
Weakly Nonlinear Theory for Oscillatory Dynamics in a 1-D PDE-ODE Model of1

Membrane Dynamics Coupled by a Bulk Diffusion Field2

Frédéric Paquin-Lefebvre ∗ , Wayne Nagata † , and Michael J. Ward ‡3

4

Abstract. We study the dynamics of systems consisting of two spatially segregated ODE compartments coupled5
through a one-dimensional bulk diffusion field. For this coupled PDE-ODE system, we first employ6
a multi-scale asymptotic expansion to derive amplitude equations near codimension-one Hopf bifur-7
cation points for both in-phase and anti-phase synchronization modes. The resulting normal form8
equations pertain to any vector nonlinearity restricted to the ODE compartments. In our first exam-9
ple, we apply our weakly nonlinear theory to a coupled PDE-ODE system with Sel’kov membrane10
kinetics, and show that the symmetric steady state undergoes supercritical Hopf bifurcations as the11
coupling strength and the diffusivity vary. We then consider the PDE diffusive coupling of two12
Lorenz oscillators. It is shown that this coupling mechanism can have a stabilizing effect, charac-13
terized by a significant increase in the Rayleigh number required for a Hopf bifurcation. Within14
the chaotic regime, we can distinguish between synchronous chaos, where both the left and right15
oscillators are in-phase, and a state characterized by the absence of synchrony. Finally, we compute16
the largest Lyapunov exponent associated with a linearization around the synchronous manifold that17
only considers odd perturbations. This allows us to predict the transition to synchronous chaos as18
the coupling strength and the diffusivity increase.19
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1. Introduction. We investigate, through a weakly nonlinear analysis, the oscillatory dy-23

namics in a class of one-dimensional coupled PDE-ODE models. The class of models consid-24

ered allows us to study the collective synchronization of two dynamically active compartments,25

modeled by systems of nonlinear ODEs, that are indirectly coupled via the diffusion of some26

spatially extended variable in a 1-D bulk interval. In particular, this modeling paradigm has27

been used in the study of intracellular polarization and oscillations in fission yeast, where28

each compartment represents the opposite tips of an elongated rod-shaped cell (cf. [29], [28]).29

Pattern formation behavior and linear stability analyses of coupled 1-D membrane-bulk PDE-30

ODE systems have been analyzed in other specific contexts (cf. [6], [9], [11], [7], [13]), and in31

multi-dimensional domains in [10] and [19], where they have been employed to study intercel-32

lular communication and the related concepts of quorum and diffusion sensing. Quasi-steady33

versions of the coupled membrane-bulk models, whereby the membrane is at steady state and34

contributes only nonlinear flux source terms, have been used to model spatial effects in gene35

regulatory networks (cf. [2], [16], [17]) and cascades in biological signal transduction (cf. [14],36

[15]).37

To formulate our 1-D model, we assume that some spatially extended bulk variable C(x, t)38

undergoes linear diffusion and decay with rate constants D and k within an interval of length39
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2L,40

(1.1) Ct = DCxx − kC , 0 < x < 2L , t > 0 .41

We impose the following linear Robin-type boundary conditions to model the exchange be-42

tween the bulk and the compartments:43

(1.2) −DCx(0, t) = κ(eT1 u(t)− C(0, t)) , DCx(2L, t) = κ(eT1 v(t)− C(2L, t)) ,44

where e1 = (1, 0, . . . , 0)T ∈ Rn. Here, u(t), v(t) ∈ Rn denote the variables in the left and45

right local compartments, of which only the first component is released within the 1-D bulk46

region. In this model, the leakage parameter κ controls the permeability of the compartments47

at each endpoint. Furthermore, letting F(·) ∈ Rn be the nonlinear vector function modeling48

each oscillator, which we assume to be identical, and denoting β as the coupling strength, we49

impose that the ODE systems50

(1.3)
du

dt
= F(u) + β(C(0, t)− eT1 u)e1 ,

dv

dt
= F(v) + β(C(2L, t)− eT1 v)e1 ,51

govern the dynamics in each compartment. The coupled PDE-ODE system (1.1)–(1.3) given52

here is in dimensionless form. The geometry for this 1-D model can be viewed as a long53

rectangular strip separating two vertical 1-D membranes, where there is assumed to be no54

transverse solution dependence.55

There is a rather wide literature investigating the dynamics of diffusively coupled oscilla-56

tors, where the coupling usually consists of the discrete Laplacian acting on a lattice of several57

oscillators with periodic boundary conditions, or through some other discretely coupled net-58

work. Examples of such coupled ODE systems include discrete chains of bistable kinetics, such59

as the Lorenz or Fitzhugh-Nagumo systems, in which the formation of propagating fronts was60

studied in [1], [21] and [12], and the well-known Kuramoto-type oscillator models as surveyed61

in [25]. However, relatively few studies have considered spatially segregated oscillators that62

are indirectly coupled via a PDE bulk diffusion field.63

For our PDE-ODE coupled system, our primary goal is to derive amplitude equations, or64

normal forms, near Hopf bifurcation points for either the in-phase or anti-phase synchroniza-65

tion modes, while allowing for an arbitrary, but identical, vector nonlinearity in each ODE66

compartment. This rather general framework will provide us with explicit formulae for the67

normal form coefficients that can easily be evaluated numerically in order to classify whether68

Hopf bifurcations are sub- or supercritical and also to detect possible criticality switches in-69

dicated by sign changes. Our weakly nonlinear theory is given in §2, where for calculational70

efficiency we employ a multi-scale asymptotic expansion to derive the two distinct normal71

forms. The work presented here extends the weakly nonlinear stability analysis from §6 of72

[9], which focused on synchronous oscillations in a class of coupled PDE-ODE models with73

nonlinear boundary conditions and a single active species in each compartment.74

In [7] it was shown that the coupling of two conditional biochemical oscillators, each of75

them at a quiescent state when isolated, via a diffusive chemical signal could lead to robust76

in-phase and anti-phase oscillatory dynamics. The study employed the two-component Sel’kov77

kinetics, originally used to model glycolysis oscillations [26]. As an extension of this previous78
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work, in §3 we apply our weakly nonlinear theory to a coupled PDE-ODE model with Sel’kov79

kinetics and find a rather wide parameter regime for which the base-state can lose stability to80

a supercritical Hopf bifurcation. Our weakly nonlinear results are validated against numerical81

bifurcation results and time-dependent numerical simulations.82

Then, in §4 we assume that the dynamics in each compartment is governed by identical83

Lorenz ODE oscillators. For an isolated Lorenz ODE system, we recall that increasing the84

