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We analyze the existence, linear stability, and slow dynamics of localized 1D spike patterns for a Keller-
Segel model of chemotaxis that includes the effect of logistic growth of the cellular population. Our analysis
of localized patterns for this two-component reaction-diffusion (RD) model is based, not on the usual limit
of a large chemotactic drift coefficient, but instead on the singular limit of an asymptotically small diffusivity
d, = €* < 1 of the chemoattractant concentration field. In the limit d, < 1, steady-state and quasi-equilibrium
1D multi-spike patterns are constructed asymptotically. To determine the linear stability of steady-state N-
spike patterns we analyze the spectral properties associated with both the “large” O(1) and the “small” o(1)
eigenvalues associated with the linearization of the Keller-Segel model. By analyzing a nonlocal eigenvalue
problem characterizing the large eigenvalues, it is shown that N-spike equilibria can be destabilized by a zero-
eigenvalue crossing leading to a competition instability if the cellular diffusion rate d; exceeds a threshold, or
from a Hopf bifurcation if a relaxation time constant 7 is too large. In addition, a matrix eigenvalue problem that
governs the stability properties of an N-spike steady-state with respect to the small eigenvalues is derived. From
an analysis of this matrix problem, an explicit range of d; where the N-spike steady-state is stable to the small
eigenvalues is identified. Finally, for quasi-equilibrium spike patterns that are stable on an O(1) time-scale, we
derive a differential algebraic system (DAE) governing the slow dynamics of a collection of localized spikes.
Unexpectedly, our analysis of the KS model with logistic growth in the singular limit d, < 1 is rather closely
related to the analysis of spike patterns for the Gierer-Meinhardt RD system.
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1 Introduction

The study of pattern formation phenomena for RD systems originates from the pioneering work of Alan M.
Turing [51]. In an attempt to understand the mechanism underlying biological morphogenesis, he discovered
that spatially homogeneous steady-states of reaction kinetics for multi-component systems that are linearly stable
can be destabilized in the presence of diffusion. This diffusion-induced instability, now commonly referred to
as a Turing instability, typically leads to the formation of stable spatial patterns that break the symmetry of the
spatially uniform state. Based on this insight, modern bifurcation-theoretic tools such as weakly nonlinear multi-
scale analysis and Lyapunov-Schmidt reductions have been used ubiquitously to characterize pattern formation
near onset for RD systems. However, to analyze localized patterns for RD systems away from the onset of where
a Turing instability occurs, new theoretical approaches are needed. Over the past two decades, there has been
a focus on developing such novel analytical tools to study the existence, stability, and dynamical behavior of
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“far-from-equilibrium” spatially localized patterns, such as stripes and spots, for two-component RD systems
that combine only diffusion and nonlinear reactions (see [61], [12], [8], [55] and references therein).

In contrast, the analytical study of localized pattern formation for RD systems that combine diffusion, non-
linear reactions, and advection poses many new theoretical challenges (cf. [2, 9, 50, 54]. The most common
such RD models are chemotaxis-type systems, such as the prototypical Keller-Segel (KS) system [28, 29], that
are widely used to model how cells or bacteria direct their movements in response to an environmental chemical
stimulus, such as observed in some foundational experiments (cf. [14], [1], [5]). Chemotactic effects have been
shown to play a key role in a wide variety of other biological processes such as, cell-cell interactions in the
immune system, the organization of tissues during embryogenesis, and the growth of tumor cells [4, 43, 47].

In 1971, Keller and Segel [28, 29] proposed the following coupled RD system to model chemotaxis:

cellular diffusion advection source

— —
Tu, =  diAu —xV-(Su,v)Vv)+ f(u) , xeQ, >0,

chemical signal diffusion  chemical production/consumption

— —
v, = dr)Av + g(u,v) , x€Q,t>0.

(K-S)

Here Q is either a bounded domain with smooth boundary dQ or the whole space RY with N > 1. In (K-S), u is
the cellular density, v is the chemotactic concentration, 7 is the reaction time constant, d; and d, are diffusivities
of u and v, respectively, while S (u,v) models the chemotactic or directed movement. The chemotactic drift
coefficient y measures the relative strength of this directed motion. In a bounded domain, no-flux boundary
conditions are usually imposed on (K-S) to ensure that the cellular aggregation is spontaneous.

One main research focus on the chemotaxis PDE system (K-S) is the study of self-aggregating pattern-
formation phenomena and the determination of whether finite-time singularities can occur. There are two well-
known approaches to study the possibility of such blow-up behavior. The first approach is to analyze the well-
posedness and global existence of solutions, which can rule out the trivial dynamics. The other approach is to
construct spatially inhomogeneous patterns and to study their local and long time behaviors. For a survey of
diverse applications and some mathematical results for (K-S) and its variants see [3, 18, 21-23, 45].

Our goal is to analyze certain pattern-formation properties for a KS model with logistic growth, given by

Tu, = diAu—xV - uVv) + uu(e —u), xeQ,t>0,

v = dryAv—v +u, x€Q,1>0, (1.1
Mx,)=2x,n=0, xX€NQ, t>0,

where u(x,0) = u°(x) and v(x,0) = v’(x) are non-negative initial data. Here S and g in (K-S) are taken to be
linear, i. e. S (u,v) = u and g(u,v) = u —v. In (1.1), f(u) = pu(it — u) describes the cellular population growth
dynamics, where u > 0 denotes the logistic growth rate and i > 0 represents the carrying capacity of the habitat
for cells. Before discussing some previous results for (1.1), we will highlight some results for the case f(u) = 0.

Without logistic growth, (1.1) in 2D admits blow-up phenomenon, which depends on the cellular mass
M = fQ u(x,0)dx. In particular, if M < M, := 4n/y for the bounded domain or M < M, := 8x/y for the whole
space R?, the solution to (1.1) will globally exist [40]; otherwise (1.1) admits finite time blow-up solutions
[10, 17, 41, 48, 52]. For the steady-state problem of (1.1) in 2D, the pioneering study of Lin, Ni and Takagi
[37, 42] constructed large amplitude stationary solutions analytically. Motivated by this seminal work, it has
been subsequently revealed that non-constant steady states with f(x) = 0 can exhibit a wide range of solution
behaviors [7, 11, 16]. In particular, Wei and Del Pino [ |] constructed a multi-spike equilibrium to (1.1) in 2D
via the “localized energy method”. In contrast to the 2D case, the solution to (1.1) in 1D with f = 0 is uniformly
bounded in time [39, 44]. For the stationary counterpart, spatially non-uniform steady states were constructed in
[9, 19,27, 54]. In particular, Wang and Xu [54] adopted an innovative bifurcation-theoretic approach to directly
treat the steady-state problem for (1.1) in 1D without relying significantly on the special structure of (1.1).
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With the logistic source term, i.e. when f(u) = uu(iz — u), Winkler et al. [38, 62—66] showed that the
solution of (1.1) globally exists in any dimension when the effect of the logistic growth is strong enough. Some
results regarding the construction of spatially inhomogeneous equilibria for (1.1) are given in [26, 32, 34, 35, 53].
However, the dynamics of (1.1) can be highly intricate and are not nearly as well understood as for the case where
f(u) = 0. Hillen and Painter et al. [20, 46] studied (1.1) numerically and revealed the possibility of periodic
and chaotic dynamics consisting of repeated spike nucleation and amalgamation events. Morever, Ei et al. [13]
investigated two types of spatial-temporal oscillations in a 1-D chemotaxis-growth model in terms of the range
of values of the chemotactic drift coefficient y and the strength u of the logistic growth. More specifically, when
the effect of the logistic growth is sufficiently weak and the drift coefficient is not too large, they analyzed the
limiting Keller-Segel system and discovered that one of the oscillatory patterns is due to a relaxation oscillation
that consists of slow and fast dynamics. In addition, by regarding u in (1.1) as a bifurcation parameter, in [13]
they generated global bifurcation diagrams numerically in two distinct regimes, y is large and relatively small,
in order to qualitatively explain the distinct types of oscillations revealed in PDE numerical simulations. Kurata
et al. [36] established conditions for the instability of the uniform state for the 1-D chemotaxis-growth model
and used numerical path continuation to show the occurrence of bifurcating time-periodic solutions.

From a formal asymptotic analysis together with numerical simulations, Kolokolnikov et al. [32] showed
that there exists three types of spiky steady states to (1.1) in 1D. In particular, they constructed a locally stable
single interior spike solution, which does not occur in the minimal KS model without the logistic source term.
To more fully understand how a logistic source term allows for spiky patterns, the focus in this paper is to study
the existence, stability, and dynamics of spiky solutions to the 1D version of (1.1), which is formulated as

TUy = djty, — x(uvy), +pu(ie —u), |x| <1, t>0; u(x1,0=0, (1.2a)
vi=dve —v+u, |x<1, t>0; v(x1,6)=0, (1.2b)

with u(x,0) = u°(x) and v(x,0) = 1°(x). Our main goal is to construct N-spike equilibria for (1.2) with equal
heights in the limit where the diffusivity d, is small, and to analyze the linear stability properties of these
localized steady-state patterns. Labeling d, = €> < 1, the steady-state problem for (1.2) on |x| < 1 is

diug, — x(uvy), + puu(it —u) =0, v, —v+u=0; u (1) =v.(x1)=0. (1.3)

We will also explicitly construct quasi-equilibrium patterns for (1.2) where the spike locations evolve dynami-
cally on some asymptotically long time scale as e — 0 towards their steady-state locations.

We emphasize that our analysis of localized pattern formation for (1.2) in the singular limit d, — 0 is in
distinct contrast to the previous analytical and numerical studies of pattern formation properties for (1.2) that
were undertaken in the more traditional large chemotactic drift limit y > 1 (cf. [34], [35], [26], and [53]). In
the singular limit d, < 1, our analysis and results for the existence, linear stability, and slow dynamics of 1D
spike patterns for (1.2) will be shown to be rather closely related to corresponding studies of 1D spike patterns
for the Gierer-Meinhardt (GM) RD model (cf. [25], [24], [57], [60]). Although our analysis is based largely
on formal asymptotic methods, and summarized in formal Propositions, we emphasize that distinct analytical
approaches are used in our analysis and that the theoretical results are all supported by full PDE simulations.

The outline of this paper and our main results are summarized as follows. In §2, we construct N-spike quasi-
equilibrium spike patterns for (1.2) using the method of matched asymptotic expansions in the limit € < 1,
and the results are summarized in Proposition 2.1. Our analysis reveals a novel, analytically tractable, sub-inner
asymptotic structure that characterizes the spatial profile of a localized spike. With regards to the linear stability
analysis, in §3 and §4 we analyze the large and small eigenvalues in the discrete spectrum of the linearization of
(1.2) around an N-spike steady-state, respectively. The spectral properties for the large eigenvalues are shown
to be governed by a nonlocal eigenvalue problem (NLEP), which has a somewhat similar form to the NLEP
that arises in the study of spike stability in the GM model. For 7 = 0, our NLEP linear stability analysis will
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provide a range of d; values for which the N-spike equilibrium is linearly stable, with the detailed result given in
Proposition 3.1. Moreover, for 7 > 0, we show that spike amplitude oscillations can occur via a Hopf bifurcation
associated with the NLEP. Hypergeometric functions are shown to be key for accurately calculating the stability
thresholds from the NLEP. For the small eigenvalues, in §4.2 we will determine analytically an explicit range of
d, for which the steady-state solution is linearly stable to translation instabilities. Proposition 4.5 summarizes
the range of d, such that the N-spike pattern is linearly stable with respect to both large and small eigenvalues.

A differential-algebraic (DAE) system characterizing slow spike dynamics for quasi-equilibrium patterns is
derived in §5, with the precise result described in Proposition 5.1. The slow dynamics obtained from this DAE
system are favorably compared with corresponding results computed from full PDE numerical simulations of
(1.2). Moreover, in §5.1 we show that the explicit expressions for the small eigenvalues that are obtained in §4
can also be derived from a linearization of the DAE dynamics around the steady-state spike locations. In §6, we
suggest a few open problems, and we compare and contrast the analytical approach used and results previously
obtained for spike patterns in the 1D GM model with that obtained herein for the KS model (1.2).

2 Asymptotic Analysis of the N-Spike Quasi-equilibrium

In this section, we construct N-spike quasi-steady state solutions to (1.3) in the limit € < 1 by using the method
of matched asymptotic expansions. We define the centers of the spikes as x;, for j = 1,..., N, and assume that
they are well-separated in the sense that |x; — 1| = O(1), |x; + 1| = O(1), and |x; — x;| = O(1) for i # ji.

2.1 Inner Solution

In the inner region near each x; where the cellular density u and the chemical concentration v are localized, we
introduce new local variables y = €' (x — x;), Uj(y) = u(x; + €y), and V;(y) = v(x; + €y), and we expand

U;y) = Up;(y) + €U () + ..., Vi) =Vo,0)+€Vi ) +..., y=€'(x—xj). (2.1)

Here the subscripts 0 and 1 in (Uy;, Vo;) and (U,;, V,;) are the orders of the expansion, while j refers to the jth

inner region. The leading order terms, found by substituting (2.1) into (1.3), yield on —oo < y < oo that
(Ug; —xUoiVy) =0, Up(0)=0; Voi = Voj+Up; =0, V(0)=0. (2.2)

In this so-called core problem, we define y := y/d,. Below, for simplicity, we omit the subscript j for Uy; and

Voj. Moreover, in the analysis below, terms such as i, and H’ denote differentiation in x and y, respectively.
Upon imposing Uy — 0 as [y| — oo, (2.2) yields Uy = C je)z Yo where the constant C ;> 0 will be determined

below. Then, from (2.2), we conclude that the spike profile is characterized by a homoclinic solution Vj, to

Vi +0(WVp) =0, —co<y<+o0; V4(0) =0; Vo= s;, Vi, Vi —0, as [yl = oo, (2.3)
where Q(Vp) := —Vp + C;e*"? and s; satisfies Q(s;) = 0, so that C;e**/ = s;. The first integral of (2.3) is
L e Y 1/, 2 C; Vo vs;
S Vo) +K(V: €)= 0. K(Vo:C)) = 0)d¢ = 5 (s-V5)+ = (€70 - e) . (2.4)

Imposing that Vj, is even and monotone decreasing in y > 0, we obtain from (2.4) that

Vo =-— 1/—2K(V0;Cj) for 0<y<oo. (2.5)



By separating variables in (2.5), we obtain an implicit equation for V, defined on y > 0, given by
Vimax j df

W  2KEC)

where v j := Vp(0) is the amplitude of Vj. By setting V((0) = 0 in (2.5) and using s; = C ;e it follows that

Vmax j Satisfies the nonlinear algebraic equation

1 1 C; . S
R e @)
2 M2y X

y = (2.6)

In the outer region, defined at O(1) distances from the centers of the spikes, we will construct a solution
where u and v are o(1) as € — 0. As a result, we anticipate from the matching condition that s; = o(1) as € — 0,
which allows us to approximate our implicit form of V| given by (2.6). To this end, we suppose that s; = o(1)

and v ! j =o(1) when € < 1, so that (2.7) reduces to
C; . 1
T]e/\/vmaxj ~ Evgnaxj . (2.8)
X

Next, we introduce new variables z and V,,, which constitute a sub-layer within the inner region, defined by

Z = YVmax;» VO(y) = Vmax; T VO(Z) .

By using (2.8), and where primes now indicate derivatives in z, we can rewrite the Vj-equation in (2.3) as

Vlznaxj‘?(;, - (Vmaxj + ‘70) + )évlznaxje/‘?% =0 s —00 <Z < +00. (29)
In this jth sub-inner region, we expand V,(z) as Vy = Vio(2) + o(1). From (2.9), and assuming that vy, >,
we obtain an explicitly solvable leading order sub-inner equation

~ 1 5 - 1 v ~ ~ 5
V66 + 5/Vev\/Voo =0 s so that Vo() = - log [sech2 ()E(Z)] R UO = Cje/\’VO ~ Cje)((l’maxﬁvoo) . (210)
X

We now summarize our results in the inner and sub-inner regions for the leading order profile of a quasi-
equilibrium spike when s; << 1 and viax j > 1. In the sub-inner region, where |x — x;| < O (;), we have
)

Vmax j

1— 2
u~ U~ A Vimax

: _ej/VOO(Z) , v~V ~ Vinax j + VOO(Z) , (2.11)

j
where Z = Vpax je‘l(x — x;) and Voo is given by (2.10). In the inner region, where |x — x;| < O(€), we have
u~ C; "o v~ Vo), (2.12)

where y = € '(x — x;) and V,(y) is determined implicitly by (2.6). Here, the three constants C;, s; and Vi
satisfy the two nonlinear algebraic equations C;e¥*/ = s; and (2.7). The required additional equation arises below
from matching the far-field of each inner solution to an outer solution. The far-field of the leading order inner
solution (2.12) gives only that u ~ v — s; as [y| — oo, but has no gradient information.

As such, we must refine our inner analysis to one higher order so as to match with any spatial gradients of
the outer solution at the spike locations. To this end, we substitute (2.1) into (1.3) and obtain at next order that

(U= 0oV ) = U V) = dﬁl(ug —aly), -w<y<o;  Uj0)=0, (2.13a)

Vii=Vij+U;;=0, -co<y<oo; Vi (0)=0. (2.13b)



Upon integrating (2.13a) over (0, y), we obtain the flux-balancing condition

Y
Uij—)?qua—)zUoVIﬁd% fo U5 - au()| dé. (2.14)

By letting y — oo, and assuming that U,;V;; and U,V/; are negligible in this limit, we obtain from (2.14) that
U;J.—> dﬁf (Ué—ﬁUo)dy, as y— +oo. (2.15)
1 Jo

To explicitly determine Uj; as y — +co, we must estimate the two integrals in (2.15) involving Uy and Us.
By using the sub-inner solution (2.11), we readily calculate that

l:%WNMW’ l:%WM?@W' (2.16)
In this way, by substituting (2.16) into (2.15), we obtain that Uij - l't)_(v?naxj/ (3dy) as y — +o0o. In a similar
way, we obtain from (2.13) that U}, — —,u/?vfnaxj /(3d;) as y — —oco. Since the inner solution is expanded as
u~ Uy + e*U, j» and Uy, 1s exponentially small as |[y| — oo, we obtain for the outer solution that u, ~ €U’ ; as
x — x;and |y| — co. By using the expressions above for U7, as y — 0o, we conclude by matching the far-field
behavaior of the inner solution to the outer solution that the outer solution must satisfy the limiting behavior
Uy ~ ie%\ﬁ .as x> x]*. (2.17)
This matching condition shows that, in the outer region, u, must have a jump discontinuity across each x = x;.
Finally, we must confirm, through a self-consistency argument, that U,;V{ and UyVj; for y — oo can be
neglected in (2.14). To do so, we observe that, although U;; grows linearly for |y| sufficiently large, the expo-
nential decay of V| ensures that U,;V can be neglected as y — co. Moreover, since u ~ v in the outer region
when € < 1, we obtain that Uy ~ Vy and U,; ~ V;; as y — +oo. Combining these estimates with Uy — s; as
[y] = +00, we obtain UOV{j ~ sjUij < Uij in (2.14) since s; < 1. As a result, our assumptions that U;;V/ and
UoV] jcan be neglected in (2.14) as |y| — oo are self-consistent.

