δt, 26) with δ = 0.01. The initial condition is a spot on the right and two vertically aligned spots
on the left. The spot on the midline disappears around t = 550, after which the remaining two vertically aligned
spots drift slowly up the terrain slope to their steady-state locations.

For our first numerical experiment we let ε = 0.02 and H = 0.5, and use (5.1) with a0 = 40, a1 = 26 and δ = 0.01.
We consider an initial three-spot pattern with one spot on the midline at x1 = (0.7, 1/2)T , and two vertically aligned
spots centered at (0.4, 1/4)T and (0.4, 3/4)T . The DAE simulation of the spot trajectories from (2.30) and (2.26),
as shown in Fig. 18, are seen to agree closely with corresponding full numerical results computed from the PDE
(1.1). Snapshots in time of the PDE results are shown in Fig. 17. The spot on the midline is found to have a
smaller source strength than for the two vertically aligned spots. In the DAE simulation, a zero-eigenvalue crossing
for the GCEP (3.19) is first detected at t ≈ 528.33. At this time the weak spot on the midline is removed, and
the DAE simulation is continued in time for the two remaining spots. From (5.1), the rainfall stops decreasing at
t = 1400, so that a ≡ 26 for t ≥ 1400. In the DAE simulation, we observe from Fig. 18 that the two surviving spots
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Figure 18: Comparison of spot trajectories between the DAE simulations of (2.30) and (2.26) (solid lines), with
the zero-eigenvalue detection criterion of the GCEP, and the full PDE results from (1.1) (red markers). Parameters
as in Fig. 17.

remain vertically aligned and slowly drift up the terrain slope, approaching their steady-state locations at around
t = 1500. In the full PDE simulation of (1.1), we observe from Fig. 17 that the spot on the midline disappears at
t ≈ 550, which exceeds our predicted time t ≈ 528.33 for the onset of a competition instability from the GCEP.
Although the zero-eigenvalue crossing criterion in the DAE simulation correctly forecasts the annihilation of a spot,
we are unable to define the exact time when a spot completely disappears. In the full PDE simulation, it takes an
O(1) time for the competition instability to trigger the nonlinear event that annihilates the weakest spot. The O(1)
time discrepancy between the zero-eigenvalue detection of the GCEP and the actual disappearance of the weakest
spot in the PDE simulation is small relative to the long O(ε−2) time-scale of slow spot dynamics. From Fig. 18
this discrepancy does not sabotage the agreement between the DAE and full PDE results for the trajectories of the
spots that persist after the annihilation event.

(a) t = 5 (b) t = 560 (c) t = 585 (d) t = 590

(e) t = 1400 (f) t = 1445 (g) t = 1450 (h) t = 2490

Figure 19: Snapshots of full PDE results for (1.1) with ε = 0.02, H = 0.5, and dynamic rainfall rate a =
max(40 − δt, 26) with δ = 0.01. The initial condition has one spot on the left and two vertically aligned spots on
the right. One spot remains on the midline y = 1/2 until one of the two vertically aligned spots disappears at
around t = 590. The two surviving spots undergo another spot-annihilation event at around t = 1445. The sole
remaining spot then approaches the midline where it slowly drifts up the terrain slope to its steady-state location.

For our second experiment, we again choose ε = 0.02, H = 0.5, and the same dynamic rainfall rate (a0 = 40, δ =
0.01, a1 = 26), but with a different initial three-spot pattern with one spot on the midline at x1 = (0.4, 1/2)T and
two vertically aligned spots centered at x2 = (0.7, 1/4)T and x3 = (0.7, 3/4)T . In the DAE simulation for this
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Figure 20: Comparison of spot trajectories between the DAE simulations of (2.30) and (2.26) (solid lines), with
the zero-eigenvalue detection criterion of the GCEP, and the full PDE results from (1.1) (red markers). Parameters
as in Fig. 19. We observe very good agreement both before and after the two spot-annihilation events.

pattern, a zero-eigenvalue crossing of the GCEP (3.19) is first detected at t ≈ 575.77, at which time the vertically
aligned spots have a common source strength S2 = S3 ≈ 1.1526 that is less than the source strength S1 ≈ 2.0631
for the spot on the midline. Although we predict that one of the two vertically aligned spots will be annihilated by
the competition instability, due to symmetry we cannot predict which one disappear. In the full PDE simulations
of (1.1) it is small discretization errors that determine the specific fate of the two vertically aligned spots. From
the snapshots of the PDE simulation shown in Fig. 19 we observe that it is the bottom one of the vertically aligned
spots that is annihilated around t = 585. In our DAE algorithm, we remove this same spot at t = 575.77 and
continue the DAE simulation in time for the remaining two spots until we detect a second zero-eigenvalue crossing
of the GCEP at t ≈ 1437.34. Upon removing the weaker spot (the upper right spot in Fig. 19e), the DAE simulation
shows that the sole remaining spot slowly drifts up the terrain slope to its steady-state location on the midline.
The very favorable comparison shown in Fig. 20 between the spot trajectories computed from the DAE and the full
PDE (1.1) confirm that our DAE simulations, augmented by the the spot removal algorithm based on the GCEP
criterion (3.19), can accurately predict slow spot dynamics both before and after spot-annihilation events.

For our final experiment, we choose ε = 0.02, H = 1, and a dynamic rainfall rate (5.1) with a0 = 70, a1 = 55, and
δ = 0.01. We consider an initial five-spot pattern with a spot on the midline x1 = (0.2, 1/2)T , one pair of vertically
aligned spots at x2 = (0.5, 1/4)T and x3 = (0.5, 3/4)T , and another such pair centered at x4 = (0.8, 1/4)T and
x5 = (0.8, 3/4)T . Among these five spots, the rightmost vertically aligned pair of spots have the smallest source
strengths. In our DAE simulation the first zero-eigenvalue crossing of the GCEP (3.19) is detected at t ≈ 1011.36,
from which we predict that one of the two rightmost spots will be annihilated. As shown in the snapshots in
Fig. 21 of the full PDE simulation of (1.1), it is the top of the rightmost pair of spots that disappears around
t = 1010. As such, we remove this spot and continue the DAE simulation for the remaining four spots until a
second zero-eigenvalue crossing for the GCEP is detected at t ≈ 1285.89. From Fig. 21f, it the lower-right spot that
disappears around t = 1285. Once again, we remove the corresponding spot and continue the DAE simulation for
the remaining three spots until they reach their steady-state locations. The rainfall rate becomes fixed at a ≡ 55
for t ≥ 1500. The favorable comparison shown in Fig. 22 between the DAE and full PDE results for the spot
trajectories illustrates that our DAE algorithm accurately detects the onset of spot-annihilation events during the
slow dynamics of multi-spot quasi-equilibria.

