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Abstract. Intercellular signaling and communication are used by bacteria to regulate a variety of behaviors. In a type of5
cell-cell communication known as quorum sensing (QS), which is mediated by a diffusible signaling molecule called6
an autoinducer, bacteria can undergo sudden changes in their behavior at a colony-wide level when the density of7
cells exceeds a critical threshold. In mathematical models of QS behavior, these changes can include the switch-like8
emergence of intracellular oscillations through a Hopf bifurcation, or sudden transitions between bistable steady-states9
as a result of a saddle-node bifurcation of equilibria. As an example of this latter type of QS transition, we formulate10
and analyze a cell-bulk ODE-PDE model in a 2-D spatial domain that incorporates the prototypical LuxI/LuxR QS11
system for a collection of stationary bacterial cells, as modeled by small circular disks of a common radius with a12
cell membrane that is permeable only to the autoinducer. By using the method of matched asymptotic expansions,13
it is shown that the steady-state solutions for the cell-bulk model exhibit a saddle-node bifurcation structure. The14
linear stability of these branches of equilibria are determined from the analysis of a nonlinear matrix eigenvalue15
problem, called the globally coupled eigenvalue problem (GCEP). The key role on QS behavior of a bulk degradation16
of the autoinducer field, which arises from either a Robin boundary condition on the domain boundary or from a17
constant bulk decay, is highlighted. With bulk degradation, it is shown analytically that the effect of coupling identical18
bacterial cells to the bulk autoinducer diffusion field is to create an effective bifurcation parameter that depends on the19
population of the colony, the bulk diffusivity, the membrane permeabilities, and the cell radius. QS transitions occur20
when this effective parameter passes through a saddle-node bifurcation point of the Lux ODE kinetics for an isolated21
cell. In the limit of a large but finite bulk diffusivity, it is shown that the cell-bulk system is well-approximated by a22
simpler ODE-DAE system. This reduced system, which is used to study the effect of cell location on QS behavior,23
is easily implemented for a large number of cells. Predictions from the asymptotic theory for QS transitions between24
bistable states are favorably compared with full numerical solutions of the cell-bulk ODE-PDE system.25
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1. Introduction. Many species of bacteria use cell-cell communication, as mediated by the secretion39

and detection of diffusible signaling molecules called autoinducers (AI), to coordinate a variety of complex40

behaviors in a colony. By varying the concentration of AI, bacteria are able to adjust their behavior at a41

colony-wide level via alteration of gene expression. Since AI is produced by the cells, the concentration in42

the surrounding bulk medium acts as a measure of cell density. At small cell densities, the AI molecules43

are produced by the cells at a low basal rate. The concentration of AI increases as the colony grows until it44

reaches a critical level at which the colony undergoes a sudden switch-like transition in behavior. This process45

of behavioral change in response to increases in cell density is called quorum sensing (QS) [28, 1, 35, 33, 13].46

It is convenient to distinguish between two types of QS phenomena based on their qualitative mathemat-47

ical properties. The first kind is characterized by a switch-like response to oscillatory dynamical behavior48

where the frequency of oscillations is population dependent. Examples of such dynamical QS transitions49

include chemical oscillations in collections of the social amoebae Dictyostelium discoideum (cf. [16, 14, 31])50

as well as glycolytic oscillations in colonies of starving yeast cells (cf. [7, 5, 6]). Mathematical models of this51

type of QS transition are characterized by a Hopf bifurcation, in which the loss of stability of a steady-state52

is accompanied by the emergence of oscillatory dynamics (cf. [16, 15, 19] and references therein).53

Our primary focus in this paper lies in the second kind of QS, as characterized by a sudden transition54

to a new steady-state as the extracellular AI concentration increases past a threshold. This type of QS55

behavior is responsible for bioluminescence in the marine bacterium Vibrio fischeri (cf. [32, 21, 40, 27, 28])56

as well as the production of virulence factors in the human pathogen Pseudomonas aeruginosa (cf. [10, 38]).57

Mathematical models for this type of QS transition involve the disappearance of an “off” or downregulated58

stable steady-state through a saddle-node bifurcation point as the cell density is increased. This leads to a59

rapid transition, or jump, to a new “on” or upregulated stable steady-state at some critical value of the cell60

density (cf. [40, 20, 9, 10, 11]). The existence of bistable steady-states and an S-shaped bifurcation diagram61

of equilibria, which also results in hysteretic solution behavior, is the common feature in mathematical62

models for this class of QS transition (see [35] for a survey). An early mathematical model of this type is63

given in [9] for QS transitions associated with the pathogen Pseudomonas aeruginosa.64

Many different QS systems have been identified in a range of bacterial species (cf. [28]). However, it is65

known that the QS systems for gram-negative bacteria, i.e. bacteria that possess an outer cell membrane,66

share many common features (cf. [33]). In this paper we will focus on developing and analyzing an ODE-PDE67

cell-bulk model in a 2-D domain that incorporates the LuxI/LuxR QS circuit within a colony of stationary68

bacterial cells, as modeled by a collection of small circular disks in the domain. This circuit is the one69

responsible for bioluminescence in Vibrio fischeri (cf. [32]). Many other gram-negative bacteria have QS70

pathways very similar to this prototypical example, and contain counterparts to the key genes luxI and71

luxR (cf. [28]). Before formulating our cell-bulk ODE-PDE model in §1.2, we first introduce the LuxI/LuxR72

circuit as described in [20, 28, 39].73

1.1. Quorum sensing and the LuxI/LuxR genetic circuit. The LuxI/LuxR circuit consists of two74

clusters of genes called operons, usually termed the left and right lux operons. The left operon contains75

the luxR gene while the right contains luxI, which code for the LuxR and LuxI proteins, respectively. The76

LuxI protein is involved in synthesizing the AI molecule N-(3-oxohexanoyl)-homoserine lactone, which is a77

type of acylated homoserine lactone (AHL). When the AI concentration is high enough, the LuxR proteins78

form a complex with the AI molecules. This LuxR-AHL complex then forms a dimer, denoted by (LuxR-79

AHL)2. The dimer causes further transcription of the genes in both operons by binding to a site lying80

between the operons, called the lux box. This genetic circuit contains a positive feedback loop since (LuxR-81

AHL)2 causes transcription of the luxI gene which increases production of AI, thereby forming more of the82

dimer (LuxR-AHL)2. In contrast, the right lux operon is involved in expression of bioluminescent behavior83
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(cf. [28, 39]). The genes luxCDABE, which are contained in the right operon, encode luciferase enzymes84

which are required for light production. Further, luxI is located just upstream from the luxCDABE gene85

cluster so that transcription of luxI occurs when luxCDABE is transcribed. In this way, the dramatic86

increase in AI concentration that results from the positive feedback is accompanied by a sudden transition87

to luminescent behavior. The existence of a second feedback loop in the LuxI/LuxR system has also been88

established (cf. [28]). In this feedback loop, the (LuxR-AHL)2 dimer also affects the production of LuxR.89

Recent mathematical models of the LuxI/LuxR circuit that include this second feedback loop have assumed90

positive feedback (cf. [40, 27, 20]).91

In [20] an ODE-based model of QS for the LuxI/LuxR circuit in a single cell was formulated in terms of92

the intracellular concentrations of AI, LuxR, and (LuxR-AHL)2, and where the extracellular AI concentration93

was treated as a parameter. Without extracellular AI, the ODE system was shown to have either one or94

two stable steady-states, depending on the parameter values, which correspond to the luminescent and non-95

luminescent phenotypes. As the extracellular AI concentration was increased, the system can transition from96

having a single non-luminescent state to one possessing both states (cf. [20]). Similar results were obtained97

in [40] for an extended ODE model that includes the second feedback loop in the LuxI/LuxR circuit.98

A significant extension of the ODE model in [40] with Lux kinetics is developed in [27] to model a colony99

of bacteria that are confined within a thin 3-D domain that approximates a small micro-fluidic chamber.100

In [27], bacteria are modeled as rod-like particles that can grow and divide, and which interact with each101

other via mechanical forces and through bulk chemical signaling. However, in their mixed model, the102

autoinducer bulk diffusion field is modeled not by a continuum-based PDE, but instead by a large collection103

of ODEs derived from a discrete flux balance, regulated by permeability parameters, across box-shaped104

spatial elements that discretize the thin 3-D domain. A Dirichlet boundary condition, allowing for loss of105

the autoinducer, is imposed on the outer domain boundary, as is consistent with the micro-fluidic chamber106

design (cf. [27]). A steady-state analysis for the Lux kinetics of an isolated cell in the absence of bulk107

coupling reveals bistable solution behavior for certain parameter sets. From a detailed numerical study of108

the mixed ODE-model, QS behavior in [27] is observed as a sudden increase in AI concentration.109

As an approximation of a thin 3-D domain, we formulate and study an analytically tractable 2-D variant110

of the model of [27]. In our simplified theoretical framework, bacterial cells are modeled as a collection111

of small circular disks of a common radius where the cell membrane is permeable to the autoinducer, as112

regulated by permeability parameters. Within each cell, the Lux ODE kinetics of [27] is imposed, while the113

cell-cell chemical communication is mediated by an autoinducer bulk-diffusion field that is not discretized,114

but which instead satisfies a continuum-based PDE. Although our bacterial cells are assumed to be stationary,115

we can allow for an arbitrary number of cells centered at arbitrary, but well-separated, locations in the 2-D116

domain. For this ODE-PDE system, our goal is to develop a hybrid asymptotic-numerical theory to predict117

QS transitions between bistable steady-states in the dimensionless limit of small bacterial cell radius. Our118

theoretical framework is inspired by the cell-bulk ODE-PDE models that were originally introduced in [29]119

(see also [30]) to more realistically model bulk-diffusion induced QS transitions in 3-D cell-cell signaling. In120

a 2-D setting, this modeling framework of [29] has recently been used in [15] and [19] to study QS transitions121

involving the switch-like emergence of intracellular oscillations for a collection of cells with Sel’kov kinetics.122

1.2. Formulation of the model. We now formulate our ODE-PDE cell-bulk model by recasting the123

system of [27] into the framework of [29, 15, 19]. The model is formulated in terms of dimensional quantities124

and is non-dimensionalized in Appendix A. We remark that the dependent variables in the model below are in125

units of concentration, whereas the model in [15] uses both concentration and mass quantities. This difference126

has no impact on the analysis of the dimensionless model, but is important in determining numerical values127

for the dimensionless parameters (see Appendix A).128

3

This manuscript is for review purposes only.



Let ΩL ⊂ R2 be a bounded domain with a characteristic length scale of L, and suppose that there are129

m bacteria centered at X1, . . . ,Xm ∈ ΩL, which we model as non-overlapping stationary disks of a common130

radius. We denote the jth bacterial cell with radius σ as Ωσj , for j = 1, . . . ,m, so that the extracellular, or131

bulk, region is ΩL \ ∪mj=1Ωσj . We let U(X, T ) denote the concentration of AI in the bulk region, where we132

assume AI undergoes passive diffusion with diffusion constant DB. It is known that AHL can be degraded133

by lactonases (cf. [35]), so we allow for bulk decay at the rate γB. We assume that each cell membrane,134

∂Ωσj , for j = 1, . . . ,m, is permeable to AI, but not to the other chemical species (cf. [21]). The possibility135

of AI flux through the outer boundary, ∂ΩL, is modeled by a Robin boundary condition. In this way, the136

concentration of AI in the bulk region satisfies137

Ut =DB∆XU − γB U , X ∈ ΩL \ ∪mj=1Ωσj ; DB∂nXU + κBU = 0 , X ∈ ∂ΩL ,(1.1a)138

DB∂nXU = p1jU − p2jv1j , X ∈ ∂Ωσj , for j = 1, . . . ,m .(1.1b)139140

Here p1j and p2j are the permeabilities for the jth cell, in which the AI concentration is v1j . They represent141

the rate at which AI molecules are absorbed and secreted, respectively. In some bacteria, such as Vibrio142

fischeri, there is no active transport system for the autoinducer across the cell membrane (cf. [21]), which143

implies that we should set p1j = p2j . However, active transport is present in other bacteria, such as144

Pseudomonas aeruginosa (cf. [34]). Hence, we retain p1j and p2j as model parameters. In (1.1), the unit145

normal points either out of ΩL or out of Ωσj on the appropriate boundaries.146

Within the jth cell, we assume that there are n chemical species with concentrations denoted by vj ≡147

(v1j , . . . , vnj)
T . These species are assumed to be well-mixed and undergo reactions according to148

(1.2)
dvj
dT

= kRvcFj(vj/vc) + e1

∫
∂Ωσj

(p1jU − p2jv1j) dsX , for j = 1, . . . ,m ,149

where e1 ≡ (1, 0, . . . , 0)T . Here, the vector field Fj describes the reaction kinetics within the jth cell as if it150

was isolated completely from the bulk region. The integral source term in (1.2) and the boundary condition151

in (1.1b) represent the exchange of AI across the cell membrane. The constants vc and kR represent a152

characteristic concentration and reaction rate of the intracellular kinetics, respectively.153

In Appendix A we non-dimensionalize the ODE-PDE system (1.1) and (1.2) to obtain the following PDE154

diffusion equation for the dimensionless extracellular AI concentration, denoted by U(x, t):155

Ut =D∆U − γU , x ∈ Ω \ ∪mj=1Ωεj ; D∂nU + κU = 0 , x ∈ ∂Ω ,(1.3a)156

εD∂nU = d1jU − d2ju1j , x ∈ ∂Ωεj , for j = 1, . . . ,m ,(1.3b)157158

where γ ≥ 0 and κ ≥ 0. Here, Ω ≡ Ω1 and ε ≡ σ/L. We will assume that ε� 1, so that the cells are much159

smaller than the O(1) length-scale of the domain Ω. The dimensionless ODEs within the cells are160

(1.4)
duj
dt

= Fj(uj) + e1ε
−1

∫
∂Ωεj

(d1jU − d2ju1j) dsx , for j = 1, . . . ,m .161

The ε-dependent scalings in both the membrane boundary condition in (1.3b) and in the boundary integral162

in (1.4) are required for an O(1) coupling effect, without which the cells would behave as if they were isolated163

and QS behavior would not occur. The ODE system in (1.4), coupled indirectly through the bulk medium164

by (1.3), is of dimension nm+ 1.165

In the analysis below, we will consider a special case of (1.3) and (1.4) where the reaction kinetics are166

given by the Lux ODE system in [27]. A dimensionless Lux system in the jth cell with bulk coupling, as167
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derived in Appendix A from the dimensional model in [27], is given by168

du1j

dt
= c+

κ1Au4j

κDA + u4j
− κ2Aju1j − u1ju2j + κ5u3j + ε−1

∫
∂Ωεj

(d1jU − d2ju1j) dsx ,(1.5a)169

du2j

dt
= 1 +

κ1Ru4j

κDR + u4j
− κ2Ru2j − u1ju2j + κ5u3j ,(1.5b)170

du3j

dt
= u1ju2j − κ5u3j − 2κ3u

2
3j + 2κ4u4j ,

du4j

dt
= κ3u

2
3j − κ4u4j ,(1.5c)171

172

where u1j , u2j , u3j , and u4j are the dimensionless concentrations of AI, LuxR, LuxR-AHL, and (LuxR-173

AHL)2, respectively. All parameters in (1.5) are positive, while κ2Aj in (1.5a) can be cell-dependent.174

The interpretation of the reaction kinetics in (1.5) modeling the LuxI/LuxR genetic circuit follows from175

[27] (see Fig. 1.1 for a schematic). Both AI and LuxR are produced at a (dimensionless) basal rate of c176

and 1, respectively. These rates represent the level of production at low cellular concentrations when the177

lux box is empty (cf. [40]). The AI molecules bind to LuxR proteins and form an AHL-LuxR complex178

with a dimensionless reaction rate of unity. The (AHL-LuxR)2 dimers are formed at a rate κ3 from the179

(AHL-LuxR) complexes. The dimers bind to the lux box, which stimulates the production of LuxR and AI180

by initiating transcription of the two lux operons. This positive feedback of the (AHL-LuxR)2 dimer on the181

production of AI and LuxR is captured by the rational terms in (1.5a) and (1.5b), whose precise forms are182

motivated in [40, 20]. The stimulus is assumed to be proportional to the fraction of time that the lux box183

is occupied by (AHL-LuxR)2, which in turn depends on the concentration of (AHL-LuxR)2 in such a way184

that it is linear at low concentrations while saturating at high concentrations. The remaining terms in (1.5)185

represent degradation of the various species through breakdown, dilution, and reversible reaction.186

In [29, 15, 19] no flux boundary conditions on ∂Ω were imposed. The motivation here for including the187

Robin boundary condition on ∂Ω in (1.3a) is both biological and mathematical. The effect of absorbing and188

reflecting boundaries on QS behavior has been studied both experimentally and mathematically (cf. [37,189

25]), where it was shown that different boundary types can have a significant impact on steady-state AI190

concentration and also QS behavior. From a mathematical viewpoint, our analysis will show that QS191

transitions are not possible for our model without bulk loss terms, for which γ = κ = 0 in (1.3a).192

The outline of the paper is as follows. In §2 we calculate the steady-states and analyze their stability193

properties for the Lux ODE system (1.5) of [27] for an isolated cell with no bulk coupling. This analysis,194

similar to that in [27], shows the existence of bistability and the possibility of a transition between a down-195

regulated and an upregulated steady-state as the intracellular AI coefficient, κ2A, is varied. For arbitrary196

intracellular kinetics, in §3 we use strong localized perturbation theory in the limit ε → 0 to construct197

steady-state solutions to the cell-bulk model (1.3) and (1.4). In addition, we both derive and discuss some198

qualitative results from the GCEP characterizing the linear stability properties of these steady-states. The199

construction of steady-state solutions and the GCEP is accurate to all orders of ν. However, to provide200

analytical insight into the role of a bistable intracellular kinetics, as is relevant to the Lux kinetics, in §3.3201

we derive and interpret leading-order-in-ν results for the steady-states and their linear stability properties.202