2.2 Outer Solution and Matching

Next, we construct the solution in the outer region. When € < 1, we expand « and v as u = u, + o(1) and
v =v, +o(1). From (1.3) for v we get v, = u,, so that (1.3) for u reduces to

N
uoxx_/?(uouox)x‘i' dﬁuo(ﬁ_uo) =0, xe€ (_191)\ij~ (218)

1 e

There are two ways to approximate the solution to (2.18). The first approach is to introduce the new variable

»m:%—gﬁ. (2.19)

In terms of w, we obtain from (2.18) that w satisfies

— — N

,u[u 2 (2 u) — ZW]_

Wiy +—|———=+|—=—— \/1—2W)(+T —O, XE(—I,I)\ Xi. (220)
dily ¥ W X X g’



We have /1 — 2yw ~ 1 — yw since u, is small in the outer region. With this approximation, and setting w ~ w,,
we obtain from (2.19) and (2.20) that w, ~ u, in the outer region, where w, solves the leading order problem
i p

N
Woex + —w, =0, xe(=1,D\| |x;. 2.21)
dy JU] !

Observe that (2.21) follows exactly from (2.20), with no approximation, for the special parameter set it = 2/y.
The second way to approximate (2.18) is to collect the leading order terms in (2.18) directly. In fact, since u,
is small, (u,u,,), and u% are higher order terms in the outer region. By neglecting these terms in (2.18), we also
obtain (2.21) since u, ~ w,. Finally, for (2.21), we require from (2.17) that w, must satisfy the jump condition

wox(xj.) — wox(x]‘.) = %‘v;me across each x;. In this way, we obtain the leading order outer problem
d 0
1 _
Low, = ;woxx +uw, = ?GZ v?naxkd(x —-x), -l<x<1; Wor(£1) = 0. (2.22)

To analyze the solvability of (2.22), we first observe that (2.22) admits the nontrivial homogeneous solution

4uii

m(x+ D
m2n?’

> form=1,2,.... (2.23)

Wor(X) 1= cos( ) , when d; =dr, =
As shown in Appendix A, the interpretation of these critical, or resonant, values of d; are that they correspond
precisely to where there is a bifurcation from the spatially uniform solution v = u = 0 for (1.2) on |x| < 1.
This trivial solution for (1.2) on |x| < 1 is linearly stable only when d, > 4uii/n*>. When d, = d,r,,, there is a
solution (non-unique) to (2.22) only if a compatibility condition is satisfied. However, as shown in Appendix A
this condition is automatically satisfied for an N-spike steady-state solution.

To solve (2.22) when d; # d,r,,, we introduce the Helmholtz Green’s function G(x; x;) satisfying

d
—lGxx+12G:5(x—xk), -1<x<1; G (x1;x,)=0. (2.24)
u
For d| # d,r.,, the explicit solution to (2.24) is
cos(8(1+x)) , “1<x<x , —
G(x;x0) = | [tan(8(1 + x)) + tan(8(1 — x)] ™" { @l ¢ 0:= 2L (225
ud, oy k<X < 1, d;
In terms of (2.25), the solution to (2.22) when d; # dir,, 1S
W <
Uy ~ Wy = ?6; v GG x). (2.26)

Our final step in the construction is to match the inner and outer solutions to obtain the third algebraic
equation needed to determine s;, C; and vy, j. Since w, ~ u, in the outer region, we impose w,(x;) = s; to get

W < .
5; = ?Ekzz;vgnaka(Xj;Xk), J=1...,N, (2.27)

when d; # dyr,,. Combining (2.27), (2.7), and C;e**/ = s;, we obtain the following coupled algebraic system:

N

C; . s 2y
s? + Letmi _ L — (), ;= %e v?nanG(xj;xk) . (2.28)
X X =1

1, 1

Cje/\?sj -8 = 0, _Evmaxj + E



Finally, we observe that the matching condition (2.17) between the inner and outer solutions holds only when
the spike locations x; are equally spaced, and are given by x; = x(J). where
2j—-1
xQ::—1+]T, j=1,...,N. (2.29)

J
N
Moreover, in (B.9) of Appendix B we calculate }; G(x;; x;) explicitly to show that it is independent of j when
k=1
X;= x(}, Xp = xg, and d, # d,r,,. As aresult, for equally-spaced spikes we have s; = 59, where s, is given by

2% e X 1 6
i€ ~ €y f Udy,  with agi= Y GG =3 d/j_ﬂ cot(ﬁ) . 230)
- k=1

So =

When x; = x? and d| # d 1w, our N-spike quasi-equilibrium is the approximation to a true steady-state solution
of (1.3). Setting s; = s¢ for all j, we obtain from (2.28) that C; = Cy and Vpay j = Vimaxo for all j, satisfy

o 1 1 Co ., 50 2%
Co = spe ™™, ) Vmaxo + 5 5 s + ;e’( max0 _ Z =0, where sp= ?evf’naxoag , (2.31)
with a, as given in (2.30). By combining (2.31), we obtain a single nonlinear equation for vy, given by
1 2 2 o 2 2
_Evrznaxo + 9)_(2vr6nax0a262 + 3a8 ;axoeexvmaxo_%agxzv;axoe - gag"?naxoe =0. (2.32)

In terms of the solution v, to (2.32), 5o and Cy are given by (2.31). Moreover, assuming vy, o > 1, vfnax 0€ <
1, and a, > 0, a dominant balance argument on (2.32) for € < 1 yields that
1,

5 Vinax 0 max 0

_ 2 _
~ S—_Oe"v“"‘“‘) ~ gagv3 ee¥’mx0 (2.33)

This shows that v, 0 = O(—log €) > 1, so that the consistency condition v o€ << 1is satisfied. We summarize
our results regarding the construction of the N-spike steady-state in the followmg formal proposition:

Proposition 2.1. Let € < 1, assume that di # dr,,, where d\r,, is defined in (2.23). Label the set I :=
{1,2,...,N}. Then, the N-spike quasi-equilibrium to (1.3), defined by (u,,v,), has the following asymptotic
behavior in -1 < x < 1:

ZvaaxkseChz(XM)’ *e {x €R|lx- x| < (Ilogel) k€ I}
U (x) ~ {x € R| O(Ilogsl) < |x—x] £0(e), dk € I},
2 é V2 kG X0, xe{xeR|O) < |x—xl. Vke I},
(2.34)
Vmaxk + 1 log [sech?(§tmtb=)] -y e {x € R|[x - il < (uogd) Tker),
v(x) ~ V(x;x" , XE€ {)CER|O(]0;E },
2%6 kgl v Gxax), xe {x € R| O(e) < |x —xy|, Yk € I}.

Here y = x/d,, G(x; xi) is defined by (2.25) and V is given implicitly by (2.6). Moreover, the constants Viax j,
sjand Cj are determined by (2.28). When x; = x?, as given in (2.29), the spikes are equally spaced and (u,, v,)
becomes an approximation to the true N-spike equilibrium solution (u.,v,) to (1.2), in which

Vmax j = Vmax0, Sj = S0, Cj = C, fOl’ J= I,...,N.

In terms of the solution vyaxo to (2.32), so and Cy are given by (2.31) where ay is defined in (2.30).
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When d, = dry, form = 1,...,N — 1, we show in Appendix A that for a steady-state solution where the
spike locations x; satisfy (2.29), the outer problem (2.22) has a non-unique solution that can be found using a
generalized Green’s function. Finally, to establish the range of d; where our steady-state analysis is valid we
must also ensure that the outer solution w, is positive on |x| < 1. This constraint, discussed in Appendix A,
motivates the following key remark that introduces the notion of an admissible set T, for d;.

Remark 2.1. For an N-spike steady-state solution, where the spikes are centered at (2.29), the range of d, where
(2.22) has a unique and positive solution w, is characterized by an admissible set T,, which we define by

4un
Te:={d |di>dn:= a dy # dirp =

4uii
A i

i m=1,...,N—-1}. (2.35)
For d, > dy,n, we have a, > 0 in (2.30), so that sy > 0. As d, — d,,y from above, a, — 0% and vy,o — +00.
Moreover, when d, € T,, the outer solution w, on the interval of width 2/N between two adjacent spikes, which
is asymptotically close to the uniform state u = 0, is linearly stable. At the positivity threshold d, = d,,y, the
trivial solution u = 0 on a domain of length 2/N undergoes a Turing instability and this threshold appears to
trigger a nonlinear spike nucleation event for (1.2) between adjacent spikes (see Figure 7 in §4.2 below). In
contrast, for an N-spike quasi-equilibrium pattern, the outer solution w, between spikes is positive when

L2 uii
dl > l’l’l(l)C/J

7'{'2 s Lmax = max{lxl + 1|a |-xN - lla |.Xj+1 _lea .]: 177N} (236)

2.3 Global Balancing and Comparison with Numerics

As an analytical confirmation of our asymptotic results, we show that they are consistent with a global balancing
condition. By integrating (1.3) for u over |x| < 1, we obtain that the global balance condition

1
f u(it —u)dx =0, (2.37)
-1
must hold. Defining f(u) := u(z — u), we decompose the left-hand side of (2.37) into the two terms

I 143

1 1 1
fl u(li —u)dx = fl[f(u)—f(so)] dx+‘f1 f(so)dx . (2.38)

Since the inner and outer regions both contribute to /;, we decompose /; as I1;+1;,, where I, and I, represent the
N inner integrals and the outer integral, respectively. For I}, since u — sy asy — +oco, we have f(u)— f(s9) = 0
as y — +oo. Therefore, by using (2.5) and since there are N identical inner regions, we identify that

00 Vmax 0 _f —
Iy ~ 2Ne f LF(Us) = fso)] dy = 2Ne f J(CoeT) = Jls0) (2.39)
0 KY

0 V—2K(&: Co)

where K is given by (2.4). However, to estimate (2.39) we can more simply use the fact that Uy > 1 in each
sub-inner region. In this way, by using (2.16), we obtain that

© 2
I,; ~2Ne fo (U — U3)dy ~ 2NitVmax 0€ — §N)'(vl3naxoe. (2.40)



Next, by using the outer solution (2.26), together with f_ 11 G(x; xg) dx = 1/u, we estimate the outer integral as

1 1
112~f f(Wo)dX—f f(so)dx,
-1 -1
2o O (™ e 0 20 5 N 0 :
:g)(uvmaxoe;[l G(x,xk)dx—(Tvmaxoe) Il [;G(x,xk)] dx—f:1 f(so)dx,

2 1
:EN/\'/vimoe - f 1 f(so)dx +O(eMe, ). (2.41)

We substitute (2.40) and (2.41) into (2.38) to find f_ 11 u(it — u)dx = O (évmaxo) < 1, and so the global balancing
condition is satisfied to this order as € — 0.

d» d, = X | i | Upax(num) umax(aSY) Vinax(nUM) Vmax(asy)
0.02 1 2| 3.8935 3.4633 2.6937 2.6318
0.004 1 2 5.2575 5.0329 3.1702 3.1727
0.002 1 2 5.9773 5.8239 3.3955 3.4129
0.02 10 2 3.8599 3.1702 2.6623 2.5180
0.004 10 2 5.0958 4.6664 3.1099 3.0550
0.002 10 2| 57514 5.4210 3.3218 3.2927
0.02 1 3 5.9159 4.4409 3.3970 2.9802
0.004 1 3 7.3629 6.2531 3.7971 3.5364
0.002 1 3 8.1535 7.1617 4.0023 3.7846

Table 1: The asymptotic results for uy,x and vpax, obtained from (2.34), for various d,, d; and & are compared with
FlexPDE7 numerical results.

dy |dy=x || upgry(um) | upary(asy) | Voary(num) | vpary(asy)
0.02 1 2 0.4799 0.5195 0.5047 0.5195
0.004 1 2 0.3744 0.3923 0.3734 0.3923
0.002 1 2 0.3340 0.3412 0.3336 0.3412
0.02 10 2 0.4295 0.3824 0.4567 0.3824
0.004 10 2 0.3166 0.3047 0.3166 0.3047
0.002 10 2 0.2790 0.2695 0.2790 0.2695
0.02 1 3 0.3350 0.5538 0.3537 0.5538
0.004 1 3 0.2878 0.3883 0.2867 0.3883
0.002 1 3 0.2627 0.3305 0.2622 0.3305

Table 2: The asymptotic results for Updry and vpary, obtained from (2.34), for various d,, dy and u are compared with
FlexPDE7 [15] numerical results.

For a one-spike steady-state, we now compare our asymptotic results with corresponding full numerical
results computed using FlexPDE7 [15]. For u = 0.25, in Table 1 we compare asymptotic and numerical results
for the maximum values of u# and v for both # = 2 and for # = 3. A similar comparison, but for the boundary
values of u and v are shown in Table 2. We observe that the asymptotic results in (2.34) more closely approximate
the numerical result when # = 2 than when & = 3. This improved agreement when # = 2 is due to the fact that
the /1 — 2w, ¥ term in (2.20) vanishes only when ii = 2/¥, and so the error does not include any O(|log €|™")

10



Single Spike Double Interior Spikes

cellular density u

cellular density u

_____ chemical concentration v —.—.—chemical| concentration Vo

(a) a one-spike steady-state (b) a two-spike steady-state

Figure 1: Numerically-computed one and two-spike steady-state solutions of (1.3) with dy = y = 1, i = 2, d, = 0.0005
using FlexPDE7 [/5]. The solid red curves are the cellular density u#, while the dotted blue curves are the chemical
concentration v. Observe that « and v increase in the outer region.

correction term as it does for the case when it = 3. In Figure 1 we plot the numerically-computed one-spike and
two-spike steady-state solutions computed using FlexPDE7 [15]. We observe that the half-profiles of # and v are
not monotone decreasing and so their spatial behavior is rather different than for spike patterns of the classical
KS model [54] without the logistic growth term.

2.4 Formulation of the Linear Stability Problem

To formulate the linear stability problem for the steady-state solution, denoted by (u,.,v,.), we introduce the
following time-dependent perturbation (i, v) to (1.2):

u(x, 1) = u(x) + eVp(x), V(x, 1) = vo(x) + eV (x), (2.42)

where |[¢| < 1 and || < 1. Upon substituting (2.42) into (1.2) and linearizing, we obtain the spectral problem

;_/l¢ = ¢xx _/?(uewx)x _/\_/(vexqﬁ)x + dﬁ(ﬁ - 2”6)¢a -1<x<1; ¢x(il) = O, (243&)
1 1
W=eeY—y+d, —1<x<l1; yY(xl)=0. (2.43b)

It is well known that linearized eigenvalue problems arising from the analysis of localized spike patterns of RD
systems have two classes of eigenvalues (cf. [25]). The first type is referred to as the large eigenvalues since
their moduli are bounded away from zero as € — 0. The second type are the small eigenvalues of order o(1) as
e — 0.

In §3 and §4 we will analyze the large and small eigenvalues for (2.43), where the cellular diffusion rate d,
is the main bifurcation parameter. Recall that d; € 7, where the admissible set is defined in (2.35). Our main
goal is to determine critical thresholds for d; € 7, depending on N, that will provide the range of d; for which
all large and small eigenvalues satisfy Re(1) < 0. On this range, N-spike steady-states are linearly stable as
€ — 0. Oscillatory instabilities in the amplitude of a one-spike steady-state are also shown to be possible as 7 is
increased from a Hopf bifurcation of the large eigenvalues.
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3 Analysis of the Large Eigenvalues

This section is devoted to the study of large eigenvalues for an N-spike steady-state. These eigenvalues are

bounded away from zero as € — 0. To begin, we introduce local variables defined in the jth inner region by
y=¢€'(x-xj), D;(y) = ¢(x; + €y), V) = ¢(x; + ey), 3.1
and we expand
D(y) = Opj(y) + €D +... ;)=o) + €PN +..., A~A. (3.2)

Since the spike profile (U, V;) for the steady-state is the same for each j, as similar to (2.1) we expand

Uiy) = Ugy) + €U ) +... V) =Vo() +eVi) +.... (3.3)

Upon substituting (3.1)—(3.3) into (2.43), we obtain the following leading order problem on —co <y < co:

0 = @f; — Y(Uo¥y,) — x(Vo®@q))'; ;,(0) =0, (3.4a)
Wo; = ¥y, = Wo; + Qo5 ¥(;(0)=0. (3.4b)

Recalling that U = y U,V from the core problem (2.2), it is convenient to define go; by

_®y;
8oj = 70 —x Yo, - 3.5

In terms of g, the two problems in (3.4) are transformed on —co <y < co to
(Vo) =0. ,0)=0: AW, =Py, — Wo; + YUoWo; + Ungo;.  P);(0) =0. (3.6)

Imposing that gy; is bounded as [y| — oo, we obtain from the first equation of (3.6) that gy; = C i» where C jisto
be determined. Then, the second equation in (3.6) becomes

AoWo; = Wi, — Woj + fUoWo; + C;Up, —o0 <y <oo; ¥0,(0) = 0. (3.7)

Before formulating the outer problem, we must determine the far-field behavior of the inner solution. In the
outer region, we obtain from (2.43) that, for e < 1, ¢ ~ (1o + 1)¢. As a result, we must have @y; ~ (1o + 1)¥y;
as y — +oo. By using this relation, together with gg; = C‘j and Uy ~ sp as [y| — oo, (3.5) yields that

~ ~ ~ Dy
(DOj = Con +)(U0\IJ0J‘ ~ CjSO +)(S0—J s
Ao+ 1

as |y| = oo. Since sy < 1, this expression provides the leading order far-field behavior
(D()j ~ éij, as |y| — 00, (38)

Next, we construct the outer solution. Since u, = v, = O(syp) < 1 in the outer region, (2.43a) yields that

¢ ~ ¢,, where

d 5
L+, =0, -l<x<l, x#x),  where f=ii——2. (3.9)
7 7
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From (3.8), one matching condition is ¢0(x?) =C i80, while the other is obtained by deriving the appropriate
jump condition for [¢,,]; := ¢0x(x?+) - ¢0x(x(]?‘). To derive this jump condition we write (2.43a) as

d
;1% + 0 = 2u + XU )y + X (Vex®)s - (3.10)

We integrate (3.10) over an intermediate scale x? —o<x< x? + 0 where € < 0 < 1 and we pass to the limit
o — 0, but with o-/e — oco. In terms of the inner coordinate y, where u, ~ Uy and ¢ ~ ®@;, and upon using the

facts that u, = v, = O(sg) < l at x = x? + o7, we obtain that the jump condition for the outer solution is

d 00
j[rﬁ(,x]j ~ 2e f Uyp®y; dy .