5.2 Asymptotic analysis of delayed spot annihilation

In some of our PDE simulation results in §5.1 it was observed that there is a time delay for the annihilation of
a spot after the detection of a zero-eigenvalue crossing for the GCEP (3.15b). In this subsection, we analyze this
delay behavior for a single steady-state spot centered at the midpoint x1 = (1/2, 1/2)T of the unit square for the
special case of no slope gradient H = 0 and with m = 1. In contrast to the situation with H > 0, when there is no
slope gradient the location of the steady-state spot remains at x1 as the rainfall rate a is ramped slowly in time.

The Klausmeier RD system (1.1) with H = 0 and m = 1 is

vt = ε2∆v − v + uv2 , ut = ∆u− u+ a− ε−2uv2 , in Ω ; ∂nv = ∂nu = 0 , on ∂Ω . (5.2)
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(a) t = 5 (b) t = 400 (c) t = 1000

(d) t = 1010 (e) t = 1275 (f) t = 1285

(g) t = 1300 (h) t = 1585 (i) t = 3390

Figure 21: Snapshots of full PDE results for (1.1) with ε = 0.02, H = 1.0, and the dynamic rainfall rate
a = max(70− δt, 55) with δ = 0.01. The five-spot initial pattern has one spot on the left and two pairs of vertically
aligned spots. Two spot-annihilation events occur at later times and the final steady-state has a spot on the midline
and a pair of vertically aligned spots on the uphill side of the terrain slope.

In Fig. 23 we show the saddle-node bifurcation structure for the existence of the one-spot steady-state solution of
(5.2) as a is varied. From the scalar NAS (4.1a), the asymptotic theory predicts that the saddle-node point occurs
at the critical value a = ac ≈ 13.205 when ε = 0.02, with no one-spot steady-state existing on the range a < ac. In
our analysis below, we will consider a slowly varying rainfall rate with

a = ac − εt , (5.3)

and we will derive a normal form ODE to characterize a delayed transition for the annihilation of the quasi steady-
state spot as time increases.

To this end, we introduce a slow time scale τ = ε−qt, with q < 0 to be determined, together with the expansion

v = vc + εpv1 + ε2pv2 + · · · , u = uc + εpu1 + ε2pu2 + · · · , (5.4)

where vc and uc denote the steady-state solution when a = ac, which satisfies

ε2∆vc − vc + ucv
2
c = 0 , ∆uc − uc + ac − ε−2ucv

2
c = 0 , in Ω , ∂nu = ∂nv = 0 , on ∂Ω . (5.5)
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Figure 22: Same caption as in Fig. 20 except that the parameters now correspond to the initial five-spot pattern
shown in Fig. 21. The spot trajectories from the DAE simulations and the PDE (1.1) compare very favorably both
before and after the two spot-annihilation events.

The exponents p and q will be determined below from an asymptotic balance.

By substituting (5.4) into the v-equation in (5.2) we obtain

εp−q∂τv1 + · · · = ε2∆vc − vc + uc v
2
c + εp

(
ε2∆v1 − v1 + 2uc vc v1 + v2

c u1

)
+ ε2p

(
ε2∆v2 − v2 + 2uc vc v2 + v2

c u2 + 2 vc u1 v1 + uc v
2
1

)
.

(5.6)

To balance the slow time derivative of v1 with the problem for v2 we take

p− q = 2p so that p = −q . (5.7)

Next, we substitute (5.4) into the u-equation in (5.2) to get

εp−q∂τu1 = ∆uc − uc + ac − ε1+qτ − ε−2uc v
2
c + εp

[
∆u1 − u1 − ε−2

(
2uc vc v1 + v2

c u1

)]
+ ε2p

[
∆u2 − u2 − ε−2

(
2uc vc v2 + v2

c u2 + 2 vc u1 v1 + uc v
2
1

)]
.

(5.8)

To balance the linear ramp in a with the problem for u2 we further choose that

1 + q = 2p ,

so that, together with (5.7), we conclude that

p = 1/3 , and q = −1/3 . (5.9)

From (5.6) and (5.8), we get that the leading order problem is (5.5). By introducing the local variable y =
ε−1 (x− x1) and ρ = |y|, the inner problem for (5.5) is simply the core problem (see (2.4)), defined on ρ > 0 by

∆ρV0 − V0 + U0V
2
0 = 0 , ∆ρU0 − U0V

2
0 = 0 ; V0 → 0 , U0 ∼ S log ρ+ χ(S) , as ρ→∞ , (5.10)

where ∆ρ ≡ ∂ρρ + ρ−1∂ρ, which is to be evaluated at S = Sc corresponding to the saddle-node point a = ac. At
S = Sc, the solution to (5.10) is denoted by V0 = Vc and U0 = Uc, and we identify Sc =

∫∞
0
UcV

2
c ρ dρ.

At next order, the O(εp) problem for v1 and u1 is

ε2∆v1 − v1 + 2ucvcv1 + v2
cu1 = 0 , ∆u1 − u1 − ε−2

(
2ucvcv1 + v2

cu1

)
= 0 , in Ω . (5.11)

In the inner region, we let ρ = ε−1|x − x1|, v1 ∼ V1(ρ) and u1 ∼ U1(ρ) so that, upon neglecting O(ε2) terms, we
obtain when S = Sc that V1 ≡ (V1, U1)T satisfies

LV1 ≡ ∆ρV1 +McV1 = 0 , on ρ ≥ 0 , where Mc ≡

(
−1 + 2UcVc V 2

c

−2UcVc −V 2
c

)
. (5.12)

Upon differentiating the core problem (5.10) with respect to S, and evaluating it at S = Sc, we identify that V1

and U1 is the zero-crossing eigenfunction of angular mode k = 0 (see the discussion following (3.18) in §3), so that

V1 = A∂SVc , U1 = A∂SUc , when S = Sc , (5.13)
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where the slow amplitude A = A(τ) is to be determined. Here, we have labeled ∂SVc ≡ ∂SV0|S=Sc and ∂SUc ≡
∂SU0|S=Sc . The homogeneous adjoint problem associated with (5.12) for V?