Rayleigh number (the typical bifurcation parameter) causes a number of bifurcations including85

pitchfork, homoclinic and Hopf, and ultimately chaotic oscillations [27]. Here, we would like86

to determine how this cascade of bifurcations is affected by the PDE bulk diffusive coupling87

of two identical Lorenz ODE systems. Our analysis will show that such a coupling mechanism88

causes a significant increase in the critical Rayleigh number where the Hopf bifurcation occurs,89

suggesting a delay in the appearance of chaotic oscillations. For this problem we also consider90

the case where the bulk domain is well-mixed and spatially homogeneous, corresponding to91

the infinite bulk diffusion limit and for which the coupled PDE-ODE system is reduced to a92

single system of globally coupled ODEs, as shown in Appendix B.93

Finally, for both finite and infinite diffusion cases, we predict in §4.3 the transition to94

synchronous chaos as the diffusivity D and the coupling strength β are increased. Here, syn-95

chronous chaos is defined as sensitivity to initial conditions along an invariant synchronous96

manifold where both Lorenz oscillators are completely in phase. Our predictions are based97

on the computation of the largest Lyapunov exponent of an appropriate non-autonomous lin-98

earization of our coupled PDE-ODE system (1.1)–(1.3), obtained by only selecting transverse99

perturbations to the synchronous manifold. We remark that the master stability functions,100

for determining the stability of the synchronous state of a network of oscillators with an arbi-101

trary discrete coupling function, are similarly obtained (cf. [22]). Furthermore, our results are102

consistent with the discrete case in the sense that complete synchronization of two interacting103

chaotic oscillators occurs when the coupling is strong enough to suppress chaotic instabilities104

(cf. [5, 24, 23]).105

In §5, we conclude by briefly summarizing our main results and by suggesting a few open106

problems that warrant further investigation.107

2. Weakly nonlinear theory for 1-D coupled PDE–ODE systems.108

2.1. Symmetric steady state and linear stability analysis. We first rewrite the coupled109

PDE-ODE system (1.1)-(1.3) as an evolution equation in the form110

(2.1) Ẇ = F (W ) =

 DCxx − kC
F(u) + β(C|x=0 − eT1 u)e1

F(v) + β(C|x=2L − eT1 v)e1

 .111

Here, F is a nonlinear functional acting on W , defined as the space of vector functions whose112

components satisfy the appropriate linear Robin-type boundary conditions:113

(2.2) W =

W =

C(x)
u
v

∣∣∣∣∣∣ −DCx|x=0 = κ
(
eT1 u− C|x=0

)
DCx|x=2L = κ

(
eT1 v − C|x=2L

) .114
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A symmetric steady state for (2.1) is given by115

(2.3) We =

(1− p0)
cosh(ω(L− x))

cosh(ωL)
eT1 ue

ue
ue

 , ω =

√
k

D
, p0 =

Dω tanh(ωL)

Dω tanh(ωL) + κ
,116

where ue is a solution of a nonlinear algebraic system of equations117

(2.4) F(ue)− βp0Eue = 0, E ≡ e1e
T
1 ,118

and where E is a n× n rank-one matrix.119

Next, we consider the linear stability of a symmetric steady state by introducing a per-120

turbation of the form121

(2.5) W (x, t) = We(x) +W(x)eλt, W(x) =

η(x)
φ
ψ

 .122

Substitution of (2.5) within (2.1) yields, after expanding and collecting coefficients of eλt, the123

following nonstandard eigenvalue problem:124

(2.6) λW = L(W) , with L(W) ≡

 Dηxx − kη
Jeφ+ β(η(0)− eT1 φ)e1

Jeψ + β(η(2L)− eT1ψ)e1

 .125

Here, Je is the Jacobian matrix of the nonlinear vector function evaluated at a steady state126

ue, while L is the linearized operator acting on the function space defined in (2.2). The127

eigenfunction W(x) therefore satisfies the same boundary conditions, given by128

(2.7) −Dηx(0) = κ
(
eT1 φ− η(0)

)
, Dηx(2L) = κ

(
eT1ψ − η(2L)

)
.129

We can write the solution in the bulk as a linear combination of the even and odd eigenfunc-130

tions in the form131

(2.8) η(x) =
1− p+(λ)

2
eT1 (φ+ψ)

cosh(Ω(L− x))

cosh(ΩL)
+

1− p−(λ)

2
eT1 (φ−ψ)

sinh(Ω(L− x))

sinh(ΩL)
.132

Here, p+(λ), p−(λ) and Ω are each defined by133

(2.9) p+(λ) =
DΩ tanh(ΩL)

DΩ tanh(ΩL) + κ
, p−(λ) =

DΩ coth(ΩL)

DΩ coth(ΩL) + κ
, Ω =

√
k + λ

D
,134

where we take the principal branch for Ω if λ is complex. The eigenvectors φ and ψ in (2.8)135

satisfy the homogeneous linear system of equations given by136

(2.10)

Je − λI − β (p+(λ)+p−(λ)
2

)
E β

(
p−(λ)−p+(λ)

2

)
E

β
(
p−(λ)−p+(λ)

2

)
E Je − λI − β

(
p+(λ)+p−(λ)

2

)
E

(φ
ψ

)
=

(
0
0

)
.137
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From symmetry considerations and since every perturbation can be written as the sum of138

an even part with φ = ψ, and an odd part with φ = −ψ, this system can be reduced to n139

equations. Letting φ+ and φ− denote the even and odd eigenvectors, we can readily establish140

a reduced homogeneous linear system for each case as141

(2.11) Φ±(λ)φ± = [Je − λI − βp±(λ)E]φ± = 0.142

In this way, the eigenvalue parameter λ must satisfy the transcendental equation143

(2.12) det [Φ±(λ)] = 0144

in order for the system to admit a non-trivial solution φ± 6= 0. Finally, the eigenfunctions145

W± for both even and odd cases are defined by146

(2.13) W+ =

(1− p+(λ)) cosh(Ω(L−x))
cosh(ΩL) eT1 φ+

φ+

φ+

 , W− =

(1− p−(λ)) sinh(Ω(L−x))
sinh(ΩL) eT1 φ−

φ−
−φ−

 .147

2.2. Adjoint linear operator and inner product. The imposition of a solvability condition148

in the multi-scale asymptotic expansion presented below requires the appropriate formulation149

of an adjoint linear operator L? defined by150

(2.14) L?(W ?) =

 DC?xx − kC?
JTe u

? + (κC?|x=0 − βeT1 u?)e1

JTe v
? + (κC?|x=2L − βeT1 v?)e1

 ,151

which acts on the space W? of vector functions satisfying the adjoint boundary conditions,152

(2.15) −DC?x|x=0 = βeT1 u
? − κC?|x=0, DC?x|x=2L = βeT1 v

? − κC?|x=2L.153

For any W ∈W and W ? ∈W?, we have154

(2.16) 〈W ?,LW 〉 = 〈L?W ?,W 〉,155

where the inner product in (2.16) is defined by156

(2.17) 〈W ?,W 〉 =

∫ 2L

0
C?C dx+ u?

T
u+ v?

T
v.157

Next, upon calculating the even and the odd adjoint eigenfunctions we obtain158

(2.18)

W?
+ =

β
κ (1− p+(λ)) cosh(Ω(L−x))

cosh(ΩL)
eT1 φ

?
+

φ?+
φ?+

 , W?
− =

β
κ (1− p−(λ)) sinh(Ω(L−x))

sinh(ΩL)
eT1 φ

?
−

φ?−
−φ?−

 ,159

where φ?± satisfies the conjugate transpose of the system (2.11),160

(2.19)
[
Φ±(λ)

]T
φ?± = 0.161
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From the definitions (2.13), (2.18) and (2.17), we can verify that the eigenfunctions and their162

adjoints form an orthogonal set, which can be normalized for convenience as163

(2.20) 〈W?
+,W−〉 = 〈W?