Then, by using ®y; ~ UOC‘j + }Uo%¥y;, as derived from (3.5) with gg; = Cj, we conclude that

i—‘[%]j ~ 2€ I: (USC; + 0Wo;U3) dy . (3.11)
In this way, we obtain the following multi-point boundary-value problem (BVP) for the outer solution ¢,:
%zpm +ig, =0, —-l<x<l1, x#x), j=1,...,N; Gor(£1) =0, (3.12a)
%[rﬁox]j =2¢ f_: (U3 + 0¥o;U3) dy.  ¢o(x) =Cjso. j=1.....N. (3.12b)
To solve (3.12), we introduce an eigenvalue-dependent Green’s function G,(x; x;) defined by
%G/lxx‘l'i/\tG/] =0(x—x), -l<x<1; Go(xl;x) =0, (3.13)
which exists provided that d, # 4uii/ (m*n?) form = 1,2, .... When these constraints are satisfied, the solution

to (3.12) is represented as the superposition
N oo
b0 = 262 f (YU o + CuUY) dy Ga(x: x}) (3.14)
=1 v~

By imposing ¢0(x?) = s5,C ;» and recalling from (2.30) that sy = ea, f_ 0:0 Ug dy, we obtain from (3.14) that
’ N oo &
éj = (f )_(US\P()]( dy) G, XQ;XQ + — Ck G, XQ;)C]? y (315)
agf_ngdy; oo (J ) ag; (/ )

where a, was defined in (2.30). Then, by letting I be the N X N identity matrix, and introducing

GA(X?; X(l)) T G/l(x?; X?v) C~l Yo
Ga:= : , C:= : , Wy := : , (3.16)
Ga(x;x)) - Ga(x}s xy) Cw Yon
we can write the linear algebraic system (3.15) for C j»with j=1,..., N, in matrix form as
2 ~ 2 Y 0
(—gA - I)C - 26, —%f URY, dy| . (3.17)
ag ag f_oo U() dy —
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By combining (3.7) with (3.17), we obtain a vector nonlocal eigenvalue problem (NLEP) given by

[ UiBYody

Yo — Yo+ xUo¥o — ¥ Uo—x—— = WY, (3.18)
[Lugdy
where, to leading order, we have ¥y — 0 as |y] — oco. Here B is the N X N matrix defined by
2 (2 -
Bi=— (—Ql - I) Ga. (3.19)
g \dg
Next, we diagonalize the vector NLEP (3.18) by introducing the orthogonal eigenspace of 8 as
Bq; = a,q;, j=1,...,N. (3.20)
Denoting Q as the matrix of eigenvectors q; (as columns), we obtain 8 = Qdiag(cy,...,ay)Q . By defining

¥, = Q'¥,, we obtain that (3.18) reduces to the following N-scalar NLEPs, where « is any eigenvalue of B:
[ uivay

-y +)_(U()‘P - CY)_(UOOO—
[ Udy

=AY, Y —>0as|y — oo. (3.21)

Since Uy > O(1) in the sub-inner region, we will transform (3.21) to the z-variable. Recall that in the jth

sub-inner region, we have from Proposition 2.1 that

1 _
t= ey, =€), Up~ sivhagsect? (). (3.22)

By introducing the re-scaled coordinate Z := yz/2, and defining
Uy := 2sech’(2), (3.23)

we readily derive from (3.21) that we must analyze, on —co < 7 < +00, the approximating NLEP given by
[ 02vaz

‘ij+UO‘I’—C¥UO o — -
- LOO Ué dz X2v12nax0

(Ao + DY, Y bounded as |z] — oo. (3.24)

3.1 Competition Instabilities: 7 = 0

From the NLEP (3.24), we now determine the conditions on d; € 7, u, it and N such that the N-spike equilibrium
is linearly stable with respect to the large eigenvalues when 7 = 0. To do so, we must first determine explicit
formulae for the eigenvalues of the matrix 8 in (3.19). Then, by analyzing the NLEP, we must calculate the
critical threshold @, > 0 such that in the restricted subset for which Ay # 0, we can guarantee that when « < a.
the principal eigenvalue of (3.24) has a positive real part, and that when @ > «, it has a negative real part.

One can immediately conclude that when the minimum eigenvalue of matrix 8, labeled by a,,;,, satisfies
Apin > @, the NLEP (3.24) with 7 = 0 has no eigenvalue with a positive real part in the subset for which 4y # 0.
We will calculate the explicit range of parameter values d; € 7, u, it and N to ensure that the condition «,,;, > .
holds, which guarantees that the N-spike equilibrium is linearly stable with respect to the large eigenvalues when
7 = 0. Our results will be expressed in terms of a threshold value in the diffusivity d;.

In Appendix B we show that when d; € 7, the eigenvalues «; of 8 when T = 0 are related to the eigenvalues

o ; of the Green’s matrix G by

20 ;
@j=—  for j=1,..,N, (3.25)
200 — 0
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where o is defined in (B.8) upon setting 7 = 0. The minimum such eigenvalue is @, = ay.

Next, we focus on the computation of the critical threshold «.. In fact, if we entirely follow the method in
[58] to study (3.24), we readily obtain that a. ~ 1. However, the next order term in a. is O(|log €|™!) since it
involves vi.xo. This term is key for obtaining accurate predictions of the stability threshold when 7 = 0. To
obtain this refined asymptotic formula of a., in Appendix C we transform the NLEP into an ODE that can be
solved with the use of hypergeometric functions. We summarize our rigorous results in the following theorem:

Theorem 3.1. Consider the following nonlocal eigenvalue problem (NLEP):

- = [T 029 dz 4
{ Yo+ U¥ —nlomrs = mp (ot DY, —eo<z< oo, (3.26)

Y boundedas |z] > .

Here vy > 0 and Uy is given in (3.23). Let Ay # 0 be the eigenvalue of (3.26) with the largest real part. Then for

Vmaxo > 1, we have Re(1dy) > O when vy < y.:=1— z)zvi —. Alternatively, we have Re(dy) < 0 when vy > ..

Proof. The proof of Theorem 3.1 is given in Appendix C. m|

We observe from Theorem 3.1 that when vy, 1s sufficiently large, we have y. ~ 1, However, the correction
term is needed to obtain an improved result. Since the minimum eigenvalue of $ in (3.25) occurs when j = N,
we use Theorem 3.1 to conclude for 7 = 0 and d; € 7, that Re(1y) = 0 when

208 3 (3.27)

- - —_ b
20y — 0 2} Vmax0

where o and oy are given in (B.8) when 7 = 0. This yields that

oy __ e/2H+1 1 XVmaxo

o1 e/f)—cos(x/N) 2 3 °

(3.28)

where e/(2f) = —cos (20/N) with 6 = \/% can be calculated from (B.6). By isolating cos (20/N), we get

/\_/VmaXO 1
, Where a:= - =
3 2

(29) 1 —acos(/N)
cos|—|=
a+1

Upon solving this expression for d;, we can obtain a critical threshold in terms of y, i, y and N. In this way,
owing to Theorem 3.1, we summarize our results for the case 7 = 0 as follows:

Proposition 3.1. Assume that d, € T, and T = 0. Let Ay # 0 be the eigenvalue of (3.24) with the largest real
part when v = 0. Then, for N = 1,2,..., Re(1y) < 0 when

At 1 — acos(n/N) XVmaxo |
— > 4= - =

d <djy = ,  where = , :
SRR (arccos(ny))* w a+1 3

(3.29)

Here vy is determined by (2.32). Alternatively, when dy > d,.n, we have Re(dy) > 0. Since d.; = oo when
N =1, we conclude that a single interior spike is always linearly stable with respect to the large eigenvalues for
any d, = O(1) when v = 0.

Proposition 3.1 provides the stability criterion for an N-spike equilibrium with respect to the large eigenval-
ues when 7 = 0. To relate d;.y to the thresholds d;,y and d,r,, of the admissible set 7, as defined in (2.35),
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we observe from (3.29) that since vy.xo > 1, we have ny > 0 for N = 2, and ny < 0 for N > 3. Therefore,
0 < arccos(n;) < /2, while /2 < arccos(ny) < m for any N > 3. As a result, for e — 0, we conclude that

d1p2 < lel < dch , for N = 2, dle < dlCN < lem , for N >3 and m < N/2 (330)

However, since vy.xo depends weakly on d;, the threshold d;.y in (3.29) is a weakly nonlinear implicit
expression that must be solved numerically. To illustrate our results, we chose d» = 0.0004 = €%, i1 = 2, u = 1
and y = 1, and we calculate the thresholds d.y for N = 2,3,4 as

dinr = 2.36 (N =2); di3 = 0.74 (N = 3); diea 039 (N=4). (3.31)

When N > 1, d;.y has the limiting behavior d,.y ~ 4uitN=2/ [arccos(nm)]2 where 1., := (1 —a)/(1 + a). This
limiting result is valid only for N < 1/€, owing to the fact that steady-state analysis in §2 requires that d; /e> > 1.

In summary, our analysis has shown that a sufficiently large cellular diffusion rate d; will trigger a com-
petition instability for an N-spike steady-state solution when 7 = 0, To partially confirm our theory, in Figure
2 we show full numerical results computed from (1.2) showing a competition instability for a two-spike quasi
steady-state solution as d; slowly increases in time. This initial instability is found to lead to a nonlinear process
that annihilates one of the two spikes. This observation suggests that competition instabilities for the KS model
(1.2) are in fact subcritical, as is well-known for the 1D Gierer-Meinhardt RD model [30].

u(x,t) ¥(x,0)
15 - : 15 : ; 5 ‘
—t=0s —t=0s d,=1+0001t
== =1600s ——ele0s
— — t=2100s — — 1=2100s 4t le
10
3 L
-
2t
5
i
| I
f
A
e —— D e— (= | | 0 I I I I
0 05 1 -l 0.5 0 05 1 0 500 1000 1500 2000 2500
X X t
(a) dynamics of u (b) dynamics of v (c) dy versus t

Figure 2: Full PDE simulations of (1.2) using FlexPDE7 [ 5] illustrating a competition instability of a two-spike steady-
state when d is increased slowly in time t. Left and Middle: snapshots of (u,v) at three times, showing the collapse of a
spike, withd, = y = 1, 1 = 2, d = 0.0004 and u = 1; Right: the cellular diffusion d, versus time. In subfigure (c), the
dotted line d, ., represents the stability threshold of large eigenvalues computed numerically and the solid line is the slow
increasing ramp for d; versus ¢. Observe that di» = 2.5 agrees rather well with the analytical results in (3.31) and (3.40).

3.1.1 Invertibility of the Jacobian Matrix for s;

We now provide an alternative approach to estimate the competition instability threshold when 7 = 0. We will
show that this threshold closely approximates a bifurcation point associated with the linearization of the coupled
nonlinear algebraic system (2.27) that was derived in our analysis of quasi steady-state patterns.

16



We begin by writing (2.27) in the vector form F(sy,...,sy) = 0 with F = (F,..., Fy)!. By differentiating
F; with respect to s; we obtain, in terms of the Kronecker symbol ¢;;, that

g(sl, ey SN) = 61’]’ — 26/\7vmaxjv;naij(x,'; Xj) , (332)
J
where from (D.4) of Appendix D we have that
dvmaxj évmaxj 2 B
= ~— , max i =1 — ) 3.33
VmaXJ dSJ )?S] é, J )_(Vmaxj ( )
We now evaluate the Jacobian matrix J = (%)NXN at the equilibrium solution where x; = x(;, s; = So,

Vmax j = Vmax0> ANd {maxj = §o = (1 — 2/()2vmaxo))_1 for j=1,...,N with x? and s( defined by (2.29) and (2.30).
We seek to determine the largest value of d; in the admissible set 7, of (2.35) where the Jacobian matrix is
not invertible. Upon substituting (3.33) into (3.32), and evaluating the resulting expression at the equilibrium
solution, where we use sg = 26)2agvr3naxo /3 from (2.30), we obtain that

OF; 3 G(x}; x9)
— (515, ~ 0 — — . 3.34
) T (2 _vaaxo) " (3.34)
In this way, the Jacobian matrix J at the equilibrium solution is given for € — 0 by
3
J~1- (_—) g . (3.35)
2 ~ XVmax0/ dyg

Here G is the Green’s matrix (G(x?; x?))NxN for T = 0, which is evaluated at the equilibrium spike locations.

Whend, € 7., it follows from (3.35) that the eigenvalues A g ; of the Jacobian J are related to the eigenvalues
o ; of the Green’s matrix G, obtained by setting 7 = 0 in (B.8) of Appendix B, by
3 g

Adgi=1—- ————,
T (2 = XVmaxo) 01

(3.36)

where we used 0| = a,. The Jacobian matrix is singular when A4 ; = 0 in (3.36), which yields the condition

O-J' 2 )_( Vmax 0

~ == 3.37
The largest value of d; where the Jacobian is singular is obtained by setting j = N. By using (3.28) this yields
ﬂ — COos (ZQ/N) -1 - % _ )Evmaxo i (338)
oy cos(20/N)+cos(mr/N) 3 3
where 6 = +/uii/d,. Upon solving this expression for d;, we obtain the following critical threshold for d;:
Ayt YViaxo 2
de, = K . N=1,2,..., where a = XV3 -3 (3.39)
NZ[ arccos (—1_“‘;‘155”/ N ))]

We remark that the leading order term for a; given in (3.39) is y'Vmaxo/3, Which agrees precisely with the
leading term of a defined in (3.29), as derived by analyzing the zero-eigenvalue crossing condition of the NLEP.
This observation partially confirms our asymptotic results given in Proposition 3.1. For the parameter values
d, =0.0004, 2 =2,u=1and y = 1, we use (3.39) to calculate dl*c1 = oo and

df,~291 (N=2); d,;~097 N=3); di,~054 (N=4). (3.40)
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3.2 Hopf Bifurcations: 7 # 0

In this subsection we focus on the possibility of an oscillatory instability in the amplitude of a single steady-state
spike for (1.2) on the range d; € 7, where 7 # 0. In particular, for the linearization of a one-spike steady-
state solution we will show that there can be a Hopf bifurcation leading to an oscillatory instability in the spike
amplitude. More specifically, by analyzing (3.24) we will compute the threshold v = 7. > 0 such that the
principal eigenvalue of (3.24) has the form Ay = idy where i := V=1 and A > 0 is real.

As shown in (C.7) of Appendix C, if we define w = \/l_]_o we can transform (3.24) to

“ WY, dz 4- A
—f‘” D2 = A%y ; K= - A

- (Ao + 1)

A:=4
’ =2.,2
szmaxO

lPOZZ + WzlP() — K

(3.41)

By using the results in Appendix B for @, we obtain that the NLEP multiplier « is

-1
TAo
A 2, tan (/1 -2 =
k=4[1-2)|3- J1-2 ( =) . where 6=,
4 it tan d

and where we have taken the principal branch of /1 — L—’E’ Next, we transform (3.41) to an algebraic equation

in terms of hypergeometric functions. By using (C.34) of Appendix C, we choose §; = VA/2 to get

4 1 5
-—%1—ﬁrquL§;Lzz—5b2+ahin>

-
A3\ T +6)T(3)
_() TG +6))

1 3
> 3F2(1+5],61—§,1+61;2(51+1,§+(51;1), (342)

3

where VA is taken as the principal branch. In terms of T = 7, and Ay = idy, (3.42) is a single complex algebraic
equation that can be separated into real and imaginary parts to obtain a coupled algebraic system for 7. and Ay.

The results obtained by solving this system numerically are shown in Figure 3, where we setu = 1, it = 2,
X = 1, and d, = 0.0004. Figure 3a shows that the spike will develop amplitude oscillations when 7 increases
passes through 7.. The threshold 7. is seen to be a decreasing function of the cellular diffusivity ;. Figure 3b
shows numerically that the transversality condition of the Hopf bifurcation is satisfied, as unstable eigenvalues
enter Re(1y) > 0 when 7 increases above 7.. The full PDE numerical simulations for the spike amplitude
shown in Figure 3c suggests that a Hopf bifurcation occurs somewhere on the range 1.9 < 7 < 2.2 when
d, = 2. Correspondingly, the theoretical value obtained by solving (3.42) numerically is 7. = 1.94. Moreover,
the numerical results shown in Figure 3¢ suggests that the time-periodic solution initiated at 7 = 7. is stable. An
open problem is to establish theoretically whether in fact this Hopf bifurcation is supercritical.

4 Analysis of the Small Eigenvalues

In §3 we analyzed the linear stability of an N-spike steady-state solution with respect to the large eigenvalues of
the linearization. In this section, for d; € 7,, we will formulate a matrix problem for the small eigenvalues of
order O(E3V?nax o) in the linearization, and we will calculate an explicit asymptotic formula for them.

To begin the analysis, we differentiate (1.3) for v to obtain

LeVe, = —liyy where Loy := €Wy — . 4.1)

18



" Hopf Threshold 5 Complex Eigenvalues o5 Oscillation Dynamics of Cellular Density u
l
16 6
14 I
4 9 |ll It l‘l I
It o
12 ) e
2 e Y D
~ e ekt ey
I
10 ° (L )b
< I 1
C 0 285 ||||l||l||1|| |
g E B ey ey il b
(R ] e
2 ] ) ]
6 I Wy ! v
IR IR
4 -4 | | : U | U
2 6
0 L L L L L L L _8 L L L L L 75 . . . .
12 14 16 18 2 2224 26 28 0.8 -0.6 04 02 0 02 04 0 10 20 10 40 50
dl Re()\o) t

(a) Hopf threshold (7., Ag) (b) Complex Eigenvalues for (3.41) (C) Umax versus t

Figure 3: Left panel: the Hopf bifurcation threshold (t., Ay); middle panel: the path of the complex spectra of (3.41)
as T is increased above 1. for the linearization of a single steady-state spike, as obtained by solving (3.42) numerically;
right panel: plots of umax, the maximum of u, versus t when v = 1.9 (dashed curve) and T = 2.2 (solid curve), respectively,
from full PDE numerical simulations. In (a), the solid blue line represents the Hopf threshold 7.(d;) and the dotted red line
denotes the critical eigenvalues idy. The left panel (a) shows that the Hopf threshold 7. decreases as the cellular diffusivity
d; increases. The middle panel (b) shows the path of the complex spectra for d; = 2 as 7 increases. We observe that for
T > 7. unstable eigenvalues enter Re(4dp) > 0. The right panel (c) demonstrates that when d; = 2, the Hopf bifurcation is
triggered at some 7 on the interval from 1.9 to 2.2.

Our first goal is to obtain an approximate expression for (4.1) in terms of the inner coordinate near a spike.
Focusing on the jth spike, we find from Proposition 2.1 that the composite expansion of the quasi-equilibrium

solution u, can be written near the jth spike as

uy ~ 5;(x)XV00 -y = e l(x—x;), j=1,...,N.