1 ≡ (V ?1 , U
?
1 )T is

L?V?
1 ≡ ∆ρV

?
1 +MT

c V
?
1 = 0 , on ρ ≥ 0 ; V ?1 → 0 , U?1 ∼ log ρ+O(1) , as ρ→∞ . (5.14)

The far-field behavior for U?1 effectively enforces a normalization condition for the non-trivial solution of (5.14).

To determine the outer problem for u1 when S = Sc, we calculate for ε→ 0 in the sense of distributions that

ε−2
(
2ucvcv1 + v2

cu1

)
→ 2πA

d

dS

(∫ ∞
0

UcV
2
c ρ dρ

)
δ(x− x1) = 2πAδ(x− x1) .

In this way, the outer problem for u1 in (5.11) is

∆u1 − u1 = 2πAδ(x) , in Ω ; ∂nu1 = 0 , on ∂Ω ,

which has the solution
u1 = −2πAG(x;x1) . (5.15)

Here A = A(τ) and G(x;x1) is the Green’s function of (2.18) in the unit square where we set H = 0 in (2.18).

At next order, the O(ε2p) problem from (5.6) and (5.8) is

ε2∆v2 − v2 + 2uc vc v2 + v2
c u2 + 2 vc u1 v1 + uc v

2
1 = ∂τv1 , (5.16a)

∆u2 − u2 − ε−2
(
2uc vc v2 + v2

c u2 + 2 vc u1 v1 + uc v
2
1

)
= τ + ∂τu1 . (5.16b)

In the inner region, we let ρ = ε−1|x− x1|, v2 ∼ V2(ρ) and u2 ∼ U2(ρ), to derive from (5.16), with an O(ε2) error,
that V2 ≡ (V2, U2)T satisfies

LV2 ≡ ∆ρV2 +McV2 =

(
Ȧ∂SVc −A2g(ρ)

A2g(ρ)

)
on ρ ≥ 0 , (5.17a)

where we have defined Ȧ ≡ dA/dτ and g(ρ) by

g(ρ) ≡ A−2
(
2Vc U1 V1 + Uc V

2
1

)
= 2Vc (∂SUc) (∂SVc) + Uc (∂SVc)

2
. (5.17b)

By using the same dominant balance argument used in Appendix A of [26] for the derivation of an amplitude
equation characterizing the onset of spot-splitting behavior, we can impose for (5.17a) the far-field behavior

V2 → 0 , U ′2 → 0 as ρ→∞ . (5.17c)

To derive an amplitude equation for A, we invoke a solvability condition on (5.17) by using the adjoint problem
(5.14). Upon integrating by parts and using the far-field conditions in (5.14) and (5.17c), we obtain∫ ∞

0

[
(V?

1)TLV2 − (V2)TL?V?
1

]
ρ dρ = lim

ρ→∞
ρ [V ?1 V

′
2 + U?1U

′
2 − V2(V ?1 )′ − U2(U?1 )′] ,

which reduces to ∫ ∞
0

[
V ?1

(
Ȧ∂SVc −A2g(ρ)

)
+ U?1A

2g(ρ)
]
ρ dρ = − lim

ρ→∞
U2 .

This yields the following amplitude equation valid at S = Sc:

Ȧ

∫ ∞
0

(∂SVc)V
?
1 ρ dρ−A2

∫ ∞
0

(V ?1 − U?1 ) g(ρ) ρ dρ = −U2∞ , where U2∞ ≡ lim
ρ→∞

U2 . (5.18)

The final step in the analysis is to determine the limiting behavior U2∞ in (5.18) by matching the far-field
behavior of the inner solution U2 with the near-field behavior as x → x1 of the outer approximation for u2. To
derive this outer problem for u2, we first observe that since U ′2 → 0 as ρ→∞ we must have that∫ ∞

0

(
2Uc Vc V2 + V 2

c U2 + 2VcU1V1 + UcV
2
1

)
ρ dρ = 0 . (5.19)
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As a result, the outer problem for u2 in (5.16b) has no Dirac singularity at x = x1. Upon using (5.15) for u1, we
obtain from (5.16b) that the outer problem for u2 is

∆u2 − u2 = τ − 2πȦG(x;x1) , in Ω ; ∂nu2 = 0 , on ∂Ω . (5.20)

To solve (5.20), we decompose u2 as
u2 = −τ + 2πȦU(x) , (5.21)

where U satisfies
∆U − U = −G(x;x1) , in Ω ; ∂nU = 0 , on ∂Ω , (5.22)

which has the solution

U(x) =

∫
Ω

G(ξξξ,x1)G(ξξξ,x) dξξξ . (5.23)

The matching condition between the inner and outer solutions is that limx→x1
u2 = U2∞, which yields

U2∞ = −τ + 2πȦU(x1) , where U(x1) =

∫
Ω

[G(ξξξ,x1)]
2
dξξξ > 0 . (5.24)

Finally, we substitute (5.24) into (5.18) to obtain the amplitude equation

Ȧ = c1A
2 + c2 τ , where c1 ≡

∫∞
0

(V ?1 − U?1 ) g(ρ) ρ dρ∫∞
0

(∂SVc)V ?1 ρ dρ+ 2πU(x1)
, c2 ≡

1∫∞
0

(∂SVc)V ?1 ρ dρ+ 2πU(x1)
. (5.25)

From a numerical solution to the core and adjoint problems (5.10) and (5.14) at S = Sc, respectively, and from a
numerical evaluation of U(x1) in (5.24), based on the infinite series for the Green’s function derived in Appendix
A, we calculate that∫ ∞

0

(V ?1 − U?1 ) g(ρ) ρ dρ ≈ 11.4825 ,

∫ ∞
0

(∂SVc)V
?
1 ρ dρ ≈ −8.5064 , U(x1) ≈ 1.0033 , (5.26)

so that c1 ≈ −5.2138 and c2 ≈ −0.45407 in (5.25).

The solution of the Ricatti equation (5.25) is well-known in the context of ODE problems involving slow passage
past a saddle-node point (cf. [9], [6]). From the change of variables

A = αw , τ = βs , where α ≡ − 3

√
|c2|
c21

, and β ≡ − 1
3
√
|c1c2|

, (5.27)

we obtain that the amplitude equation (5.25) reduces to the normal form ODE

dw

ds
= −w2 + s .