In §4 we apply the theory of §3 to the Lux kinetics (1.5) both with and without bulk degradation. With bulk203

degradation, we show analytically that the effect of coupling identical bacterial cells to the bulk autoinducer204

diffusion field is to create an effective bifurcation parameter that depends on the population of the colony,205

the bulk diffusivity, the membrane permeabilities, and the cell radius. QS transitions occur when this effec-206

tive parameter passes through a saddle-node point of the Lux ODE kinetics for an isolated cell. In §5 we207

simplify the steady-state and linear stability analysis for the large bulk diffusivity regime D = O(ν−1)� 1.208

For this regime in D, where we obtain simplified QS criteria, we derive a reduced ODE-DAE system that209
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Ω

Ωεj

AHL LuxR

AHL-LuxR

(AHL-LuxR)2

Figure 1.1: Schematic diagram depicting the model geometry and intracellular reactions. The circular regions on the
left are cells, while the black dots represent AI molecules. The chemical reactions described by (1.5) occur in each cell,
as depicted in the magnified cell on the right. The diffusible AHL molecules that are secreted and absorbed by the
cells undergo bulk decay and are allowed to leak out of the bulk domain.

well-approximates the solutions to the cell-bulk ODE-PDE model (1.3) and (1.4). With this reduced ODE-210

DAE system, which is readily implemented for a large number of cells, we study the effect of cell locations211

on QS behavior. Throughout this paper, for the special case where the confining domain Ω is a disk, the212

asymptotic predictions for QS transitions are confirmed from full numerical solutions of the cell-bulk model213

(1.3)–(1.5).214

2. The LUX ODE system with no bulk coupling. We first analyze the steady-states for the Lux reaction215

kinetics (1.5) for an isolated cell with no coupling to the bulk medium. This analysis provides a point of216

comparison when we analyze the full coupled cell-bulk model. In particular, we show below that this coupling217

effectively changes the value of κ2A, causing it to depend on the bulk parameters. As a result, in our ODE218

analysis of an isolated cell, κ2A is chosen as the bifurcation parameter.219

With no bulk coupling, we suppress the cell index j below for clarity, and from (1.5) we obtain220

du1

dt
= c+

κ1Au4

κDA + u4
− κ2Au1 − u1u2 + κ5u3 ,

du3

dt
= u1u2 − κ5u3 − 2κ3u

2
3 + 2κ4u4 ,(2.1a)221

du2

dt
= 1 +

κ1Ru4

κDR + u4
− κ2Ru2 − u1u2 + κ5u3 ,

du4

dt
= κ3u

2
3 − κ4u4 .(2.1b)222

223

Denoting the steady-states of (2.1) by uje, for j = 1, . . . , 4, we readily calculate from (2.1) that224

(2.2)

u3e =
1

κ5
u1eu2e , u4e =

κ3

κ4
u2

3e , u1e =
1

κ2A

[
c+

κ1Au
2
3e

κDA
κ4
κ3

+ u2
3e

]
, u2e =

1

κ2R

[
1 +

κ1Ru
2
3e

κDR
κ4
κ3

+ u2
3e

]
.225

Then, upon substituting these expressions for u1e and u2e into that for u3e, we obtain that u3e satisfies the226

nonlinear algebraic equation q(u3e) = 0, defined by227

(2.3) q(u3e) ≡
1

κ2Aκ2Rκ5

(
c+

κ1Au
2
3e

κA + u2
3e

)(
1 +

κ1Ru
2
3e

κR + u2
3e

)
−u3e , where κA ≡ κDA

κ4

κ3
, κR ≡ κDR

κ4

κ3
.228
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It follows that u3e is determined by the roots of a quintic polynomial. As such, there must be at least one229

real root to q(u3e) = 0. This root is positive since q(0) > 0, q(u) → −∞ as u → ∞, and q is continuous.230

This steady-state construction for a rescaled version of (2.1) was given previously in [27].231

The linear stability properties of each steady-state solution uuue ≡ (u1e, u2e, u3e, u4e)
T of (2.1) is determined232

by the eigenvalues λ of of the Jacobian matrix, Je, given by233

(2.4) Je =


−κ2A − u2e −u1e κ5

κ1AκDA
(κDA+u4e)

2

−u2e −κ2R − u1e κ5
κ1RκDR

(κDR+u4e)
2

u2e u1e −κ5 − 4κ3u3e 2κ4

0 0 2κ3u3e −κ4

 .234

Upon setting det(λI − Je) = 0, we obtain the characteristic polynomial λ4 + a3λ
3 + a2λ

2 + a1λ + a0 = 0235

where, by using Leverrier-Faddeev algorithm [18], the coefficients are a0 = det(Je) and236

a1 = −1

6

[
(tr(Je))

3 − 3tr
(
J2
e

)
tr(Je) + 2tr

(
J3
e

)]
, a2 =

1

2

[
(tr(Je))

2 − tr
(
J2
e

)]
, a3 = −tr(Je) .(2.5)237

The steady-state uuue for (2.1) is linearly stable if and only if all the eigenvalues of Je satisfy Re(λ) < 0. From238

the Routh-Hurwitz criterion for a quartic polynomial, it follows that all eigenvalues of Je satisfy Re(λ) < 0239

if and only if the coefficients in the characteristic polynomial satisfy240

(2.6) a3 > 0 , det(Je) > 0 , a3a2 − a1 > 0 , (a3a2 − a1)a1 − a2
3 det(Je) > 0 .241

To illustrate the bifurcation structure for steady-state solutions of (2.1) as κ2A is varied, we numerically242

determine the roots u3e of (2.3) using the continuation software MATCONT [8]. Then, (2.2) yields the243

bifurcation structure for u4e, u1e, and u2e. At each value of κ2A the Routh-Hurwitz criterion (2.6) is used244

to examine the linear stability properties of the steady-state.245

These bifurcation diagrams are shown in the top row of Fig. 2.1 for the parameter set in [27] but rescaled246

into our dimensionless form, as given in Table 1 of Appendix A. The saddle-node bifurcations correspond,247

as expected, to a zero-crossing for one of the eigenvalues of the Jacobian Je. From the top row of Fig. 2.1,248

we observe that all of the branches have a double hysteresis structure. However, in the bifurcation diagrams249

for both u1e and u2e one of these structures possesses two hairpin-like fold points. Although it may appear250

otherwise from the first two panels of the top row of Fig. 2.1, these fold points are smooth in κ2A owing to251

the fact that u3e depends smoothly on κ2A while both u1e and u2e depend smoothly on u3e as is evident from252

(2.2). Due to the hairpin structure, the branches for u1e and u2e both behave as a single biological switch.253

In particular, it is the lower hysteresis structure that causes switch-like behavior for u1e. This transition254

corresponds to the upper hysteresis structure for u2e. We will focus primarily on the lower hysteresis255

structure for u1e when we analyze the ODE-PDE cell-bulk model. As shown in the lower row of Fig. 2.1 the256

two hysteresis structures can be separated by modifying κDR to κDR = 0.0125. For this value, there are at257

most three equilibria for any value of κ2A.258

In Fig. 2.2a we plot the numerical solution to the Lux ODE system (2.1) when κ2A is slowly ramped in259

time as in Fig. 2.2b through all the saddle-node bifurcation points in the top row of Fig. 2.1. We observe260

from Fig. 2.2a that the numerical solution to (2.1) tracks the quasi steady-states, as obtained by solving261

q(u3e) = 0 in (2.3) and then using (2.2), as κ2A is varied until there is a sudden, but delayed, transition as262

κ2A is ramped past the saddle-node points. This delayed bifurcation behavior is typical for slow passage263

problems in ODEs (cf. [24]). As expected, the autoinducer concentration, u1, has a switch-like response264

corresponding to the lower hysteresis structure shown in the top row of Fig. 2.1.265
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Figure 2.1: Top row: Bifurcation diagrams for the steady-states of the Lux ODE system in (2.1), as computed from
(2.2) and (2.3), with the parameters in Table 1. The hairpin fold bifurcations are magnified for clarity. Blue and red
portions represent linearly stable and unstable steady-state solution branches, respectively. Bottom row: same plot
but now with κDR = 0.0125, so that the hysteresis structures are separated.

Our analysis below will focus on studying how the cell-bulk coupling modifies the switch-like response due266

to the saddle-node bifurcations observed in Fig. 2.1. In contrast to the analysis in [15, 19] where oscillatory267

instabilities are triggered by cell-bulk coupling for Sel’kov intracellular reaction kinetics, in Appendix B of268

[36] it was shown that there can be no Hopf bifurcations associated with steady-states of the Lux ODE269

kinetics (2.1) for the parameters used in [27].270

3. The cell-bulk model for D = O(1): Steady states and linear stability. For the D = O(1) regime, in271

this section we use the method of matched asymptotic expansions in the limit ε→ 0 to construct the steady-272

states of the cell-bulk model (1.3) and (1.4) and to derive a globally coupled eigenvalue problem (GCEP)273

characterizing the linear stability properties of the steady-state solutions. When there is a degradation274

process in the bulk, corresponding to either γ > 0 or κ > 0, the steady-state and linear stability analysis275

parallels that given in [15, 19] and so we only summarize the main results for this case. Instead we focus on276

the modifications of the analysis in [15, 19] needed to treat the case where there is no bulk loss mechanism,277

for which γ = κ = 0. For a collection of identical cells, in §3.3 we perform a two-term perturbation analysis278

in ν in order to gain analytical insight into the role of a bistable reaction kinetics F(u) on the asymptotic279

construction of steady-state solutions and their linear stability properties.280
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Figure 2.2: Numerical solution of (2.1) (left panel) when the bifurcation parameter κ2A is ramped slowly in time as in
the right panel for the parameters in the top row of Fig. 2.1. Observe that there is a sudden, but delayed, transition
between the steady-states as the parameter κ2A is slowly ramped through the fold points.

3.1. Steady-state solutions. We assume that the cells are well-separated in the sense that |xi − xj | =281

O(1) for all i 6= j and dist(xj , ∂Ω) = O(1) as ε→ 0. We now construct steady-state solutions for (1.3) and282

(1.4) that are accurate to all orders in ν ≡ −1/ log ε.283

Within an O(ε) inner region near the jth cell we define the inner variables yj ≡ ε−1(x− xj), ρ ≡ |yj |, and284

Uj(yj) = U(xj + εyj). From the steady-state problem for (1.3), we obtain to leading order that ∆yjUj = 0285

for ρ ≥ 1, subject to D∂ρUj = d1jUj − d2ju1j on ρ = 1. Here ∆yj is the Laplacian in the inner variable. In286

terms of constants Sj , for j = 1, . . . ,m, to be found, the radially symmetric solution is287

(3.1) Uj(ρ) = Sj log ρ+
1

d1j
(DSj + d2ju1j) , j = 1, . . . ,m ,288

Upon substituting (3.1) into (1.4) we obtain the nonlinear algebraic system289

(3.2) Fj(uj) + 2πDSje1 = 0 , for j = 1, . . . ,m , where e1 ≡ (1, 0, . . . , 0)T .290

The far-field behavior of the inner solution (3.1), when written in the outer variable, imposes a specific291

singularity structure as x → xj for the steady-state outer bulk solution in terms of the logarithmic gauge292

ν ≡ −1/ log ε � 1. When there is no bulk loss, i.e. γ = κ = 0, we obtain from (3.1) and the steady-state293

problem for (1.3), that this outer solution satisfies294

∆U = 0 , x ∈ Ω \ {x1, . . . ,xm} ; ∂nU = 0 , x ∈ ∂Ω ;

U ∼ Sj log |x− xj |+
Sj
ν

+
1

d1j
(DSj + d2ju1j) , as x→ xj , j = 1, . . . ,m .

(3.3)295

The divergence theorem yields
∑m

j=1 Sj = 0, and when this condition holds we can represent U as296

(3.4) U = −2π
m∑
i=1

SiGN (x; xi) + U,297

where U ≡ |Ω|−1
∫

Ω Udx is the unknown spatial average of U over Ω. Here GN (x; xi) is the Neumann298
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Green’s function with regular part RNi, which is defined uniquely in terms of the area |Ω| of Ω by299

∆GN =
1

|Ω|
− δ(x− xi) , x ∈ Ω ; ∂nGN = 0 , x ∈ ∂Ω ;

GN (x; xi) = − 1

2π
log |x− xi|+RNi + o(1) , as x→ xi ;

∫
Ω
GN dx = 0 .

(3.5)300

To determine a linear algebraic system for S1, . . . , Sm and U , we simply enforce the matching condition301

that (3.4) agrees, as x→ xj and for each j = 1, . . . ,m, with the pre-specified regular part of each singularity302

structure in (3.3). In matrix form, these constraints yield that303

(3.6) (I + 2πνGN + νDD1) S = −νD21u
1 + νUe , eTS = 0 ,304

where S ≡ (S1, . . . , Sm)T . In (3.6), the diagonal matrices D1 and D21, the vectors e and u1, and the entries305

(GN )ij of the Neumann Green’s matrix GN are defined by306

(GN )ij ≡ GN (xi; xj) i 6= j ; (GN )ii ≡ RNi ; e ≡ (1, . . . , 1)T ,(3.7a)307

D1 ≡ diag

(
1

d11
, . . . ,

1

d1m

)
, D21 ≡ diag

(
d21

d11
, . . . ,

d2m

d1m

)
; u1 ≡ (u11, . . . , u1m)T .(3.7b)308

309

By taking an inner product with e in (3.6) we can then use the solvability condition eTS = 0 to isolate310

U . Upon substituting the resulting expression for U back into (3.6) we obtain an algebraic system for S in311

terms of u1. Together with (3.2) this leads to an m(n + 1) dimensional nonlinear algebraic system (NAS)312

for S and uj , for j = 1, . . . ,m. We summarize this steady-state construction as follows:313

Principal Result 1. In the limit ε → 0, and assuming that there is no bulk degradation, i.e. γ = κ =314

0, the steady-states for the cell-bulk model (1.3) in the outer bulk region are given by (3.4) with U =315

m−1eT
[
(2πGN +DD1) S +D21u

1
]
, where S ≡ (S1, . . . , Sm)T and the steady-state intracellular species uj316

for j = 1, . . . ,m satisfy the NAS317

[I + νD (I − E)D1 + 2πν (I − E)GN ] S = −ν (I − E)D21u
1 , where E ≡ 1

m
eeT ,(3.8a)318

Fj(uj) + 2πDSje1 = 0 , j = 1, . . . ,m .(3.8b)319320

Here GN , D1, D21, e, and u1 are as defined in (3.7).321

When the cells are identical, i.e. d1j = d1, d2j = d2, and Fj = F, for j = 1, . . . ,m, then (3.8) becomes322

(3.9)

[
I + ν

D

d1
(I − E) + 2πν (I − E)GN

]
S = −ν d2

d1
(I − E) u1 , F(uj) + 2πDSje1 = 0 ,323

for j = 1, . . . ,m. For identical cells, and when there exists a uc with F(uc) = 0, then (3.9) has a solution324

with u1 = uc1e so that (I − E)u1 = 0, and consequently S = 0 from (3.9). This corresponds to a branch325

of steady-state solutions that are identical to that without any bulk coupling. Moreover, when S = 0 we326

obtain from (3.4), together with the expression for U in Principal Result 1, that U = U = d2/(d1uc1) in327

the outer region. For this solution branch we conclude that there is no flux of AI into or out of any of the328

cells and that the steady-states are not only independent of the number, m, of cells, but also independent of329

all bulk parameters. The existence of such a solution branch for identical cells holds for arbitrary kinetics.330

Although this strongly hints that no QS behavior can occur on this branch, we must first consider the331

stability properties of the steady-states, as is done below in §3.2.332

Alternatively, when there is a bulk loss mechanism, corresponding to either γ > 0 or κ > 0 in (1.3), the333

steady-state analysis parallels that in [19] and is summarized as follows:334
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Principal Result 2. In the limit ε→ 0, and assuming that either γ > 0 or κ > 0, the steady-states for the335

cell-bulk model (1.3) in the outer bulk region are given by336

(3.10) U = −2π
m∑
i=1

SiG(x; xi) ,337

where G is the reduced-wave Green’s function with regular part Ri satisfying338

∆G− γ

D
G = −δ(x− xi) , x ∈ Ω ; D∂nG+ κG = 0 , x ∈ ∂Ω ,

G(x; xi) = − 1

2π
log |x− xi|+Ri + o(1) as x→ xi .

(3.11)339

Here S ≡ (S1, . . . , Sm)T and the steady-state intracellular species uj satisfy the NAS340

(3.12) (I + νDD1 + 2πνG) S = −νD21u
1 , Fj(uj) + 2πDSje1 = 0 , j = 1, . . . ,m ,341

where D1 and D21 are defined in (3.7b). The Green’s matrix G is defined analogously to GN as in (3.7a).342

For the case of identical cells, (3.12) reduces to343

(3.13)

[(
1 + ν

D

d1

)
I + 2πνG

]
S = −ν d2

d1
u1 , F(uj) + 2πDSje1 = 0 , j = 1, . . . ,m .344

The simplest pattern to analyze for the identical cell case with bulk degradation is when Ω is the unit disk345

and the cells are equally-spaced on a concentric ring within the disk. In this case, where e is an eigenvector346

of G, there is a solution branch where S = Sce (with nonzero Sc) and uj = uce for j = 1, . . . ,m. In §4, we347

will consider these solution branches in detail for the Lux kinetics.348

3.2. The linear stability problem. Next, we derive the globally coupled eigenvalue problem (GCEP) char-349

acterizing the linear stability of the steady-state solutions in Principal Results 1–2. We begin by introducing350

a perturbation from the steady-states Ue and uje as351

(3.14) U = Ue(x) + η(x)eλt , uj = uje + wje
λt , j = 1, . . . ,m .352

Upon substituting (3.14) into (1.3) and (1.4) and linearizing, we obtain the eigenvalue problem353

λη =D∆η − γη , x ∈ Ω \ ∪mj=1Ωεj , D∂nη + κη = 0 , x ∈ ∂Ω ,(3.15a)354

εD∂nη =d1jη − d2jw1j , x ∈ ∂Ωεj , j = 1, . . . ,m ,(3.15b)355

λwj =Jjwj + e1ε
−1

∫
∂Ωεj

(d1jη − d2jw1j) dsx , for j = 1, . . . ,m ,(3.15c)356

357

where Jj ≡ Fju(uje) denotes the Jacobian of Fj evaluated at uje.358

The singular perturbation analysis of (3.15) as ε→ 0 is similar to that given in [15, 19] and leads to the359

following characterization for the linear stability properties of the steady-state solutions:360

Principal Result 3. In the limit ε→ 0, we obtain for (3.15) that in the outer bulk region, and within each361

cell, the perturbations in (3.14) satisfy362

(3.16) η = −2π
m∑
i=1

ciGλ(x; xi) , wj = −2πDcj(Jj − λI)−1e1 , for j = 1, . . . ,m ,363
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provided that λ is not an eigenvalue of Jj for any j = 1, . . . ,m. Here the eigenvalue-dependent Green’s364

function Gλ and its regular part Rλi satisfy365

∆Gλ −
(γ + λ)

D
Gλ = −δ(x− xi) , x ∈ Ω ; D∂nGλ + κG = 0 , x ∈ ∂Ω ,

Gλ(x; xi) = − 1

2π
log |x− xi|+Rλi + o(1) as x→ xi .