−,W+〉 = 0, 〈W?
+,W+〉 = 〈W?

−,W−〉 = 1,164

and that the following properties hold:165

(2.21) L(W±) = λW±, L?(W?
±) = λW?

±.166

2.3. Multi-scale expansion. Let µ = (β,D)T be a vector of bifurcation parameters. As167

usual, a slow time-scale τ = ε2t, with ε� 1, is introduced. Using the same scaling, we perturb168

the vector of bifurcation parameters to yield,169

(2.22) µ = µ0 + ε2µ1 , where µ0 =

(
β0

D0

)
and µ1 =

(
β1

D1

)
, with ‖µ1‖ = 1 .170

Here µ0 is the bifurcation point, while µ1 is a unit vector indicating the direction of the171

bifurcation. We then expand the state variable in a regular asymptotic power series around a172

symmetric steady state as173

(2.23) W (x, t, τ) = We(x) + εW1(x, t, τ) + ε2W2(x, t, τ) + ε3W3(x, t, τ) +O
(
ε4
)
.174

Next, by inserting (2.22) and (2.23) into (2.1), and collecting powers of ε, we obtain that175

ε∂tW1 + ε2∂tW2 + ε3(∂tW3 + ∂τW1) =

εL(µ0;W1) + ε2

L(µ0;W2) + B(W1,W1) +

 ω2CeD1

−p0Eueβ1

−p0Eueβ1

+

ε3

L(µ0;W3) + 2B(W1,W2) + C(W1,W1,W1) +

 1
D0

(∂t + k)C1D1

(C1|x=0e1 − Eu1)β1

(C1|x=2Le1 − Ev1)β1

 ,

(2.24)176

and that the perturbed boundary conditions satisfy177

3∑
j=1

εj
(
∂xCj +

κ

D0

(
eT1 uj − Cj

))
=
(
ε2p0e

T
1 ue + ε3

(
eT1 u1 − C1

)) κ

D2
0

D1, x = 0,

3∑
j=1

εj
(
∂xCj −

κ

D0

(
eT1 vj − Cj

))
=
(
−ε2p0e

T
1 ue − ε3

(
eT1 v1 − C1

)) κ

D2
0

D1, x = 2L.

(2.25)178

Finally, we precisely define the multilinear forms B(·, ·) and C(·, ·, ·) in (2.24) as179

(2.26) B(Wj ,Wk) =

 0
B(uj ,uk)
B(vj ,vk)

 , C(Wj ,Wk,Wl) =

 0
C(uj ,uk,ul)
C(vj ,vk,vl)

 ,180
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where the non-trivial components satisfy181

(2.27) B(uj ,uk) =
1

2
(I ⊗ uTk )Heuj , C(uj ,uk,vl) =

1

6
(I ⊗ uTl )Te(uj ⊗ uk).182

Here, I ∈ Rn×n and the matrices He and Te can be defined as183

(2.28) He =

H(F1)
...

H(Fn)

 ∈ Rn
2×n, Te =


H
(
∂F1
∂u1

)
. . . H

(
∂F1
∂un

)
...

. . .
...

H
(
∂Fn
∂u1

)
. . . H

(
∂Fn
∂un

)
 ∈ Rn

2×n2
,184

where H(·) corresponds to the Hessian operator that acts on a scalar function of n variables185

and returns a n × n matrix with all the possible second-order derivatives. As usual, all the186

partial derivatives in (2.28) are evaluated at a steady state ue.187

From (2.24) and (2.25), we can derive a sequence of problems for each power of ε. By188

collecting terms at O (ε), we obtain the linearized system evaluated at the bifurcation point,189

(2.29) ∂tW1 = L(µ0;W1),

{
∂xC1 + κ

D0

(
eT1 u1 − C1

)
= 0, x = 0,

∂xC1 − κ
D0

(
eT1 v1 − C1

)
= 0, x = 2L.

190

The solution to (2.29) depends on the spatial mode considered. In what follows, we treat the191

even (+) and the odd (−) modes simultaneously, although we only consider codimension-one192

Hopf bifurcations. We denote {iλ±I ,−iλ
±
I } as the set of critical eigenvalues and A±(τ) as an193

unknown complex amplitude depending on the slow time-scale. Then, we can write W1 as194

(2.30) W1 =W±A±(τ)eiλ
±
I t +W±A±(τ)e−iλ

±
I t,195

where the eigenfunctions are evaluated at µ0 and λ = iλ±I . Our goal is to derive an evolution196

equation for A±(τ).197

Repeating a similar procedure at O
(
ε2
)
, we obtain198

(2.31) ∂tW2 = L(µ0;W2) + B(W1,W1) +

 ω2CeD1

−p0Eueβ1

−p0Eueβ1

 ,199

together with the appropriate boundary conditions200

∂xC2 +
κ

D0

(
eT1 u2 − C2

)
=
κp0

D2
0

eT1 ueD1, x = 0,

∂xC2 −
κ

D0

(
eT1 v2 − C2

)
= −κp0

D2
0

eT1 ueD1, x = 2L.
(2.32)201

By inserting (2.30) within the bilinear form, we obtain the following quadratic terms,202

(2.33) B(W1,W1) = A2
±B(W±,W±)e2iλ±I t + |A±|22B(W±,W±) +A±

2B(W±,W±)e−2iλ±I t.203
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This expression justifies a decomposition for W2 in the form204

(2.34) W2 = W0000 +A2
+W2000e

2iλ+I t + |A+|2W1100 +A+
2
W0200e

−2iλ+I t,205

for the even mode, together with206

(2.35) W2 = W0000 +A2
−W0020e

2iλ−I t + |A−|2W0011 +A−
2
W0002e

−2iλ−I t,207

for the odd mode. Explicit solutions for the coefficients Wjklm and a brief outline of their208

computation are given in Appendix A.209

2.4. Solvability condition and amplitude equations. Upon collecting terms of O
(
ε3
)

in210

(2.24) and (2.25), we obtain that211

(2.36)

∂tW3 − L(µ0;W3) = −∂τW1 + 2B(W1,W2) + C(W1,W1,W1) +

 ∂tC1+kC1
D0

D1

(C1|x=0 − eT1 u1)e1β1

(C1|x=2L − eT1 v1)e1β1

 ,212

together with the following boundary conditions:213

D0∂xC3 + κ
(
eT1 u3 − C3

)
=
(
eT1 u1 − C1

) κ

D0
D1, x = 0,

D0∂xC3 − κ
(
eT1 v3 − C3

)
= −

(
eT1 v1 − C1

) κ

D0
D1, x = 2L.