By setting w = φ′(s)/φ(s), we find that φ(s) satisfies Airy’s equation φ′′ − sφ = 0, which has the general solution
φ = span{Ai(s),Bi(s)} in terms of the Airy functions of the first and second kinds. In this way, we get

w =
d0 Ai′(s) + d1 Bi′(s)

d0 Ai(s) + d1 Bi(s)
. (5.28)

In terms of these scalings, the rainfall rate a, as obtained from (5.3), (5.9) and (5.27), is a = ac − ε2/3τ =
ac + ε2/3|β|s. Moreover, the amplitude of the spot from the inner solution is V (0) ∼ Vc(0) + ε1/3V1(0), where
V1(0) = A(τ)(∂SVc)|ρ=0 and A = αw(s) from (5.13) and (5.27). In terms of the coefficients c1 and c2 in (5.25), we
obtain for ε→ 0 that

a ∼ ac +
ε2/3s

3
√
|c1c2|

, V (0) ∼ Vc(0)− 3

√
ε|c2|
c21

w(s) (∂SVc) |ρ=0 , (5.29)

where we have numerically calculated from the core problem (5.10) that ∂SVc|ρ=0 = 0.4022 > 0. We conclude from
(5.29) that a < ac when s < 0 and that a > ac when s > 0.
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Next, we show that we must set d1 = 0 in (5.28). Since Ai(s) decays exponentially as s→∞, while Bi(s) grows

exponentially as Bi(s) ∼ s−1/4π−1/2 exp
(

2s
3
2 /3
)

for s → ∞, we calculate from (5.28) that w ∼
√
s as s → ∞

when d1 6= 0. Since w > 0, from (5.29) this corresponds to the range V (0) < Vc(0), which contradicts the result
that V (0) > Vc(0) when a > ac (see Fig. 23). Therefore, we must have d1 = 0 in (5.28), and consequently

V (0) ∼ Vc(0)− 3

√
ε|c2|
c21

Ai′(s)

Ai(s)
(∂SVc) |ρ=0 . (5.30)

This asymptotic result for the slow passage through the saddle-node bifurcation becomes invalid when s decreases
below the first zero of s0 ≈ −0.23381 of the Airy function Ai(s) on the range s < 0. The predicted time t0
characterizing the delayed transition is t0 = ε−1/3τ0, where τ0 = βs0 = −s0/

3
√
|c1c2| > 0. The corresponding

predicted value of the rainfall rate a, labeled by a0, where this jump transition occurs, and which leads to the
annihilation of the spot, is

a0 = ac − ε2/3τ0 = ac +
ε2/3s0

3
√
|c1c2|

≈ 13.0757 . (5.31)

In Fig. 23 we show that this prediction for the delayed transition to spot annihilation compares very favorably with
results from a full PDE simulation of (5.2).
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Figure 23: The bifurcation diagram for a quasi steady-state spot centered at the midpoint of the unit square for
(5.2). The black solid curve is the spot amplitude V (0) versus the rainfall rate a from the NAS (4.1a). The PDE
simulation results with ε = 0.02 and a(t) = 16 − ε t, are represented by the red dots. The asymptotic prediction
a0 ≈ 13.0757 for the jump value of a (dashed vertical line) is seen to compare favorably with the PDE results.

5.3 Delayed spot replication with slowly increasing rainfall

In this subsection we study a delayed transition to spot-splitting for a quasi steady-state spot pattern in the unit
square as the rainfall rate is slowly ramped in time as

a = a(τ) = a0 + τ , with τ = εt , (5.32)

beyond the onset of the peanut-splitting threshold labeled by a = ac. In (5.32), a0 is a constant that is slightly less
than ac. We have chosen the O(ε) speed of the ramp to be asymptotically larger than the O(ε2) speed of the slow
spot dynamics, so that to leading order the spots remain at their initial locations at t = 0 while a is ramped.

Let ve and ue denote this quasi steady-state solution, as was constructed in §2, and we introduce a perturbation
in the form of the WKBJ ansatz (cf. [1])

v = ve + exp (ψ(τ)/ε)φ , u = ue + exp (ψ(τ)/ε) η , (5.33)

into (1.1). Upon linearizing, this yields that

ε2∆φ−mφ+ 2ueveφ+ v2
eη = ψ̇φ , ∆η +H∂xη − η − ε−2

(
2ueveφ+ v2

eη
)

= ψ̇η , (5.34)
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where ψ̇ = dψ/dτ . As in the linear stability analysis of §3, near the jth spot we let φ ∼ eikθΦj(ρ) and η ∼ eikθNj(ρ)
for k ≥ 2, where ρ = ε−1

√
m|x− xj |, so as to obtain the parametrized eigenvalue problem

∆ρΦj −
k2

ρ2
Φj − Φj + 2Uj0Vj0 Φj + V 2

j0Nj =
ψ̇

m
Φj , ρ ≥ 0 , Φj → 0 as ρ→∞ ,

∆ρNj −
k2

ρ2
Nj − 2Uj0Vj0 Φj − V 2

j0Nj = 0 , ρ ≥ 0 , Nj = O(ρ−k) as ρ→∞ .

(5.35)

Let SM denote the maximum of the source strengths for the pattern, i.e SM = maxj Sj , as obtained from the NAS
(2.26). We now show how to predict the time delay for the realization of the peanut-splitting instability for this
spot as a is slowly ramped above ac.

Upon comparing (5.35) with (3.4), we conclude that ψ̇ = λ. From the WKBJ ansatz (5.33), the time τ = τ? for
a peanut-splitting instability (for k = 2) to be fully realized is given implicitly by

0 = ψ(τ?) =

∫ τ?

0

λ dτ =
1

ε

∫ SM?

SM0

λ(SM )
da

dSM
dSM . (5.36)

Here SM0 and SM? are the source strengths of the Mth spot that corresponds to the rainfall rate a = a0 and a = a?
at times τ = 0 and τ = τ?. To obtain the second equality in (5.36), we applied the change of variable τ → SM with
dτ = dτ

da
da
dSM

dSM . In doing so, we can express λ as a function of SM , which is readily computed numerically from
(3.4) (see Fig. 4 of [13] for a plot of λ versus SM when m = 1). By path-following solutions to the NAS (2.26) we
can calculate SM as a is varied, and then use second order finite differences on a nonuniform grid to approximate
da/dSM . This latter derivative reflects the inverse sensitivity of the maximum spot source strength with respect
to the rainfall rate a for a given spatial configuration of spots. Treating (5.36) as a root-finding problem for SM?,
we can determine a? from the NAS (2.26), from which the predicted delay time is

t? =
τ?
ε

=
a? − a0

ε
.