(3.17)366

Then, λ is an approximation as ε→ 0 to a discrete eigenvalue of the linearization (3.15) if and only if there367

is a nontrivial solution c ≡ (c1, . . . , cm)T 6= 0 to the GCEP, defined by368

M(λ)c = 000 , where M(λ) ≡ I + νDD1 + 2πνDD21K(λ) + 2πνGλ .(3.18a)369

Such nontrivial solutions occur if and only if λ satisfies detM(λ) = 0. The set Λ(M) of all such roots is370

(3.18b) Λ(M) ≡ {λ | detM(λ) = 0} .371

In (3.18a), ν ≡ −1/ log ε, the diagonal matrices D1 and D21 are defined in (3.7b), the Green’s matrix Gλ is372

defined analogously to GN as in (3.7a), and the diagonal matrix K(λ) ≡ diag(K1(λ), . . . ,Km(λ)) is defined373

in terms of the Jacobians Jj of the intracellular kinetics by374

(3.18c) Kj = eT1 (λI−Jj)−1e1 =
Mj,11

det(λI − Jj)
; Mj,11 ≡ det


λ− ∂F2j

∂u2j

∣∣∣
uj=uje

· · · − ∂F2j

∂unj

∣∣∣
uj=uje

...
. . .

...

−∂Fnj
∂u2j

∣∣∣
uj=uje

· · · λ− ∂Fnj
∂unj

∣∣∣
uj=uje

 .375

The GCEP defined by (3.18), in which M is a symmetric but non-Hermitian matrix when λ ∈ C, is376

a nonlinear matrix eigenvalue problem for λ. Numerical solution strategies for special classes of nonlinear377

matrix eigenvalue problems arising in various applications are discussed in [17, 3].378

We remark that M(λ) in (3.18a) is not defined at λ = 0 for the case γ = κ = 0 when there is no bulk379

degradation. For this special case, and setting λ = 0, we can readily derive in place of (3.16) that380

(3.19) η = −2π
m∑
i=1

ciGN (x; xi) + η , Jjwj = −2πDcje1 , for j = 1, . . . ,m ,381

where GN is the Neumann Green’s function of (3.5). Here c ≡ (c1, . . . , cm)T and the constant η satisfy382

(3.20) (I + 2πνGN + νDD1) c + νD21w
1 = νη , eT c = 0 ,383

where w1 ≡ (w11, . . . , w1m)T and GN is the Neumann Green’s matrix. Under the assumption that Jj384

is invertible for j = 1, . . . ,m, we obtain from (3.19) and (3.18c) that w1 = 2πDK(0)c, where K(0) =385

−diag
(
eT1 J

−1
1 e1, . . . , e

T
1 J
−1
m e1

)
. Then, upon eliminating η in (3.20) by using the constraint eT c = 0, we386

conclude that λ = 0 is an eigenvalue of (3.15) under the assumption of no bulk degradation (γ = κ = 0) if387

and only if there is a nontrivial solution c 6= 0 to388

(3.21) M0c = 000 , where M0 ≡ I + νD(I − E)D1 + 2πνD(I − E)D21K(0) + 2πν(I − E)GN .389

Based on the GCEP formulation in (3.18) and (3.21), a specific criterion for the linear stability of a390

steady-state solution of (1.3) and (1.4), and the relationship between zero-eigenvalue crossings and the local391

solvability of the NAS in (3.12) and (3.8) with and without bulk degradation, respectively, can be established392

as in the proof of Proposition 1 of [19] for the case where κ = 0. Our result is as follows:393
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Principal Result 4. For ε → 0, a steady-state solution to (1.3) and (1.4) as characterized in Principal394

Result 2 and 1 with and without bulk degradation, respectively, is linearly stable if and only if for all λ ∈ Λ(M)395

we have Re(λ) < 0. With bulk degradation, then for any non-degenerate solution Se and uej, for j = 1, . . . ,m,396

of (3.12), for which the Jacobians Jj for j = 1, . . . ,m are non-singular, we have that λ = 0 /∈ Λ(M).397

Similarly, with no bulk degradation, then for any non-degenerate solution Se and uej, for j = 1, . . . ,m, to398

(3.8), we have detM0 6= 0 in (3.21), so that λ = 0 is not an eigenvalue of (3.15).399

The proof of this result in [19] regarding zero-crossings for the case of bulk degradation follows by400

observing that the Jacobian associated with linearizing the NAS (3.12) around a solution is the GCEP401

matrix M(0) in (3.18a) for λ = 0. For a non-degenerate solution this Jacobian is non-singular and so402

detM(0) 6= 0 and λ = 0 /∈ Λ(M). A similar argument applies for the case of no bulk degradation.403

Principal Result 4 implies that an instability of a steady-state for (1.3) and (1.4) as parameters are varied404

can only occur via a Hopf bifurcation, for which λ = iλI with λI > 0, or at bifurcation points for the NAS405

(3.12) and (3.8). Based our the analysis in §2 of the Lux ODE dynamics for an isolated cell, where no Hopf406

bifurcations can occur (cf. [36]), we expect that zero-eigenvalue crossings for the GCEP will be associated407

with saddle-node bifurcation points of the NAS (3.12).408

Next, we observe that the eigenvalues λ of the GCEP in (3.18) are O(ν) close to those of the cell409

Jacobians Jj , for j = 1, . . . ,m. To show this, it is convenient to define the matrices S(λ) and M̂(λ) by410

S(λ) ≡ diag (det(λI − J1), . . . ,det(λI − Jm)) ,

M̂(λ) ≡ S(λ)M(λ) = S(λ) (I + νDD1 + 2πνGλ) + 2πDνD21M11(λ) ,
(3.22)411

where M11 ≡ diag(M1,11, . . . ,Mm,11) with Mj,11 as defined in (3.18c). We observe that detM and detM̂412

have exactly the same zeros since the zeros of detS, corresponding to the eigenvalues of Jj , are not zeros413

of detM̂. Moreover, detM̂ has no poles, which we will make use of below in §4.3. If we neglect the O(ν)414

terms of M̂, including those in the Jacobian arising from O(ν) perturbations of the steady-state, then to415

leading order in ν we have detM̂ ∼ detS. Therefore, to leading order in ν any eigenvalue of Jj (evaluated416

at an unperturbed steady-state), is also an eigenvalue of the GCEP. We emphasize that this does not, in417

general, hold to all orders in ν. However, for the special case where there is no bulk degradation, for which418

γ = κ = 0, we can establish the following stronger result for a collection of identical cells.419

Lemma 3.1. Suppose there is no bulk degradation and that ue is a steady-state of the common ODE420

reaction kinetics du/dt = F(u) within each cell when it is uncoupled from the bulk, i.e. F(ue) = 0. Assume421

that the Jacobian Je ≡ Fu(ue) is singular with a one-dimensional nullspace spanned by w?. Then, the GCEP422

associated with linearization around the S ≡ 0 solution of the NAS (3.8) admits a zero-eigenvalue, which423

is valid to all orders in ν. The corresponding eigenfunction for (3.15) is wj = w? for j = 1, . . . ,m and424

η = (d2/d1)w1?, where w1? is the first component of w?.425

Proof. For the identical cell case, we have along the S = 0 solution branch of the NAS (3.8) that426

uj = ue for all j = 1, . . . ,m, so that the Jacobians Jj are simply the Jacobians of the isolated cells, i.e.427

Jj = Je ≡ Fu(ue) for each j = 1, . . . ,m. Thus, to establish that λ = 0 is an eigenvalue of the cell-bulk428

problem, it suffices to show the existence of a nontrivial solution to (3.20) when D1 = d−1
1 I, D21 = (d2/d1)I,429

where wj satisfies Jewj = −2πDcje1 for all j = 1, . . . ,m. This solution is given by cj = 0 and wj = w?, for430

j = 1, . . . ,m, and η = (d2/d1)w1,?, where w1,? is the first component of w?.431

With no bulk degradation, this result establishes that a zero-eigenvalue crossing for the linearization of432

the ODE reaction kinetics for a collection of identical, but isolated cells, also occurs to all orders in ν for433

the linearization (3.15) of the coupled cell-bulk model.434
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3.3. Perturbation theory in ν for bistable kinetics. As we have shown in §2, the Lux ODE kinetics435

(2.1) for an isolated cell exhibit bistable behavior. In order to gain analytical insight into how this bistable436

behavior is perturbed by the cell-bulk coupling, we now consider the case of identical cells with an arbitrary437

bistable reaction kinetics F(u) and develop an explicit two-term perturbation expansion in ν for the steady-438

state solutions for the cell-bulk system, as characterized by the NAS in (3.12) and (3.8) with and without439

bulk degradation, respectively. For these solutions, a two-term expansion in ν for the GCEP (3.18) will440

explicitly characterize the linear stability properties of these steady-states.441

We assume that the common ODE reaction kinetics du/dt = F(u) within an isolated cell has two steady-442

states; an “on” or “upregulated” state” denoted by u+ and an “off” or “downregulated” state labeled by443

u−, so that F(u±) = 000. When the cells are isolated from the bulk, we assume that there are m+ ≥ 0 cells444

in the on state u+, with cell indices j = 1, . . . ,m+, and m− ≥ 0 cells in the off state u−, corresponding445

to the cell indices j = m+ + 1, . . . ,m, where m− + m+ = m. We assume below that the cell Jacobians446

Ĵ± ≡ Fu(u±) are non-singular, so that we are not at a zero-eigenvalue crossing for the linearization of the447

reaction-kinetics at the two possible steady-states u± of an isolated cell.448

With cell-bulk coupling, and assuming no bulk degradation, we observe from the NAS in (3.8) that for449

ν � 1 we have S = O(ν), uj = u+ +O(ν) for j = 1, . . . ,m+, and uj = u− +O(ν) for j = m+ + 1, . . . ,m.450

By expanding the solution to the NAS (3.8) in powers of ν, we obtain after some algebra that451

uj =

{
u+ + 2πDν d2d1 (u1+ − u1−) m−m Ĵ−1

+ e1 +O(ν2) , j = 1, . . . ,m+ ,

u− − 2πDν d2d1 (u1+ − u1−) m+

m Ĵ−1
− e1 +O(ν2) , j = m+ + 1, . . . ,m ,

(3.23a)452

S = −ν d2

d1
(I − E)

[
I − ν

(
D

d1
I + 2πD

d2

d1
K0 + 2πGN

)
(I − E)

]
û1 +O(ν3) ,(3.23b)453

454

where E ≡ m−1eeT and455

(3.23c) K0 ≡ −diag
(
eT1 Ĵ

−1
1 e1, . . . , e

T
1 Ĵ
−1
m e1

)
, û1 ≡ (u11, . . . , u1m)T .456

In (3.23c), Ĵ−1
j ≡ Ĵ−1

+ and u1j = u1+ for j = 1, . . . ,m+, while Ĵ−1
j ≡ Ĵ−1

− and u1j = u1− for j =457

m+ + 1, . . . ,m. Here Ĵ± ≡ Fu(u±) are the cell Jacobians and u1± is the first component of u±.458

We observe from (3.23b) that eTS = 0 as required by the solvability condition in (3.6) when there is no459

bulk loss. Moreover, we observe from the presence of the Neumann Green’s matrix GN in (3.23b) that the460

cell locations have only an O(ν2) influence on the source strengths S.461

A two-term asymptotic result, similar to that in (3.23), can be derived from the NAS (3.12) when there462

is bulk degradation. In terms of the Neumann Green’s matrix G, we obtain that463

uj =

{
u+ + 2πDν d2d1 (u1+)Ĵ−1

+ e1 +O(ν2) , j = 1, . . . ,m+ ,

u− + 2πDν d2d1 (u1−)Ĵ−1
− e1 +O(ν2) , j = m+ + 1, . . . ,m ,

(3.24a)464

S = −ν d2

d1

[
I − ν

(
D

d1
I + 2πD

d2

d1
K0 + 2πG

)]
û1 +O(ν3) .(3.24b)465

466

Next, we gain analytical insight into the linear stability of these steady-states by calculating a two-term467

expansion in ν for the eigenvalues of λ of the GCEP (3.18). For ν � 1, we observe from (3.18) that468

M(λ) = I + O(ν), unless λ is O(ν) close to an eigenvalue of the cell Jacobian Jj , in which case we have469

νK = O(1) in (3.18). As a result, for ν � 1, an eigenvalue of the GCEP, which satisfies detM(λ) = 0, must470

be O(ν)� 1 close an eigenvalue of Jj . With bistable reaction kinetics, we how derive a two-term expansion471
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for the eigenvalues λ of the GCEP (3.18) that are O(ν) close to simple eigenvalues σ± of the cell Jacobians472

Ĵ± for an isolated cell. In the GCEP matrix in (3.18a), the Jacobians Jj in K(λ), as defined in (3.18c),473

are to be evaluated at the solutions of the NAS (3.12) and (3.8) that, to all orders in ν, characterize the474

steady-states of the coupled cell-bulk model. Therefore for ν � 1, we must expand475

(3.25) Jj =

{
Ĵ+ +O(ν) , j = 1, . . . ,m+ ,

Ĵ− +O(ν) , j = m+ + 1, . . . ,m ,
476

so that, to leading order in ν, K(λ) in (3.18c) reduces to477

(3.26) K(λ) ∼ K̂(λ) ≡ diag

(
eT1

(
λI − Ĵ+

)−1
e1, . . . , e

T
1

(
λI − Ĵ−

)−1
e1

)
,478

where the first m+ elements involve Ĵ+ and the remaining involve Ĵ−. From (3.26), we conclude that479

νK(λ) = O(1) when λ = σ±+O(ν), where σ± are simple eigenvalues of Ĵ±. As a result, when λ = σ±+O(ν),480

the GCEP matrix in (3.18a) can be approximated by481

(3.27) M(λ)c = 0 , where M(λ) ∼ I + 2πDν(d2/d1)K̂(λ) +O(ν) .482

To analyze this limiting problem more precisely, we introduce the resolvent R±(z) of Ĵ±, which is singular483

at each eigenvalue of Ĵ±. Near a simple eigenvalue σ± of Ĵ±, R±(z) has the Laurent expansion484

(3.28) R±(z) ≡
(
zI − Ĵ±

)−1
=

P±−1

z − σ±
+

∞∑
i=0

(z − σ±)i P±i , as z → σ± ,485

which is defined in terms of certain matrices P±i that, in principle, can be calculated explicitly (cf. [22]).486

We first consider the eigenvalue σ+ of Ĵ+, and we assume that σ+ is not also an eigenvalue of Ĵ−. Then,487

by setting z = λ in (3.28), we let λ→ σ+ to obtain from (3.28) and (3.26) that488

(3.29) K̂(λ) ∼
eT1 P

+
−1e1

λ− σ+
I+ + · · · , with I+ ≡ diag( 1, 1, . . . , 1, 1

←m+ terms→
, 0, 0 . . . , 0, 0) .489

Then, by substituting λ ∼ σ+ + νσ1 + . . . in (3.29), we obtain that the limiting GCEP (3.27) becomes490

(3.30)

(
I + 2πD

d2

d1

eT1 P
+
−1e1

σ1
I+ +O(ν)

)
c = 0 ,491

which has the eigenvector c = (c+,0)T , with c+ ∈ Rm+ , if and only if σ1 = −2πD(d2/d1)eT1 P
+
−1e1. A similar492

result holds for an eigenvalue σ− of Ĵ−. This yields a two-term expansion for the eigenvalues of the GCEP,493

and the associated eigenvector, that are O(ν) close to simple eigenvalues σ± of Ĵ±:494

(3.31) λ ∼ σ± − 2πνD
d2

d1
eT1 P

±
−1e1 + . . . ; c = (c+,0)T , c+ ∈ Rm+ , c = (0, c−)T , c− ∈ Rm− .495

In view of the analysis above we say that the jth cell is stable if all of the eigenvalues of the cell Jacobian496

Ĵj , which are evaluated at the unperturbed steady-state, lie in the left half-plane. Similarly, we say that497

the jth cell is unstable if Ĵj has an eigenvalue in the right half-plane. By our assumption of the bistability498
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of F, we conclude that Re(σ±) < 0 for any eigenvalue of Ĵ±, and so all the cells are stable. From (3.31), it499

follows that if ν is sufficiently small, all of the eigenvalues of the GCEP will satisfy Re(λ) < 0, so that the500

constructed steady-states of the full cell-bulk system are linearly stable.501

The two-term expansion above for the GCEP eigenvalues also applies for the case where a cell is unstable,502

such as when one or both of σ± have Re(σ±) > 0. In this case, for ν � 1, we conclude from (3.31) that503

the GCEP for the linearization of the steady-states (3.24) will have at least one eigenvalue with Re(λ) > 0.504