(2.37)214

As usual when applying multi-scale expansion methods to oscillatory problems, we suppose215

that the solution at O
(
ε3
)

is given by the harmonic oscillator as216

(2.38) W3 = U±(τ)eiλ
±
I t + U±(τ)e−iλ

±
I t, U±(τ) =

C±(x, τ)
u±(τ)
v±(τ)

 ,217

where the temporal frequency corresponds to the imaginary part of the critical eigenvalue of218

the spatial mode considered.219

Upon inserting (2.38) in (2.36), and collecting the coefficients of eiλ
+
I t, we obtain that220

iλ+
I U+ − L(µ0;U+) = −W+

dA+

dτ
+

2B(W+,W0000) +

 (
Ω+
I

)2
η+(x)D1

−p+(iλ+
I )Eφ+β1

−p+(iλ+
I )Eφ+β1

A+

+
(
2B(W+,W1100) + 2B(W+,W2000) + 3C(W+,W+,W+)

)
|A+|2A+,

(2.39)221

for the even mode, with the boundary conditions given by222

D0∂xC+ + κ
(
eT1 u+ − C+

)
=

κ

D0
p+(iλ+

I )eT1 φ+D1A+, x = 0,

D0∂xC+ − κ
(
eT1 v+ − C+

)
= − κ

D0
p+(iλ+

I )eT1 φ+D1A+, x = 2L.
(2.40)223

8

This manuscript is for review purposes only.



Alternatively, for the odd mode, we obtain that224

iλ−I U− − L(µ0;U−) = −W−
dA−
dτ

+

2B(W−,W0000) +

 (
Ω−I
)2
η−(x)D1

−p−(iλ−I )Eφ−β1

p−(iλ−I )Eφ−β1

A−

+
(
2B(W−,W0011) + 2B(W−,W0020) + 3C(W−,W−,W−)

)
|A−|2A−,

(2.41)225

with the boundary conditions given by226

D0∂xC− + κ
(
eT1 u− − C−

)
=

κ

D0
p−(iλ−I )eT1 φ−D1A−, x = 0,

D0∂xC− − κ
(
eT1 v− − C−

)
=

κ

D0
p−(iλ−I )eT1 φ−D1A−, x = 2L.

(2.42)227

We now derive a solvability condition for the systems (2.39) and (2.41) subject to the228

boundary conditions (2.40) and (2.42), respectively.229

Lemma 2.1 (Solvability condition). Let λ ∈ C be an eigenvalue of the linearized operator230

L(·) defined in (2.6), and let us consider the linear inhomogeneous system231

(2.43) λU − L(U) = G ,232

where G is some generic right-hand side and U ≡ (C(x),u,v)T satisfies the following inho-233

mogeneous boundary conditions:234

(2.44) −D∂xC|x=0 − κ
(
eT1 u− C|x=0

)
= γ, D∂xC|x=2L − κ

(
eT1 v − C|x=2L

)
= ξ.235

Then, a necessary and sufficient condition for (2.43) and (2.44) to have a solution U is that236

(2.45) 〈W?,G〉+ η?(0)γ + η?(2L)ξ = 0 ,237

where W? = (η?(x),φ?,ψ?)T is an eigenfunction of the adjoint linearized operator defined in238

(2.14), satisfying L?(W?) = λW?.239

Proof. The Fredholm alternative theorem guarantees the existence of a solution to (2.43)240

and (2.44) if and only if the inhomogeneous terms are orthogonal to ker(λI − L?). Hence,241

upon taking the inner product with the adjoint eigenfunction W?, we obtain that242

(2.46) 0 = 〈W?,G〉 − 〈W?, λU − L(U)〉 = 〈W?,G〉 − λ〈W?, U〉+ 〈W?,L(U)〉 .243

Next, we integrate by parts using the definition of the inner product and further derive that244

(2.47) 〈W?,L(U)〉 = 〈L?(W?), U〉+ η?(0)γ + η?(2L)ξ = λ〈W?, U〉+ η?(0)γ + η?(2L)ξ .245

The result (2.45) is readily obtained after the substitution of (2.47) back into (2.46).246

As a direct application of Lemma 2.1, we now obtain the desired amplitude equations.247

For the even mode, we have that248

(2.48)
dA+

dτ
= gT1000µ1A+ + g2100|A+|2A+ ,249

9

This manuscript is for review purposes only.



while similarly for the odd mode we have250

(2.49)
dA−
dτ

= gT0010µ1A− + g0021|A−|2A− .251

The coefficients g2100, g0021 ∈ C of the cubic terms in these amplitude equations are given by252

253

g2100 = 〈W?
+, 2B(W+,W1100) + 2B(W+,W2000) + 3C(W+,W+,W+)〉 ,(2.50a)254

g0021 = 〈W?
−, 2B(W−,W0011) + 2B(W−,W0020) + 3C(W−,W−,W−)〉 ,(2.50b)255256

while the vector coefficients g1000, g0010 ∈ C2 satisfy257

g1000 = φ?+
T
Eφ+

(
β0

κ
(1− p+(iλ+

I ))2Ω+
I

(
tanh(Ω+

I L) + Ω+
I L sech2(Ω+

I L)
)
ξ2(2.51a)258

− 2p+(iλ+
I )ξ1 + 2

β0

D0
(p+(iλ+

I )− 1)p+(iλ+
I )ξ2

)
+ 4φ?+

T
B(φ+, [Φ+(0)]−1Eue)α ,259

g0010 = φ?−
T
Eφ−

(
β0

κ
(1− p−(iλ−I ))2Ω−I

(
coth(Ω−I L)− Ω−I L cosech2(Ω−I L)

)
ξ2(2.51b)260

− 2p−(iλ−I )ξ1 + 2
β0

D0
(p−(iλ−I )− 1)p−(iλ−I )ξ2

)
+ 4φ?−

T
B(φ−, [Φ+(0)]−1Eue)α .261

262

Finally, the following lemma summarizes our asymptotic approximations for the weakly non-263

linear oscillations in the vicinity of a Hopf bifurcation point for our PDE-ODE system:264

Lemma 2.2 (In-phase and anti-phase periodic solutions in the weakly nonlinear regime). Let265

g2100, g0021 ∈ C be the cubic term coefficients in (2.48) and (2.49), and assume that their266

real part is nonzero, hence excluding degenerate cases. Then, in the limit ε → 0 with ε =267 √
‖µ− µ0‖ denoting the square-root of the distance from the bifurcation point, a leading-order268

approximate family of in-phase and anti-phase periodic solutions is given by269

(2.52) W±(t) = We + ερe±

[
W±ei(λ

±
I t+θ±(0)) +W±e−i(λ

±
I t+θ±(0))

]
+O

(
ε2
)
,270

for any θ±(0) ∈ R and with ρe± defined by271

(2.53) ρe+ =

√
‖g1000‖
|g2100|

, ρe− =

√
‖g0010‖
|g0021|

.272

Furthermore, let uamp denote the amplitude of the bifurcating limit cycle near the Hopf bifur-273

cation point, for both left and right local species. A leading-order approximation for uamp is274

given by275

(2.54) uamp = max
0≤t<T±p

{‖u±(t)− ue‖} = 2ερe±‖φ±‖+O
(
ε2
)
,276

where the period T±p of small-amplitude oscillations satisfies277

(2.55) T±p =
2π

λ±I
+O

(
ε2
)
.278

Finally, the periodic solution in (2.52) is asymptotically stable when <(g2100), <(g0021) < 0279

(supercritical Hopf) and it is unstable for <(g2100), <(g0021) > 0 (subcritical Hopf).280
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3. Diffusive coupling of two identical Sel’kov oscillators. We first recall the full coupled281

PDE-ODE model, formulated as282

Ct = DCxx − kC , 0 < x < 2L , t > 0 ,

−DCx(0, t) = κ(eT1 u(t)− C(0, t)) , DCx(2L, t) = κ(eT1 v(t)− C(2L, t)) ,

du

dt
= F(u) + β(C(0, t)− eT1 u)e1 ,

dv

dt
= F(v) + β(C(2L, t)− eT1 v)e1 .