We now illustrate this delayed bifurcation behavior for the special case of a single spot centered at the midpoint
x1 = (1/2, 1/2)T of the unit square with H = 0 and m = 1, and where the rainfall rate is ramped as a(t) = a0+0.02 t
with a0 = 34. With no slope gradient, the spot remains at x1 as a is ramped. For this one-spot pattern, we let S1

denote the source strength of the spot, which is determined implicitly from the scalar NAS (4.1a), given by

S1 + 2πνS1R(x1;x1) + νχ(S1) = νa , where ν = −1/ log ε , (5.37)

with ε = 0.02. Setting a = a0 = 24 in (5.37), the initial spot strength S10 at t = 0 is calculated as S10 ≈ 3.974. From
the linear stability theory of §3 for a static a, the peanut-splitting instability is triggered at S1 = Σ2 ≈ 4.302, which
from (5.37) corresponds to ac ≈ 36.347 at time t ≈ 117.36. However, by numerically implementing our delayed
bifurcation criterion (5.36), we predict that the peanut-spitting instability is only fully realized at S1 = S1? ≈ 4.639,
which corresponds to a? ≈ 38.736 and a time t = t? ≈ 236.81.

Next, we verify this prediction for the delayed onset of a peanut-splitting instability for a spot centered at the
midpoint of the unit square from full PDE simulations of (1.1) with H = 0 and m = 1. To do so, we must introduce
a metric that measures the deviation from local radial symmetry of the computed PDE solution as time increases.
In our algorithm, we select a set of K closed contour lines T1, . . . , TK of the PDE solution. For each Ti, we find its
least-square fitting circle Ci. Denoting the radius of Ci by ri, we define

Di =
1

ri
max
x∈Ti
||x− projCi(x)|| ,

where projCi(x) denotes the projection onto the circle Ci = {|x− x1| = ri}, i.e.

projCi(x) =
ri

|x− x1|
(x− x1) .

The definition of Di is inspired by the fact that PDE solutions that are nearly radially-symmetric near a spot
centered at x1 have almost circular contour lines locally near x1. A nearly circular contour line should be very
close to its least square fitting circle, which can quantified by the distance between points on the contour and their
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projection on the fitting circle. However, for a contour line that is small in size, the distance ||x − cp(x)|| can be
small regardless of how circular the contour line is. Therefore, we must scale the distance by the radius of the
fitting circle. Finally, we define the deviation of the PDE solution from local radial symmetry near the spot by

Deviation = max
i=1,...,K

Di . (5.38)

With this metric, in Fig. 24 we show that the asymptotic result for the delayed onset time for the peanut-splitting
instability compares very favorably with full PDE simulations of (1.1). Snapshots of the PDE solution showing the
delayed spot-splitting behavior are shown in Fig. 25.
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Figure 24: Left panel: The source strength S1 versus the rainfall rate a, computed from the NAS (5.37) for a one
spot solution centered at the midpoint (1/2, 1/2) of the unit square with H = 0, ε = 0.02, and m = 1. The static
onset and delayed onset for the peanut-splitting instability are shown by the open and filled circles, respectively.
Right panel: The deviation (5.38) from local radial symmetry of the PDE numerical solution computed from (1.1)
with the dynamic rainfall rate a(t) = 34+0.02 t. The deviation begins to increase very rapidly near our asymptotic
prediction t? ≈ 236.81 for the delayed onset time.

(a) t = 280 (b) t = 290 (c) t = 295 (d) t = 300

Figure 25: Snapshots of the full PDE solution of (1.1) with H = 0, m = 1, ε = 0.02, and a(t) = 34+0.02 t showing
a delayed spot-splitting event for a spot centered at the midpoint of the unit square. The results correspond to the
deviation metric shown in the right panel of Fig. 24.

5.4 A linearly stable elliptical-shaped spot

We now show numerically that the terrain slope gradient H can lead to a linearly stable elliptical-shaped spot.
For various fixed H we use the path-following software pde2path [23] to calculate global bifurcation diagrams for
a one-spot steady-state of (1.1) in the unit square with ε = 0.03 and m = 1, as the rainfall rate a is varied.
Since the steady-state location of the spot is on the midline y = 1/2, the pde2path computation is done in a half
square [0, 1]× [1/2, 1]. In Fig. 26, we plot global bifurcation diagrams of the L2 norm of the v-component in (1.1)
versus a for H = {0, 0.1, 0.3, 0.5, 0.7, 1.0}, with the linearly stable branches indicated by the heavy solid curves.
By comparing Fig. 26a with Fig. 26b, we observe that the pitchfork bifurcation when H = 0 undergoes a singular
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perturbation as H is increased to H = 0.1, and is transformed into a saddle-node structure. As H is increased
further, the saddle-node structure becomes more prominent and the linear stability of a spot is lost at a saddle-node
bifurcation. These bifurcation values are given in Table. 1. For H = 1, in Fig. 27 we show a zoomed contour plot
of some steady-state one-spot solutions at the indicated points in the bifurcation diagram in Fig. 26f, which clearly
shows the existence of a linearly stable elliptical-shaped spot (Pt 2 in Fig. 26).
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Figure 26: Global bifurcation diagrams for the L2 norm of the v-component versus the rainfall rate a for a one-
spot steady-state solution of (1.1) in the unit square with ε = 0.03 and m = 1. A non-zero terrain slope gradient
perturbs the pitchfork bifurcation that exists when H = 0 into a saddle-node structure.

H a S1

0 36.01 4.5122
0.1 36.01 4.5078
0.3 36.18 4.4988
0.5 36.57 4.4887
0.7 37.16 4.4780
1 38.40 4.4647

Table 1: The bifurcation values in a, as indicated by the open circles in Fig. 26. The corresponding spot source
strength S1 is given.