In this way, for ν � 1 we conclude that a steady-state of the full cell-bulk problem is linearly stable if and505

only if it is constructed such that all of the cells are stable. A single unstable cell destabilizes the entire506

system. Moreover, the number of unstable eigenvalues of the GCEP is larger when more of the cells are507

unstable. This qualitative conclusion holds both with and without bulk degradation. From the form of the508

eigenvectors in (3.31), it follows that those cells that are unstable generate spatially localized instabilities509

within the cells, while those cells that are stable remain (essentially) in a quiescent state. A more detailed510

characterization of spatial aspects of this instability is given in [36].511

4. Application of the D = O(1) theory to Lux kinetics. We now apply the steady-state and linear512

stability theory developed in §3 to the Lux reaction kinetics given in (1.5) with and without the effect of bulk513

degradation. We show that QS behavior can occur with bulk degradation and we derive explicit criteria in514

terms of the population size m that characterizes the switch between upregulated and downregulated states.515

The theoretical predictions based on our asymptotic analysis are compared with FlexPDE numerical results516

[12] computed for the cell-bulk system (1.3)–(1.5).517

4.1. Lux Kinetics without Bulk Loss. With no bulk degradation, the NAS for the steady-state con-518

struction is given by (3.8), where the Lux kinetics Fj are as defined in (1.5). Cell heterogeneity is introduced519

via the parameter κ2Aj in (1.5). In view of the analysis in §2 for an isolated cell, we obtain that (3.8b) of520

the NAS is satisfied by simply replacing c with c+ 2πDSj in (2.2). Then, by solving for u1j in terms of u3j521

and Sj , as in (2.2), we substitute the resulting expression into (3.8a) to reduce the NAS (3.8) to a lower522

dimensional nonlinear algebraic system. The result is as follows:523

Principal Result 5. With Lux kinetics and no bulk degradation, the NAS (3.8), characterizing the steady-524

states of the cell-bulk model (1.3) and (1.5), reduces to a 2m dimensional nonlinear system for S ≡525

(S1, . . . , Sm)T and u3 ≡ (u31, . . . , u3m)T , given by526

AS = −ν(I − E)D21 (cPe + κ1APb) ,(4.1a)527

Qj(u3j , Sj) ≡
1

κ2Ajκ2Rκ5

[
c+ 2πDSj +

κ1Au
2
3j

κA + u2
3j

][
1 +

κ1Ru
2
3j

κR + u2
3j

]
− u3j = 0 , j = 1, . . . ,m .(4.1b)528

529

Here the matrix A, the diagonal matrix P, and the vector b = b(u3) are defined by530

A ≡ I + νD(I − E)(D1 + 2πD21P) + 2πν(I − E)GN , E =
1

m
eeT , e = (1, . . . , 1)T ,(4.1c)531

P ≡ diag

(
1

κ2A1

, . . . ,
1

κ2Am

)
, b(u3) ≡

(
u2

31

κA + u2
31

, . . . ,
u2

3m

κA + u2
3m

)T
,(4.1d)532

533

where GN is the Neumann Green’s matrix and the diagonal matrices D1 and D21 were given in (3.7b). In534

terms of solutions to (4.1a) and (4.1b), the other steady-state intracellular species for j = 1, . . . ,m are535

(4.1e) u1j =
1

κ2Aj

(
c+ 2πDSj +

κ1Au
2
3j

κA + u2
3j

)
, u2j =

1

κ2R

(
1 +

κ1Ru
2
3j

κR + u2
3j

)
, u4j =

κ3

κ4
u2

3j .536
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In (4.1b), we observe that Qj(u3, 0) = q(u3), where q is defined in (2.3). As a result, the effect of the537

bulk coupling on the jth cell is contained entirely in the Sj term, which depends on the spatial configuration538

of the cells through the Neumann Green’s matrix GN in (4.1c).539

Next, we simplify (4.1) assuming identical cellular kinetics (κ2Aj = κ2A) and cell-independent perme-540

abilities (d1j = d1, d2j = d2). Then, since D1, D21, and P are multiples of the identity, and by using541

(I − E)e = 0, we find that (4.1a) and (4.1c) become542

(4.2) AS = −ν d2κ1A

d1κ2A
(I − E)b , where A = I + ν

(
D

d1
+

2πDd2

d1κ2A

)
(I − E) + 2πν(I − E)GN .543

From (4.2), we observe that if u3j = u3c for all j, then b = bce with bc = u2
3c/(κA + u2

3c). As a result, since544

(I − E)b = 0 we obtain that S = 0 from (4.2). This special solution, which satisfies q(u3c) = 0 in (2.3), is545

the common steady-state solution that exists for the intracellular kinetics with no bulk coupling.546

We can further simplify (4.2) and (4.1b) for a ring pattern of cells where the centers xk, for k = 1, . . . ,m,547

of the cells are equally-spaced on a ring concentric within the unit disk Ω. For such a ring pattern of cells,548

GN is a cyclic and symmetric matrix. As shown in §6 of [15], and summarized in Appendix B, the normalized549

matrix spectrum of GN , labeled by GNvj = gN,jvj for j = 1, . . . ,m, is550

gN,1 = RN1 +
m∑
k=2

GN (x1; xk) , v1 =
1√
m

e ,

gN,j = RN1 +
m∑
k=2

GN (x1; xk) cos (θj(k − 1)) , θj ≡
2π(j − 1)

m
,

vj =

√
2

m
(1, cos (θj) , . . . , cos (θj(m− 1)))T , vm+2−j =

√
2

m
(0, sin (θj) , . . . , sin (θj(m− 1)))T ,

(4.3)551

for j = 2, . . . , dm/2e. Here the ceiling function dxe is defined as the smallest integer not less than x. When552

m is even, there is an additional eigenvector vm
2

+1 = m−1/2(1,−1, . . . ,−1)T . Since (I−E)v1 = 0, while the553

other eigenvectors satisfy (I − E)vj = vj owing to vTj e = 0 for j = 2, . . . ,m, it follows that the eigenspace554

of GN simultaneously diagonalizes the matrix I − E. In Appendix B, we give an explicit formula for the555

Neumann Green’s function in the unit disk, which determines gN,j analytically from (4.3).556

By diagonalizing A as A = QΛQT , where Q is the orthogonal matrix whose columns are the normalized557

eigenvectors vj of GN , with eigenvalues558

(4.4) Λ ≡ diag(a1, . . . , am) , where a1 = 1 , aj = 1 + ν

(
D

d1
+

2πDd2

d1κ2A
+ 2πgN,j

)
, j = 2, . . . ,m ,559

we can readily invert A in (4.2). In this way, and by using eT (I − E) = 0 and vTj (I − E) = vTj , we can560

calculate S in terms of u3 explicitly in (4.2) as561

(4.5) S = −ν
(
d2κ1A

d1κ2A

)
QΛ−1QT (I − E)b = −ν

(
d2κ1A

d1κ2A

) m∑
k=2

1

ak
vkv

T
k b .562

Here a2, . . . , am are the eigenvalues of A given in (4.4) and b = b(u3) is defined in (4.1d). Finally, upon563

substituting the components of S from (4.5) into Q(u3j , Sj) = 0, as given in (4.1b), we obtain a nonlinear564

algebraic system only for u3j , for j = 1, . . . ,m. For the examples in §4.4, this lower dimensional nonlinear565

algebraic system is solved numerically using the continuation software MATCONT [8] in which κ2A is the566

bifurcation parameter. The initial guess for MATCONT is the two-term asymptotics in (3.23).567
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4.2. Lux Kinetics with Bulk Loss Terms. In this subsection we apply the steady-state theory of §3.1568

to Lux kinetics when there is bulk degradation. The key difference between the analysis here and in §4.1 is569

the presence of QS behavior. We will assume for simplicity that the cells have identical paramaters.570

Principal Result 6. With Lux kinetics and with bulk degradation, so that γ and κ are not both zero, the571

NAS (3.13) characterizing the steady-states of the cell-bulk model (1.3) and (1.5) reduces to a nonlinear572

system for S and u3 given by573

AS = − νd2

d1κ2A
(ce + κ1Ab) , where A ≡

(
1 + ν

D

d1
+

2πd2Dν

d1κ2A

)
I + 2πνG ,(4.6a)574

Q(u3j , Sj) = 0 , j = 1, . . . ,m .(4.6b)575576

Here Q is defined in (4.1b) with the cell index j suppressed, while b is defined in (4.1d). The other components577

of uj are given in terms of u3j by (4.1e) with κ2Aj = κ2A for j = 1, . . . ,m. When the cells are equally-spaced578

on a ring concentric in the unit disk, there exists a solution branch of (4.6) with S = νSce and u3j = u3 for579

all j = 1, . . . ,m, for which580

(4.7) Sc = − d2

d1κ2A

(
c+

κ1Au
2
3

κA + u2
3

) (
1 + ν

D

d1
+

2πd2Dν

d1κ2A
+ 2πνg1(m)

)−1

.581

On this solution branch, (4.6b) reduces to the single algebraic equation qring(u3) = 0 defined by582

(4.8) qring(u3) ≡ 1

κring(m)κ2Rκ5

(
c+

κ1Au
2
3

κA + u2
3

)(
1 +

κ1Ru
2
3

κR + u2
3

)
− u3 ,583

where the effective bifurcation parameter κring is given by584

(4.9) κring(m) ≡ κ2A +
2πDνd2/d1

1 + ν Dd1 + 2πνg1(m)
.585

Here g1(m) is the eigenvalue of the (cyclic) Green’s matrix G corresponding to the eigenvector e ≡ (1, . . . , 1)T .586

The steady-state solutions here are accurate to all orders of ν ≡ −1/ log ε.587

Proof. The derivation of (4.6) from the NAS (3.13) is similar to that for the case of no bulk degradation588

and is omitted. To derive (4.7) for a ring pattern, we use the fact that G is cyclic so that e is an eigenvector589

of A in (4.6a). As such, by setting S = νSce and u3 = u3e in (4.6a), we obtain (4.7) for Sc. Finally, we590

substitute Sc into Q(u3, Sc) = 0 in (4.6b) to readily derive (4.8) and (4.9).591

Principal Result 6 shows that, with bulk degradation, QS behavior can occur on the branch of equilibria592

with S = νSce and uj = u, for j = 1, . . . ,m. The algebraic equation in (4.8) has exactly the same form as593

that for the equilibria of the uncoupled system q(u3) = 0, except that κring(m) replaces κ2A in the definition594

of q given in (2.3). Therefore, changes in the population size m effectively changes the value of κ2A according595

to (4.9) and can result in a passage beyond the saddle-node point in the bifurcation diagram of u3 versus596

κ2A, as computed in §2 (see Fig. 2.1). In this way, changes in the population size can result in a QS transition597

between equilibria, i.e. between downregulated and upregulated states or vice versa. In contrast, recall from598

our analysis in §4.1, that the branch of equilibria with uj = u, for j = 1, . . . ,m, is biologically uninteresting599

in terms of QS behavior.600

The critical population mc required for a QS transition from a downregulated to an upregulated steady-601

state for a ring pattern in the unit disk is easily computed numerically. To do so, we first use (B.2) of602
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Figure 4.1: QS behavior for a ring pattern in the unit disk with parameters in (4.10) and Table 1. Left panel:
κring versus m from (4.9). The dashed line is the saddle-node point κc of κring for (4.8). Right panel: Steady-state
bifurcation diagram of u1 from Principal Result 6 with κring = κc shown (vertical dashed line). The equilibria for
the computed values of κring for m ≥ 1 shown in the left panel are indicated. When m increases beyond the critical
population size mc = 4, the lower stable branch ceases to exist and there is a transition to the upregulated state.

Appendix B to calculate the matrix entries of G, which yields g1(m) from (B.3). Next, the saddle-node value603

κc of κ2A is calculated by simultaneously solving q(u3) = q′(u3) = 0 for u3 and κc, with q defined in (2.3).604

For a given κ2A, the critical population threshold mc is the minimum value of m (if it exists) for which κring605

in (4.9) satisfies κring < κc. Here we use the fact that κring is a decreasing function of m (see Fig. 4.1a).606

For this critical population mc, the asymptotic theory predicts that there is a transition to the upregulated607

state. A similar argument applies for calculating the critical population threshold for a transition from the608

upregulated state to the downregulated state as m decreases.609

We illustrate Principal Result 6 for a ring pattern of identical cells in the unit disk for the parameters610

(4.10) D = 1 , ε = 0.01 , d1 = d2 = 0.5 , r0 = 0.5 , κ = 0.5 γ = 1 , κ2A = 5.5 , κDR = 0.0125 ,611

with the other parameters as in Table 1. In Fig. 4.1b we plot the bifurcation diagram of the steady-state612

u1 versus κring, as obtained by first solving (4.8) for u3 and then using (2.2) to relate u1 to u3. This613

plot is identical to Fig. 2.1e but where the horizontal axis is now κring. The saddle-node value κc ≈ 6.16,614

characterizing the non-existence of the downregulated state, is shown by the vertical dashed line. In Fig. 4.1a615

we use (4.9) to plot κring for discrete values of m ≥ 1, and we mark the corresponding steady-state as616

u1 = u1(m) in the bifurcation diagram in Fig. 4.1b. We observe that κring dips below κc when m = 4,617

which leads to a QS transition from the downregulated to the upregulated steady-states. In addition, the618

hysteresis structure in Fig. 4.1b implies that the transition back to a downregulated state will not occur as619

m decreases for this parameter set. The linear stability properties of these steady-states, as obtained from620

the GCEP (3.18) using the methodology described below in §4.3, is shown in Fig. 4.1b.621

Finally, we remark that (4.7)–(4.9) can be used not just for a ring pattern, but for any spatial config-622

uration {x1, . . . ,xm} of cells in a 2-D domain Ω for which e ≡ (1, . . . , 1)T is an eigenvector of G. It is an623

open problem to identify such symmetric patterns of cells in an arbitrary 2-D domain Ω.624

4.3. Linear stability theory with Lux kinetics. To implement the linear stability theory based on the625

GCEP (3.18) for the Lux kinetics, we must calculate the number, N , of zeroes of detM(λ) = 0 in Re(λ) >626

0 along the solution branches of the NAS, as given by (4.1) or (4.6) with or without bulk degradation,627
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respectively. To do so, we use a line-sweep method along the positive real axis λ > 0 to count the number628

of unstable real eigenvalues. We also use a winding-number algorithm to detect all unstable eigenvalues in629

Re(λ) > 0. For cell patterns in the unit disk, the eigenvalue-dependent Green’s matrix Gλ, as needed in the630

GCEP matrix M(λ) in (3.18a), is determined analytically by (B.2) of Appendix B.631

In the line-sweep approach, we look for sign changes of detM̂(λ) over the segment λ ∈ (0,R] of the632

positive real axis, for some R � 1. Here, ˆM(λ), as defined in (3.22), is the diagonal scaling of the GCEP633

matrix M(λ) in (3.18a). In contrast to using detM(λ), which has poles at the eigenvalues of the cell634

Jacobians, detM̂(λ) is continuous on λ ∈ (0,R]. For the special case of a ring pattern of cells in the unit635

disk, where mode degeneracy occurs, detM̂(λ) will have a double root at certain positive real eigenvalues,636

and so detM̂(λ) will not change sign at these points. The required modification of the line-sweep strategy637

to identify unstable real eigenvalues for such ring patterns is discussed below.638

To detect instabilities associated with complex eigenvalues, we use the winding-number approach of [15]639

and [19]. In the complex λ plane, we let ΓR ⊂ C, with R > 0, denote the counterclockwise-oriented closed640

curve consisting of the union of the line segment −iR ≤ λ ≤ iR and the semi-circular arc λ = Reiω, with641

−π/2 ≤ ω ≤ π/2. From the argument principle of complex analysis, and by letting R →∞, the number of642

roots N of detM(λ) = 0 in Re(λ) > 0 is643

(4.11) N = lim
R→∞

WΓR + P .644

Here WΓR is the winding number of detM(λ) over ΓR, which is calculated numerically using a line-sweep645

over the contour together with the algorithm in [2]. In (4.11), P is the number of poles of detM(λ) in λ > 0,646

which is easily calculated since these poles can only occur at the eigenvalues of the cell Jacobians.647

The line-sweep and winding-number approaches to detect instabilities applies with and without bulk648

degradation. However, since with no bulk loss, where γ = κ = 0, the Green’s matrix Gλ in M does not649

exist when λ = 0, we must avoid evaluating detM̂ and detM at λ = 0. For the winding-number approach,650

this issue is circumvented by simply shifting the entire contour very slightly to the right. As shown in651

Principal Result 4, since λ = 0 crossings can only occur at bifurcation points of the NAS (4.1) and (4.6),652

these crossings are readily detected from a numerical solution of the NAS.653

For the special case of a ring pattern of identical cells concentric within the unit disk, and with bulk654

degradation, we can simplify the implementation of the linear stability theory for symmetric solutions of the655

NAS (4.6), where S = νSce as given in (4.7). For such a ring pattern, M(λ) in (3.18a) reduces to656

(4.12) M(λ) =

(
1 + ν

D

d1
+ 2πDν

d2

d1

M11

det(λI − J)

)
I + 2πνGλ ,657

where M11, as defined in (3.18c), is independent of j. Since Gλ is cyclic and symmetric, its matrix spectrum is658

given explicitly in (B.3) of Appendix B. As a result, the condition detM(λ) = 0, is reduced to the following659

scalar root-finding problems Fj(λ) = 0, for j = 1 . . . ,m, based on the eigenvalues of M(λ):660

(4.13) Fj(λ) ≡ gλ,j +
1

2πν

(
1 + ν

D

d1

)
+
Dd2

d1

M11

det(λI − J)
, j = 1, . . . ,m661

Here gλ,j is the eigenvalue of Gλ with corresponding eigenvector vj (see (B.3) of Appendix B).662

Any root of F1 = 0 is an eigenvalue of the GCEP for the synchronous mode v1 = e. In contrast, roots of663