(3.1)283

In this section we consider a two-dimensional nonlinear vector function F that corresponds284

to the Sel’kov model, given by285

(3.2) F(u) =

(
Au2 + u2u

2
1 − u1

ε
[
M − (Au2 + u2u

2
1)
]) , u =

(
u1

u2

)
∈ R2 ,286

where A, M and ε are three positive reaction parameters. Upon solving (2.4) for a symmetric287

steady state, we find a unique solution given by288

(3.3) ue =

(
M

1 + βp0
,

M(1 + βp0)2

A(1 + βp0)2 +M2

)T
,289

where p0 is defined in (2.3). We assume that in the absence of coupling (β = 0), each290

isolated compartment is quiescent. This is guaranteed when the Sel’kov parameters satisfy291

the inequality292

(3.4) ε >
M2 −A

(M2 +A)2
.293

As a result, the spatio-temporal oscillations studied below are due to the coupling between294

the two compartments and the 1-D bulk diffusion field.295

To illustrate the theory developed in §2, we choose the parameter values M = 2, A = 0.9296

and ε = 0.15 and numerically solve the eigenvalue relation (2.12) in the parameter plane297

defined by the coupling strength β and the diffusion level D. The resulting stability dia-298

gram is shown in the left panel of Fig. 1, with the black and dashed-blue curves, respectively,299

corresponding to the in-phase and the anti-phase oscillatory modes. In the right panel, we300

numerically evaluate the real part of the cubic normal form coefficients in (2.48) and (2.49).301

Our numerical computations show that <(g2100) and <(g0021) are both negative, which indi-302

cates that supercritical Hopf bifurcations can be expected while crossing either the even or303

the odd Hopf stability boundaries. Hence, we predict the existence of stable weakly nonlinear304

spatio-temporal oscillations when a single oscillatory mode becomes unstable. This prediction305

may not hold when the two distinct instabilities coincide, which for instance occurs when D306

is small.307

We remark that the linear stability phase diagram in the left panel of Fig. 1 was previously308

computed in [7], where the resulting oscillatory dynamics was studied numerically from PDE309

simulations and global bifurcation software. The new weakly nonlinear theory developed310

in this paper establishes that this Hopf bifurcation is supercritical. Finally, in [8] a center311
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Figure 1: Stability diagrams in the plane of parameters (β, D) for the Sel’kov model (3.2).
The parameter regime of oscillatory dynamics is located inside the curves. In the right panel,
we numerically evaluate the real part of the cubic normal form coefficients in (2.48) and (2.49)
over the two stability boundaries. These coefficients are negative, indicating a supercritical
bifurcation. Parameters values are L = k = κ = 1, M = 2, A = 0.9 and ε = 0.15.

manifold analysis predicted the presence of unstable mixed-mode oscillations in the vicinity312

of the codimension-two Hopf bifurcation point at µ0 ≈ (0.508, 0.556).313

Next, we compare our weakly nonlinear theory against numerical bifurcation results ob-314

tained with AUTO (cf. [4]) after spatially discretizing (1.1) with finite differences. In panels315

(a-c) of Fig. 2, we compute the stable branch of in-phase periodic solutions along the hori-316

zontal slice D = 1, as a function of the coupling strength β. Near one of the supercritical317

Hopf bifurcation points, we observe in panel (c) a good agreement between the amplitude of318

the limit cycle computed numerically and as obtained from (2.54) with ε = 0.1. Qualitatively319

similar results are shown in panels (d-f) of Fig. 2 for the vertical slice β = 0.5, which crosses320

the boundary of anti-phase oscillations. Finally in Fig. 3, and for each oscillatory mode, we321

give numerically computed time-courses as evolved directly from the solutions in the weakly322

nonlinear regime (given by (2.52) with ε = 0.1). Such an agreement between the two solutions323

should also hold for random initial conditions given a sufficiently long integration time and324

an adjustment of the temporal phase shift.325

We conclude this section with numerical results illustrating the possible bistability between326

the in-phase and anti-phase oscillations. In Fig. 4, we show in panel (a) the global bifurcation327

diagram on the vertical slice β = 1, where we find an intermediate range of bulk diffusion328

values (0.25 < D < 0.45) where both oscillatory modes are stable. This is confirmed in panels329

(b-c), where numerically computed time-courses are seen to evolve either into in-phase or anti-330

phase spatio-temporal oscillations, depending on the initial conditions. Here, the boundaries331

of this bistability parameter range correspond to bifurcations of invariant tori, at which a332

certain branch of limit cycles switches stability.333

4. Diffusive coupling of two identical chaotic Lorenz oscillators. In this section, we334

consider the diffusive coupling of two identical Lorenz oscillators. We define the nonlinear335
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Figure 2: Stable branches of periodic solutions on the slice D = 1 (panels (a-c)) and on the
slice β = 0.5 (panels (d-f)) of the stability diagram in Fig. 1. Panels (a,d): Global branch
of periodic solutions. Panels (b,e): Oscillatory period. Panels (c,f): Near the first super-
critical Hopf bifurcation along each slice, we compare the numerically computed amplitude
(red curves) and the weakly nonlinear prediction as obtained from (2.54) with ε = 0.1 (black
curves). The 1-D bulk interval is spatially discretized with N = 200 grid points and other
parameter values are the same as in the caption of Fig. 1.

vector function F(u) for the Lorenz oscillator as336

(4.1) F(u) =

 σ(u2 − u1)
−u1u3 + ru1 − u2

u1u2 − bu3

 , u =

u1

u2

u3

 ∈ R3 ,337

where r, σ and b are the usual Lorenz constants. We take the classical values σ = 10 and b = 8
3 ,338

while keeping r, which is proportional to the Rayleigh number, as a bifurcation parameter.339

The general form of the coupled PDE-ODE system remains the same as in Section 1, with340

the exception of the leakage parameter κ, which we here take to be identical to the coupling341

13

This manuscript is for review purposes only.



0 20 40 60 80 100

1.55

1.6

1.65

1.7

0 20 40 60 80 100

1.55

1.6

1.65

1.7

(a) µ = (0.54, 1).

0 20 40 60 80 100

1.65

1.7

1.75

1.8

0 20 40 60 80 100

1.65

1.7

1.75

1.8

(b) µ = (0.5, 0.29).