6 Discussion

We have developed and implemented a hybrid asymptotic-numerical theory to analyze the effects of a constant
terrain slope and a time-dependent rainfall rate on 2-D localized vegetation patches for the Klausmeier model (1.1).
By using the method of matched asymptotic expansions, we have derived a DAE system that characterizes the
slow dynamics of multi-spot equilibria on asymptotically long time scales. The linear stability of these patterns to
either spot shape deformations or to competition instabilities that trigger either fully nonlinear spot-splitting or
spot-annihilation events, respectively, was analyzed. In the unit square, global bifurcation diagrams for two- and
three-spot vertically aligned equilibria of the DAE dynamics were determined in terms of the constant terrain slope
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Figure 27: Contour plot (zoomed) of the v-component at the indicated points in the global bifurcation diagram
for H = 1 in Fig. 26f. (a,b): elongated spot on the linearly stable branch. (c): elongated spot on the unstable
branch. (d,e): elongated spots on the isolated unstable branch.

gradient. It was shown that if this slope gradient exceeds a threshold, the DAE dynamics allow for a linearly stable
two-spot vertically aligned steady-state with spots located on the uphill side of the terrain gradient.

When the rainfall rate is slowly decreasing in time, competition instabilities for multi-spot quasi-equilibria can be
triggered at certain times during the slow dynamics of multi-spot quasi-equilibria. To study these sudden transitions,
we have augmented the DAE system for slow spot dynamics with a zero-eigenvalue crossing criterion, based on
the linear stability analysis, that accurately predicts the onset of spot-annihilation events. With this algorithm,
the DAE dynamics for the spot locations can be continued in time after sudden spot-annihilation events, until a
final steady-state pattern is obtained. The spot trajectories from our augmented DAE algorithm, both before and
after spot-annihilation events, were favorably compared with corresponding full numerical results computed from
the Klausmeier PDE model (1.1). For a one-spot pattern in the unit square we have also analyzed the delayed
bifurcation behavior associated with either competition or peanut-splitting instabilities that can occur from either
a slowly decreasing or a slowly increasing rainfall rate, respectively.

We now briefly discuss a few specific problems that warrant further investigation. We have shown that a three-
spot vertically aligned pattern in the unit square is unstable as a steady-state of the DAE dynamics. By increasing
the width of the domain it would be interesting to determine threshold values on the domain width for which three
or more vertically aligned spots can be stabilized. A second extension would be to analyze spot dynamics for multi-
spot quasi-equilibria in a rectangle in the presence of a spatially varying terrain gradient of the form H = H(x). In
[3], it has been shown the convexity of H(x) can determine whether a one-dimensional spike would migrate uphill
or downhill the slope gradient. It would be interesting to analyze whether the convexity of H(x) has a similar
effect on spot dynamics in a 2-D context. For this extension, the infinite series solution for the Green’s function
constructed in Appendix A for a uniform terrain slope no longer applies, and the general framework developed in
[21], based on microlocal analysis, would be needed for efficiently computing the required Green’s function. A third
open problem is to theoretically predict the existence of a linearly stable non-radially symmetric spot solution, as
was shown numerically in Fig. 26 and Fig. 27. The pitchfork bifurcation structure for a vanishing slope gradient
H = 0 was observed to be structurally unstable to small perturbations in H > 0. It would be interesting to
characterize this singular perturbation of the bifurcation through a weakly nonlinear analysis. Finally, it would
be interesting to perform a weakly nonlinear analysis on the spot amplitudes to show that a linear competition
instability is subcritical, and triggers a spot-annihilation event. In our DAE simulation algorithm it was implicitly
assumed that the onset of a linear competition instability does indeed forecast a nonlinear spot-annihilation event.
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A Series solution for the Green’s function

In this appendix we derive computationally tractable formulae for computing the Green’s function and its regular
part satisfying (3.9) in the rectangular domain Ω = {(x, y) | 0 < x < l , 0 < y < h}.

A.1 Fourier cosine expansion

We write x = (x, y)T and x0 = (x0, y0)T , and assume that H > 0. We consider the eigenvalue-dependent Green’s
function of (3.9) in the rectangle Ω, and set

Gλ(x;x0) = eK(x0−x)Fλ(x;x0) , where K ≡ H/2 , (A.1)

so that Fλ(x;x0) satisfies

∆Fλ − (1 + λ+K2)Fλ = −δ(x− x0) in Ω , (A.2a)

∂xFλ −KFλ = 0 on x = 0, l ; ∂yFλ = 0 on y = 0, h . (A.2b)

As a result of the Neumann boundary conditions at y = 0, h, we expand Fλ in a Fourier cosine expansion as

Fλ = A0(x) +

∞∑
n=1

An(x) cos
(nπy
h

)
. (A.3)

We readily derive that the coefficients An(x) satisfy

A′′n − α2
nAn =

−h
−1δ(x− x0) , for n = 0 ,

−2h−1 cos
(
nπy0
h

)
δ(x− x0) , for n > 0 ,

with A′n = KAn , at x = 0, l , (A.4)

where αn is defined by

αn =

√
1 + λ+K2 +

n2π2

h2
, for n ≥ 0 . (A.5)

For some undetermined constant kn, the solution to (A.4) is

An = kn

[
(αn +K)eαn(x>−l) + (αn −K)eαn(l−x>)

]
·
[
(αn +K)eαnx< + (αn −K)e−αnx<

]
, (A.6)

where we have defined x> = max(x, x0) and x< = min(x, x0). By using the identities x> + x< = x + x0 and
x> − x< = |x− x0|, we conclude that

An = kn

[
(αn +K)2eαn(x+x0−l) + (α2

n −K2)
(
eαn(|x−x0|−l) + eαn(l−|x−x0|)

)
+ (αn −K)2eαn(l−x−x0)

]
. (A.7)

The jump conditions for (A.4) are

A′n(x+
0 )−A′n(x−0 ) =

−h
−1 , for n = 0 ,

−2h−1 cos
(nπy0

h

)
, for n > 0 .

(A.8)
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We readily calculate from (A.7) that

A′n(x±0 ) = αnkn
[
(αn +K)2eαn(2x0−l) ∓ (α2

n −K2)(eαnl − e−αnl)− (αn −K)2eαn(l−2x0)
]
,

so that the jump in the derivative is

A′n(x+
0 )−A′n(x−0 ) = −2αnkn(α2

n −K2) (eαnl − e−αnl) . (A.9)

Comparing (A.9) with (A.8), we determime kn as

kn =
cos(nπy0h )

hσnαn(α2
n −K2)(eαnl − e−αnl)

, where σn ≡

2 , for n = 0 ,

1 , for n > 0 .
(A.10)

We then substitute (A.10) into (A.7) to get for n ≥ 0 that

An =
cos
(
nπy0
h

)
hσnαn

(
1− K2

α2
n

)
(1− e−2αnl)

[(
1 +

K

αn

)2

eαn(x+x0−2l)+

(
1− K2

α2
n

)(
eαn(|x−x0|−2l) + e−αn|x−x0|

)
+

(
1− K

αn

)2

e−αn(x+x0)

]
.