Fj = 0, for j = 2, . . . ,m, are eigenvalues for the asynchronous modes associated with the (m−1)-dimensional664

orthogonal subspace to e. As shown in Appendix B, whenm is odd, the eigenvalues of Gλ for the asynchronous665

modes have a geometric multiplicity of two. However, when m is even, there is an additional eigenvalue of666
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multiplicity one associated with an asynchronous mode with eigenvector vm/2+1 = (1,−1, 1, . . . ,−1)T . In667

summary, for a symmetric ring pattern, for a root-finding problem based on (4.13) we need only consider the668

synchronous j = 1 mode and dm/2e distinct asynchronous modes, while ensuring that unstable eigenvalues669

of the asynchronous modes are counted with the correct multiplicity.670

For a symmetric ring pattern, the line-sweep procedure outlined above is modified to seek sign changes671

of F̂j(λ) ≡ Fj(λ) det(λI − J), which is continuous on 0 < λ ≤ R. Since detM̂ may not change sign near672

some of its roots as λ is swept across the real axis for a symmetric ring pattern, by instead using F̂j in the673

line-sweep procedure we will have simple zero-crossings at unstable eigenvalues of the GCEP. The linear674

stability properties of the steady-states shown in Fig. 4.1b were deduced from this approach.675

4.4. Illustration and validation of the theory with no bulk loss. With no bulk degradation, we now676

illustrate the steady-state and linear stability theory in §4.1 and §4.3 for a ring pattern, with ring radius r0,677

of m identical cells in the unit disk for the parameter set678

(4.14) D = 1 , γ = κ = 0 , ε = 0.05 , d1 = d2 = 0.1 , r0 = 0.25 , κDR = 0.0125 ,679

with the other parameters as in Table 1. Recall from the lower row of Fig. 2.1 that with κDR = 0.0125 the680

Lux ODE system for an isolated cell has at most three steady-states. From using MATCONT [8] on the681

NAS obtained by substituting S from (4.5) into (4.1b), we obtain the steady-state bifurcation diagram in682

Fig. 4.2 of u11 versus κ2A for m = 2 and m = 3, as obtained from (4.1e). The results are shown only for683

m = 2, 3, as the bifurcation structure of equilibria becomes increasingly complex for larger m. However, the684

main branch of equilibria, where u3 = uce and S = 0, is independent of m and is easy to compute.685

For each point in the bifurcation diagram shown in Fig. 4.2, we use the line-sweep and winding-number686

algorithms, described in §4.3, to determine the linear stability properties of the steady-state. With this687

methodology, the different line styles in Fig. 4.2 indicate the number of unstable eigenvalues in Re(λ) > 0 of688

the GCEP (3.18). As predicted by Lemma 3.1, we observe for m = 2 and m = 3 that along the main branch689

of equilibria in Fig. 4.2, where u3 = uce and S = 0, stability is lost at the saddle-node points associated with690

the uncoupled Lux ODE kinetics. This zero-eigenvalue crossing corresponds to the synchronous mode v1 in691

(4.3). A little further along the unstable branch, the asynchronous mode goes unstable, which for m = 3692

corresponds to a zero-eigenvalue crossing of multiplicity of two. The bifurcating branches for m = 2, which693

form a closed loop, undergo two additional bifurcations where stability is gained and then lost as the curve694

is traversed counter-clockwise. The key observation from the bifurcation diagram in Fig. 4.2a when m = 2695

is that there is a parameter range of κ2A where there exists a linearly stable steady-state solution in which696

the two cells have different intracellular concentrations (yellow stars in Fig. 4.2a).697

The bifurcation structure for m = 3 is more intricate. Along the main branch with S = 0, there are four698

additional branches that bifurcate from the zero-eigenvalue crossing for the degenerate asynchronous modes699

v2 and v3 in (4.3), forming two pairs of solution branches. Each pair forms a closed loop similar to the one700

shown for m = 2. On each loop, two of the three cells have identical intracellular concentrations. On one701

of the loops, there is an additional bifurcating branch on which all three cells have different concentrations.702

This branch appears to cross the main branch at around κ2A ≈ 7.6; however, the apparent intersection is703

not a bifurcation, but is due to projecting the equilibria onto the u11 versus κ2A plane. There is no zero-704

eigenvalue crossing for the GCEP at the apparent intersection. There are also apparent intersections of the705

two loop structures which, for the same reason, do no correspond to bifurcations.706

Next, we discuss the bifurcation structure in Fig. 4.2 with regards to the predictions from the two-term707

asymptotic theory in §3.3 for bistable intracellular kinetics. The stable branches not belonging to the main708

branch in Fig. 4.2 correspond to steady-states constructed from ‘stable’ cells. Recall from §3.3 that a cell is709

termed ’stable’ if its intracellular concentrations are associated with a stable steady-state in the uncoupled710
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Figure 4.2: Bifurcation diagrams of u11 when m = 2 (left) or m = 3 (right) cells for a ring pattern in the unit disk
with no bulk degradation. The main branch with S = 0 is the one that passes through the green star and the green
circle in the left panel. Line styles are labeled by N , the number of unstable eigenvalues of the GCEP in Re(λ) > 0.
Blue branches indicate linearly stable steady-states while all others are unstable. Points marked with stars indicate
where FlexPDE [12] numerical solutions of the cell-bulk model are performed. The green circle denotes a point where
the line-sweep and winding-number methods are shown in Fig. 4.3. Parameters as in (4.14) and Table 1.

problem. For example, consider the branch with m = 2 cells where one of the cells is ‘on’ and the other is711

‘off’. Observe that this branch is stable and loses stability when one of the cells becomes associated with an712

unstable part of the main branch. Similar reasoning applies to the m = 3 case.713

To verify that the line-sweep method yields the correct number of eigenvalues in Re(λ) > 0, we now714

compare the results from this method with those obtained from the winding-number algorithm described715

in §4.3. We give one illustration of this in Fig. 4.3 for the steady-state indicated by the green circle on the716

main branch shown in Fig. 4.2a where m = 2. For the asynchronous mode j = 2, in Fig. 4.3a we show717

that F̂2(λ) ≡ F2(λ) det(λI − J), where F2(λ) is defined in (4.13), has a unique positive root in λ > 0. In718

Fig. 4.3b, where we plot the real and imaginary parts of F2 over the closed contour ΓR as defined in the719

winding-number algorithm in §4.3, we observe that the winding number of F2 over this contour is zero.720

Moreover, since the green circle is on the main branch in Fig. 4.2a, where S = 0, the steady-states are721

identical to those of an isolated cell. Since the cell Jacobian has a single positive eigenvalue, then F2 has722

a simple pole in Re(λ) > 0. Therefore, by applying (4.11) to F2 we get P = 1 and limR→∞W
ΓR = 0, so723

that N = 1. We deduce from the winding-number method that there is a unique unstable eigenvalue for724

the asynchronous j = 2 mode, in agreement with the conclusion in Fig. 4.3a from the line-sweep method.725

Similarly, at the green circle in Fig. 4.2a, the line-sweep and winding-number methods applied to F1(λ)726

yields that N = 1 for the synchronous j = 1 mode. In this way, at the green circle in Fig. 4.2a there are a727

total of two unstable eigenvalues in Re(λ) > 0 for the GCEP (3.18).728

While the additional branches that bifurcate from the main branch in Fig. 4.2 are intricate, most of them729

are unstable and do not play a role in QS. It is unclear whether or not QS behavior can occur in the few such730

branches that are stable. The fact that QS behavior is not present on the main branch of equilibria, which731

corresponds essentially to the case of m isolated cells, indicates that there can be no collective response732

without the presence of bulk loss terms. The model of [27] exhibits QS behavior because the Dirichlet733

condition on the domain boundary ∂Ω is a source of bulk loss.734

To confirm the predictions of the asymptotic theory we used FlexPDE [12] to compute numerical solutions735
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Figure 4.3: Line-sweep and winding number computation for the roots of F2(λ) = 0 from the GCEP, as defined in
(4.13) for the asynchronous j = 2 mode, at the steady-state marked with a green circle in Fig. 4.2a where m = 2 and
κ2A = 6.5. Left panel: F̂2(λ) ≡ F2(λ) det(λI − J) on the positive real axis λ > 0 showing a unique positive root
at λ ≈ 0.7. Right panel: F2(λ) in the complex plane over the semi-circular contour ΓR in Re(λ) > 0 with R = 50,
showing a zero winding number.
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Figure 4.4: Left panel: FlexPDE [12] numerical solution for u1j versus t from the cell-bulk system (1.3) and (1.5) for
the parameter set in (4.14) and Table 1, with κ2A = 8 and m = 2. The steady-state predicted from the asymptotic
theory, marked with a green star in Fig. 4.2a, is indicated by the dashed line in the left panel. Right panel: snapshot
of the nearly spatially uniform bulk solution at a time near the steady-state showing two downregulated cells.

of the cell-bulk model in (1.3) and (1.5) at the starred points shown in Fig. 4.2a with m = 2 for the parameters736

in (4.14) and Table 1. In the FlexPDE computations, the relative error tolerances were selected as 5× 10−5,737

while the meshing of the unit disk was done automatically and was adaptively refined to achieve the desired738

accuracy. The BDF2 method was used for the time-stepping.739

Fig. 4.4 shows the FlexPDE [12] numerical solution for m = 2 and κ2A = 8, which corresponds to the740

monostable regime where only the downregulated steady-state exists. The initial conditions were are all741

chosen to be zero. The unique steady-state has uj = u for j = 1, 2. Since the FlexPDE results for the742

intracellular concentrations for each component of uj are nearly identical throughout the computation, only743

the u11 component is shown in the left panel of Fig. 4.4. In this figure, we also plot the steady-state predicted744

from the asymptotic theory, denoted by the green star in Fig. 4.2a. The numerically computed bulk solution745

near the steady-state is shown in the right panel of Fig. 4.4.746

In Fig. 4.5 we show FlexPDE [12] results for m = 2 and κ2A = 7.5, which corresponds to the bistable747
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Figure 4.5: Left panel: FlexPDE [12] numerical solution for u1j versus t from the cell-bulk system (1.3) and (1.5) for
the parameter set in (4.14) and Table 1, with κ2A = 7.5 and m = 2. The steady-state predicted from the asymptotic
theory, marked by the two yellow stars in Fig. 4.2a, is indicated by the dashed lines in the left panel. Right panel:
snapshot of the bulk solution near equilibrium showing one downregulated and one upregulated cell.

regime where one of the cells is upregulated while the other is downregulated. The predicted steady-states748

from the asymptotic theory, as denoted by the yellow stars in Fig. 4.2a, are also plotted. The initial749

conditions for the numerical calculations were chosen near the predicted steady-state. The numerically750

computed spatially non-uniform bulk solution near the steady-state is shown in the right panel of Fig. 4.5.751

We observe that one of the cells is acting as a sink of AI, with positive flux into the cell, while the other752

acts as a source of AI, with an equal amount of flux out of the cell.753

4.5. Illustration and validation of the theory with bulk loss. With bulk degradation, we first illustrate754

our asymptotic prediction in Principal Result 6 for a QS transition for a ring pattern in the unit disk when755

(4.15) D = 1 , γ = 1 , κ = 0 , ε = 0.05 , d1 = d2 = 0.5 , r0 = 0.25 , κDR = 0.0125 ,756

with the remaining parameters as in Table 1. For these parameters in the Lux kinetics, which correspond757

to the lower row in Fig. 2.1, the saddle-node point on the solution branch of qring(u3) = 0 in (4.8) is at758

κring = κc ≈ 6.16. Then, by using (4.9) for κring(m), we calculate that κring(2) ≈ 6.26 and κring(3) ≈ 6.10.759

Since κring(3) < κc, this predicts that a quorum is achieved at a population of three.760

To confirm this QS threshold from the asymptotic theory, in Fig. 4.6 we show FlexPDE [12] simulations761

of the cell-bulk model (1.3) and (1.5) for m = 2 and for m = 3, as obtained using the initial conditions762

(4.16) uj(0) =
(
0.3, 0.3, 3 · 10−3, 3 · 10−7

)T
, j = 1, . . . ,m ; U(x, 0) =

d2

d1
u11 .763

These initial conditions are close to the downregulated state for m = 2. As predicted by the asymptotic764

theory, from Fig. 4.6 we observe that when m = 2 the FlexPDE numerical solution of the cell-bulk model765

remains close to the initial condition, with all cells in the downregulated state. In contrast, for the same766

initial conditions (4.16) but with m = 3, the FlexPDE results in Fig. 4.6 confirm that there is a transition767

to the upregulated steady-state, which suggests that the downregulated steady-state no longer exists. The768

predicted intracellular steady-states from the asymptotic theory are obtained by first numerically solving769

qring(u3) = 0 in (4.8) for u3, and then using the common source strength Sj = νSc from (4.7) in (4.1e). The770

resulting bistable steady-states for u11 are shown in the left panel of Fig. 4.6 together with the FlexPDE771

results for u11. Snapshots of the FlexPDE result for the bulk solution at a time near equilibrium is shown772

in the middle and right panels of Fig. 4.6 for m = 2 and m = 3, respectively.773
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Figure 4.6: FlexPDE [12] numerical results for the cell-bulk model (1.3) and (1.5) for a ring pattern of m = 2, 3 cells.
Left panel: u11 versus t. The solutions in each cell are identical. The dashed lines are the asymptotic predictions for
the bistable states. Middle and right panels: snapshot of the bulk solution near equilibrium for m = 2 (middle) and
m = 3 (right). The bulk solution is spatially non-uniform for both m = 2 and m = 3. For m = 3, the cells are in the
upregulated state. Parameters as in (4.15) and Table 1.

Next, we derive a result analogous to that in (4.8) and (4.9) of Principal Result 6, which can be used to774

predict QS behavior for an arbitrary spatial configuration of identical cells. For an arbitrary cell pattern,775

the NAS in (4.6) admits a leading-order-in-ν solution of the form S ∼ νSce +O(ν2) and uj = uce +O(ν).776

However, since the cell locations and cell population m only arise at O(ν2) for S, we must derive a result777

for S that is accurate to O(ν2) in order to detect QS behavior. Our result is summarized as follows:778

Principal Result 7. For ν → 0, on the solution branch where S = νSce +O(ν2), the NAS (4.6) decouples779

into m scalar nonlinear algebraic equations qj(u3j ;m) = 0, for j = 1, . . . ,m, where780

(4.17) qj(u3j ;m) ≡ 1

κj(m)κ2Rκ5

(
c+

κ1Au
2
3j

κA + u2
3j

)(
1 +

κ1Ru
2
3j

κR + u2
3j

)
− u3j .781

In (4.17), the effective parameter, κj(m), depending on both the cell index j and cell population m, is782

(4.18) κj(m) ≡ κ2A +
2πDνd2/d1

1 + ν Dd1 + 2πν (Ge)j
.783

Here G is the Green’s matrix, with matrix entries determined by (3.11), while (Ge)j denotes the jth component784

of Ge with e ≡ (1, . . . , 1)T . The steady-states for the intracellular species, as determined from the roots of785

qj = 0 and together with (4.1e) in which Sj is given by786

(4.19) Sj = − νd2

d1κ2A

(
c+

κ1Au
2
3j

κA + u2
3j

)(
1 + ν

D

d1
+

2πd2Dν

d1κ2A
+ 2πν (Ge)j

)−1

+O(ν3) ,787

are accurate up to and including order O(ν2).788

Proof. We first determine the jth component Sj of S accurate to order O(ν2), but without formally789

expanding it in powers of ν. In component form, the matrix equation in (4.6a) yields790

(4.20) Sj

(
1 + ν

D

d1
+

2πd2Dν

d1κ2A
+ 2πν

(GS)j
Sj

)
= − νd2

d1κ2A

(
c+

κ1Au
2
3j

κA + u2
3j

)
, for j = 1, . . . ,m .791
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Since S ∼ νSce to leading order in ν, it follows that (GS)j /Sj ∼ (Ge)j + O(ν). By using this estimate in792

(4.20) we obtain (4.19) for Sj . Then, by using (4.19) for Sj , we set Q(u3j , Sj) = 0 in (4.6b), with Q as793

defined in (4.1b). This readily yields (4.17) with the effective parameters κj(m) as given by (4.18).794

For the special case of a ring pattern in the unit disk, where (Ge)j = g1(m), the effective parameter795

κj(m) is independent of j and reduces to κring in (4.9), with the corresponding result being accurate to all796

orders in ν. Although less accurate for an arbitrary cell pattern, the effective parameter in (4.18) is a natural797

generalization of that for the ring pattern. Moreover, we observe from (4.18) that to leading-order in ν we798

have κj = κ2A +O(ν), so that u3j = u3 +O(ν) and Sj ∼ νSc +O(ν2), from (4.17) and (4.19).799

The prediction of QS behavior for an arbitrary cell pattern using Principal Result 7 is similar to that for800

a ring pattern based on (4.8) and (4.9). The key difference here for an arbitrary cell pattern is that each cell801

has its own effective parameter κj , which depends on the the cell population m, the spatial configuration802

{x1, . . . ,xm} of all the cells through the term (Ge)j in (4.18), and the bulk parameters d1, d2, and D. As m803

increases, we conclude that if κj decreases below the saddle-node value κc for roots of (4.17), the asymptotic804

theory predicts that the jth cell will transition to the upregulated steady-state.805

To validate the QS transition predicted by (4.17) and (4.18) we use FlexPDE [12] to compute numerical806

solutions to the cell-bulk model (1.3) and (1.5) for the parameters in (4.15) and Table 1. The centers of807

either two or three cells are given in the caption of Fig. 4.7. The saddle-node point for (4.17) occurs at808

κj = κc ≈ 6.16, while from (4.18) the effective parameters κj(m), for j = 1, . . . ,m with m = 2, 3, are809

(4.21) κ1(2) ≈ 6.30 , κ2(2) ≈ 6.21 ; κ1(3) ≈ 6.13 , κ2(3) ≈ 6.09 , κ3(3) ≈ 6.09 .810