S ('() . XE EN lm ('()G('(?'(k)’ .] ]‘""’N‘ (I'2)
J 3 4 ax k

Since s¢ = o(1), we find e ~ 1, so that

Ug ~ sj(x)e)?v"(y), y= e_l(x—xj), j=1,...,N.

We differentiate u, with respect to x to get for the jth spike that

Uge ~ § (00 + €7 s ()0 V], 4.3)
and by differentiating (4.2) we obtain that
N o N
57:(0) = 2ip€ ; Vot (D) [0t (9] Glxi ) + Zoe kZ] Ve () Gl 1) (4.4)

Noting from (D.5) of Appendix D that we can approximate

gmaxk 2 -
axvmaxk(x) ~ T 8xsk(x)’ {maxk =1- - s k = 1, ....N,
X Sk XVmax k
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we obtain that (4.4) becomes

N _ N
Skx 2)( 3

jx ~ =2 2 max —G 5 + = 0 Gx 5 .

(%) e; Vhak (Dt F G 30) + 5 e; V(DG (x: x)
At the steady-state, for which x; = 3, for j=1,...,N, we have v, (x) = V2 (), se(x) = s%(x), and & = max k-

Therefore, for the jth spike evaluated at the steady-state we have
I 163
2 0 5%

sg(x)lx,.:x(; ~ (( )) [Zo(V0) ()] Z G(x%; x) + ?e WD ()] ZG (xj, 4.5)

max

Next, since y =el(x— xo) we find from S°(y) := so(xg +ey)and V2 (y) := vmax(x +€y), where S (resp. VO )

is s° (resp. V"), that in terms of the y-variable

max

I L
0SSy 0 ~ — @)E[éo( Y] Z G(ey + x%; x7) e X 21v0 )3 (y)] i G.(ey +x%: 1)),
y Xj=X; SO( ) max £ Jj max - J
where for G we have G.(x; x{) = G(ey + x?; x). Then, at x = x?, for j =1,...,N, we have v?nax(xo) = Vinax0

and so(xg) = so. In this way, (4.5) becomes

11 11

2s0( O)

0(,0
s,(x;) =

2v N
egovmza i)+ S g 2 G

where we identify that I, = u(,x(x?) with u,(x) being the outer solution constructed previously. In the y-variable,
we find as |y| — oo, that

11 11

o . 20,8°
0,8" —

Egovmaxo Z G(xl > ) + _6 maxO Z Gx(x Xk (4.6)

According to (4.3), we set x; = x? to conclude for the jth

spike region x € (x(; — €, x?. + €) that u, satisfies
Upy ~ sg(x)e’?vo + e‘l)‘(so(x)ew“ Vi
where V} = 8,V,. Finally, we use y = €' (x — x° ) and transform u,, to the y-variable to get
3,U ~ 0,S°(y)et"" + xS (y)e*"a,Vy,
where U;(y) = ue(x? + €y). It follows from (4.1) that for x near x;
LV ~ =0,5°(0e™" — ¢S °(y)e?"a,V, . 4.7

th

Next, we investigate the linearized eigenvalue problem (2.43). To obtain the ;- inner solution, we expand

(Dj(y) = qu)Oj + €2qu)1j +..., \Pj(y) = CjVj,- + EZC‘,’lPlj +..., (48)
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where y = € !(x — x;). Similarly as in §3, we substitute (4.8) into (2.43) to get
(D()j = )?UJV], . (49)

Moreover, by using the fact that 4 = o(1), we conclude from (4.7) and (4.9) that the yU;V’ term in the y-
equation (2.43b) is cancelled but the term —aySO(y)e)? Yo remains. To eliminate this term, we need to formulate
the matching condition between the inner and outer solutions.

Defining the outer solution by ¢,, we now derive the appropriate jump conditions across the jth spike for ¢y.
To begin with, we observe that 9,5 (y)e¥ Voo 0,8 (y) for |y| large. Moreover, since /1, defined in (4.6) is expressed
in terms of the Green’s function G, we have that ¢, satisfies the following jump condition across x;:

d
[Z0] = - 20y o1, (4.10)
Jii J

S0

where (f); and [f]; are defined as (f); := [f(x]) + f(xj)]/2 and [f]; := f(x7) — f(x}), respectively. The
coeflicient in (4.10) can be simplified by eliminating sy by using (2.31). In add1t10n we ﬁnd as € — 0 that

2)(123

ZU()CJ'(DOJ' max;6 (.X X]) (411)

Upon defining ¢, := €¢,, and dropping the overbar notation, we combine (4.10) and (4.11) to obtain the
following leading order outer problem for ¢, with jump conditions across the jth spike:

N N

d 2x 3
o+ 0 ~ Lo ), 86 = ) = Xi D (b0 i6(x = xy). (4.12)

= gVmax 0 =1

Our next aim is to establish the solvability condition that provides the matrix eigenvalue problem for the
small eigenvalues. To do so, we substitute (4.8) into (2.43b) and multiply it by V7. Upon integrating the resulting
expression over —1 < x < 1, we drop some asymptotically negligible terms to get

N N N N N
Z(le‘fvil’ V})+622 CL\PIH ] +Z CCDOH J +6 ¢0’ i +GZZ C(I)lt, i /IZ CVZ,V] 5
i=1 i=1 i=1 i=1 i=1
(4.13)

for each j = 1,..., N. Here the inner product (f, g) is defined as (f, g) := f_ 11 fgdx. Since V; decays exponen-
tially as |[y| — oo, we collect the dominant terms to simplify (4.13) as

¢; (Vi LV + @) + €¢; (Vi L1 + ©1y) + € (60, Vi) ~ Ac; (Vi V) . j=1.....N. (4.14)

VA

Noting that L, is self-adjoint, we integrate by parts on the second term of (4.14). Expressing the integrals in
terms of y = €' (x — x;) we get in terms of u, = u,(x; + €y) and ¢, = ¢,(x; + €y) that

(o) (o] (o) 2
—620‘,-f V]’uoxdy+63f ¢0V}dy~/lcj6f (VJ') dy, j=1,...,N. (4.15)

Next, we analyze the left-hand side of (4.15) by expanding u, and ¢, in one-sided Taylor series. In this way,
the left-hand side of (4.15) becomes

—ezcjf Vi dy + 63f ¢oVidy = e4<¢0x)jf yVidy - 63(u0xx)cjf yidy. (4.16)
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By using (uyy); = —Z—’f(uo)j, we further simplify (4.16) as
(o) (o] (o) s c 'ﬁ (o)
—ezcjf Vg, dy + e3f G Vidy = E4<¢0x>jf yVidy + e3od—]'uf yVidy. (4.17)
oo —o —oo 1 —0

After rewriting the outer problem (4.12) in terms of jump conditions, we combine (4.15) and (4.17) to obtain the
following characterization for the small eigenvalues:

Proposition 4.1. For d, € T,, the eigenvalues A of (2.43) of order O(e3vmax o) satisfy

A2 SoC it < ,
Ac,-Lo(vj) dy~e3(<¢ox>j+6—cjll)fwyvjdy, j=1,...,N, (4.18)
where sy = O(evma o) and where (@, ; is determined by the solution to the BVP

d
L+, =0, ~1<x<l, x#x9, j=1...,N;  $u(x])=0, (4.19)
u

which satisfies the following jump conditions across each spike:

%o,
u

4.1 Formulation of the Matrix Problem

2vc; d 3 2\
= XC’vfmxoe, [j%] = % —" (), lo = (1— — ) ) (4.20)
J

j 3 )(agvmax 0 XVmax 0

We will now solve (4.18) for d; € 7, so as to derive a matrix eigenvalue problem for the small eigenvalues. To

do so, we let my, fork = 1,..., N, be constants to be found and we write the solution to (4.19) in the form
2)( g N N
= 3 Vmaxo Z i85 Xi) + Z mG(x; ) . (4.21)
k=1 k=1

Here, for d, € 7, the Green’s function G satisfies (2.24), while the dipole Green’s function g satisfies

d d
g tig=08(x—x), -l<x<l; glxl;x)=0; [—lg] =1, [¢'];=0. (4.22)
" Ko
Upon defining m := (my, ..., my)", we use the jump condition in (4.20) to obtain from (4.21) that m satisfies
3 2x
m=-—_(om+ 22 c) (4.23)
Xagvmaxo 3

where G is the Green’s matrix and where $, and ¢ are defined as

g, x) - 8(x1; xy) C
P, = : , c:=| + |. (4.24)
glxnsx1) -+ (g(xns xn))N CN

Upon solving (4.23) for m we get

m = —

2v?nax0§0 (I + 340

Qg

-1
Q) P.c. (4.25)



Next, we use (4.21) to calculate {(¢,,);, for j = 1,..., N, in the form

<¢ox> 3 maxOQgc +Pm, (426)
where (@,x) := (Dox1s---» (¢(,X)N)T and m is given by (4.25). Here  and G, are defined by
(Gelxisx)n -+ Gulxsxy) gx(xsxn) o g3 xn)
P .= : , G, = : . (4.27)
Gi(xn;x1) o+ (Gi(xn; xn)IN gulxisxn) o0 gl xwn)
By substituting (4.25) and (4.26) into (4.18) of Proposition 4.1, we obtain that
" YV dy
Ac ~ —€PoMec,  where fo:= - b Vs >0. (4.28)

o0 2
b (VO) dy
Here V is the common leading order core solution, and M is defined for d; € 7, by

2X y 050 3% Solu
M _ 3 IndX 7) I +
3 Vmax Ogg ( /\_/ AgVmax 0 ed 1

This result shows that A and ¢ are related to eigenpairs of the matrix M. As a result, the analysis of the linear
stability properties of the small eigenvalues in (2.43) when d; € 7, is reduced to the problem of analyzing the
eigenvalues of the matrix M and determining conditions on the parameters for which Re(1) < 0.

An important relationship between the existence of M and the invertibility of the Jacobian associated with
the nonlinear algebraic system of quasi-equilibria, as studied in §3.1.1, is summarized as follows:

-1
g) P, + I. (4.29)

8

_ 3

X@gVmax 0

-1
Remark 4.1. Recalling that a, = oy, the inverse (I + Q) appearing in M of (4.29) does not exist when

ﬁ _ /\_/vmaXO _ /gvmaxo (1 _ 2 ) — 2 _)_(VmaxO (4 30)

o 34o 3 XVimaxo) 3 3 7
where ojfor j=1,...,N are the eigenvalues of G when v = 0 and d, € T,. As a result, the non-existence of the
small eigenvalues coincides, by using (3.37), with the non-invertibility of the Jacobian matrix of the linearization
of the quasi-equilibrium solution around the steady-state. By setting j = N in (4.30), we obtain d, = df ,, as
given in (3.39), which approximates the competition instability threshold for an N-spike steady state solution

when T = 0 (see Proposition 3.1).

To analyze M, we must calculate the matrix spectrum of the dipole Green’s matrix G, given in (4.27) when
dy € T,.. As shown in Appendix E, when d, € 7, the inverse matrix of G, is readily identified as being
proportional to the inverse of a N X N symmetric tridiagonal matrix, labeled by D,, and defined in (E.5) as

G, = d—li); . (4.31)
The matrix spectrum of D, for d; € 7, is readily calculated as in [25], and is summarized as follows:
Proposition 4.2. The eigenvalues ¢; and the normalized eigenvectors vi = (v j,...,vy;)" of Dy are
26 26 0 1
& =2cot| = |+2csc|[=| = ZCOt(—) . ovi=—(L-1..., 1,...,(—1)N+1)T , (4.32a)
N N N VN

¢ = 2cot(2—1\f) - 2csc(%6)cos(”(j]\; 1)) vy = \/%sin(ﬂ(jz\; D- %)) . j=2,...,N, (432b)

forl=1,...,N, where 0 = \Juji/d,. When d, € T,, i.e. 0 < ntN/2, we have the ordering & < ... < &y < &).
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By using the key Proposition 4.2, in Appendix F we show how to diagonalize M and compute its spectrum.
This leads to the following explicit asymptotic result for the small eigenvalues, valid as € — 0:

Proposition 4.3. For d, € T, and d, < df ,, the small eigenvalues A; satisfying (4.28) are given explicitly for

1eN?
€ — 0by
poo 2B (O 3L @ a Ny (4.33)
J 3 max 0 dlgj )—(agvmaxo f] dl g1l 900 ey k) .

where &; are the matrix eigenvalues in (4.32) and {, = (1 - 2/(,€vmaxo))_l. Here a, and wj, as defined in (2.30)
and (F.10), respectively, are given by

1 [pu t(e) 0 w5 (26 Sinz(_(j;vl)”) i=2.....N (4.34)
a,=—_.|—cot|—]|; w =0, w;==csc|— , =2,...,N, .
$ToVda O \N ! T & \N ( % /I) /

dii

_é:j + =
X0gVmax 0

where 6 = \Jufi/d,. The associated eigenvectors ¢ are simply the eigenvectors of G, as given in (4.32).

As shown below in §5.1, the stability threshold of an N-spike steady-state for the small eigenvalues can also
be obtained by first deriving a DAE system for slow spike dynamics and then linearizing this DAE system about
the equilibrium spike locations.

4.2 Stability Thresholds for the Small Eigenvalues

In this subsection, we examine the explicit formulae (4.33) for the small eigenvalues on the range d; € 7, but
with d; < d},, as given in (3.39). This latter inequality is needed to ensure that the steady-state is linearly stable
with respect to the large eigenvalues when 7 = 0. To this end, we write (4.33) in the more convenient form

26Bo 1 (uf 3w up
Ai=— v b, h hj=—|—>-—"2|+—a,, j=1,...,N, 4.35
J 3 XVmax 0/ where J é:j dl )—( AgVmax0 dl ag J ( )
where w; and a, are defined in (4.34). If on the range d; € 7., but with d; < df ,, we have h; > 0 for each

Jj =1,...,N, we conclude from (4.35) that the N-spike steady-state solution is linearly stable with respect to
both the small and large eigenvalues when v = 0. Alternatively, if for some j € {1,...,N}, we have h; < 0
on some range of d, € 7, but with d, < d7.,, it follows that the N-spike steady-state is unstable to the small
eigenvalues on this range but is linearly stable to the large eigenvalues when 7 = 0.

For any N > 1, we first establish the sign of 4; in (4.35) when d; € 7. By using 6 = +/uit/d; together with

(4.34) and (4.32a) for a, and &;, respectively, we use the fact that w; = 0 in (4.35) to obtain

h = g—;[tan(%) + cot(%)] = %_3050 (%) . (4.36)

When d, € 7., we have d; > d,,y and so we require that § < Nx/2. As d; — d,,n from above, or equivalently
as @ — Nn/2 from below, h; has a vertical asymptote with #; — +o0o. However, for 8 < Nx/2, we observe from
(4.36) that h; > 0, and so this mode is always stable for the small eigenvalues. This leads to the following result:

Proposition 4.4. For d, > d,, = 4uit/n% and in the limit € — 0, a one-spike steady-state solution for (1.1) is
always linearly stable with respect to the small eigenvalue.
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To examine the other mode functions h; for j = 2,..., N, it is convenient to write /; in (4.35) in terms of
0 = +/uu/d; rather than d;. To do so, we substitute (4.34) into (4.35), and observe that a, = 0(2i1)~! cot (8/N)
and Va0 (6£0)™" = (Vmaxoir — 2) /6 upon recalling that &, = (1 -2/ (TVmaxo0)) . In this way, we obtain after
some algebra that /; can be written explicitly in terms of 6 as

6 0\, s 1 5 2(20/N)sin® (n(j — 1)/N
h; = —_cot(—)hj, B = T[2+gj_zcsc (26/N)sin” (x(j = D/N) ) (4.37a)
20 N ‘fj 1- alfj/Z
where we have defined é ; and re-introduced a; (see (3.39)) as
1 _ A 0
a 1=z (VmaxoX —2) , §ji=¢j COt(ﬁ) ~ (4.37b)

Next, we determine the algebraic sign, the asymptotes, and the continuity properties of /; for the modes
J =2,...,N. By using (4.32b) of Proposition 4.32 for &; for j = 2,..., N, we readily determine the following
two equivalent identities for é ', as defined in (4.37b):

Ej = csc? (%) [cos (ZNQ) — Cos (ﬂ(j]\; 1))] = -2 + 2sin? (M) csc? (ﬁ) , Jj=2,...,N. (4.38)

2N N

Ford, € 7, we have that 0 < Oy := Nr/2butwith 0 # 6,, := mn/2form=1,...,N=1. Foranym =1,...,N—-1,
when d; — dir,, or equivalently when 8 — 6,,, we conclude from the first identity in (4.38) that $m+ 1 vanishes.
As a result, we observe from (4.37a) that fzmﬂ has an apparent singularity as 6 — 6,,, which will require the
evaluation of a singular 0/0 limit. However, by a further analytical simplification of & j» as summarized below in
Lemma 4.1, we can show that this singularity at = 6,, is removable.

Lemma 4.1. On the range 0 < 6y := Nn/2, we have for j = 2,...,N that 1; = _263ﬁ0)_(v13nax0hj/3’ where h; is
given explicitly by

L0 (@) | 2(n<j—1)) [1—ay ~ (1 + a)) cos 26/N)
IZE NN \T 2N ) [T+ @ cos @ = D/N) — (1 + ar)cos CO/N)] -

(4.39)

It follows that A; — —oo as 0 — 0. In addition, forall j=2,...,N, we have A; <0 on the range 0,y < 6 < Oy,
where the simultaneous zero-crossing threshold 6,y satisfies

1
6111) , where a; = 3 (XVmaxo — 2) . (4.40)

3 |
O,y := — arccos
2 a) +

Finally, A; is continuous and satisfies 1; > 0 forall j =2,...,N on the range 6.y < 6 < Oy, where

1 —a, cos (ﬂ/N))

4.41
a) + 1 ( )

O.n = Narccos
cN -— 2

This threshold 0.y is the value of 6 for which hy has a vertical asymptote. As 0 is decreased below 0Oy, it is
the mode j = N that first has a vertical asymptote. Written in terms of dy, this vertical asymptote is equivalent
to the approximation d ., given in (3.39), for the competition instability threshold associated with the large
eigenvalues when t = 0.