Figure 3: In-phase (panel (a)) and anti-phase (panel (b)) oscillations near supercritical Hopf
bifurcations, with the red and black-dashed curves respectively corresponding to numerical
simulations and to weakly nonlinear periodic solutions (formula (2.52) with ε = 0.1). The
initial conditions for the simulations are given by the weakly nonlinear periodic solutions. The
same discretization as in Fig. 2 is employed.
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Figure 4: Interaction of in-phase and anti-phase periodic solutions on the vertical slice β = 1.
In panel (a), unstable limit cycles are indicated by open circles while the black dots indicate
stable limit cycle. Inner (outer) loops are in-phase (anti-phase) periodic solution branches.
Panels (b-c): Bistability between in-phase and anti-phase spatio-temporal oscillations, with
the spatial variable on the vertical axis and the temporal variable on the horizontal axis.
Other parameter values are as in the caption of Fig. 1. Once again, N = 200 grid points are
employed to discretize the 1-D bulk diffusion field.

strength β. In this way, the full coupled PDE-ODE model is formulated as342

Ct = DCxx − kC , 0 < x < 2L , t > 0 ,

−DCx(0, t) = β(eT1 u(t)− C(0, t)) , DCx(2L, t) = β(eT1 v(t)− C(2L, t)) ,

du

dt
= F(u) + β(C(0, t)− eT1 u)e1 ,

dv

dt
= F(v) + β(C(2L, t)− eT1 v)e1 ,

(4.2)343
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With this choice of boundary conditions, the outward flux at each endpoint is identical to the344

local feedback within the ODEs.345

We will also investigate in this section the infinite bulk diffusion limit (D = ∞), corre-346

sponding to the well-mixed regime. In this regime, the coupled PDE-ODE system can be347

reduced to the following globally coupled system of ODEs (see Appendix B):348

(4.3)
d

dt

C0

u
v

 =

 β
2Le

T
1 (u+ v)−

(
k + β

L

)
C0

F(u) + β(C0 − eT1 u)e1

F(v) + β(C0 − eT1 v)e1

 ,349

where C0(t) is the spatially uniform bulk variable.350

4.1. Linear stability analysis. Next, we solve for the symmetric steady states of the two351

coupled Lorenz oscillators, for either a finite or an infinite bulk diffusivity. We find two352

non-trivial solutions satisfying the steady state equation (2.4), given by353

(4.4) u±e =

±
√√√√b

(
r − 1− β

σp0

)
1 + β

σp0

,±

√
b

(
r − 1− β

σ
p0

)(
1 +

β

σ
p0

)
, r − 1− β

σ
p0


T

,354

that branch from the origin in a pitchfork bifurcation at the critical value355

(4.5) r = 1 +
β

σ
p0 , with p0 =

{
Dω tanh(ωL)

Dω tanh(ωL)+β , D = O(1)
k

k+β/L , D =∞
.356

By linearity of the diffusive coupling and its Robin boundary conditions, the coupled PDE-357

ODE formulation preserves the reflection symmetry of the Lorenz system and stability results358

will be the same for both non-trivial steady states. Hence, we restrict our analysis to the359

positive non-trivial steady state ue, where the superscript + has been dropped to simplify360

notations. To determine the linear stability of this steady state, we recall from (2.12) that361

the growth rate λ of in-phase and anti-phase perturbations satisfies362

(4.6) det [Je − λI − βp±(λ)E] = 0 ,363

where364

(4.7) p+(λ) =

{
DΩ tanh(ΩL)

DΩ tanh(ΩL)+β , D = O(1)
k+λ

k+λ+β/L , D =∞
, p−(λ) =

{
DΩ coth(ΩL)

DΩ coth(ΩL)+β , D = O(1)

1 , D =∞
.365

In the absence of coupling (β = 0), we recover the usual steady state structure of the Lorenz366

ODE system. In particular, the non-trivial steady states are well-known to lose stability in a367

subcritical Hopf bifurcation when the Rayleigh number reaches the following critical value:368

(4.8) r0 =
σ(σ + b+ 3)

σ − b− 1
≈ 24.74 .369
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Figure 5: For a single Lorenz system with σ = 10 and b = 8/3, the non-trivial steady states
undergo a subcritical Hopf bifurcation at r ≈ 24.74. Unstable branches of periodic solutions
collide with the origin at r ≈ 13.926 in a homoclinic bifurcation, with the period approaching
infinity as shown in the right panel.

The corresponding critical frequency is given by λI =
√
b(σ + r0) ≈ 9.62.370

The succession of bifurcations as the parameter r increases for a single Lorenz ODE is371

graphically summarized in Fig. 5. We recall from [27] that the appearance of transient chaos372

coincides with the homoclinic bifurcation in r ≈ 13.926, while the onset of attracting chaos is373

near r ≈ 24.06, which is slightly before the subcritical Hopf bifurcation point. Hence, there is374

a small window where chaotic oscillations coexist with the stable non-trivial steady states.375

4.2. Weakly nonlinear theory near Hopf stability boundaries. In contrast to section 2,376

where the coupling strength and the bulk diffusivity were employed within the multiple time-377

scale expansion, here we choose the Rayleigh number as the bifurcation parameter and, so we378

set µ ≡ r in (2.22). Because this parameter does not arise in the boundary conditions, this379

particular choice simplifies the computation of the linear terms within the amplitude equations380

(2.48) and (2.49), which are now defined as381

g1000 = 4φ?+
T
B

(
φ+, [Φ+(0)]−1 ∂F

∂r

∣∣∣∣
(r0;ue)

)
+

〈
W?

+,
∂L
∂r

∣∣∣∣
(r0;W+)

〉
,(4.9a)382

g0010 = 4φ?−
T
B

(
φ−, [Φ+(0)]−1 ∂F

∂r

∣∣∣∣
(r0;ue)

)
+

〈
W?
−,

∂L
∂r

∣∣∣∣
(r0;W−)

〉
,(4.9b)383

384

We do not perform a separate detailed weakly nonlinear analysis of the PDE-ODE system in385

the well-mixed regime (4.3). In fact, the formulae derived in Section 2 still apply, provided386

that we take the appropriate limiting expressions of p±(λ) for D =∞.387

In Fig. 6, we investigate the effects of increasing the bulk diffusion level on stability388

boundaries in the parameter plane defined by the coupling strength β and the Rayleigh number389

r. We distinguish between the even (panel (a)) and the odd (panel (b)) modes, with the two390

diagrams showing a significant increase in the critical Rayleigh number for Hopf bifurcations.391

Our linear stability results therefore suggest that a much higher r value would be necessary392

for the emergence of chaotic dynamics when two identical Lorenz oscillators are coupled via a393

1-D bulk diffusion field. This has been confirmed numerically, with simulations showing the394
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stability of the symmetric steady states and giving no evidences of attracting chaos, when395

r = 28 for a sufficiently large coupling strength (details not shown). Hence, in contrast to396

the preceding section, this special type of PDE-ODE coupling can also provide a stabilizing397

mechanism. We also remark that for small D values, the two modes lose stability almost398

simultaneously. This is not surprising, since upon rescaling the spatial variable, a small399

diffusivity is equivalent to having the two oscillators located far from each other.400
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Figure 6: Numerically computed Hopf stability boundaries in the r versus β parameter plane
for D = 1, D = 10 and D = ∞. The computation was performed with the software package
coco [3]. Other parameters are given by L = 1, k = 1, σ = 10, b = 8/3 .