(A.11)

In this way, the Fourier cosine expansion of Fλ is given by (A.3) where the coefficients An(x) are given explicitly
in (A.11). However, since this expansion of the Green’s function diverges at x = x0, it exhibits poor convergence
properties in the domain. As such, we now show how to extract the logarithmic singularity from the infinite sum
so as to obtain a rapidly converging infinite series representation for Fλ and its regular part.

A.2 Accelerating convergence of the infinite series solution

We proceed by isolating the singular part of the infinite series (A.3) by first introducing the decomposition,

Fλ = A0 + S1 + S2 , (A.12)

where S1 and S2 are defined by

S1 ≡
∞∑
n=1

cos
(
nπy0
h

)
cos
(
nπy
h

)
hαn

(
1− K2

α2
n

)
(1− e−2αnl)

[(
1 +

K

αn

)2

eαn(x+x0−2l) +

(
1− K2

α2
n

)
eαn(|x−x0|−2l)

+

(
1− K

αn

)2

e−αn(x+x0)

]
,

(A.13)

and

S2 ≡
∞∑
n=1

f(n) cos
(nπy0

h

)
cos
(nπy
h

)
, where f(n) ≡ e−αn|x−x0|

hαn (1− e−2αnl)
. (A.14)

The series S1 converges rapidly, provided that both x, x0 are not too close to zero or to l = O(1). In contrast,
the series S2 diverges when x = x0 since it contains the logarithmic singularity of the Green’s function. Therefore,
we identify S2 as the slowly converging component.

To extract the divergent behavior we apply Kummer’s transformation (cf. [11]), where we seek an asymptotic
approximation fσ(n) to f(n) such that

S2 =

∞∑
n=1

[f(n)− fσ(n)] cos
(nπy0

h

)
cos
(nπy
h

)
+

∞∑
n=1

fσ(n) cos
(nπy0

h

)
cos
(nπy
h

)
, (A.15)

where f(n)/fσ(n) tends to a constant as n→∞, but where the infinite series involving fσ can be summed explicitly.

32



To this end, we first calculate using the Binomial approximation on (A.5) that for n� 1

αn =
nπ

h
+
h(1 + λ+K2)

2nπ
− h3(1 + λ+K2)2

8n3π3
+O(n−5) . (A.16)

In this way, we derive for any s that as n→∞,

e−αns = e−
nπs
h

[
1− h(1 + λ+K2)s

2nπ
+
h2(1 + λ+K2)2s2

8n2π2
+O(n−3s)

]
. (A.17)

By using (A.17), we conclude that

1− e−2αnl = 1 +O
(
e−

2nπl
h

)
, (A.18)

and upon setting s = |x− x0| in (A.17), we get

e−αn|x−x0| = e−
nπ|x−x0|

h

[
1− h(1 + λ+K2)|x− x0|

2nπ
+
h2(1 + λ+K2)2|x− x0|2

8n2π2
+O

(
n−3|x− x0|

)]
. (A.19)

By combining the estimates (A.16), (A.17) and (A.18), we conclude that

f(n) = e−
nπ|x−x0|

h

{
1

nπ
− h(1 + λ+K2)|x− x0|

2n2π2
+
h2(1 + λ+K2)

n3π3

[
(1 + λ+K2)|x− x0|2

8
− 1

2

]

+O
(
n−4|x− x0|

)
+O

(
n−5

)}
.

(A.20)

In this way, we have identified that an asymptotic approximation to f(n) with the same large n behavior is

fσ(n) = e−
nπ|x−x0|

h

{
1

nπ
− h(1 + λ+K2)|x− x0|

2n2π2
+
h2(1 + λ+K2)

n3π3

[
(1 + λ+K2)|x− x0|2

8
− 1

2

]}
. (A.21)

With the error estimate in (A.20), the choice of fσ(n) given by (A.21) yields the rapid convergence of the residual

series
∞∑
n=1

[f(n)− fσ(n)] cos
(
nπy0
h

)
cos
(
nπy
h

)
in (A.15).

Next, we express the sum
∞∑
n=1

fσ(n) cos
(
nπy0
h

)
cos
(
nπy
h

)
in terms of the polylogarithm function Lis, defined by

Li1(z) ≡ − log(1− z) , Lis(z) ≡
∞∑
n=1

zn

ns
,

which is readily computed as a special function in Matlab [15]. We first observe that

cos
(nπy0

h

)
cos
(nπy
h

)
=

1

4

[
e
inπ(y+y0)

h + e
−inπ(y+y0)

h + e
inπ(y−y0)

h + e
inπ(y0−y)

h

]
, (A.22)

and so by using this identity, and by defining

z± ≡ −|x− x0|+ i(y ± y0) , Ls(z+, z−) ≡ 1

4

[
Lis

(
e
πz+
h

)
+ Lis

(
e
πz?+
h

)
+ Lis

(
e
πz−
h

)
+ Lis

(
e
πz?−
h

)]
, (A.23)

where the ? denotes conjugation, we obtain that

∞∑
n=1

e−
nπ|x−x0|

h

ns
cos
(nπy0

h

)
cos
(nπy
h

)
=

1

4

∞∑
n=1

enπz+h
ns

+
e
nπz?+
h

ns
+
e
nπz−
h

ns
+
e
nπz?−
h

ns

 = Ls(z+, z−) . (A.24)

Upon summing (A.21) by using the identity (A.24) we obtain that

∞∑
n=1

fσ(n) cos
(nπy0

h

)
cos
(nπy
h

)
=

1

π
L1(z+, z−)− h(1 + λ+K2)|x− x0|

2π2
L2(z+, z−)

+
h2(1 + λ+K2)

π3

[
(1 + λ+K2)|x− x0|2

8
− 1

2

]
L3(z+, z−) .