Proof. We first derive (4.39). In the proof it is convenient to label ¢ := 6/N and b := n(j — 1)/(2N), so on
0<6@<0Oy,andfor j=2,...,N,wehave 0 < ¢ <n/2 and 0 < b < /2. In terms of ¢ and b, (4.38) becomes

~  |cos(2¢p) — cos(2b)] 2 sin®(b) . 1 . a
. 2SOy — 2L (cos(2¢) — cos(2b))| . (4.42
& Sin*(p) + Sin?(p) & 2~ Sk ) sin“(¢) > (cos(2¢) — cos(2b))| . (4.42)
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By substituting (4.42) into (4.37a), we obtain that

i 2sin’(p)sin’(D) |2 - &1 - 2sin’(p) sin*(2b)/ (sin’(2¢) sin’ (b)) |
77 [cos(2¢p) — cos(2b)] [2 sin®(¢) — a; (cos(2¢p) — cos(2b))] '

Next, we use sin(2w)/ sin w = 2 cos w to simplify the trigonometric ratio in the numerator of j to get

. 2sin(@)sin’p) [2(cos’(p) - cos’(B)) - &ja cos’(p)
7 cos?(¢) [cos(2¢p) — cos(2b)] [2 sin?(p) — a; (cos(2¢) — cos(Zb))] '

Upon using cos?(p) — cos?(b) = [cos(2¢) — cos(2b)]/2 together with the first identity for 3 ;1n (4.42), we can
cancel the common factor cos(2¢) — cos(2b) from the numerator and denominator of /1, which leaves

- 2sin’(b) [sin’(g) — a) cos*(¢) | Csin¥(b) [1-ar - (@ + 1) cos(2g)]
! cos2(¢) [2 sin®(¢) — a; (cos(2¢p) — cos(2b))] cos?() [1 + a; cos(2b) — (a; + 1) cos(2p)]

(4.43)

Finally, we substitute (4.43) into (4.37a) and use sinz(b)cot(gp) / cos?(p) = 2sin®(b)/ sin(2¢). Upon recalling the
definition of ¢ and b we readily obtain the explicit result (4.39).

Next, we let & — 6, for which cos(26/N) — —1 and csc(20/N) — +oo. It readily follows from (4.39) that
foreach j = 2,...,N, we have h; — +oo as § — 6, when a; > 0. Since Va0 > 1 when € < 1, a; > 0 must
hold. This implies that A; — —oo as § — 6. Finally, the zero-eigenvalue crossing threshold (4.40) and the value
of @ for the mode j = N that yields the first vertical asymptote (4.41) as 6 is decreased, are both readily identified
from the numerator and denominators in (4.39), respectively. O

Two Spikes Two Spikes

10

B E 1.5
dl dl

(a) Vmaxo versus dj (b) hy versus d

Figure 4: Numerically computed results for vmaxo and h, on the range dipp < dy < dl’i2 when N =2,y =1, =2,

C

d> = 0.0004 = €, and u = 1. Here dy» = 0.2 and dfcz ~ 2.91. Left: vihaxo 1S monotone decreasing in d;. Right: &, slowly
decreases and crosses zero at d; =~ dis ~ 1.61.

To illustrate the implication of Lemma 4.1 for N = 2 as d, is varied, in the left and right panels of Figure
4 we plot v o and A, versus d; as computed from (2.32) and (4.39), respectively. We conclude from Figure 4
that the two-spike steady-state is unstable with respect to the small eigenvalue with mode m = 2 when 1.61 =
diyp, < dy <d}, ~ 291, butis linearly stable on the range 0.20 = d;,, < d; < di;» = 1.61. Similar results are
shown in Figure 5 for N = 3 for the same parameter set. We conclude that a three-spike steady-state is unstable

26



Three Spikes Three Spikes Three Spikes

48

46

01 02 03 04 05 06 07 08 09 1 0 02 04 0.6 0.8 1 0 02 04 0.6 0.8 1

q, d, q,
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Figure 5: Numerically computed results for vimaxo, ha, and hz on the range dy,3 < dy < df ; when N =3,y = 1, it = 2,
d> = 0.0004 = €%, and u = 1. Here dy,3 ~ 0.09 and dfc3 ~ 0.97. Left: vmaxo is monotone decreasing in d,. Middle and
Right: h; and hs slowly decrease as d; increases and the simultaneous zero crossing occurs at d; 3 ~ 0.70.

with respect to the small eigenvalue modes j = 2 and j = 3 on the range 0.70 ~ d;;3 < d; < d}; ~ 0.97. On the
range 0.09 = d,,3 < d, < dig = 0.70, the three-spike steady-state is linearly stable for all the small eigenvalues.

In summary, in terms of d;, Lemma 4.1 shows that an N-spike steady-state solution loses translation stability
to N — 1 possible modes when d; increases above a critical threshold d,,y. In this way, we obtain our main linear
stability result for N-spike steady-state solutions of (1.2).

Proposition 4.5. For T = 0 and € — 0, an N-spike steady-state solution of (1.2) is linearly stable to both the
large and small eigenvalues of the linearization when

4uii _ 4uii

N2g2’ disy = 1_a1))2'

dle <d < dlsN ,  Wwhere dle =
N? (arccos(1+
ai

(4.44)

Here a, is defined in (4.40). The steady-state is unstable to N — 1 modes of instability for the small eigenvalues,
but is linearly stable with respect to the large eigenvalues when d\yy < d; < d.,. Finally, when d, > df ,, the
steady-state is unstable with respect to both the large and small eigenvalues.

In Appendix G we show that the simultaneous zero-eigenvalue crossing threshold 6,y for the small eigen-
values occurs precisely at the critical threshold where asymmetric steady-state solutions bifurcate from the sym-
metric steady-state solution branches constructed in §2.

In Figure 6 we show FlexPDE7 simulations of (1.2) that illustrates a translation instability for a two-spike
pattern when d is on the range d;; < d; < d},, for the parameter set in the caption of Figure 4. For these values,
the interior two-spike steady-state is unstable to the mode j = 2 small eigenvalue. The resulting long-time
dynamics leads to a final steady-state that has an interior and a boundary spike.

Finally, for an otherwise identical parameter set, in Figure 7 we show FlexPDE7 numerical results for (1.2)
for an initial two-spike quasi-steady state solution as the cellular diffusivity d; is slowly decreased in time below
the threshold d;,, for which the base-state is unstable to a Turing instability. This figure illustrates that the
instability of the base state leads to the nucleation of boundary spikes at each endpoint together with the creation
of a new interior spike. The analysis of this spike nucleation behavior is beyond the scope of this paper.
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Figure 6: Full PDE simulations of (1.2) using FlexPDE7 [15] illustrating a translational instabilitiy of a two-spike
steady-state when d| = 1.6, and the long-time behavior for iy = 1, it = 2, d = 0.0004 and u = 1. Left: snapshots of u
at two times showing the initial slow motion of a two-spike quasi-equilibrium. Right: long time dynamics leads to a final
steady-state with an interior and a boundary spike.
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Figure 7: Full PDE simulations of (1.2) using FlexPDE7 []5] illustrating nucleation behavior for an initial two-spike
quasi steady-state when d; is decreased slowly in time. Left and Middle: snapshots of (i, v) at three times, showing the
spike nucleation behavior, with y = 1, it = 2, d, = 0.0004 and u = 1; Right: the diffusivity d; versus t. As d, decreases
below dj,, = 0.20, a new spike is nucleated between the two initial spikes and two new boundary spikes are created.

5 Slow Dynamics of N-Spike Quasi-Equilibria

Next, we analyze the slow dynamics of an N-spike quasi-equilibrium pattern for (1.2), denoted by (u,, v,). Over
a long time-scale, this analysis will characterize how the spike locations tend to their steady-state values. Similar
slow motion spike dynamics have been derived for other RD systems such as the GM and Gray-Scott models
([24], [8], [12]). However, there have been no previous such analyses for chemotaxis-type RD systems that
exhibit slow spike dynamics over algebraically long time-scales of order O(e ?) for some p > 0. In our analysis,
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we will implicitly assume that the quasi-equilibrium pattern is linearly stable on O(1) time-scales, and that the
base-state between spikes is linearly stable in the sense that (2.36) holds.

Recall that the spatial profile of the N-spike quasi-equilibrium pattern is characterized as in Proposition 2.1.
In this result, we will now allow the spike locations to depend slowly on time in that x; = x;(T) where T = €t

is the long time-scale and with d, = €2 in (1.2b). In the jth inner region, we introduce the local variables
_ -1 _ -3 _ -3
y=¢€ [x—x(T)], U(y,T)—u(xj+6y,6 T) V(y,T)-v(xj+6y,€ T) ,
and we expand the inner solution to (1.2) as
U@y, T) = Uy,ly, x(T)] + €U ;(3, T) + ... , V,T) = Voily, x (T + €V, T) +.... (5.1

Upon substituting (5.1) into (1.2), we obtain from the leading order problem that (Uy;, Vy;) satisfy the core
problem (2.2). Moreover, we obtain from collecting O(e?) terms that, on —co0 < y < oo, U, jand Vy; satisfy

Uy = 2(UoiVi) = 2(UyVg,) + dﬁUoj(u ~Up) =0, V= Vi;+ Uy =-Vyi,T), (5.2)
1

where x;(T) := %x i(T) and y = x/d,. The imposition of a solvability condition for (5.2) will yield x;.
To this end, we decompose U ; and V;; into even and odd parts with respect to y in the form

Uij=Uje + Uijo, Vi=Vie+Vio, (5.3)

where U, g (resp. Vi jg) and U, jo (resp. Vo) satisfy homogeneous Neumann and Dirichlet boundary conditions
at y = 0, respectively. From substituting (5.3) in (5.2), we obtain two problems, each defined on —co < y < oo:

Ulie = x(Uo;iVi i) = x(UyeVe)) + dﬁon,-(a ~Uy)=0;  Uj;p0)=0, (5.4a)
Vig=Vip+Uye=0;  V{z(0)=0, (5.4b)

and
Ul'io = X(UoVi0) —¥(U1joVy) =05 Upjo(0) =0, (5.5a)
Viio=Vijo+Uijo = =Vyx,(T);  Vijo(0)=0. (5.5b)

Upon defining the functions g, ;z and g; ;o by

Uije Uijo _
gle:U—;f—XVle, gle:U_;j_XVIjOa (5.6)
we can more conveniently rewrite (5.4) and (5.5) on —co <y < 00 as
(UOjglle)/ + dﬁlUOj(ﬁ —Uy)) =0, Vi(0)=0; Vie=Vie+Uye=0, g;z0)=0. (5.7
and
(Uojgljo) =0, Vijo(0)=0; Viio=Vijo+ Uijo=-Vyx(T), 810(0)=0. (5.8)
By solving the g-equation in (5.7), we have for y € (0, co) that
u (71 0
E=—— Uyi(&) it — Uyi(&))dE) dp + g1£(0), 5.9
qe=—4 [ i | v U@ ) do + 2160 (5.9)
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where g1;£(0) is an unknown constant. In this way, the V-equation in (5.7) becomes
VI;E_Vle+UOjgle +xUoiVijg =0, —oo0<y<oo; V{jE(O):O_ (5.10)

Similarly, we can solve the g-equation in (5.8) to get

_ Y1
g0 = c,f e, 5.11)
0 0j

where the constant C ;> 0is undetermined. Then, V| in (5.8) satisfies
Viio = Vijo + Uojgijo + XUojVijo = =Vy,x)(T), —o00 <y <oo; Vijo(0)=0. (5.12)
By adding (5.10) and (5.12), we obtain that the problem for V; can be written in terms of an operator £ as
LVii+Uyigijo+ Uojgije = —V(;j)'c.,-, where LV,; := V{; - Vi +xUo;Vi;. (5.13)

Here gz and g, o are given by (5.9) and (5.11), respectively.
To derive our solvability condition for (5.13), we multiply (5.13) by V(. and integrate the resulting expression
over (—p, p) with p large. This yields that

pEer(I: Vi, LV1;dy + j:: Uosg1joVy; dy + j:: Uog1eVy; dy) =~ lim _Z(Véj)2 dy. (5.14)
To simplify (5.14), we invoke Green’s second identity in the form
P P P o
Tim ( L Vg, LV, dy L Vi Ly dy) = tim ViVe [ tim v . (5.15)

Since V| i and V(’J;. are exponentially small as [y| — oo, while LV(’)j = 0, we conclude from (5.15) that

p—+00

0
lim V64/£V1jdy =0. (5.16)
-p

Moreover, since Uy; and g, jz are even, while V(’)j is odd, we get that f_ pp Uojgi jEV(’)j dy = 0. By using this result
together with (5.16) in (5.14) and letting p — oo, we obtain from (5.11) the solvability condition

0 ’ Y 1
I~ VoV (i 9) v
o 2 :
’
I (Vi) dy
This expression determines the speed ; of the spike in terms of the, as yet, undetermined constant C;.
Our final step in the analysis is to formulate a matching condition between the inner and outer solutions so

as to determine C ;. To do so, we find from (5.6) and (5.11), and together with the relation U(’)j = Uy jV(’)j from
h

széjﬁj, where ﬁj == (517)

the core problem (2.2), that the odd part of the inner solution in the jt
UOjg;jO = U;jO _)?(Uojvl,jo) _)?(UUOV(/)j) = C_‘j- (5.18)

Owing to the exponential decay of V. and U, as y — +0co, as shown in §2, we obtain that the far-field behavior
of the derivative of the odd part of the inner solution must satisfy

region satisfies

Uijo~Vijo~Cj, as y— *oo. (5.19)
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In the outer region we have, as a result of the slow time dependence, that the outer solution satisfies u, ~ w,,
where w, was given in (2.26) of §2 in our analysis of the quasi-equilibrium pattern. From (2.26), we have that
2x 3 ) 2y 2x
Uy ~ W,y ~ ?GZ Viax G0 X)) = ?EZ v GO x) + ?evmaij(x 3 X5),

N
k=1 k#j

where G(x; x;) is the Helmholtz Green’s function of (2.25).
To proceed, it is convenient to decompose G(x; x;) globally on —1 < x < 1 as

G(x; x,) = K(Jx — x¢|) + R(x; x,), where K := %lx Xy . (5.20)

Here K is the singular part of G, while R is the smooth regular part. By expanding G(x; x;) as x — x;, we get

G(xj; i) + Golxjs x)(x — x;), J*k,
G(x; x;) ~ / J / : 5.21

06 2) { K(x - xul) + ROxs x0) + o x)(x— x), =k 21

Upon using (5.21), we obtain that the limiting behavior of u,, ~ w,, as we approach the jth spike is

2x 2x 2x
Upe ~ Woy ~ ?XEZ vfmkax(xj;xk) + %evfnaijx(xj;xj) + ;\/ male (xj3x;), as x— xj , (5.22)
k)

where K = + _2 T To find C; ;» we use the matching condition that e U ¢ 1jo 48y — 0o must agree with eu,, as

x — x;, when we include only the first two terms on the right-hand side of (5.22). This determines C; as

- 2
] X Z maxk X(x,]’ xk) + ?vmaxj X(x]; x]) . (5.23)

k#j

Since U ijE is an odd function, the last term in (5.22) must match with the far-field behavior of €U ijE. However,
since this explicit matching requirement does not affect our solvability condition, it is not performed here.

Upon substituting (5.23) into (5.17), we obtain a coupled nonlinear ODE system for the spike locations in the
quasi-equilibrium pattern. In our ODE system, v, j and 8; must be calculated by using the nonlinear algebraic
system (2.28) for C;, s; and vy ;. This leads to a differential algebraic system (DAE) of ODE’s characterizing
slow spike dynamics for (1.2), which we summarize in the following formal proposition.

Proposition 5.1. For (1.2) with d, = € < 1 and where d, € T, as defined in (2.35), assume that the quasi-
equilibrium pattern is linearly stable with respect to the large eigenvalues and that (2.36) holds. Then, the slow

dynamics of a collection xy, ..., xy of spikes satisfies the DAE system:
dx; 2% N Cre¥t — 5, =0,
J 3 3 1.2 12 0 Ck ptvmaxk _ Sk _
7 " 3B vaaxk 25 20) + Vi R X)) | 2V +tast et —2=0,  (5.24)
It j _ 2, .3
I Sk = 3 AgVnax k€

where j = 1,...,N. Here B; is defined in (5.17) with the asymptotics (5.26). The Green’s functions G(x; xi) and
its regular part R, can be found explicitly from (2.25). In particular, the locations x(])., for j=1,...,N, of the
N-spike true steady-state solution, are the equilibrium point of the slow dynamics and satisfy

N
DG + RS =0, j=1,...,N. (5.25)

k+j
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Proposition 5.1 characterizes the slow dynamics of an N-spike quasi-equilibrium solution on the long O (6‘3)

time-scale. We remark that this time-scale is longer than the O (6_2) time-scale of slow spike dynamics for the
GM and Gray-Scott models ([24], [8], [12]), where there are no chemotactic effects.

In Appendix H, we show that §;, as given in (5.17), can be calculated asymptotically by retaining only the
contribution from the sub-inner solution. In particular, in Appendix H we provide the leading order estimate

2
ﬁj ~ , for Vmax j = 1. (526)

Vmax Jj

Moreover, in Appendix H we show at the steady-state spike locations that §; = By V j, with B, given in (4.28).

To illustrate our results, we now compare the dynamics computed from the DAE system (5.24) with corre-
sponding numerical results computed from the full PDE system (1.2) using FLEXPDE7 [15]. In our comparison,
we computed the integrals defining ; numerically from (5.17). The results for a one- and two-spike dynamics
are shown in Figure 8 for the parameter values in the figure caption. In Figure 8a, where we chose the initial
condition x;(0) = —0.1, the asymptotic and numerical spike trajectories are favorably compared for a one-spike
quasi-equilibrium pattern. In Figure 8b a similar favorable comparison is shown for the case of two-spike dy-
namics starting from the initial condition x;(0) = —0.6 and x,(0) = 0.6.

Slow motion of one spike Slow motion of two spikes
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Figure 8: Slow dynamics of one- and two-spike quasi-equilibria for (1.2) with different parameter values. Left: d; =
y=1La=24d,=002=¢€andyu =025 Right: dy =y = 1,1 = 2, d» = 0.005 = €2, u = 1. The solid curves are
the results from the asymptotic DAE system (5.24). The dotted curves are the results obtained from the full numerical
PDE simulation of (1.2) using [15]. In the numerical results, the center of the spike is chosen as the maximum of # on the
computational grid. Observe the slow dynamics towards the equilibrium spike locations.

5.1 Computation of Jacobian Matrix for Balancing Conditions

In this subsection, and as remarked in §4, we show that when d; € 7, the matrix M in (4.29) arises from the
linearization of the DAE dynamics (5.24) in Proposition 5.1 about the steady-state spike locations. Our approach
below is inspired by a related analysis for the GM model in [60].