We then investigate the possible switch from a subcritical to a supercritical Hopf bifurca-401

tion as the strength of the coupling increases. This is shown in Fig. 7, where the branching402

behavior near each Hopf stability boundary is deduced from a numerical evaluation of the403

cubic normal form coefficients in (2.48) and (2.49). As seen in this figure, our computations404

show that g2100 and g0021 each have positive real parts, which indicates that the bifurcation405

remains subcritical over the range of β and the values of D considered, for both even and odd406

modes.407

For the finite bulk diffusion regime, in Fig. 8 we show global and local bifurcation diagrams408

as a function of the Rayleigh number on the vertical slice β = 20. Both cases D = 1 (panels409

(a)-(c)) and D = 10 (panels (d)-(f)) are qualitatively similar, but most importantly they410

preserve the key features of the Lorenz ODE system, such as the symmetry of solutions and411
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Figure 7: Real parts of cubic normal form coefficients in equations (2.48) (panel (a)) and
(2.49) (panel (b)) along each Hopf stability boundary shown in Fig. 6. The Hopf bifurcations
remain subcritical.

the destruction of the limit cycles via homoclinic bifurcations when the unstable periodic412

solution branches collide with the origin. However, we do remark a significant increase in413

the size of the bistability parameter regime, suggesting that the minimal Rayleigh number414

required for attracting chaos is much higher. In the weakly nonlinear regime (panels (c) and415

(f)), the amplitude of the unstable limit cycles as predicted by the weakly nonlinear theory416

is favorably compared with numerical bifurcation results. Note also that we only computed417

the branch of periodic solutions emerging from the primary Hopf bifurcation, corresponding418

to the anti-phase mode when D = 1 and to the in-phase mode when D = 10.419

Finally, in Fig. 9 we show numerical results of similar experiments performed in the infinite420

bulk diffusion case, as obtained with AUTO (cf. [4]) using the ODE system (4.3). They are421

consistent and qualitatively similar to their finite diffusion counterparts. Here also, attracting422

chaos likely occurs for significantly higher values of the Rayleigh number. In panel (f), the423

rather poor agreement between numerical and weakly nonlinear results at larger amplitudes424

is likely a result of the Hopf bifurcation being almost degenerate when β becomes large.425

4.3. Synchronous chaos. We now investigate the onset of synchronous chaos as the426

strength of the coupling β and the bulk diffusion rate D increase. For this purpose, we427

fix the Rayleigh number to be such that the symmetric steady states are linearly unstable for428

all values of β and D. Hence, we choose r = 70, which is above the linear stability boundary429

for the even mode in the well-mixed regime (see Fig. 6), where the dynamics is governed by430

(4.3). The stability of synchronous solutions is then determined from a computation of the431

largest Lyapunov exponent of a linearization of (4.2) around the synchronous manifold, where432

only transverse, or odd, perturbations are considered. The main result of this section is a433

phase diagram in the D versus β parameter plane that predicts the stability boundary for434

synchronous chaotic solutions.435

We recall from §1 that synchronous chaos is the sensitivity to initial conditions on an436

invariant synchronous manifold Ws, here defined as the subspace of solutions to (4.2) invariant437
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Figure 8: Finite bulk diffusion. Global and local bifurcation diagrams as a function of
the Rayleigh number r, corresponding to the β = 20 vertical slice through the linear stability
diagrams shown in Fig. 6 for D = 1 (panels (a)-(c)) and D = 10 (panels (d)-(f)). The sudden
increase of the period seen in panels (b) and (e) suggests the presence of homoclinic orbits as
the unstable branch collides with the origin. In panels (c) and (f), we observe a very small
discrepancy between the bifurcation points as predicted by AUTO and as directly computed
using the transcendental equation (4.6). This results from discretization errors. Here, N = 200
grid points were employed to spatially discretize the coupled PDE-ODE system.

under the action of reflection with respect to the midpoint x = L,438

(4.10) Ws =

Ws =

Cs(x, t)us(t)
us(t)

∣∣∣∣∣∣ Cs(x, t) = Cs(2L− x, t)

 .439

Reflection symmetry is readily obtained by imposing a no-flux boundary condition at the440

domain midpoint. In this way, Cs(x, t) and us(t) in (4.10) satisfy the following reduced441
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Figure 9: Well-mixed regime. Global and local bifurcation diagrams for (4.3) as a function
of the Rayleigh number r, corresponding to the vertical slices β = 1 (panels (a)-(c)) and β = 20
(panels (d)-(f)).

system:442

∂Cs
∂t

= D
∂2Cs
∂x2

− kCs , 0 < x < L ; −D∂xCs|x=0 = β(eT1 us − Cs|x=0) , ∂xCs|x=L = 0,

dus
dt

= F(us) + β(Cs|x=0 − eT1 us)e1 .

(4.11)

443

Next, we introduce the following deviations from the synchronous manifold:444

(4.12) η(x, t) = C(x, t)− Cs(x, t), φ(t) = u(t)− us(t) .445

Upon substituting this expression into the coupled PDE-ODE system and after linearizing,446

we obtain that η(x, t) and φ(t) satisfy the non-autonomous linear system447

∂η

∂t
= D

∂2η

∂x2
− kη , 0 < x < L ; −D∂xη|x=0 = β(eT1 φ− η|x=0) , η(L, t) = 0 ,

dφ

dt
= Js(t)φ+ β(η|x=0 − eT1 φ)e1 .

(4.13)448
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Here, Js(t) is the Jacobian matrix of the nonlinear kinetics F(u) evaluated on the synchronous449

manifold. The central feature here is to impose an absorbing boundary condition at the domain450

midpoint in order to only select odd perturbations.451

For the case of infinite bulk diffusion (system (4.3)), the solutions on the synchronous452

manifold are spatially homogeneous. Therefore, we have that C0s ≡ C0s(t) and us(t) satisfy453

(4.14)
dC0s

dt
=
β

L
eT1 us −

(
k +

β

L

)
C0s ,

dus
dt

= F(us) + β(C0s − eT1 us)e1 ,454

and the corresponding non-autonomous linearization reduces to455

(4.15) η ≡ 0 ,
dφ

dt
= Js(t)φ− βEφ .456

We now provide some details on Lyapunov exponents and their computation (see [18] for457

a more in-depth coverage). Let Λmax ≡ Λmax(Ws;β,D) be the largest Lyapunov exponent of458

the non-autonomous linear system (4.13) (or (4.15) if D =∞). If Λmax < 0, then infinitesimal459

perturbations from the synchronous manifold decay exponentially and complete synchroniza-460

tion of both oscillators is expected. Conversely, when Λmax > 0 solutions on the synchronous461

manifold are unstable to any transverse perturbations. In order to obtain a numerical462

approximation to Λmax, we must solve simultaneously the coupled PDE-ODE system (4.11)463

and the odd linearization (4.13), and then compute the following quantity:464

(4.16) Λmax(T ) ≈ 1

T
log
‖W(T )‖
‖W(0)‖

, W(T ) =

(
η(x, T )
φ(T )