Since κj(2) > κc and κj(3) < κc for all j = 1, . . . ,m, the asymptotic theory predicts that the critical811

population for a QS transition to the upregulated state is m = 3. This prediction is confirmed in Fig. 4.7812

where we plot FlexPDE results for the L2-norm of u1 for m = 2 and m = 3 as well as for each component813

of u1 for m = 3 only. The steady-states predicted by the asymptotic theory in Principal Result 7 are also814

shown. Snapshots, near the steady-state, of the FlexPDE computed bulk solution in Fig. 4.7 for m = 2 and815

m = 3 further confirm that the QS transition to the upregulated state occurs when m = 3.816

5. The distinguished limit of large bulk diffusion. Allowing for bulk degradation, in this section we817

simplify the steady-state analysis of §4.2 for the large bulk diffusivity regime D = D0/ν, where ν = −1/ log ε818

and D0 = O(1). For this distinguished limit of D, the cell locations have only a weak effect on the overall819

behavior, while the number of cells have an O(1) effect on the steady-states. In §5.1, a simplified version of820

Principal Result 6 is derived that provides an explicit analytical criterion characterizing transitions between821

bistable steady-states for an arbitrary cell pattern. A similar, but more accurate result, is derived for a ring822

pattern in the unit disk. In §5.2 we asymptotically reduce the full ODE-PDE cell-bulk model (1.3)–(1.5)823

to a simpler ODE-DAE system that involves D0, and includes weak O(ν) effects resulting from the spatial824

configuration of cells. Results from this ODE-DAE system that predict QS behavior are compared with825

FlexPDE [12] computed from the cell-bulk model.826

5.1. Steady-State Solutions. To analyze the steady-state problem in the regime where D = D0/ν, with827

ν � 1, we first must approximate the Green’s function G(x,xi) in (3.11), which satisfies828

∆G− ν γ

D0
G = −δ(x− xi) , x ∈ Ω ; D0∂nG+ νκG = 0 , x ∈ ∂Ω ,(5.1a)829

G(x; xi) = − 1

2π
log|x− xi|+Ri + o(1) , as x→ xi .(5.1b)830

831

Since (5.1) has no solution when ν = 0, this fact motivates expanding G for ν � 1 as832

(5.2) G(x; xi) ∼ ν−1G−1(x; xi) +G0(x; xi) + νG1(x; xi) + · · · ,833
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Figure 4.7: FlexPDE [12] numerical results for the cell-bulk system (1.3) and (1.5) for a non-ring pattern of cells.
Top row: L2-norm of u1 for m = 2, 3 (left) as well as its components u1j for m = 3 (right) versus t. The steady-
states predicted by the asymptotic theory in Principal Result 7 are the dashed lines. Bottom row: snapshot of the
bulk solution near equilibrium for m = 2 (left) and m = 3 (right). The cells are in the upregulated state when

m = 3. Parameters as in (4.15) and Table 1. Cell locations are xxx1 = (0.25, 0)T , xxx2 = 0.75 (cos(4π/5), sin(4π/5))
T

and

xxx3 = 0.5 (cos(2π/5), sin(2π/5))
T

.

where G−1 is a constant. Upon substituting (5.2) into (5.1), we collect powers of ν to obtain that834

∆G0 =
γ

D0
G−1 − δ(x− xi) , x ∈ Ω ; ∂nG0 = − κ

D0
G−1 , x ∈ ∂Ω ,(5.3a)835

∆G1 =
γ

D0
G0 , x ∈ Ω ; ∂nG1 = − κ

D0
G0 , x ∈ ∂Ω .(5.3b)836

837

By using the divergence theorem on (5.3a), we readily identify the constant G−1 as838

(5.4) G−1 =
D0

β
, where β ≡ γ|Ω|+ κ|∂Ω| .839

Here |Ω| and |∂Ω| are the area of Ω and the perimeter of ∂Ω, respectively. Similarly, we can use the divergence840

theorem on (5.3b) to obtain an integral constraint on G0. By using these constraints, we obtain from (5.3a)841

that G0 is the unique solution to842

(5.5) ∆G0 =
γ

β
− δ(x− xi) , x ∈ Ω ; ∂nG0 = −κ

β
, x ∈ ∂Ω ; γ

∫
Ω
G0 dx = −κ

∫
∂Ω
G0 dsx .843

The unique solution to (5.5) is decomposed as844

(5.6) G0(x; xi) = GN (x; xi)−
κ

β
H(x) +G0 ,845
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where GN is the Neumann Green’s function satisfying (3.5), the constant G0 is the spatial average of G0,846

while H(x) is the unique solution to847

(5.7) ∆H =
|∂Ω|
|Ω|

, x ∈ Ω ; ∂nH = 1 , x ∈ ∂Ω ;

∫
Ω
Hdx = 0 .848

By using Green’s second identity, together with the reciprocity of the Green’s function, we obtain that849

(5.8) H(x) =

∫
∂Ω
GN (x; ξ) dsξ =

∫
∂Ω
GN (ξ; x) dsξ .850

In (5.6), the constant G0 depends on xi, and is determined by substituting (5.6) into the integral constraint851

in (5.5). This yields that852

(5.9) G0 = −κ
β
H(xi) +

κ2

β2
|∂Ω|H∂Ω , where H∂Ω ≡

1

|∂Ω|

∫
∂Ω
H dsx .853

Then, upon substituting (5.4), (5.6) and (5.9), into (5.2), we obtain the following two-term result for G and854

the associated Green’s matrix G, which is valid for D = D0/ν � 1:855

Lemma 5.1. For D = D0/ν � 1, we have for ν � 1 that the Green’s function in (5.1) satisfies856

(5.10) G(x; xi) ∼
D0

νβ
+GN (x; xi)−

κ

β
(H(x) +H(xi)) +

κ2

β2
|∂Ω|H∂Ω +O(ν) ,857

where GN is the Neumann Green’s function, H(x) is given in (5.8), and β = γ|Ω|+κ|∂Ω|. The corresponding858

Green’s matrix G, with matrix entries (G)ji = (G)ij = G(xj ; xi) for i 6= j and (G)ii = Ri, has the two-term859

asymptotics860

(5.11) G =
mD0

νβ
E + GN −

κ

β

(
HeT + eHT

)
+
mκ2

β2
|∂Ω|H∂ΩE +O(ν) ,861

where GN is the Neumann Green’s matrix, H ≡ (H(x1), . . . ,H(xm))T , E ≡ m−1eeT , and e ≡ (1, . . . , 1)T .862

By using (5.11) in (4.6), we obtain the following main result characterizing QS behavior for the cell-bulk863

model (1.3) and (1.5) with a collection of identical cells in the D = D0/ν � 1 regime:864

Principal Result 8. Let ε→ 0 and assume that D = D0/ν � 1 where ν ≡ −1/ log ε. Then, for a collection865

of m identical cells and with Lux ODE kinetics (1.5), the NAS (4.6) in Principal Result 6 for the source866

strengths S and the intracellular components u3 reduces to867 [(
1 +

D0

d1
+

2πd2D0

d1κ2A

)
I +

2πmD0

β
E + 2πνJ +O(ν2)

]
S = − νd2

d1κ2A
(ce + κ1Ab) ,(5.12a)868

Q(u3j , Sj) ≡
1

κ2Aκ2Rκ5

[
c+

2πD0

ν
Sj +

κ1Au
2
3j

κA + u2
3j

][
1 +

κ1Ru
2
3j

κR + u2
3j

]
− u3j = 0 , j = 1, . . . ,m ,(5.12b)869

870

where b = b(u3) is defined in (4.1d), while J is defined by871

(5.13) J ≡ GN −
κ

β

(
HeT + eHT

)
+
mκ2

β2
|∂Ω|H∂ΩE .872
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The steady-state bulk concentration in the outer region, U , and the other steady-state components of uj, for873

j = 1, . . . ,m, are determined in terms of S and u3 as874

U = −2π
m∑
i=1

SiG(x; xi) = −2πD0

νβ

m∑
i=1

Si +O(1) ,(5.14a)875

u1j =
1

κ2Aj

(
c+

2πD0

ν
Sj +

κ1Au
2
3j

κA + u2
3j

)
, u2j =

1

κ2R

(
1 +

κ1Ru
2
3j

κR + u2
3j

)
, u4j =

κ3

κ4
u2

3j .(5.14b)876

877

Moreover, by neglecting J in (5.12a), we conclude, for any spatial configuration of cells, that there is a878

branch of solutions of (5.12) for which S = νSce +O(ν2) and u3j = u3 +O(ν) for all j = 1, . . . ,m, where879

(5.15) Sc = − d2

d1κ2A

(
c+

κ1Au
2
3

κA + u2
3

)(
1 +

D0

d1
+

2πd2D0

d1κ2A
+

2πmD0

β

)−1

.880

On this branch, (5.12) simplifies to a single algebraic equation for u3, given by qeff(u3) = 0, where881

(5.16) qeff(u3) ≡ 1

κeff(m)κ2Rκ5

[
c+

κ1Au
2
3

κA + u2
3

] [
1 +

κ1Ru
2
3

κR + u2
3

]
− u3 ,882

with883

(5.17) κeff(m) ≡ κ2A +
2πD0d2/d1

1 + D0
d1

+
(

2πD0
β

)
m
.884

In addition, if qeff(u3) has saddle-node bifurcation points at κeff = κc such that locally there are no equilibria885

for κeff < κc (κeff > κc), then a transition to the upregulated (downregulated) state occurs at the critical cell886

population m = mc, given in terms of the ceiling d·e and floor b·c functions by887

(5.18) mc =

⌈
β

d1

(
d2

κc − κ2A
− d1

2πD0
− 1

2π

)⌉
,

(
mc =

⌊
β

d1

(
d2

κc − κ2A
− d1

2πD0
− 1

2π

)⌋)
.888

Proof. First, we substitute the large D expansion (5.10) into the NAS (4.6) to obtain (5.12) and (5.13).889

Upon neglecting J in (5.12), (5.12) admits a solution of the form S = νSce and u3 = u3e + O(ν), where890

Sc is given in (5.15), for any spatial configuration of cells. Upon substituting Sj = Sc and u3j = u3 into891

(5.12b), we obtain (5.16) and (5.17). Since qeff(u3) has the same form as q(u3), as defined in (2.3), but with892

κ2A replaced by κeff(m), it follows from §2 (see Fig. 2.1) that the solution branches of qeff(u3) = 0 exhibit893

saddle-node bifurcations at critical thresholds κc of the parameter κeff. Since m is an integer and κeff is a894

decreasing function of m, we obtain (5.18) after isolating m in (5.17).895

Our main result in (5.18) characterizes the leading-order critical population level for QS behavior, which896

is independent of the spatial configuration of cells. In (5.18), the saddle-node bifurcation point, κc, can be897

computed numerically by solving q(u3) = 0 and q′(u3) = 0 simultaneously for u3 and κc. We remark that898

the two sources of AI loss, specifically the bulk decay and loss through the boundary, are indistinguishable899

processes to leading order. The loss coefficients γ and κ associated with the bulk degradation are contained900

in an aggregate loss parameter β ≡ γ|Ω| + κ|∂Ω|. Observe from (5.17) that κeff → κ2A as β → 0, which901

indicates that bulk loss is required for QS behavior. We remark that an O(ν) correction term to this902

leading-order QS threshold in (5.18), which would depend on the spatial pattern of cells, can in principle be903

calculated by including the matrix J in (5.12a). Our next result provides this higher order characterization904

of the QS threshold for a ring pattern in the unit disk.905
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Figure 5.1: Comparison of κring(m) − κ2A and the leading-order result κeff(m) − κ2A, as given in (4.9) and (5.17),
respectively. The exact κring − κ2A, indicated by the red circles, is computed using the exact eigenvalue g1 of G. The
blue crosses denote κring − κ2A using the two-term result for g1 in (5.19). The values of κring − κ2A depend on the
cell locations through the ring radius r0, while κeff − κ2A, denoted by the black squares, is independent of the cell
locations. Parameters are D = ν−1, ν = −1/ log ε, ε = 0.01, γ = 1, κ = 0.5, d1 = d2 = 0.5, and r0 = 0.3.

Principal Result 9. Let ε → 0 and D = D0/ν � 1 where ν ≡ −1/ log ε. Consider a ring pattern of m906

identical cells equally-spaced on a ring of radius r0 concentric within the unit disk. Then, the eigenvalue907

g1(m) of the Green’s matrix G for the effective parameter κring in (4.9) has the two-term expansion908

(5.19a) g1(m) =
mD0

νβ
+ gN1(m)− mκ

β

(
r2

0 −
1

2

)
+
mπκ2

2β2
+O(ν) , where β ≡ γ|Ω|+ κ|∂Ω| .909

Here gN1 is the eigenvalue GNe = gN1e of the Neumann Green’s matrix GN , given by (see (5.4) of [23])910

(5.19b) gN1(m) =
1

2π

(
−m log

(
mrm−1

0

)
− log

(
1− r2m

0

)
+mr2

0 −
3m

4

)
.911

Proof. Since κring, as given in (4.9) of Principal Result 6 for a ring pattern, is accurate to all orders in912

ν for any D > 0, it remains valid when D = D0/ν. This effective parameter depends on g1(m), as given by913

Ge = g1e. To derive (5.19) for g1(m), we use (5.11) to obtain a two-term expansion for G for a ring pattern.914

For the unit disk, we calculate from (5.7) and (5.9) that915

(5.20) H(x) =
1

2
|x|2 − 1

4
, H∂Ω =

1

4
, H(xi) =

1

2
r2

0 −
1

4
, for i = 1, . . . ,m .916

By using (5.20) and |∂Ω| = 2π in (5.11), we obtain for a ring pattern that917

(5.21) G =
mD0

νβ
E + GN −

mκ

β

(
r2

0 −
1

2

)
E +

mπκ2

2β2
E +O(ν) .918

Finally, to obtain (5.19) for g1(m), we simply calculate Ge using (5.21), GNe = gN1e, and Ee = e.919

For the D = D0/ν � 1 regime, the effective parameter κring in (4.9) for a ring pattern, which depends920

on g1(m) from (5.19), shows that QS behavior can be triggered by both increasing the population, m, as921

well as by changing the cell locations by varying the ring radius r0. The critical population, mc, is reached922

when κring crosses the saddle-node bifurcation point at κc.923

In Fig. 5.1 we compare values of κring(m) − κ2A from (4.9) as calculated by using either the two-term924

result (5.19) for g1 or the exact result for the eigenvalue of G, as obtained by using (B.2) of Appendix B to925
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Figure 5.2: Comparison of κring(m)− κ2A versus D, as given in (4.9), for a ring pattern with either m = 3 or m = 5
cells, and the corresponding result for the well-mixed D = D0/ν regime, where the two-term result for g1 in (5.19) is
used. As D increases, the two results agree as expected. Parameters are d1 = d2 = 0.5, and ring radius r0 = 0.3. Left
panel: κring(m)− κ2A is monotone increasing in D when ε = 0.01, κ = 0.5, and γ = 1. Right panel: κring(m)− κ2A is
no longer monotone in D with a stronger bulk loss where ε = 0.05, κ = 5, and γ = 40.

calculate the matrix entries of G. The parameter values used are in the caption of Fig. 5.1. The excellent926

agreement observed in Fig. 5.1 shows that the expansion (5.19) for g1 is a reasonable approximation in the927

distinguished limit. In Fig. 5.1, we also plot the leading-order result κeff(m) − κ2A in (5.17) for the same928

parameters. Since with ε = 0.01 we get ν ≈ 0.217, which is not very small, we observe from Fig. 5.1, as929

expected, that κeff provides only a moderately good prediction for κring.930

For a ring pattern with either m = 3 or m = 5 cells, in Fig. 5.2a we compare κring(m)− κ2A versus D,931

as given in (4.9), with the corresponding result for the D = D0/ν � 1 regime, where the two-term result932

for g1 in (5.19) is used. The parameter values are the same as in the caption of Fig. 5.1. We observe, as933

expected, that the two results agree more closely as D increases. Moreover, since κring(m)−κ2A is monotone934

increasing in D for both m = 3 and m = 5, we conclude that the QS transition is harder to achieve as D935

decreases. However, as observed in Fig. 5.2b, when the bulk loss is stronger, then κring(m)−κ2A is no longer936

monotone on the D = O(1) regime. This implies that there an optimal value of D, corresponding to where937

κring(m) − κ2A is minimized, for obtaining a QS transition. For D larger than this critical value, the bulk938

signal that provides the inter-cell communication is quickly degraded, while for D very small, the bulk signal939

remains confined near each cell and little inter-cellular communication occurs.940

To compare our asymptotic results with corresponding full numerical results computed from (1.3) and941

(1.5), we need to asymptotically calculate the average bulk concentration U , defined by942

(5.22) U ≡ 1

|Ω \ Ωε|

∫
Ω\Ωε

U dx , where Ωε ≡ ∪mj=1Ωεj .943

Since |Ω\Ωε| = |Ω|+O(ε2), we get U ∼ |Ω|−1
∫

Ω Udx+O(ε2). Then, we use (5.14a), the two-term expansion944

(5.10) for G, and
∫

ΩGN dx =
∫

ΩH dx = 0, to calculate the steady-state bulk average, U e, as945

(5.23) U e ∼ −2π
m∑
i=1

Si

(
D0

νβ
− κ

β
H(xi) +

κ2

β2
|∂Ω|H∂Ω

)
, for D = D0/ν � 1 ,946

which is valid for any spatial arrangement of cells in an arbitrary domain Ω. For a ring pattern in the unit947

disk, for which there is a branch of equilibria where S = νSce, with Sc given in (5.15), we use (5.20) to948
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Figure 5.3: FlexPDE [12] numerical solutions of the cell-bulk system (1.3) and (1.5) for m = 3 cells equally-spaced
on a ring of radius r0 in the unit disk, with either r0 = 0.15 or r0 = 0.55. The other parameters are given in (5.25)
and Table 1. Top row: u11 (left) and the bulk average U (right) versus t, along with the predicted steady-states from
the asymptotic theory (dashed lines). Observe that when r0 = 0.15, where the cells are more clustered, QS behavior
occurs as a transition to the upregulated steady-state. Bottom row: snapshot of the bulk solution near steady-state
for r0 = 0.55 (left) and r0 = 0.15 (right).