To this end, we use the Green’s function in (2.24) together with its decomposition in (5.20) to define

OR . g el . ] —
—(x;x-)lx:x., ] :k, _|x=x-_|*=x R(X,)’), ]_k’
8)(. is = 0% / ! . 8x-ax s = Ox 1oy 5.27
G0 { LR N T S B e S N B S
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Here R is the smooth regular part of G as defined in (5.20). Next, we denote the N X N matrices VG, (VG)T, and
V2@ evaluated at the steady-state spike locations by

VG := (35,G(X; x))nwn » (VG := (0,GOs )N » V2G 1= (05,0, GO )Ny - (5.28)

The relationship between these matrices and the matrices P, P,, and G,, as defined in (4.27), (4.24), and (4.27),
respectively, that were used in our analysis of the small eigenvalues in §4, is clarified in Appendix 1.
In our analysis, it is convenient to write the DAE system (5.24) in the form
dx; _2x 4

N
=5 BT, where T,::;vfmkaxjc(x,;xk), j=1,....N. (5.29)

%) that arises by linearizing the DAE system

Our goal below is to compute the Jacobian matrix J := ( pral O
(5.24) around the steady-state spike locations. More specifically, if we introduce the perturbation

0 At .
xXj=x;+cje, j=1,...,N,

into (5.29), the linearization of the DAE system yields the matrix eigenvalue problem

- - 2% oF,
de=—EBMe, M:i=-ZXF.  where = (5.30)
3 8x, NN
where ¢ := (cy,...,cy)’. From an explicit calculation of J given below, we will show via (5.30) that M is

identical to the matrix M as given in (4.29), which was derived in our analysis of the small eigenvalues.
To calculate the Jacobian, we first differentiate ¥ in (5.29) with respect to x; to obtain

0F;, <& ,
o Z3vmaxk(0xlvmdxk)6ij(xj,xk)+Z Va0 [05GO x| . =1 N, (5.31)

k=1

By using the nonlinear algebraic system in (5.24), in (D.5) of Appendix D we calculate d,,vmax k. SO as to obtain

N
Vmax gmdxk .
_a ~ 3 E k (0, 5¢) 0, G (x5 2) + E Vaaids [5G0 . j=1....N, (5.32)
Xi =1 XSk =1

where {paxr = (1 — 2/ ()vaaxk))_l. To determine d,,s;, as needed in (5.32), we differentiate (2.27) in x; to get

— N
xSj = % Z [Sdexk (axlvmaxk) G(x]’ xk) + Vmaxka iG(xj; xk)] : (533)
k=1

By using (D.5) of Appendix D to estimate 0,,Vmax, We obtain for € — 0 that

N 2 _ N
v max 2
0y8; ~ —2€ M (0x5k) G(xj5 xp) + it E Vo i0nG(xjix), j=1,...,N. (5.34)
k=1 Sk 3 5

Then, by calculating the second term in (5.34), we get

N 2 2x€ W . .

Vi ax kSmax k =< 0,G(x;; x i+ 7,

axisj ~ =€ E _max k>Maxk (ax,-sk) G(xj;xk) + { 2 gnaxzax; ( J l) 24e 0 L .]
— Sk Vi ax 0 G (X5 x0) + 3 Zk lvmaxk G (X5 xp) i=j.

(5.35)



Next, we evaluate (5.35) at the equilibrium solution where x; = x?, for which s, = Sg, Vmaxk = Vmaxo, and
{maxk = Co, Where s5¢ = Z)Zagvzm 0€/3. Moreover, at the steady-state, we use the equilibrium condition (5.25) to
eliminate the last sum in (5.35) that holds when i = j. In this way, (5.35) reduces to

3w
Bysj~ ———— > (D 5) (s ) + —6le(xj, D), i j=1,...,N, (5.36)

XAgVmax 0 =1
when evaluated at the steady-state. By introducing s := (sy,...,sy)’ and V := (8,,,...,0,), (5.36) can be

written in matrix form as

3 -1
Vs ~ ﬁ(nig) ve)!, where Vs := (Vsi,..., Visn) 00 jor - (5.37)

Qg )_( AgVmax0

Here G = (G(x?;xg))NXN is the Green’s matrix at the steady-state and (VG)" is defined in (5.28). By using
(5.37), the first term on the right-hand side of (5.32), when evaluated at the steady-state, is the matrix product

3 u 3 3 3 B
~ Voo [Z 0,G(x: ) (5x,v5k)] ~ ———Violo VG Vs = ———} 0l VG (1 + _ig) ve)'
XS0 =1 NxN XS0 Xdg ¢Vmax 0
(5.38)
Next, we focus on the second sum in (5.32), which is equivalent to
N . .
0.,0,,G(xj; x7), L# ],
[0,.G(xj; maxi N . 5.39
; max k I[ J (-x] xk)] { Zk¢‘] mana G(x]’ xk) + vdeJ 5y |y % axlx ij(x y) 1= ] . ( )

From the BVP (2.24) satisfied by G(x; x;), we conclude that 6)2CjG(x i3 X)) = —Z—‘I‘G(x 3 X) for j # k, so that

N C
0,.0,.G(xi;x;), L+ ],
3 max x, Xj Jo i

0,.[0.G(x;; — nax i j e 5.40
;Vmaxk ,[ ; (xj X)] { up Zk;ej dekG(x]’xk) + VmaX] & |y x,oxlx X/R(X y) i=j. ( )

To evaluate the last term in (5.40), we use the chain rule on the regular part R(x;y) to get

0 0 OR

a_yly:xjalx:ij(X; )’) = _Rxx(xj; xj) + axj (a(X; -xj)|x:xj) . (541)

By using (5.27) to identify the second term on the right-hand side of (5.41), and by calculating R,,(x;; x;) from
(I.5) of Appendix I, we conclude that

|y x,a |x x,R(-x y) = __G(xj’x]) + a G(X],X]) (542)
Upon substituting (5.42) into (5.40) we obtain

N

0,0, G(x;; x; L # ],
dexk Xi [aij(-xja xk)] { maXl l ! (XJ X) l ?& J (5.4—3)

k=1 Zk 1 maka(x]’ xk) + vmax; Xj G(x]’ x]) [ = -]

Finally, we evaluate (5.43) at the steady-state solution where x; = x? and Vimax j = Vmaxo for j=1,..., N, and
where we recall that a, = p G(x(}; xg). Upon writing the resulting expression in matrix form, we get

N
(Z Viax 00 [05,G(x 3 xk)]] = d“ V2ol + V) VG, (5.44)
— 1

NXN
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where V?G was defined in (5.28). By substituting (5.44) and (5.38) in (5.31), we calculate the Jacobian as

340

X AgVmax 0

-1 _
g) VG +v)_ VG- ”Z?g Vool (5.45)

87—7 ) _ 3 mdx Oé‘0
NXN

J = (_ d,g

Ox; e, 9 (

where VG, (VG)T and V2@ were given in (5.28). Then, by evaluating the matrix M in (5.30) that arises in the
linearization of the DAE system around the steady-state spike locations, we get

2 max 040
dg

3%

X ¢Vmax 0

2¥ ;5 2“F‘X g 3

-1
M= g) (Vo) - 2 V2 VPG + V2ol (5.46)
l

Vg(l+

Finally, upon using sy = 2ja,v>  €/3 to simplify the coefficient of the identity matrix in (5.46), and by using
the key relations

VG =%, Vo) =-P,, VG =-G,, (5.47)

as derived in Appendix I, we conclude upon comparing (5.46) and (4.29) that M = M.

In summary, our analysis establishes that the small eigenvalues associated with the linearization of the steady-
state solution are precisely the same eigenvalues that are associated with linearizing the DAE system of slow
spike dynamics about the steady-state spike locations.

6 Discussion

In this concluding section, we first discuss how our analysis of 1D spike patterns in the KS model (1.2) in the
limit d, < 1 shares some common features with a related analysis of localized spike patterns for the GM model
(cf. [25], [24]1, [57], [60]). We also mention a few open problems that warrant further investigation.

6.1 Comparison with the GM System

We first make some remarks on an interesting connection between the analysis of spike patterns for the KS
model (1.2) in the limit d, = € < 1 and that for the GM model

A =dA—A+A’/HY, TH,=DH,,—uH + A"/H"®, 6.1

in the limit d, < 1 of small activator diffusivity. In this context, A and H are the activator and inhibitor fields,
respectively. Moreover, 7 > 0, D > 0, and ¢ > 0 are constants and the GM exponents (p, g, 1, s) satisfy the usual
conditions p>1,¢>0,r>0,s>0,and (p — 1)/g < r/(s+ 1).

In [25], steady-state 1D spike patterns in which A is spatially localized with spike-width O( Vd,) were con-
structed for (6.1) in the limit d, < 1 using the method of matched asymptotic expansions. For this class of solu-
tions, the spike profile is characterized by the homoclinic solution of wy, —w + w” = 0, where y = d,, V2(x —x )
In the outer region between spikes where A ~ 0, the interaction between steady-state spikes is mediated by
the inhibitor diffusion field with the term A”/H* being approximated by Dirac masses concentrated at the spike
locations. As a result, when d, < 1, the activator A behaves like a linear combination of discrete spikes on the
domain, while H is well-approximated by a superposition of translates of the reduced-wave Green’s function.

In comparison, we observe from our steady-state analysis of the KS model (1.2) in the limit d, < 1 given in
§2 that the chemoattractant v and the cellular population density u share a similar asymptotic structure to A and
H, respectively, in (6.1). In our analysis, the spike profile for v is represented by a homoclinic solution (2.3),
while the outer solution for u is well-approximated by a superposition of translates of the Helmholtz Green’s
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functions (2.26). Moreover, in the limit d, < 1, the background constant sy, < 1 in (2.30) plays the same role
as the locally constant inhibitor field in the core of a spike for (6.1).

With regards to the NLEP linear stability analysis, the approximating NLEP (3.24) that arises from our sub-
inner layer analysis in §3 is rather similar in form to the NLEP for the GM model that occurs for the exponents
p = 3 and s = 0. This connection results from the explicit form given in (3.22) for the sub-inner solution. As
a result, by adapting the NLEP linear stability analysis given in [25], [57], and [60], we are able to calculate
parameter thresholds corresponding to either zero-eigenvalue crossings as d; is varied, or Hopf bifurcations as 7
is increased. In particular, although in minimal KS models, without the logistic term, spike amplitude temporal
oscillations are not expected, our NLEP linear stability analysis in the presence of the logistic source term has
shown that a sufficiently large reaction time 7 > 0 in (2.43) can trigger such spike oscillations for a one-spike
steady-state. The mechanism for these oscillations, being a sufficiently large diffusive time-delay between the
two components in (1.2), is qualitatively the same as that studied in [57] for the GM model.

With regards to the analysis of the small eigenvalues, which characterize possible translational instabilities
of the spike locations, the reduced multi-point BVP derived in Proposition 4.1 is very similar in form to that
derived for the GM model in §4 of [25]. As a result, the detailed framework for the GM matrix analysis in §4
of [25] was employed for obtaining Proposition 4.3 for the small eigenvalues, which lead to the explicit result in
Lemma 4.1. As qualitatively similar to that for the GM model (cf. [25]), we showed for our N-spike steady-sate
solution that there are N — 1 simultaneous zero-crossings for the small eigenvalues that occur at the same critical
value of d,. For the GM model, these simultaneous crossings occur at a common value of D, and this threshold
provides the critical value of D for which branches of asymmetric spike equilibria, corresponding to spikes of
different height, bifurcate from the symmetric steady-state branch (cf. [56]). Finally, the slow DAE dynamics
of spike quasi-equilibria, as characterized by Proposition 5.1 in terms of gradients of the Helmholtz Green’s
function, is rather similar to that derived for the GM model in [24].

One novel feature of our analysis has been to use distinctly different approaches to both calculate and verify
linear stability thresholds resulting from our detailed asymptotic analysis. In particular, in §3.1.1, the non-
invertibility of the Jacobian matrix that resulted from the steady-state analysis for fixed spike locations closely
approximates the NLEP linear stability threshold when 7 = 0. Moreover, the linearization of the steady-state
of the DAE slow spike dynamics (5.24) was found in §5.1 to correspond identically to our asymptotic result in
Proposition 5.1 for the small eigenvalues. Finally, our zero-eigenvalue crossing condition for the small eigen-
values in (4.40) was shown in Appendix G to correspond to the bifurcation point where asymmetric equilibria
emerge from the symmetric steady-state solution branch.

Next, we discuss some key differences between our analysis of spike patterns for the KS model (1.2) and
that for the GM model in [25]. Firstly, owing to the different Green’s functions mediating the spike interactions
for (1.2) and for (6.1), for the GM model there is no analogue of the positivity and resonance conditions of
(2.35) discussed in Remark 2.1. Secondly, the competition and translational stability thresholds for symmetric
spike equilibria for the GM model (6.1) are given by explicit critical values for the inhibitor diffusivity D. In our
analysis of the KS model, these two thresholds are characterized by weakly nonlinear algebraic equations in the
cellular diffusivity d;. This distinction arises, in part, to the existence of an intricate sub-inner structure of the
spike profile for the KS model (1.2) that has no counterpart in the GM model (6.1). Finally, for the KS model,
the numerical results shown in Figure 7 suggest that spike nucleation behavior can occur from the midpoint of
the background state between neighboring spikes as d; is decreased below the positivity threshold d ,y in (2.35).
Such nucleation behavior does not occur for the GM model (6.1).

6.2 Further Directions

In the limit of small diffusivity d, = €* < 1 for the chemotactic concentration field, we have developed a hybrid
asymptotic-numerical approach to analyze the existence, linear stability, and slow dynamics of 1D spike patterns
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for (1.2). The study of pattern forming properties for (1.2) when d, < 1 is distinctly different than that based
on the usual approach of considering the large chemotactic drift limit, i.e. y > 1 in (1.2), as was done in most
previous analyses and numerical simulations of localized patterns (cf. [34], [35], [26], [53]). In the limitd, < 1,
we have shown that the analysis of localized 1D spike patterns is rather closely related to that for the GM model.

We now discuss a few open problems related to our study. From a mathematical viewpoint, the analytical
tractability of our quasi steady-state and linear stability analysis has relied to a large extent on the availability
of certain explicit formulae for the spike profile that exists in the sub-inner region of a spike. More specifically,
our explicit but approximate analysis is based on the asymptotically large spike height v, > 1 limit. However,
since v, = O(— log €) is only rather large when € is extremely small, our asymptotic results for steady-states and
for the linear stability thresholds provide only a moderately decent prediction of corresponding full numerical
results when € = 0.01 is only fairly small. One theoretical open challenge is to provide a rigorous steady-
state and linear stability analysis for multi-spike patterns that is based on the full inner problem (2.3) and the
corresponding NLEP (3.21), which does not exploit the large v, limit. We emphasize that our analysis of the
N-spike quasi-equilibria, the slow dynamics, and the study of large and small eigenvalues for the linearization of
an N-spike steady-state are largely based on formal asymptotics. These results, however, have been verified from
distinct analytical perspectives and have been supported from full PDE numerical simulations. It seems rather
challenging, but indeed worthwhile, to rigorously establish these results by extending some well-developed
theoretical approaches, e.g. Lyapunov-Schmidt reduction method [61], to the chemotaxis-growth model.

One important open problem from the viewpoint of global bifurcation theory is to numerically compute
solution branches of localized 1D steady-state spike patterns for (1.2) as d;, d, and y are varied. This would
clarify how solution branches of spike equilibria differ when either d, << 1 or when y > 1. In [13], several
global bifurcation diagrams were plotted numerically where they regarded u as the bifurcation parameter and
considered two distinct regimes: y is relatively small and large. The observation of spike nucleation behavior
as shown in [20, 46] for certain parameter sets, and hinted at in Figure 7 as d; is decreased below the posi-
tivity threshold in (2.35) of Remark 2.1 should be investigated. For chemotaxis models of urban crime, spike
nucleation events for the emergence of hotspots have been shown to occur near saddle-node bifurcation points
of branches of spike equilibria (cf. [50]). In contrast, for (1.2) when d; = O(1), d, = O(1) and y = O(1) they
appear to arise from Turing bifurcations of the base state (cf. [20, 46]). Two other possible extensions of our 1D
analysis are to analyze the existence and linear stability of asymmetric spike equilibria for (1.2) and to analyze
steady-state patterns for variants of (1.2) that incorporate other cellular population growth models and possible
nonlinear mechanisms that couple the cellular density to the chemoattractant concentration.

It would also be worthwhile to extend our 1D analysis to analyze the existence, linear stability, and slow
dynamics of localized patterns for (1.1) when d, < 1 in a 2D bounded domain. One such direction would be to
analyze the linear stability properties of a localized stripe in a 2D rectangular domain that results from a trivial
extension of the 1D spike in the transverse direction. Numerical results in [46] suggest that, in marked contrast
to the well-known instability behavior of homoclinic stripes for the GM model (cf. [31]), a localized stripe for a
coupled chemotaxis system may be linearly stable to breakup into spots. As a result, it would be interesting to
theoretically investigate the possibility of varicose or transverse instabilities of such localized stripes. A second
interesting direction is motivated by the numerical simulations reported in [26] that suggest that localized 2D
spot patterns for (1.1) should exist in the singular limit d, < 1. Given the rather close correspondence between
the analysis of localized patterns for (1.1) in the limit d, < 1 and the GM model in the limit of a small activator
diffusivity, the framework for a 2D steady-state and linear stability analysis of (1.1) for spot patterns would likely
rely somewhat on the approach developed for the 2D GM model, as summarized in [61].
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A Solvability of the Outer Problem: Turing Instability of the Base State

In this appendix, we relate the solvability of the outer problem (2.22) to Turing bifurcation points in the param-
eter d, for the spatially uniform base state u = v = 0 of (1.2). This analysis will motivate Remark 2.1.

On an interval of length L, with homogeneous Neumann conditions for # and v, we linearize (1.2) around
u =v = 0 by setting u = " *® and v = e"***N, where k = mx/L with m = 1,2, . ... We readily obtain that

—dk* + pii — A 0 o\
1 —62k2—1—/1)(N)_0’ (A.1)

which has a nontrivial solution if and only if A = —1 — €2k or A = —dk* + pii. As such, with k = mzn/L, there is
a zero-eigenvalue crossing associated with the spatially uniform state u = v = 0 at the critical values

_L2
d] = Hu

= o m=1,2,.... (A.2)
This base-state is linearly stable on a domain of length L when d; > uiil?/n*. Setting L = 2, consistent with
(1.2), we conclude that (A.2) coincides precisely with the “resonant” values of d; in (2.23) for the outer problem.

However, in our construction of N-spike steady-state patterns for (1.2), the spatially uniform base state
approximates the outer solution w, only on intervals of length 2/N. Upon setting L = 2/N in (A.2), this
observation suggests that the outer solution for an N-spike steady-state should be linearly stable when d; >
4uii/(N*7?). This latter threshold also has the alternative interpretation that it is the smallest value of d, for
which the outer solution w, is always positive in |x| < 1. In particular, for an N-spike steady-state, it is easy
to verify that this positivity condition for w, holds when d, > d,,y := uu/A,, where 4, := N?7?/4 is the first
non-zero eigenvalue of the negative Neumann Laplacian -d*/dx* on (=1/N, 1/N). We remark that for quasi-
equilibrium patterns with unequally spaced spikes, this positivity threshold must be modified to (2.36).