(A.25)
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Numerical values of polylogarithm functions, and therefore (A.25) can be computed with high accuracy and effi-
ciency with Matlab [15]. In conclusion, the numerical evaluation of Fλ(x;x0) (assuming x 6= x0) as given in the
decomposition (A.12) can be numerically computed efficiently as follows. Firstly, A0 is obtained by setting n = 0
in (A.11). Secondly, S1 can be approximated by a finite sum of the infinite series in (A.13). Finally, as given in
(A.15), we decompose S2 into the sum of two infinite series. The first series can be approximated by a finite sum
using the definitions of f(n) and fσ(n) that are given in (A.14) and (A.21), respectively. The second infinite series
is calculated by evaluating some polylogarithmic functions as shown in (A.25).

A.3 Isolating the logarithmic singularity from the series solution

The regular part Rλ(x0;x0) of Gλ is defined in (3.9). By letting x→ x0 in (A.1), we obtain equivalently that

Fλ(x;x0) = − 1

2π
log |x− x0|+Rλ(x0;x0) + o(1) , as x→ x0 . (A.26)

We now derive a computationally efficient formula for Rλ(x0;x0).

For x→ x0, we obtain from (A.23) that

z+ → z0
+ ≡ 2iy0 , z− → z0

− ≡ 0 . (A.27)

Therefore, for any s ≥ 2, we have from (A.23) that

Ls(z+, z−)→ Ls(z0
+, z

0
−) , as x→ x0 . (A.28)

Based on the results that [
Li1

(
e
πz−
h

)
+ Li1

(
e
πz?−
h

)]
= − log

∣∣∣1− eπz−h ∣∣∣2 , (A.29)

and ∣∣∣1− eπz−h ∣∣∣2 → π2

h2

[
(x− x0)2 + (y − y0)2

]
, as x→ x0 , (A.30)

we conclude from (A.23) that

L1(z+, z−) =
1

4

[
Li1

(
e
πz+
h

)
+ Li1

(
e
πz?+
h

)]
− 1

4
log
∣∣∣1− eπz−h ∣∣∣2 , (A.31)

has the limiting behavior

L1(z+, z−)→ 1

4

[
Li1

(
e
πz0+
h

)
+ Li1

(
e
π(z0+)?

h

)]
− 1

2
log |x− x0| −

1

2
log
(π
h

)
+ o(1) , as x→ x0 . (A.32)

Combining the results (A.28) and (A.32) with

f(n)→ f0(n) ≡ 1

hαn(1− e−2αnl)
, fσ(n)→ fσ0(n) ≡

[
1

nπ
− h2(1 + λ+K2)

2n3π3

]
, (A.33)

as x→ x0, we derive from (A.15) and (A.25) that

S2 → −
1

2π
log |x− x0| −

1

2π
log
(π
h

)
+ T2 + o(1) , as x→ x0 , (A.34)

where we have defined T2 by

T2 ≡
∞∑
n=1

[f0(n)− fσ0(n)] cos2
(nπy0

h

)
+

1

4π

[
Li1

(
e
πz0+
h

)
+ Li1

(
e
π(z0+)?

h

)]
− h2(1 + λ+K2)

2π3
L3(z0

+, z
0
−) .

(A.35)

Then, by letting x→ x0 in the decomposition (A.12) of Fλ, we use (A.34) and (A.13) to obtain

Fλ = A0 + S1 + S2 ∼ −
1

2π
log |x− x0| −

1

2π
log
(π
h

)
+A00 + T1 + T2 + o(1) , as x→ x0 , (A.36)

34



where A00 and T1 are the limiting behaviors of A0 and S1 as x→ x0 given by

A0 → A00 ≡
(1 + K

α0
)2e2α0(x0−l) + (1− K2

α2
0

)(1 + e−2α0l) + (1− K
α0

)2e−2α0x0

2hα0(1− K2

α2
0

)(1− e−2α0l)
, (A.37a)

S1 → T1 ≡
∞∑
n=1

(1 + K
αn

)2e2αn(x0−l) + (1− K2

α2
n

)e−2αnl + (1− K
αn

)2e−2αnx0

hαn(1− K2

α2
n

)(1− e−2αnl)
cos2

(nπy0

h

)
. (A.37b)

By enforcing that the limiting behavior in (A.26) agrees with that given in (A.36), we identify the regular part as

Rλ(x0;x0) = − 1

2π
log
(π
h

)
+A00 + T1 + T2 , (A.38)

where T2, A00 and T1 are defined in (A.35) and (A.37). We remark that upon setting λ = 0 in (A.38), we also
obtain a computationally efficient formula for R(x0;x0), as defined in (2.20), which is needed in the NAS (2.26)
that arises from the asymptotic construction of quasi-equilibrium multi-spot patterns.

B Linear stability of the DAE equilibria

In this appendix we derive a criterion to determine the linear stability of equilibria to the DAE system (2.30). For
convenience, we denote the DAE system (2.30) subject to the nonlinear constraints as

ẇ = F(w, s) , and G(w, s) = 0 , (B.1)

where w ≡ (x1, y1, . . . , xN , yN )T ∈ R2N and s ≡ (S1, . . . , SN )T ∈ RN . Given an N -spot equilibrium, we define

we ≡ (x1e, y1e, . . . , xNe, yNe)
T ∈ R2N , se ≡ (S1e, . . . , SNe)

T ∈ RN , (B.2)

where (xje, yje) and Sje is the steady-state location and the source strength of the jth spot, so that F(we, se) = 0
and G(we, se) = 0. Then, we linearize (B.1) by substituting w = we + ξξξ and s = se + ηηη, which yields

ξ̇ξξ = DwFe · ξξξ +DsFe · ηηη , 0 = DwGe · ξξξ +DsGe · ηηη . (B.3)

Here, DwFe (DwGe) and DsFe (DsGe) represent the Jacobian matrix of F (G) with respect to w and s, respectively,
evaluated at w = we and s = se. By combining the two equations in (B.3), we derive that

ξ̇ξξ = Qξξξ , where Q = Q(we, se) ≡ DwFe −DsFe (DsGe)
−1(DwGe) . (B.4)

The linear stability properties of an equilibrium point to the DAE system is determined by the eigenvalues of Q.

Proposition B.1. The DAE equilibrium is linearly stable when all the eigenvalues z of Q satisfy Re(z) < 0.

The entries of Q consist of partial derivatives of F and G, which we can approximate by finite differences. With
this numerical approach, the stability criterion was implemented in §4.2 and §4.3 for identifying two and three-spot
steady-state configurations in the unit square that are linearly stable for the DAE dynamics (2.30).
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