evaluate H and H∂Ω in (5.23), with the result949

(5.24) U e ∼ −2πmSc

[
D0

β
− ν κ

2β

(
r2

0 −
1

2

)
+ ν

πκ2

2β2

]
, for D = D0/ν � 1 .950

For a ring pattern in the unit disk, we now compare results from our asymptotic theory with full FlexPDE951

[12] results computed from the cell-bulk system (1.3) and (1.5). The parameters are chosen as952

(5.25) D0 = 1 , ε = 0.05 , γ = κ = 1 , d1 = d2 = 0.5 , m = 3 , κ2A = 5 , κDR = 0.0125 ,953

with the other parameters as in Table 1. For this parameter set, the effective bifurcation parameters are954

(5.26) κring(3) ≈ 6.12 , for r0 = 0.15 ; κring(3) ≈ 6.30 , for r0 = 0.55 .955

Since the fold point occurs at κc ≈ 6.16, the asymptotic theory predicts that the downregulated state does956

not exist when r0 = 0.15, and that a time-dependent transition to the upregulated state should occur for this957

more clustered arrangement of cells. This theoretical prediction is confirmed in Fig. 5.3 where results from958

the FlexPDE [12] simulations of (1.3) and (1.5) are shown with m = 3 cells for the ring radii r0 = 0.15 and959

r0 = 0.55. The initial conditions for the FlexPDE simulations were taken to be close to the downregulated960

state predicted from Principal Results 6, 8, and (9) near the fold point. The steady-states shown in Fig. 5.3961

are obtained by solving qeff = 0 numerically and then using (5.24) and (5.14b).962
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5.2. Asymptotic reduction to an ODE-DAE system. For D = D0/ν � 1, we now use the method963

of matched asymptotic expansions to reduce the cell-bulk ODE-PDE model (1.3)–(1.5) into an ODE-DAE964

system for the intracellular species and the average bulk concentration. In our analysis a ‘partial summing’965

technique is used where the leading order term contains the average bulk concentration accurate up to O(ν),966

instead of the usual O(1). Since a similar analysis was given in §3 of [19] for a Neumann boundary condition967

on ∂Ω, we only provide highlights of the derivation of the ODE-DAE system.968

We begin by deriving an ODE, without approximation, for the average bulk concentration U = U(t; ν),969

defined by (5.22). By integrating the bulk PDE in (1.3a) and using the divergence theorem, we obtain970

(5.27) U t + γU = − κ

|Ω \ Ωε|

∫
∂Ω
U dsx +

2π

|Ω \ Ωε|

m∑
j=1

(
d2ju1j −

d1j

2πε

∫
∂Ωεj

U dsx

)
.971

In the analysis below, the goal is to estimate U on ∂Ω as well as on each cell boundary ∂Ωεj .972

In the inner region near each cell we introduce the local variables yj ≡ ε−1(x − xj) and Uj(yj , t; ν) =973

U(xj + εyj , t; ν). It is readily seen that the leading order inner problem for the jth cell is the steady-state974

problem ∆yjUj = 0 for ρ = |yj | ≥ 1, subject to D0∂ρUj = ν(d1jUj − d2ju1j) on ρ = 1. The radially975

symmetric solution to this problem is written in terms of an unknown constant pj as976

(5.28) Uj = νpj log ρ+ U0
j , with U0

j =
D0

d1j
pj +

d2j

d1j
u1j , for j = 1, . . . ,m ,977

where Uj = U0
j on ρ = 1. By substituting (5.28) into (1.4) and (5.27), and by using |Ω\Ωε| = |Ω| +O(ε2),978

we obtain in terms of p ≡ (p1, . . . , pm)T that the intracellular species and the bulk average satisfies979

(5.29)
duj
dt
∼ Fj(uj) + 2πD0pje1 , j = 1, . . . ,m ; U t + γU ∼ − κ

|Ω|

∫
∂Ω
U dsx −

2πD0

|Ω|
eTp .980

From (1.3a), together with the far-field behavior of Uj in (5.28) when written in the outer variable, we981

obtain that the bulk solution in the outer region satisfies982

Ut =
D0

ν
∆xU − γU , x ∈ Ω \ {x1, . . . ,xm} ; D0∂nU = −κνU , x ∈ ∂Ω ,(5.30a)983

U ∼ νpj log |x− xj |+ pj

(
1 +

D0

d1j

)
+
d2j

d1j
u1j , as x→ xj , j = 1, . . . ,m .(5.30b)984

985

We now introduce our first approximation in ν by expanding this outer solution as986

(5.31) U(x, t) = U(t; ν) +
ν

D0
U1(x, t; ν) + . . . .987

We allow the terms in this series to depend on ν but enforce that U and U1 are O(1) so that the series is988

not disordered. In the analysis below, we will determine U accurate to O(ν), instead of the usual O(1), by989

employing a ‘partial summing’ technique. It is important here to clarify that U in the series above is the same990

U as in (5.27), which is accurate to all powers of ν. As such we impose U1 ≡ |Ω|−1
∫

Ω U1 dx = 0 for (5.31).991

However, in the analysis below we will truncate the approximation during the matching process, resulting992

in U0
j (or equivalently pj) being accurate to O(ν). In this way, the first term in (5.31) will approximate U993

to O(1) as usual, but the average will have an improved accuracy to order O(ν).994
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Upon substituting (5.31) into (5.30) we obtain that U1 satisfies:995

∆xU1 = U t + γU , x ∈ Ω \ {x1, . . . ,xm} ; ∂nU1 = −κU − κ

D0
νU1 , x ∈ ∂Ω ,(5.32a)996

U1 ∼ D0pj log |x− xj |+
D0

ν

[
pj

(
1 +

D0

d1j

)
+
d2j

d1j
u1j

]
− D0

ν
U , as x→ xj , j = 1, . . . ,m .(5.32b)997

998

By using the divergence theorem on (5.32) we recover (5.29) for U . Next, we neglect the O(ν) term in the999

boundary condition in (5.32a), and then decompose the solution to (5.32) as1000

(5.33) U1 = −2πD0

m∑
i=1

piGN (x; xi)− κUH(x) +O(ν) ,1001

where GN is the Neumann Green’s function satisfying (3.5), while H(x) is the unique solution to (5.7), as1002

given by (5.8). By expanding U1 as x→ xj , and comparing with the required behavior in (5.32b), we obtain1003

a linear algebraic system for p, which we write in matrix form as1004

(5.34) (I +D0D1 + 2πνGN ) p = Ue−D21u
1 − κ

D0
νUH +O(ν2) ,1005

where u1 ≡ (u11, . . . , u1m)T . Here GN is the Neumann Green’s matrix, D1 and D12 are the diagonal matrices1006

defined in (3.7b), while H ≡ (H(x1), . . . ,H(xm))T . By neglecting the O(ν2) term in (5.34), we obtain p,1007

accurate to O(ν), as needed in (5.29). Finally, we use U ∼ U + νU1/D0, with U1 given in (5.33), to estimate1008

the term
∫
∂Ω U dSx in (5.29) as1009

(5.35)

∫
∂Ω
U dsx ∼ U |∂Ω| − 2πνHTp− κ

D0
νU |∂Ω|H∂Ω , where H∂Ω ≡

1

|∂Ω|

∫
∂Ω
H dsx .1010

The ODE-DAE system, obtained by substituting (5.34) and (5.35) in (5.29), is summarized as follows:1011

Principal Result 10. For D = D0/ν � 1, the cell-bulk model (1.3) and (1.4) reduces to a finite-dimensional1012

ODE-DAE system, which is accurate up to and including terms of order O(ν), given by1013

U t +

(
β

|Ω|
− ν κ

2

D0

|∂Ω|
|Ω|

H∂Ω

)
U = −2πD0

|Ω|
eTp +

2πκ

|Ω|
νHTp ,(5.36a)1014

duj
dt

= Fj(uj)+2πD0e1pj , j = 1, . . . ,m ,(5.36b)1015

(I +D0D1 + 2πνGN ) p = Ue−D21u
1 − κ

D0
νUH ,(5.36c)1016

1017

where β ≡ γ|Ω|+ κ|∂Ω| is the aggregate bulk loss parameter. Here H ≡ (H(x1), . . . ,H(xm))T is defined by1018

(5.7) and (5.8), while the boundary average H∂Ω is given by (5.9). For ν � 1, (5.36c) yields1019

ppp ≈ 1

D0
C
(
Ueee−D21u

1 − κ

D0
νUH

)
+O(ν2) ,(5.37a)1020

C ≡
(
I − 2πν

D0
D̃−1

1 GN
)
D̃−1

1 , where D̃1 ≡ diag

(
1

d̃11

, . . . ,
1

d̃1m

)
, d̃1j ≡

D0d1j

D0 + d1j
.(5.37b)1021

1022

For the unit disk, GN is evaluated using (B.1) of Appendix B, while (5.20) determines H and H∂Ω.1023
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The result (5.37a) follows by first multiplying both sides of (5.36c) by (I +D0D1)−1 to get1024

(5.38)

(
I +

2πν

D0
D̃−1

1 GN
)

p =
1

D0
D̃−1

1

(
Ue−D21u

1
)
.1025

Then, upon using (I + νA)−1 ≈ I − νA on the left side of (5.38) we obtain the two-term result (5.37a).1026

For the special case where there is no boundary loss, i.e. κ = 0, we can use the leading order approxi-1027

mation C = D̃−1
1 +O(ν) in (5.37a), to obtain from (5.36a) and (5.36b) that1028

(5.39a) U t = −γU − 2π

|Ω|

m∑
j=1

(
d̃1jU − d̃2ju1j

)
;

duj
dt

= Fj(uj) + 2πe1

(
d̃1jU − d̃2ju1j

)
, j = 1, . . . ,m ,1029

where d̃1j ≡ D0d1j/(D0 + d1j) and d̃2j ≡ D0d2j/(D0 + d1j). However, with this leading-order approxima-1030

tion, the effect of the spatial configuration of the cells is lost. The classical ODEs in the well-mixed regime1031

D0 →∞ are readily obtained after noting that d̃1j → d1j and d̃2j → d2j when D0 →∞.1032

The ODE-DAE system (5.36), in which p is determined either by inverting the linear system in (5.36c) or1033

by using the explicit approximation (5.37a), characterizes how the intracellular species are globally coupled1034

through the spatial average of the bulk field. This system depends on the scaled diffusivity parameter D0,1035

it accounts for both sources of bulk degradation, and it includes the weak effect of the spatial configuration1036

xxx1 , . . . ,xxxm of the cells through the Neumann Green’s matrix GN . As a result, this ODE system can be used1037

to study quorum-sensing behavior and the effect of varying the cell locations.1038

5.3. Comparison of the reduced ODE-DAE dynamics with ODE-PDE simulations. For the unit disk1039

that contains a collection of identical cells, in this subsection we compare numerical solutions of the ODE1040

system in (5.36) with corresponding FlexPDE [12] results computed from the cell-bulk model (1.3) with Lux1041

kinetics (1.5). The ODE system was solved using the MATLAB [26] routine ode45. In the comparisons1042

below, all initial conditions for the ODE-PDE system as well as the limiting ODE dynamics were set to zero1043

unless otherwise stated. For the case where nonzero initial conditions were used, U(0) in the ODEs (5.36)1044

was chosen as the spatial average of U(x, 0) for consistency.1045

We first consider a ring pattern of m = 3 cells with ring radius r0, where the bulk parameters are1046

(5.40) ε = 0.05 , D0 = 1 , γ = 1 , κ = 0 , d1 = 0.5 , d2 = 0.5 , r0 = 0.25 .1047

In addition, the Lux ODE parameters are given in Table 1, with the following two exceptions:1048

(5.41) κDR = 0.0125 , and κ2A = 5 .1049

From (4.9) and (5.19), we calculate that κring(3) ≈ 5.71, so that only the upregulated steady-state exists.1050

The nearest bifurcation point to κeff is at κc ≈ 6.17, which is the fold point for the downregulated steady-1051

state. In Fig. 5.4 the intracellular dynamics and the bulk average, as computed from the ODE system (5.36)1052

both with and without the O(ν) correction term, are seen to compare very favorably with the FlexPDE [12]1053

results. These results confirm the predicted transition to the upregulated steady-state.1054

Next, we consider the effect of the spatial configuration of three cells, which arises in the ODEs (5.36)1055

from the Neumann Green’s matrix GN . In this example, we take the parameters as in (5.40), (5.41), and1056

Table 1, while fixing the cell centers as x1 = (0.5, 0)T , x2 = (0.23, 0.67)T , and x3 = (0.41, 0.3)T . In Fig. 5.5,1057

we show a favorable comparison between the ODE and FlexPDE results for both the bulk average as well as1058

the dynamics of the L2-norm of u1, . . . ,u4, where ui = (ui1, ui2, ui3)T . Although this figure shows that the1059
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Figure 5.4: Comparison between the intracellular components and the bulk average, as computed from the ODE
system (5.36), with and without the O(ν) terms, and the FlexPDE [12] results computed from (1.3) and (1.5) for a
ring pattern of three cells. The solution of the ODE-PDE model is nearly indistinguishable from both solutions of the
ODEs, but there is better agreement when the O(ν) terms are included. Due to symmetry, the solutions in the other
two cells are identical. Parameter values in (5.40), (5.41), and Table 1.

cell locations do have an impact on the spatial profile of the bulk solution (bottom right panel of Fig. 5.5),1060

for this example we observe that the effect of the cell locations on the intracellular dynamics or on the1061

bulk average is not so significant. This is further evidenced by superimposing in Fig. 5.5 the corresponding1062

leading-order ODE results for the ring pattern of Fig. 5.4.1063

Although not shown here, the ODE system (5.36) has been solved for a number of distinct arrangements1064

of three cells. We remark that the O(ν) terms in (5.36c) are more significant when the cells are placed closer1065

together or near the domain boundary (respecting the assumption of well-separated cells). This behavior is1066

due to the logarithmic singularity in the Neumann Green’s function as well as the fact that cells near the1067

domain boundary see an image cell centered at their inverse point to the disk.1068

Unfortunately, it is not computational practical to drastically increase the number of cells in the FlexPDE1069

computations of the full cell-bulk model (1.3) and (1.5) owing to the large computation time required. In1070

contrast, the limiting ODE system (5.36) can still be solved relatively quickly for much larger m. Our1071

detailed validation of the ODE dynamics with FlexPDE results for small m suggests that the ODEs (5.36)1072

would still give accurate results for the full cell-bulk model even as m increases.1073

For our next example, we use the ODEs (5.36) to study the effect of two distinct spatial arrangements of1074
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Figure 5.5: Comparison between the intracellular norms |uk|, for k = 1, . . . , 4, and the bulk average U , as computed
from either the ODEs (5.36) or from the cell-bulk model (1.3) and (1.5) using FlexPDE [12]. ODE results for the
generic pattern, with the cell centers x1 = (0.5, 0)T , x2 = (0.23, 0.67)T , and x3 = (0.41, 0.3)T , are also compared with
those for a ring pattern with ring radius r0 = 0.25. Parameter values in (5.40), (5.41), and Table 1.