Next, we verify that the outer problem (2.22) is solvable for an N-spike steady-state pattern when d; = d7,
where d;7,, is one of the “resonant” values in (2.23) withm = 1,..., N — 1. For the steady-state problem, where
Vmaxk = Vmaxo and where x; = xJ, with x{ as given in (2.29), (2.22) is solvable at d, = d,r,, if and only if

! 2te, w0 o, 2F€ 5 s (mmk-1)
wonLow, dx = 3 Vmaxo Z Won(X) 0(x — x;) dx = 3 Vmax0 Z cos| >~ =0. (A.3)
- k=1 v-1

1 k=1

The trigonometric sum in (A.3) can be readily evaluated for m = 1,..., N — 1 with the result
N .
mzn (2k — 1) sin(mm)
2 - =0. A4
;COS( 2 N ) 2 sin (mn/N) (A4)

As a consequence, (2.22) is solvable for an N-spike steady-state even when d; = 7, (see (2.35)).

Finally, we remark that when d; = 4uii/(m*n?*), for some m = 1,..., N — 1, a solution (non-unique) to (2.22)
for an N-spike steady-state can be represented as u, ~ w, = %)Zevfnaxo SV Gl x,g). Here, with the operator
L, of (2.22), the modified Green’s function G,,(x; &) satisfies

-[:OGm = (S(X - é‘:) - W()h(é:)woh(-x) s |X| <1, Gmx(il’f) =0. (AS)

Although G,, can be found analytically, for simplicity we have restricted our analysis only to when d; € 7.
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B Calculation of G, and P

In this appendix, we show how to determine the matrix spectrum of G,, as defined in (3.16) of §3. Moreover,
we calculate P, as defined in (4.27) of §4. To do so, we introduce an auxiliary problem for y = y(x), given by

d
Ay +ay=0, —-l<x<l1; y(x1)=0; [v]; =0, [—y]:bj, (B.D)
Py j

for j=1,...,N, where [y]; := y(xj.) — y(x]‘.) and x; = x? is given by (2.29). Here &t := it — 7Ay/u. This problem
is solvable when d, # 4uit/(m*n?) form = 1,2,.... When 7 = 0, (B.1) is always solvable when d, € 7.

With the exception of this restricted set for d;, the solution to (B.1) can be represented in terms of the
Green’s function G,(x; x), satisfying (3.13), as y = fo:l biG (x; x;). Upon defining y := (yy, ... ,yN)T, ') =
(A ,y'N)T and b := (by,....by)", where y; = y(x;) and (/); = (y'(x}) +)'(x;))/2, we identify the eigenvalue-
dependent Green’s matrix G, of (3.16) and # of (4.27) as

y=Gib, O =Pb. (B.2)
Next, we show how to represent G, and # in terms of tridiagonal matrices. By solving (B.1) on each
subinterval, and enforcing the continuity conditions [y]; = 0 for j = 1,..., N, we get
cos[0,(1+x)]
N1 cps{g,l((l+x1)]); in[0:( ) —lI<x< *s
_ SO (X 1 —X ) S| (X—x; . ) . _

y= S0y G2l P+ Sl 1= Xj<x<Xjpr, j=L...N-1, (B.3)

coslfu(l—9) xy<x<l.

N cos[01(1-xw)]

Then, upon satisfying the jump conditions in (B.1) we can write b as

d,0 A
b= MZ)y , where 0, := K (ﬁ - u). (B.4)
H d M
Here, for d, # 4uii/ (m*n?) withm = 1,2,. .., Dis the invertible tridiagonal matrix defined by
d f 0 --- 0 00
f e f -+ 0 00
O f e . 0 00
D=|: - - . (B.5)
00 0 . e fO
00 0 --- f e f
oo o0 --- 0 f d
The matrix entries of O, for which the identity d = f + e holds, are
d =tan(6,/N) — cot(26,/N), e = —-2cot(20,/N), f =csc(26,/N). (B.6)

By combining (B.4) with the first equation in (B.2), we conclude for d; # 4uit/(m*n?) form = 1,2,... that

A
Gi= LD, with a=a- 2. (B.7)
dijt H
When 7 = 0, we remark that (B.7) holds when d, € 7.
Since O is a tridiagonal matrix with a constant row sum, its eigenpairs «; and q; for j = 1,..., N can be

calculated explicitly (see [25]), with the following result:
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Proposition B.1. The eigenvalues k; and the normalized eigenvectors of D are

ki =e+2f; «kj=e+2fcos(n(j—1)/N), j=2,...,N,
=0 D gy= fReos(GRA-D).  j=2..N.I=L..N,

where q; = (q1,---,qn,;)’ and d, e and f are given by (B.6). By using (B.7), the eigenvalues o ; of G, when
d, # duir/(m*n®) form = 1,2,. .., are

o= |
! dyit

By setting Ay = 0, we use (B.7) and Proposition B.] to calculate a,, as defined in (2.30). For d, € T,, we get

N —_—
_ 1 1 U 0 Joizs
a, ;:1 (x}: ) dlﬁﬂ VNgq, dier2n 2 \ada cot| ‘/_d (B.9)

To determine  when A, = 0, we use (B.3) to write (y") in terms of y as (y’) = —(6/2) csc (29/N)CTy, where
0 = /uit/d; and C is the tridiagonal matrix defined by

(n(j—l))]‘l .
e+2fcos N , j=1,....,N. (B.8)

I 1 O 0 0 O
-1 0 0
0 -1 0 .
C:=| : St el e Co. (B.10)
o o o . 0 1 O
o o o - -1 0 1
o o0 o -~ 0 -1 -1

By combining the second equation in (B.2) with this result, we conclude for d; € 7, that

26
P = _2% csc(ﬁ)CTZ)_l . (B.11)

C Proof of Theorem 3.1

For convenience, we drop the overbars in (3.24) to rewrite the NLEP as

[ U™y dz
= =AY¥Y), -0<z<+0; ¥, bounded as |z] — . (C.1)
S Uodz

Here U, = 2sech’z, A := 5%(Ag + 1) with § := 2/(Vmaxo)- It is well-known [33] that the homoclinic solution to
Wy —w+w? =0 0n —co < z < oo with w(0) >0, w(0) = 0and w — 0 as || = oo is w = V2sech(y). Therefore,
we have U, = w? and the NLEP (C.1) becomes

\POZZ + U()\Po - Q’UO

“ WY, dz
Yo, + w2, — a/w2f_°°—0 =A¥Y,, -—-o00<z<+00; Yy bounded as |z] — oo. (C.2)

00

[ owdz
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There is a standard approach [58] to study (C.2). Firstly, we focus on the following local eigenvalue problem:

P, + W) = A¥,, —-00<z<00; ¥, bounded as |z] — . (C.3)

As shown in [33], the principal eigenvalue of (C.3) is 4 = 1 and the corresponding eigenfunction is ¥y = w.

Next, we transform (C.2) into a form more amenable for analysis. To this end, we observe from the ODE
w”’ —w+w? = 0 that w? satisfies

W), — 4w +3w* =0, —oco<z<+00; w—0 as |z — . (C.4)

Therefore, upon multiplying the ¥y-equation in (C.2) by w? and integrating it over (—co, 00) by parts, we get

f W) ¥y dz + f W' dz — a f w'dz = A f W dz . (C.5)

(o9 [Se]

Next, upon substituting (C.4) into (C.5), we obtain

4-NA) f w¥dz = (2 + a) f w¥dz. (C.6)
Then, by using (C.6), we transform the NLEP in (C.2) into the following form, as written in (3.41):

“ WA, dz 4 - A
Lowodz o g s 2N

Woo + W — kT =207
02 WO Kf_ojow“dz 2+a)

(C.7)

Next, we test (C.7) against the conjugate P and by integrating the resulting expression by parts we get

00 2
00 00 o0 ad—-N) w?W dz
f Wo. P dz —f w2 |Wol? dz + Af Wol? dz = — ”“f; 0d . (C.8)
oo oo oo Q+a) [ whdz

We first claim that A is real-valued when « is real-valued. To show this, the imaginary part of (C.8) yields

o) | [ w¥ode]
a 2+« Lo;w4dz '

mmfﬂ%Wz (C9)

Then, upon invoking the Cauchy-Schwartz inequality, we obtain

o |Lowvtodd o
2+ [2 widz : 2+01I00 Fol . (€10

Upon substituting this inequality into (C.9), we conclude that Im(A) = 0. This completes the proof of our claim.
It immediately follows that (C.8) is also real-valued when « is real-valued.
The next step is to study the sign of A in (C.7). We claim that

S S * 2%, dz|
‘f|Wm%&—jﬁwﬂwwdzz—U¥§iﬁii.
o oo [ owdz
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Similarly as the proof of Lemma 5 in [33], this claim is established if we can equivalently show that the real
eigenvalues v of the following NLEP are non-positive:

s f_ 0:0 wW¥odz _

AWy + WPy —w =v¥,. (C.11)

(oo

f_ N w2dz

We first observe that if ¥y = 1, then v = 0. Next, we observe that (C.11) is equivalent to solving

(Ly — v)¥o = w?, f wW¥,dz = f widz=4. (C.12)

(o)

As such, we define = as
E(v) := f w (Lo —v)'w dz - 4.
Since the operator is self-adjoint and Ly(1) = w?, we obtain that Z(0) = 0. By differentiating in Z we get

= (v) = f ) w? (Lo — v) *w?dz = f m[(Lo —v)"'WPdz> 0.

(89

Noting that L, admits a single positive eigenvalue at v = 1, it follows that = has a single pole at v = 1 and that
there are no other poles for v > 0. On the other hand, as v — +oc0, we have

1 o0
E(v)~——f wrdz — 0.
U J_xo

To summarize, Z(v) has a vertical asymptote at v = 1; Z(0) = 0, 2 — 0~ as v — oo and Z is increasing for
v > 0. It follows that Z(v) # 0 for all v > 0, which proves our claim.
Next, from (C.8), we conclude that when A > 4/(i¢*v>. ) we have

max 0

[owidz _ atd-n) [ dz
f_ww“dz_ 2+a f_o;w“dz'

(C.13)

By using the identity 4 [~ w?dz =3 [ w*dz, (C.13) implies that @ < 1-3A/4. By observing that the condition
A>4/ (,\?zviax o) holds when 1y < 0, we conclude that 2y < 0 when

a<1-3p %2 (C.14)

max 0 *

Similarly as in [58], we find when @ = 1, ¥y = 1 is an eigenfunction such that (C.2) admits the zero
eigenvalue. If @ > 1, we claim there exists a positive real eigenvalue of (C.2). In fact, assume that some A
satisfies A > 0. Then, one obtains that (C.2) can be written as the equivalent form

3 LO:O W4\P0 dz

Yo g
0=a f_iw‘*dz

(Lo — A)"'w?, where Ly¥, =Y, +w?¥,

and where « satisfies f_ o:o whtdz = a f_ 0:0 [(LO —~ A)‘lwz] w?* dz. Then, we define R(A) as

R(A) = f‘x’ w4dz—a/foo [(Lo — A)_lwz] whdz.

o0
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Since R(0) = (1 — @) f_ o:o w*dz < 0 and R(A) — +o00 as A — 1, we conclude that there exists a positive
A € (0, 1) such that R(A) = 0. This finishes the proof of our claim.
By comparing this result and (C.14), it follows that there is still a gap region between 1 — 3y ~?v2 . and 1.
To eliminate this gap, and obtain a refined prediction of the threshold «,, we shall rewrite the solution to (C.7) in
terms of the hypergeometric function and perform a detailed asymptotic expansion of it similar to that in [59].
To do so, we first recall the definition and some properties of generalized hypergeometric functions [49].
The generalized hypergeometric functions ,F,(ai,- - ,ap,; by, - - , by; 2) are defined by the following series:

ay---ap, z (a1+1)---(ap+1)é

oFar, - ,ayby, - byiz) =1+ bl---bql_! + G+ )y 1) 2! + (C.15)
Their derivatives satisfy a recursion formula, given by

d 17 a

d—Zqu(al,--- Japiby, e bys7) = @qu(al +1,--,a,+1;by+1,--- b, + 152). (C.16)
In addition, the relationship between ., Fy.1(ai, -+ ,a,;b1,--- ,by;2) and ,Fy(ay, -+ ,a,;by,-++ ,b,;2) is

piiFga(ay, -+ ,ap,api1; by, - by, byi1;2)
1
) r(apﬂ)?((l;:ll)— apﬂ)fo T (L= P Fan, L apibe by ) dt (C.17)

where ' is the Gamma function I'(z) := fooo £~'e7'dt. In particular, when p = 2 and g = 1, (C.15) becomes the
ordinary hypergeometric function, which satisfies

L)l —a; —ay)
L(by = a)l (b — ay)’

QFl(a],ag;b];l): b] >at+a. (CIS)

In addition, for |z| < 1, 2F(ay; by, by; z) has the following recursion formula:
2Fi(ay,a;b132) = (1 = )" Fi(by — ay; by — az, by;57), by <a+a,. (C.19)

With this preliminary background, we return to the NLEP (C.7) and use generalized hypergeometric func-
tions to calculate the critical value of «, labeled by a., for which 1y = 0 is an eigenvalue. This implies that
A = 6% in (C.7). By defining 7 := 2z, (C.7) can be written when Ay = 0 and A = 67 as

W + o, - gL wWodz ) Py g 2EN Lo dz (C.20)
72 4 4 j;oo Wzdz 4 ’ . 2+a j;oo W4dz- .

To use the standard results in [59], we define w := %sechz(z/ 2) and 0; := ¢/2, so that (C.20) becomes

A =" W‘PO dZ
Pour + o, — ff—“;o—w = 2. (C.21)
3 3 [ wdz
Next, as was shown in [59], (C.21) can be transformed into a local problem with an integral constraint:

w

Woz: + 3

00 3 (o6}
Py =67 + W, f W dz = = f wdz. (C.22)
0 0
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Upon defining G by ¥, = w°' G, we substitute this relation into (C.22) to obtain
W | _ 18
G —20—G:+|= — =1 +26)|wG =w ", (C.23)
w 3 3
We next define 7 := 2w/3 and rewrite (C.23) as
3\1-0
71 -Gz +[c—(a+b+ 1)Z7]G; — abG = (5) o, (C.24)

where we have labeled a, b, and cbya =6, + 1, b =06, —1/2and c = 1 + 29;.
With this reformulation, we now solve (C.24) in terms of hypergeometric functions. To begin, we recall from
[33] that the two linear independent solutions to the homogeneous counterpart of (C.24) are

»Fi(a,b;c;?), S Fia—c+1L,b—c+1;2-¢2). (C.25)

As such, we need only find a particular solution, labeled by G, of (C.24). To do so, we write G; in the form
G =% Do cZ*, where the constants i and ¢; need to be determined. Upon substituting this infinite series
into (C.24), we solve the resulting recursion equations for i and ¢ to get

3 1—51 1
G, = (5) (1- 5%)—121—513&(1, 722-61,2+4 61;2). (C.26)

It is verify that ¥y = w*'G; — 0 as 7 — +oco. However, we must have ¥:(0) = 0 since ¥, is even. To enforce
this condition, we write ¥ as a linear combination of G; and the first homogeneous solution G, in (C.25) as

1
¥, = w'(G, + AG,), where G, := 2F1(61 +1.61 - 5120, + 1;2), (C.27)

where the constant A will be determined below. To determine A, we apply (C.16) on (C.26) to get

dG 3\ 3
d_zl - (5) (1 —5$)-13F2(2, E,3;3 -61,3 +51;z).

By using (C.17), together with (C.18) and (C.19), we further calculate for || — 17, that

dG, (3)1“” (1-3)172
2

a7 4

3 3\
7 oF) (1, 5;3; 1) ~ (—) (1-3)7"2. (C.28)

2

Similarly, from (C.16), (C.18) and (C.19), we get that the asymptotic behavior of G, in (C.27) as |[Z]| = 17 is

1466 -1 . TQ6, +2r¢;
dG~2~( 01— 5 |7} (26, +2) (2)1 . (C29)
dz 261+ 1 ['(26; + D@ + 1)
Upon combining (C.28) and (C.29), we conclude that ¥(:(0) = 0 holds when
_ (3)1‘51 I(1+6)0(3 +61) (€30)
2 16 +26)03) " '

This gives us an explicit form for ¥y in (C.27).
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Next, we focus on the integral constraint in (C.22). To begin, we calculate for §; < 1 that

0 3 (! G 2 rQr() 5
PG dz=—2 | witrZlgz = 1-6%)7" F5(1, = 222 2 1
fow G, dz 2fo 2L gz = ()( ao (13 61,2+, 3:1)

Z

~3(1 =671, (C.31)

00 1
f PGy dz =~ 2 f o 92 g
0 2 Jo Wz

3\ 140 , T +yDr(3)
(—) (=o' —Fm=>

and

1 3
> 3F2(1+61,61—§,1+61;261+1,§+61;1). (C.32)

Moreover, we calculate that

o0 3 (MM w 301
wdz = —— —dZ = - dz=3. (C.33)
fo‘ 2 Jo w: 2 Jo V1-%

Upon collecting (C.31), (C.32) and (C.33), we use the constraint in (C.22), with A as in (C.30), to obtain

1 5
2\—1 . .
(=6 F5(1.5,2.2:2-61.2 461, 5:1)

146, T(1 + (51)1“(%)

A3
S

1 3
3Fy(1+61,0) - 5 1400260+ 1,5+61:1) =

x| W

As a partial verification of our computation, if we let §; = 0 then (C.34) yields that k = 1. This agrees
precisely with our leading order threshold a. ~ 1. To seek a refined approximation of this threshold, as obtained
by the next order term of ., we expand (C.34) up to O(6;). To do so, we use the standard result in [6] to find

L)
VNGO N,
['(a3)'(a; + DI(ay + 1)
where a; = 1+ 8, a, = 01 — 1/2, as = 1+6,,b; =206, +1,and b, = §; + 3/2
Next, we expand

1 3 1 1
3F2(1 +61,01 = 5.1 +61:20, + 1,5 + 61 1) 5 L2481, + 6 1), (C.35)

2

T(b)T(b (1 +25)0C +6 1+6
(GOT ) _ UG 0) 50 ) (C.36a)

T(a)(a + Nl(az +r) T +6)F2+6)I(E +6)) 1+

1 1
31%((51,5,1;2“51,5+(51;1):1+51+()((5%). (C.36b)
Upon substituting (C.36) into (C.35), we conclude that
1 . 3 . 1 2 1 2

3Fy(1+61,6, - 5 14060261+ 1, 5 +61; 1) = 5 |[1+26, + 0| = 5 +01+06)). (C.37)

Then, by using the identity I>(1 + 6;)/T'(1 +25,) = 1 + 0(5%). we substitute (C.37) into (C.34), and recall that
01 = 6/2 where 6 = 2/(Vimaxo))- This yields

+O0O(v2 (C.38)

max 0

5
k=1-6+006)=1-=+0")=1--
2 XVmax 0

Finally, by relating k to @ using (C.20), and noting the identity 4 f w?dz =3 f w* dz, we conclude that (C.38)
provides the following refined threshold at which 1y = 0, which completes the proof of Theorem 3.1:
3

a, ~1—— .
2XVmaXO

(C.39)
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D Computation of Partial Derivatives for Quasi-Equilibria

In this appendix, we derive an approximation for dvy,x j/ds; from our quasi-equilibrium construction, and we
calculate some related partial derivatives that are needed in our analysis. From (2.28), vy j and C; satisfy

2C; . 2s; _
Voanj = €0 — —L 4 57 Cieti = s;. (D.1)
X X
Upon differentiating the equation for vax ; with respect to s;, and labeling vy, . := dvmax ;/ds;, we get
_ _ /\_/Vmaxj _ _ 2
WinaxkVinay j = (2€7 = 258X ) —— + 25 ;e Xy — F + 255, (D.2)

We solve for v/ . in (D.2), while eliminating C; in (D.1). After some algebra we obtain

max j

2 T2 Sl ol
’ _ (Vmaxj/sj vaaxj +ij S])

max j — =2 _ L2
2Vmax j XVinax j 2s; + XS

v (D.3)

Since s; = O(ellog €l?) and Vinax i = O(|log €]), we obtain upon retaining only the first term in the numerator and
the first two terms in the denominator that for e — 0

dean gmaxj ( 2 )_1
V;nax = D s Cmaxj = |1 — = . (D.4)
/ ds J XSj ! X Vmax j
This result (D.4) is needed in (3.34) for analyzing the Jacobian of the quasi-equilibrium construction.

In a similar way, by taking the partial derivative of vy, With respect to the location x; of the ith spike in the
quasi-equilibrium pattern, we readily derive the following result for € — 0 that is needed in (5.32) and (5.34):

max 2 -
ax,-vmaxk ~ _g_ kaxisk s gmaxk = (1 - ) . (DS)
X Sk

)_( Vmax k

E Calculation of G, and 7,

In this appendix, for d; € 7., we calculate the matrix spectrum of G,, as given in (4.27), as well as the matrix
P, that was defined in (4.24). To do so, for d; € 7., we introduce the auxiliary BVP

d d d

—ly” +uay=0, l<x<l1; y(=x1)=0; [—ly] = bj, [—ly’]. =0, (E.1)
H B 2
for j = 1,...,N. Here [y]; := y(x;f) - y(xj‘.) with x; = x? as given by (2.29). The solution to (E.1) is y =
Zszl brg(x; xi), where the dipole Green’s function g(x; x;) satisfies (4.22). Upon defining y’ := (y], e ,y}v)T,
=M1y (y)N)T, and b := (by,...,by)", where y;. =y'(x;) and (y); = (y(x}r) +y(x]‘.))/2, we conclude that

Yy =Gcb, (y)=P;b. (E.2)

The inverses of G, and P, exist and are tridiagonal when d; € 7,. To show this, we solve (E.I) on each
subinterval where we impose the continuity conditions on y” across x;. This yields that

_ Y1 cos[6(1+x)]

O Sme(lex)] 0 -1 <x<uxg,
— Yj cos[@(xjr1=x)]  Vjrr cos[f(x—x;)] _ ‘ . B
y N 0 Sil’l[f}(x_/'+1—xj~)] % Sin[@(xj+|—xj)] ’ xj <x< x_]+1 ’ ] - 1, ce ,N 1 N (E3)
)ﬁ cos[6(1-x)] Xy < x < 1

0 sin[6(1-xy)] °
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where 6 = +/uii/d,. By using (E.3), we satisfy the jump conditions in (E.1) to get

0
= 1%

D,y = —b. G, =—D.". (E.4)
1

Here, for d, € 7., D, is the invertible tridiagonal matrix defined by

dg f, 0 -~ 0 0 0
fg €g fg ()
0 f, e .
D A (E.5)
00 0 . e f, O
00 0 - f, e f
00 0 -~ 0 f d

where d, = cot(26/N) + cot(0/N), e, = 2cot(26/N) and f, = —csc (20/N), for which the identity d, = e, — f,
holds. When d, € 7T, (see (2.35)), i.e. 26/N < &, we see that e,, d, and f, are well-defined.

Similarly, we rewrite {y) in terms of y as {y) = —(26)~! csc (20/N) Cy’. where C was defined in (B.10). By
combining the second equation in (E.2) with this result we obtain for d; € 7, that

__H 260 -1
P, “2d csc (ﬁ) CD, . (E.6)
The matrix spectrum of the tridiagonal matrix D,, labeled by D,v = &v where v = (vy,...,vy)", is readily

calculated as in [25] and the result is summarized in Proposition 4.2.
Finally, when 4, = 0, we establish a key identity

P =P, (E.7)

which relates (4.27) for $ when Ay = 0 to (4.24). One way to derive this identity is to observe from (B.6) that
when Ay = 0, we have e, = —e, f, = —f, and d, = —e + f. By using these expressions in (E.5) a direct matrix
multiplication yields the identity CD, = —DC, where D and C are defined in (B.5) and (B.10), respectively.
The result (E.7) follows by comparing (E.6) and (B.11), and noting that © and D, are symmetric.

F Diagonalization of the Matrix M for the Small Eigenvalues

In this appendix, when d; € 7., we show how to diagonalize the matrix M in (4.29) to obtain the result given in
Proposition 4.3 for the small eigenvalues. From (4.29), the matrix for the small eigenvalues is

— 2 2 -1 - -1
M = 2—)(\/3 Ogg _ vmaxogop(l_,_ ig) Pg + SOM,UI’ by = (] - 2 ) . (F.1)

max = -
3 ag Xagvmaxo edl X Vmax 0

We begin by focusing on the middle term in M. We first introduce the matrix decomposition of D by
D = QKQ!, where K = diag(ky,...,«y) and Q is the orthogonal matrix formed from the eigenvectors ¢ ;in
Proposition B.1 when 7 = 0. For 7 = 0, the eigenvalues «; of D are related to the eigenvalues &; of D, by

ki =2tan(0/N) , «;=—&;=-2cot(20/N)+2csc(20/N)cos(n(j—1)/N), j=2,...,N. (E2)
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By using (B.7) with 1, = 0, we obtain that G = /;—EQ(K_IQT, which yields
3 -1 3 -1
plr+ 2% g P, =P + ——— L L x| o'p,. (F3)
XAgVmax 0 XAgVmax 0 Mdl

Next, we use (E.6) and (B.11) to conclude that PD = (Png)T so that

P=(P.0,) D' =(P,D,) @x'Q". (F.4)
By combining (F.4) and (F.3), and using QQ! = I, we get

-1
P(I + _ig) P, =RD,™", where R := (Pgi)g)T QHQ" (Pgi)g) . (E5)

XAgVmax 0

Here R is defined in terms of a diagonal matrix H given by

-1
H = (i /_LI+7<) = diag(hy, ... hy). (F.6)
XagvmaxO udl

Therefore, by using G, = 2‘—]91);1 from (E.4), together with (F.5), we can write (F.1) as

—I + D,

2 5 MO, ol Vol o
iy it - RO F7
M (3 Ymaxo' 0T Ty a 8 (E7

Next, we must focus on analyzing the matrix R defined by (F.5). By using (E.6), we obtain

(?’g@g)T = _ZLd] csc (%0) C,

where C is given in (B.10). In this way, it is convenient to write R as

20 2 20
R = 'u_ CSC2 (N) CTQWQTC = % CSC2 (ﬁ) QgQZ;CTQWQTCQgQZ: N
1

where @, are the normalized eigenvectors of D, (see Proposition 4.2), arising in the matrix decomposition

Dg = QgWgQZ: H ch = diag(é‘:b .o ’fN) 5 (F8)

where £; are the eigenvalues of D, as given in Proposition 4.2. In this way, we can write R as

2 26
R = QgZQg, where X := 57]2 csc? (N)SﬂST, S:= Q;CTQ. (F.9)

The key step in the analysis is the calculation of X in (F.9) using the explicit forms for the matrices Q,, C,
and Q, as was done in section 4.2 of [25]. This calculation in [25] showed that X is a diagonal matrix given by

2 26 i — 1
Y = diag(wy, . ..,wy), where w;j ::'u—csc2 = |sin® MTI hij, j=1,...,N. (F.10)
) df N N :

Here h;, for j = 1,..., N, are the diagonal entries of  that can be identified from (F.6).
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Upon substituting (F.9) and D;' = Q,K;'Q] into (F.7), and recalling (4.28), we obtain that the matrix
eigenvalue problem for the small eigenvalues reduces to

202
Ac ~ —€BoMec, where M=@Q, (a?(g_l + bl — MYK;)Q? ) (F.11)

ag
This key result shows that M is diagonalizable by the eigenspace @, of the Green’s dipole matrix. In (F.11),

2x 4 ué Soit 2 4 agup
== , bi=——=— ,
a 3 Vmaxo ( ) Edl 3 VmaxO dl

d

(F.12)

where we have used the result sy ~ 2)_(agvr3nax06/ 3 from (2.30) to simplify b.
Finally, by introducing ¢ = Qgc in (F.11), we readily obtain from (F.12) that the small eigenvalues are given
explicitly as in (4.33) of Proposition 4.3. The constants wj, as given in (4.34), are obtained from (F.10) by using

the diagonal entries of H that can be identified from (F.6) and (F.2).

G Bifurcation Point for the Emergence of Asymmetric Steady-States

In this appendix we verify that the simultaneous zero-eigenvalue crossing threshold for the small eigenvalues, as
given in (4.40), coincides with the bifurcation point at which asymmetric steady-state solution branches bifurcate
from the symmetric steady-state branches constructed in §2.

To do so, we proceed in a similar way as in [56] by constructing a steady-state solution of (1.2) on a canonical
domain |x| < ¢, with u, = v, = 0 at x = =€ and with a spike centered at x = 0. On this domain, the leading-order
outer solution u,.(x) satisfies (see (2.22))

d 2i
LOfuof = _luofxx + Uy = );Ev?naxg 5()6) > |X| </ uofx(if) =0, (Gl)
u

where, in analogy with (2.33), vy« ¢ satisfies the dominant balance

1 _
Ve ~ e it s = 10(0). (G2)
2 X

To solve (G.1) we let G/(x) be the Green’s function satisfying L,,G, = 6(x), with G,(xf) = 0. For 8 # mn/{
withm = 1,2,..., where 8 = /uii/d,, we obtain that

2 cos [6(€ — |x])]
) = e G, where Gt = KT, G3)

By evaluating (G.3) at x = 0 we can calculate s,, which is needed in (G.2) for determining vp.x¢. In this way,
we obtain after some algebra that at x = ¢

3 — p
_ ek fu

v
oe(0) = cB(0), here B(f):= =L = (.= . G.4
o (€) = cB(L) where  B({) 00 ST aVa (G.4a)
Here v, ¢ as a function of ¢ satisfies the nonlinear algebraic equation
Vimax c€* ™ cot(6€) = i/ (2c). (G.4b)

As similar to the analysis in [56] for the GM model, the construction of asymmetric steady-state patterns
for (1.2) relies on determining £; and ¢, for which B(¢,) = B({,). As a result, we have u,,({,) = u,,({,), which
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allows for the construction of a C' global solution on |x| < 1 with M; and M, small and large spikes, respectively,
when the length constraint £, M; + (M, = 1 is satisfied (cf. [56]).

The bifurcation point along the steady-state symmetric branch where such asymmetric equilibria emerge is
determined by setting B’(¢) = 0 with £ = 1/N. From (G.4a) and the logarithmic derivative of (G.4b) we get

2

B,(f) _ Vinax ¢ [3
= Sin(ge) - maxt

1 0
v cot@l 1 = . G.S
W max ¢ COt( )] maxf ( + )(Vmaxé’) X Sll’l(@f) COS(HK) ( :

Upon combining these two equations we conclude that

3
/ _ vmax {

~ sin(0¢) cos(6f)

2
T+ troms cos (9{’)] . (G.6)

By setting B'(£) = 0 with £ = 1/N, and using the double-angle formula for cos?(6¢), we readily obtain that the
threshold value of 6 is

20 1- 1
cos (ﬁ) =T Zi , where a; = 3 (XVmax —2) . (G.7)

This threshold agrees precisely with the zero-eigenvalue crossing result (4.40) for the small eigenvalues.

H Computation of 5, and §;

In this appendix, we show how to obtain the estimate (5.26) for 8;, where 8; was defined in (5.17) of §5. For
simplicity, in the analysis below we will drop the subscript jin Vi, Vimax j» Cj, §j, and vipay ;.
We begin by recalling from (2.3) that the leading order steady state v-equation for the spike profile is

Vi = Vy+Ce'" =0, —00 <y < +00; Vo(0) = vinax,  Vo(e0) =5, (H.1)

where v = 2Ce¥m — 25 + 5% and C = se™¥°.

From the results in Proposition 2.1 for the sub-inner region, we conclude that there exists a positive constant
¥o = O(1/vmax) < 1 such that

1 ma Y Y
Vo ~ Vimax + — log [sech2 (%)} , O0<y<yo; Uy ~ /\—/vz sechz(—
X

The decay behavior of Uy and V) is obtained by noting that V' — V,, + ysV, ~ 0 for y > yo. Since s < 1, this
yields V" — V, = 0. With this observation, and by enforcing continuity across y = y,, we estimate

V N Vmax + = ! log [SeCh2 (Vmazx/\_/y)] . y < yO . V/ N —Vinax tal’lh( deny) y < yO , H 2
0 Vv e_()_)’()) + 2 1 10 [ hz(VmaxX)O )] 0 —V e_(y }0) > ( : )
max g|secC , Y>Yo, max y>Yo.

Moreover, since Uy = Ce®"?, we obtain in a similar way that

> VmnaxSech (—2 ), y<Yo,
Uy ~

Cetrms™ (sech?(22580)) |y > yy. (H-3)

By using (H.3) we calculate that

2 Y sinh(Vmax ¥'y)
fy i déj )(dex(5 + 2} Vmax )’ y < Yo
h(Vimax )
o Us (g + S} 4 Ly —yg), v >y

X Vmax ( 2 Vimax
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Then, upon multiplying by U,, we obtain

U v de 3sech’(*5L) + -1 tanh(*4)sech(*42), Y <o, )
0 ~ 2C vy -0-y0) 2 Vinax Xy inh(Viax .

By multiplying (H.4) with V{ from (H.2) and integrating, we observe that the dominant contribution to the
integrand arises from multiplying the y — y, term in (H.4) with the —v e 0™ term in (H.2). In this way,

00 Y 1 +00
f UOV(/)(f 17 df) dy ~ _Vmaxf e—(y—yo)(y - )’0) dy ~ ~Vmax -
0 o Uo

Yo
o0 2 (%)
In a similar way, we estimate that f0+ (V(’)) dy ~v2. . f) 0+ e 2070 gy ~ 12 /2. We conclude from (5.17) that
Bj ~ 2/Vmax, as was claimed in (5.26).

00 ) 2
Next, we recall from (4.28) in our analysis of the small eigenvalues that 8y = — fo yVidy/ fo (V(’)) dy. By
using (H.4) and (H.2), we can readily verify that

(o] (o) U 1
yV’dy~f UV, f —d¢)dy,
L ‘ o 0( o Uo )

which establishes that 8; ~ B, when evaluated at the steady-state solution.

I The Equivalence Between Some Matrices

In this appendix, we show the relationship between the matrices
VG 1= (05,G(xX; X))nww » (VO := (0, GO )N » V2G 1= (05,00, GOGs X)) s (L)

used in the linearization of the DAE system and the matrices #, P,, and G,, as defined in (4.27), (4.24), and

(4.27), respectively, that were used in §4 in our analysis of the small eigenvalues. Recall that the diagonal entries

in the matrices in (I.1) were defined in (5.27) in terms of the regular part R of the Green’s function (see (5.20)).
We first show that VG = . To establish this, we use the decomposition (5.20) to obtain

L+ R(xx0), x> x,

G, (x;x;) = { 24,

—5r R X)X < xp (1.2)

As such, we identify that the average across the kth spike is simply (G,); = (Gx(x,j;xk) +G.(x;; xk)) /2 =
R, (xy; x;). By comparing (I.1) and (4.27), and recalling (5.27) for j = k, we conclude that VG = P.
Next, we show that (VG)" = —P,. We first differentiate the BVP (2.24) for G(x; x;) with respect to x; to get

d
j (04,G(x; xp)) ., + 1 (05, G(x; %)) = =6 (x — xi) 5 0: (05, G(x; X)) lx=s1 = 0.

By comparing this result with the BVP (4.22) satisfied by the dipole Green’s function, we conclude that
0, G(x; x1) = —g(x; %), -l<x<lI, (L.3)

so that for j # k we have d,,G(x;; xi) = —g(x;; x). It follows that the off-diagonal entries in (VG)! and P, are
identical. For the diagonal entries, where j = k, we use (1.3) and the decomposition (5.20) to obtain

Dy, ([’;—l(x - x3) + R(x; xk)) = —5—1 =0, R(x;x1), x> x,

14
M (—(’;—l(x — xp) + R(x; xk)) = 5—1 =0, R(x; X)), X < X, (4

g(x;x) = {
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Upon defining (g); = % (g(x,j; X)) + 8(x;; xk)), we conclude from (I.4) and the reciprocity R(x;y) = R(y; x) of the
Green’s function that (g); = —0,, R(X; Xi)|x=y, = =05 R(Xi; X)|x=x,. This implies that the diagonal entries of #, in
(4.24) are the same as those of (VG)T in (I.1). It follows that (VG)" = PT = —P,. We remark that the relation
P = —P, was also derived using an alternative approach in (E.7) at the end of Appendix E.

Our next identity is to establish that V’G = —G,. The equivalence between the off-diagonal entries in these
matrices, where j # k, is established by setting x = x; in (I.3) and differentiating in x; to obtain

0y, [8ka(xj; xk)] = =0,,8(xj; x1) = —0,8(x; Xp) =, -

Next, we differentiate (I.4) with respect to x and upon evaluating at x = x;, we compare the resulting expression
with (5.27) to obtain that

9

gyhenRy) = -0 G(xjx), j=k.

0
gx(x : xk)|x=xk = _alxzxk

We conclude that the diagonal entries in VG and —G, are also identical. It follows that V3G = -G,.
Finally, we calculate R, (x; x;)|,=,; as needed in (5.41). By using the decomposition (5.20) we write (1.2) as

G(x; x;) = —2%1 + dﬁlH(x — X))+ Ry(x1x)),

where H(z) is the Heavyside function. Therefore, G, (x;x;) = d“—lé(x — X;) + R (x;x;) on x| < 1. Upon
substituting this expression into the BVP (2.24) for G, we conclude that R..(x; x;) = Z—’I‘G(x; x;), so that

u
Ry (xj;x;) = d—lllG(Xﬁ x;) . (I.5)
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