25 cells in the unit disk. In order to fit 25 well-separated cells in the unit disk, ε is decreased from our usual1075

value of 0.05 to ε = 10−3. The resulting decrease in ν, from roughly 0.33 to ν ≈ 0.14, is not substantial1076

enough to preclude a significant effect from the spatial configuration of cells. The other parameters are1077

chosen as in (5.40), (5.41), and Table 1. For the first configuration, the cell centers are selected from a1078

uniform distribution over the entire unit disk, while for the second configuration the cell centers are chosen1079

uniformly over only a half-disk (see the left and middle panels of Fig. 5.6). For both cell patterns, in Fig. 5.61080

we plot the average bulk concentration versus time computed from the ODEs (5.36) where the O(ν) spatial1081

effects were included. The corresponding ODE result, where the O(ν) terms is neglected, is shown in Fig. 5.61082

to poorly approximate the bulk average for the second configuration where the cells are more clustered. This1083

example suggests that for a weakly-clustered cell configuration, such as in the middle panel of Fig. 5.6, it is1084

essential to include the Neumann Green’s matrix in the ODEs (5.36).1085

Finally, we use the ODE dynamics (5.36) to illustrate the effect of the spatial configuration of cells on1086

QS behavior. For this example, we first consider a ring pattern of cells with a ring radius r0 = 0.5 and1087

with κ2A = 5.9, where the other parameters are as in (5.40), (5.41), and Table 1. With these parameters,1088

solutions to the ODEs (5.36) are computed for m = 9, 10, 11 cells, with the results for the average bulk1089

dynamics shown in Fig. 5.7. The theoretical criterion κring > κc from (4.9) and (5.19) predicts that a1090
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Figure 5.6: Numerical solution (right panel) for U from the ODE system (5.36), with and without neglecting O(ν)
terms, for two distinct 25-cell arrangements consisting of cell centers chosen from a uniform distribution over the entire
disk (configuration 1, left) and the half-disk (configuration 2, middle). The cells are not drawn to scale so that they
can be seen. Parameter values in (5.40), (5.41), and Table 1.
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Figure 5.7: Numerical solution of the ODE system (5.36) illustrating QS behavior. The average bulk concentration is
shown in the top left, top right, and bottom left panels for 9, 10, and 11 cells, respectively. The corresponding weakly
clustered patterns are shown in the bottom right panel, where the cells marked in green and red are the respective
10th and 11th cells. The ring pattern achieves a quorum at 11 cells, while the weakly clustered pattern has a quorum
at 10 cells. Parameter values in (5.40), (5.41), and Table 1.

quorum is reached at 11 cells. This predicted transition to an upregulated steady-state for m = 11 cells on a1091

ring is confirmed from the ODE results shown in Fig. 5.7. In our computations, initial conditions for 9 cells1092

were chosen to be close to the downregulated steady-state. The same initial conditions were chosen when1093

m = 10, 11, with the extra cells having the same initial concentrations as the others.1094
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For the generic non-ring cell pattern shown in the bottom right panel of Fig. 5.7, we observe that1095

a quorum can be achieved at a slightly smaller population than predicted by the leading order criterion1096

κeff > κc, based on using (5.17) in Principal Result 8. For the generic pattern, we use a configuration of 91097

cells drawn from a uniform distribution over the upper half-disk. The 10th and 11th cells are added to this1098

configuration as in the bottom right panel of Fig. 5.7. We use the same initial conditions and parameters as1099

for the ring pattern, with the numerical results from the ODE system (5.36) shown in Fig. 5.7. Although1100

the cells in the ring pattern are observed to transition to the upregulated state at 11 cells, as expected1101

from the asymptotic theory, we observe from the top right panel of Fig. 5.7 that the weak-clustering of cells1102

results in an early quorum at 10 cells. The solutions to the ODE system (5.36) without the O(ν) effect of1103

the cell configuration, is shown in Fig. 5.7 for comparison. We observe that the inclusion of these terms can1104

cause the transition to be delayed or advanced by an O(1) time interval. In our ODE computations using1105

(5.36), the solutions for m = 9, 10 cells were computed out to t = 1000 to ensure that all transitions to an1106

upregulated steady-state would be detected.1107

6. Discussion. Based on the analysis of the cell-bulk ODE-PDE model (1.3)–(1.5), we developed a hybrid1108

asymptotic-numerical theory in a 2-D bounded domain to predict QS transitions between bistable steady-1109

states for a collection of bacterial cells with intracellular kinetics given by the LuxI/LuxR circuit of [27]. In1110

this framework, the cell-cell communication is mediated by an autoinducer PDE diffuson field, where the AI1111

molecule of interest is N-(3-oxohexanoyl)-homoserine lactone (cf. [28]). Moreover, experimentally measured1112

cell permeabilities and reaction kinetic parameters based on biological experiments are readily incorporated1113

into the model (cf. [27]). Our cell-bulk model provides a simplified, but analytically tractable, conceptual1114

reformulation of the large-scale ODE model of [27] that employed a discretized bulk diffusion process, but1115

which incorporated other factors such as cell division and inter-cell mechanical forces. Our asymptotic1116

analysis of the cell-bulk system relied on modeling the bacterial cells as circular disks with a radius that is1117

much smaller than the length-scale of the confining domain. Our analysis of QS behavior is distinct from1118

that in [15] and [19] where a similar cell-bulk model was formulated, but with Sel’kov intracellular kinetics.1119

For this latter model, the main focus was to analyze QS transitions due to a Hopf bifurcation that triggers1120

the switch-like emergence of intracellular oscillations at a critical population density.1121

With a bulk degradation process, one of our main results is a set of criteria that characterize QS1122

transitions between steady-states of the cell-bulk model, as summarized in Principal Results 6, 7, and 8.1123

More specifically, when D = O(1), in Principal Result 6 we analyzed a ring pattern of cells in the unit1124

disk, and obtained a criterion for QS transitions that is accurate to all orders of ν ≡ −1/ log ε, where1125

ε << 1 is the (dimensionless) cell radius. For an arbitrary cell pattern, a similar criterion accurate up to1126

and including O(ν2) terms was derived in Principal Result 7, and was found to agree reasonably well with1127

full numerical results. With bulk degradation, these results show analytically that the effect of coupling1128

identical bacterial cells to the autoinducer diffusion field is to create an effective bifurcation parameter for1129

κ2A, the intracellular AI decay coefficient, that depends on the population of the colony, the bulk diffusivity,1130

the membrane permeabilities, and the cell radius. The asymptotic theory predicts that QS transitions occur1131

when this effective parameter passes through a saddle-node bifurcation point of the Lux ODE kinetics for1132

an isolated cell. As such, the calculation of the critical population size for a QS transition for the full1133

ODE-PDE cell-bulk model reduces to a simple algebraic computation of the effective bifurcation parameter1134

and the saddle-node points in the Lux ODE system. This effective bifurcation parameter depends on all1135

bulk parameters, and so changing any one of them can trigger a QS transition. For instance, varying the1136

diffusion coefficient for a fixed population size can result in a QS transition, which we can interpret as1137

diffusion sensing behavior. The dependence of this effective parameter on the population size for certain cell1138

patterns in the unit disk was shown in Fig. 4.1 and Fig. 5.1, while its dependence on the bulk diffusivity for1139
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a fixed population size was shown in Fig. 5.2.1140

For the D = O(1) parameter regime, we used a winding number argument to numerically implement the1141

linear stability theory based on the GCEP (3.18). In addition, we developed a simple line-sweep method to1142

detect unstable positive real eigenvalues of the GCEP that commonly occur in our cell-bulk model. With1143

no bulk degradation, we showed that there are solution branches for a ring pattern of cells where only some1144

of the cells are upregulated (see Fig. 4.2 and Fig. 4.5). However, most of these branches are unstable as was1145

shown for a small number of cells. It remains an open problem to determine whether QS behavior can occur1146

on these solution branches.1147

We conjectured that QS behavior in the cell-bulk model with Lux kinetics must be associated with a1148

degradation process of AI in the bulk medium. Our analysis in §3 and computations in §4.4 suggest that this1149

is not unique to the Lux system. Without any bulk loss terms, the main branch of steady-state solutions is1150

completely uncoupled from the bulk medium and the cells behave as though they are isolated (see Fig. 4.2).1151

Qualitatively, this result for the main steady-state branch can be interpreted as a balance between production1152

and decay of AI. In an isolated cell, a steady-state is achieved when intracellular production and decay are1153

balanced. The bulk coupling can be viewed as introducing additional AI degradation in the model, but1154

only when loss terms are present. Therefore, without bulk loss, balance is achieved at the same intracellular1155

concentrations as in the uncoupled system. The bulk loss terms may arise as either a bulk decay or a nonzero1156

flux of AI, modeled by a Robin condition, through the domain boundary. It is sufficient to have only one1157

of these factors present to observe QS behavior. In a scenario where the bulk decay rate is small, the effect1158

of a non-reflecting boundary condition may be significant, which is consistent with previous experimental1159

results (cf. [37, 25]). In summary, our analysis strongly suggests that the presence of bulk loss terms is a1160

necessary ingredient for mathematical models of QS behavior that involve spatial coupling.1161

In the distinguished limit D = D0/ν � 1, we showed that solutions to the cell-bulk ODE-PDE model1162

(1.3)–(1.5) can be approximated up to and including O(ν) terms by the ODE-DAE system in (5.36). This1163

reduced system includes the effect of cell locations in the O(ν) terms. For a small number of cells, we showed1164

that the solutions of the ODE-DAE system, as well as the criterion for QS transitions, agree very well with1165

full FlexPDE simululations of (1.3)–(1.5) even when D is not that large (in our case D ≈ 3). By using the1166

ODE-DAE system, we investigated the role of cell location on QS behavior and showed that it can have a1167

very significant effect near the critical population size for a QS transition. In particular, a weak clustering of1168

cells can cause a quorum to be achieved at a smaller population. We also derived simplified QS criteria for1169

branch transitions in which the critical population size can be estimated explicitly (to leading order) using1170

the simple formula in (5.18). As a remark, by using Fig. 3 in [27], we estimate for the parameter set P1 in1171

[27] that ε ≈ 0.05 and D ≈ 6, which lies is in the parameter regime for our simplified large D theory.1172

There are several directions for future work. For our specific cell-bulk model (1.3)–(1.5), in the D =1173

O(ν−1) � 1 regime it would be interesting to construct mixed-state equilibria, accurate to all orders in1174

ν, in which only some fraction of the cells are in the upregulated state. Another open issue is to identify1175

cell configurations {xxx1, . . . ,xxxm} in Ω for which eee = (1, . . . , 1)T is an eigenvector of the Green’s matrix G.1176

Recall that for such a cell pattern the effective bifurcation parameter in Principal Result 6 characterizing1177

QS transitions can be calculated to all orders in ν. A spatial configuration where the cells are centered at1178

the lattice points of a 2-D Bravais lattice, and which is constrained to fit within Ω, is a candidate for such1179

a symmetric cell pattern. As an extension to our model, it would be worthwhile to incorporate bacterial1180

cell movement induced by chemical signaling gradients and mechanical forces and to model a cell division1181

process, as was done in [27]. Within our theoretical framework, but allowing for circular bacterial cells1182

of different radii, this can be done in a quasi-static limit by imposing a law of motion for the cell centers1183

together with an ODE for an expanding cell radius that triggers a cell division process once the cell radius1184
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exceeds a critical threshold. Finally, it would be worthwhile to extend our analysis to a 3-D setting. The1185

challenge with the 3-D case is that owing to the fast 1/r decay of the autoinducer field away from the cells,1186

the cell-cell communication will be weaker than in 2-D unless the bulk diffusivity is sufficiently large.1187

Appendices1188

A. Non-Dimensionalization. We non-dimensionalize the cell-bulk model (1.1) and (1.2) and the Lux1189

ODE system of [27]. Our dimensional model assumes units of concentration for the extracellular AI and1190

intracellular chemical species whereas the dimensional model in [15] uses both mass and concentration units.1191

At the end of this appendix, we give the units for all of the quantities. In Table 1 we list the parameter1192

values for parameter set P1 in [27], along with their dimensionless counterparts given in (A.3).1193

We begin by non-dimensionalizing the Lux ODE kinetics for an isolated cell. In dimensional quantities1194

and without bulk coupling, the system given in [27] is1195

dv1

dT
= c1 +

k1Av4

kDA + v4
− k2Av1 − k5v1v2 + k6v3 ,

dv3

dT
= k5v1v2 − k6v3 − 2k3v

2
3 + 2k4v4 ,

dv2

dT
= c2 +

k1Rv4

kDR + v4
− k2Rv2 − k5v1v2 + k6v3 ,

dv4

dT
= k3v

2
3 − k4v4 .

(A.1)1196

In our non-dimensionalization we eliminate as many parameters as possible, while ensuring that the ODE1197

dynamics reaches its steady-state on anO(1) timescale. To this end, and with v ≡ (v1, . . . , v4)T , we introduce1198

the non-dimensional variables u and t as1199

(A.2) v ≡ vcu , t ≡ kRT , where vc ≡
√
c2

k5
, kR ≡

√
k5c2 .1200

This choice eliminates κ5 and c2. New dimensionless ODE parameters are then defined as1201

κ1A ≡
k1A

c2
, κDA ≡ kDA

√
k5

c2
, κ2A ≡

k2A√
k5c2

, κ1R ≡
k1R

c2
, κDR ≡ kDR

√
k5

c2
,

κ2R ≡
k2R√
k5c2

, k3 ≡
k3

k5
, κ4 ≡

k4√
k5c2

, κ5 ≡
k6√
k5c2

, c ≡ c1

c2
.

(A.3)1202

By using (A.2) and (A.3) in (A.1), we obtain the dimensionless system for the reaction kinetics in (1.5).1203

The full ODE-PDE system is made dimensionless in a slightly different way than in [15]. In (1.1) and1204

(1.2) both U and vj have units of concentration (moles/length2), while in [15], vj is measured in total1205

amount (moles). With this in mind, we define the dimensionless quantities x and U(x, t) by x ≡ X/L and1206

U ≡ U/vc. Upon substituting this into (1.1), we readily obtain (1.3) after defining the dimensionless bulk1207

constants D, γ, and κ and the dimensionless cell permeabilities d1j and d2j as1208

(A.4) D ≡ DB

kRL2
, γ ≡ γB

kR
, κ ≡ κB

kR
, p1j ≡ LkR

d1j

ε
, p2j ≡ LkR

d2j

ε
.1209

The requirement for the ε-dependent scaling in the permeabilities is so that there is an O(1) effect of the1210

coupling of the cells to the bulk. Moreover, if X ∈ ΩL, where ΩL has a characteristic length scale of L, then1211

x ∈ Ω1 ≡ Ω. The dimensionless kinetics in (1.4) follows from the definitions in (A.2) and (A.4).1212

41

This manuscript is for review purposes only.



Dimensional
Parameter

Value [27]
Dimensionless

Parameter
Value

c1 10−4 c 1
c2 10−4 - -
k1A 0.002 κ1A 20
k1R 0.002 κ1R 20

k2A 0.01 κ2A

√
10

k2R 0.01 κ2R

√
10

kDA 2 · 10−7 κDA 2 · 10−11/2

kDR 10−4 κDR 10−5/2

k3 0.1 κ3 1

k4 0.1 κ4 103/2

k5 0.1 κ5 103/2

k6 0.1 - -

Table 1: List of parameter values from the parameter set P1 in [27] along with the rescaled dimensionless
parameters defined in (A.3).

Denoting [x] to be the units of x, the units of the Lux and bulk parameters are as follows:1213

[U ] = [vj ] = [vc] =
moles

length2 , [DB] =
length2

time
, [κB] = [p1j ] = [p2j ] =

length

time
,

[γB] =
1

time
, [c1] = [c2] = [k1A] = [k1R] =

moles

length2 × time
, [k3] = [k5] =

length2

moles× time
,

[kR] = [k2A] = [k2R] = [k4] = [k6] =
1

length2 × time
, [kDA] = [kDR] =

moles

length2 .

(A.5)1214

B. Green’s functions for the unit disk. To implement our steady-state and linear stability theory for1215

the unit disk, two different Green’s functions are required. The Neumann Green’s function, satisfying, (3.5)1216

is needed in §3 for the steady-state analysis with no bulk loss, and in §5 to analyze the large D = O(ν−1)1217

limiting regime. In the GCEP analysis in §3.2 for the D = O(1) regime, the eigenvalue-dependent Green’s1218

function Gλ satisfying (3.17) is required. Setting λ = 0 in (3.17) yields the reduced-wave Green’s function1219

in (3.11), which is required in §3 for the steady-state analysis with bulk degradation.1220

In the unit disk, the Neumann Green’s function and its regular part are (see equation (4.3) of [23]):1221

GN (x; xi) = − 1

2π
log |x− xi| −

1

4π
log
(
|x|2|xi|2 + 1− 2x · xi

)
+

(|x|2 + |xi|2)

4π
− 3

8π
,(B.1a)1222

RNi = − 1

2π
log
(
1− |xi|2

)
+
|xi|2

2π
− 3

8π
.(B.1b)1223

1224

Next, by extending the analysis in Appendix A.1 of [4] to allow for a Robin boundary condition, the Green’s1225
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function Gλ and its regular part Rλ, satisfying (3.17), are calculated for the unit disk as1226

Gλ(x; xi) =
1

2π
K0(θλ|x− xi|)−

1

2π

∞∑
n=0

σn

(
θλK

′
n(θλ) + κ

DKn(θλ)

θλI ′n(θλ) + κ
DIn(θλ)

)
In(θλ|xi|)In(θλ|x|) cos [n(φ− φi)] ,

(B.2a)

1227

Rλi =
1

2π
(ln 2− γe − log θλ)− 1

2π

∞∑
n=0

σn

(
θλK

′
n(θλ) + κ

DKn(θλ)

θλI ′n(θλ) + κ
DIn(θλ)

)
[In(θλ|xi|)]2 ,(B.2b)1228

1229

where x = |x|(cosφ, sinφ)T and xi = |xi|(cosφi, sinφi)
T . Here σ0 ≡ 1, σn ≡ 2 for n ≥ 2, and γe = 0.57721 . . .1230

is the Euler-Mascheroni constant. The functions Kn and In are the nth-order modified Bessel functions of1231

the first and second kind, respectively. Here, θλ ≡
√

(γ + λ)/D, where the principle branch of the square1232

root is taken when the argument is complex. Setting λ = 0 in (B.2) yields the result for the reduced-wave1233

Green’s function and its regular part in (3.11).1234

When the centers xk, for k = 1, . . . ,m, of the cells are equally-spaced on a ring concentric within the1235

unit disk, the Green’s matrices GN , G, and Gλ as needed in the steady-state and linear stability analysis in1236

§3 are cyclic and symmetric matrices. As such, their matrix spectrum is available analytically.1237

For an m ×m cyclic matrix A, with possibly complex-valued matrix entries, its complex-valued eigen-1238

vectors ṽj and eigenvalues αj are αj =
m∑
k=1

A1kω
k−1
j and ṽj =

(
1, ωj , ..., ω

m−1
j

)T
, for j = 1, . . . ,m. Here1239

ωj ≡ exp
(

2πi(j−1)
m

)
and A1k, for k = 1, . . . ,m, are the elements of the first row of A. Since A is also a1240

symmetric matrix, we have A1,j = A1,m+2−j , for j = 2, . . . , dm/2e, where the ceiling function dxe is defined1241

as the smallest integer not less than x. Consequently, αj = αm+2−j , for j = 2, . . . , dm/2e, so that there are1242

m− 1 eigenvalues with a multiplicity of two when m is odd, and m− 2 such eigenvalues when m is even. As1243

a result, it follows that 1
2 [ṽj + ṽm+2−j ] and 1

2i [ṽj − ṽm+2−j ] are two independent real-valued eigenvectors1244

of A, corresponding to the eigenvalues of multiplicity two. In this way, the matrix spectrum of a cyclic and1245

symmetric matrix A, with the normalized eigenvectors vTj vj = 1, is1246

αj =
m∑
k=1

A1k cos (θj(k − 1)) , j = 1, . . . ,m ; θj ≡
2π(j − 1)

m
; v1 =

1√
m

e ,

vj =

√
2

m
(1, cos (θj) , . . . , cos (θj(m− 1)))T , vm+2−j =

√
2

m
(0, sin (θj) , . . . , sin (θj(m− 1)))T ,

(B.3)1247

for j = 2, . . . , dm/2e, where θj ≡ 2π(j − 1)/m. When m is even, there is an additional normalized eigenvector1248

of multiplicity one given by vm/2+1 = m−1/2(1,−1, 1, . . . ,−1)T .1249
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