)
,465

where T is a sufficiently long integration time, chosen here to be 104. Before implementing the466

time integration scheme a spatial discretization of (4.11) and (4.13) must be performed, and467

for this we use a method of lines approach with N = 100 equidistant grid points. Finally, our468

algorithm to compute Λmax follows Appendix A.3 of [18], where the essential role of regular469

renormalization of tangent vectors, in order to preserve accuracy, is emphasized. Hence, we470

select the renormalization step to be ∆t = 1, often used to compute Lyapunov exponents for471

a single Lorenz system [18].472

Next, we compute the largest Lyapunov exponent in the D versus β parameter plane, with473

the aim of approximating the level curve Λmax = 0. The result is shown in the left panel of474

Fig. 10, where we find that synchronous chaos, corresponding to where Λmax < 0, holds to the475

right of the stability boundary. Not surprisingly, the critical diffusion level is approximately476

inversely proportional to the coupling strength. This implies that a smaller diffusion level is477

necessary for complete synchronization to occur if β gets larger. Moreover, as D tends to478

infinity the stability boundary should approach an asymptote in β ≈ 43, corresponding to479

Λmax = 0 as computed from (4.14) and (4.15). Lastly, examples of numerically computed480

chaotic trajectories when D = 200 are shown in the two panels to the right of Fig. 10 for481

random initial conditions. As expected from the stability diagram, complete synchronization482

fails for β = 50 while it succeeds for β = 70. However, a more appropriate synchrony measure483

would be to compute the Euclidean distance ‖u(t)− v(t)‖. This is done in Fig. 11 and 12.484

We now briefly discuss the relationship between Λmax and the spectrum of Lyapunov485

exponents directly computed from the full system, with no symmetry reduction. To illustrate486
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Figure 10: Far left panel: Synchronous chaos stability boundary in the D versus β parameter
plane. The red-dashed curve indicates Λmax = 0 when D = ∞. Middle left panel: Plot of
Λmax as a function of the coupling strength β for D = 1, 200, 400 and ∞, indicating that
D must be large enough for Λmax to become negative. Middle right panel: Numerically
computed chaotic trajectories, with no synchronization, for β = 50 and D = 200 (indicated
by a square in the far left panel). Far right panel: Synchronous chaotic oscillations for
β = 70 and D = 200 (indicated by a star in the far left panel). Other parameters are
L = 1, k = 1, σ = 10, b = 8/3, r = 70.

this relationship, and since the size of the spectrum equals the dimension of the dynamical487

system, we focus on the infinite D case, for which there are only 7 Lyapunov exponents (3488

for each Lorenz oscillator and 1 for the coupling variable, see equation 4.3). In Fig. 11,489

the largest four exponents (denoted as Λ1, Λ2, Λ3 and Λ4) are shown as a function of the490

coupling strength β, where we conclude that synchronous chaos is characterized by a single491

exponent being positive. In contrast, chaos without synchronization corresponds to having492

two exponents being positive. We also remark that Λ2 exactly corresponds to Λmax, thus493

allowing us to recover the stability threshold β ≈ 43 previously obtained for the infinite bulk494

diffusion case. This threshold is confirmed from numerical simulations in the middle and right495

panels of Fig. 11. Thus, we claim that our computational approach, which is to compute the496

largest exponent of an odd linearization around the synchronous manifold, is more accurate497

and efficient (especially when D is finite) than if we were to consider the full spectrum of498

Lyapunov exponents.499

We conclude this section with Fig. 12, which illustrates a transition to synchronous chaos500

as the diffusivity D increases while the coupling strength β is kept fixed. As the system goes501

further into the synchronous chaos stability regime, faster convergence onto the synchronous502

manifold is observed.503

5. Discussion. In this paper, we have developed a comprehensive weakly nonlinear theory504

for a class of PDE-ODE systems that couple 1-D bulk diffusion with arbitrary nonlinear ki-505

netics at the two endpoints of the interval. From a multi-scale asymptotic expansion, in §2 we506

derived amplitude equations characterizing the weakly nonlinear oscillations of in-phase and507

anti-phase spatio-temporal oscillations. In §3, our analysis was shown to compare favorably508

with numerical bifurcation results for a coupled PDE-ODE model with Sel’kov kinetics. Our509

second example is given in §4, where we considered the diffusive coupling of two Lorenz oscil-510

lators. There we showed how this coupling mechanism can provide a stabilizing mechanism511

and suppress chaotic oscillations at parameter values that are well-known to yield chaos in512
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Figure 11: Transition to synchronous chaos in the infinite D case. Panel (a): Largest
four Lyapunov exponents numerically computed from the ODE (4.3) and its linearization as a
function of β. We observe that Λ2 agrees with Λmax, the largest Lyapunov exponent computed
when considering transverse perturbations to the synchronous manifold. At least one positive
Λj indicates chaos, while a negative Λmax indicates the synchronous manifold is attracting.
Panels (b)-(c): Two simulation results, with random initial conditions. Synchronization is
obtained in panel (c) for β = 45, where we expect the distance ‖u(t)− v(t)‖ to decay to zero
as time increases. Other parameters are the same as in Fig. 10.
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Figure 12: Onset of synchronous chaos in the finite bulk diffusion regime on the vertical slice
β = 100, with other parameters the same as in Fig. 10. Each plot gives the Euclidean distance
between the two oscillators as a function of time, starting from random initial conditions.

the isolated Lorenz ODE. We also considered the well-mixed regime, defined as the infinite513

bulk diffusion limit, for which the coupled PDE-ODE system is replaced by two globally cou-514

pled ODE systems. Finally, in §4.3 we predicted the transition to synchronous chaos as the515

coupling strength and the diffusivity increase, from a numerical computation of the largest516

Lyapunov exponent of an appropriate non-autonomous linearization around the synchronous517

manifold, where only odd (or transverse) perturbations are considered.518
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In the formulation of our PDE-ODE model we have assumed a scalar coupling, so that519

only one variable from each of the two compartments is coupled with the bulk diffusion field.520

Qualitatively different dynamics is to be expected for other coupling schemes than the one521

considered here, that are obtained by replacing the basis vector e1 with ej , j 6= 1 in equations522

(1.2) and (1.3). Our choice for the Sel’kov kinetics was partly motivated by earlier studies523

(cf. [7, 8]) and by our own numerical experiments which concluded that there are no oscillatory524

dynamics for a scalar coupling via the inhibitor species u2. Different coupling schemes were525

also explored for the Lorenz example. Although we have observed a similar stabilizing effect526

for each of the three possible coupling schemes, with a larger Rayleigh number necessary for527

the system to undergo a Hopf bifurcation, results from non-exhaustive numerical simulations528

suggested that synchronous chaos is possible only for the specific coupling considered here in529

§4.530

Finally, results from §3 and §4 shed light on some of the key differences between the finite531

and infinite bulk diffusion regimes. From a modeling point of view, one effect of the finite532

spatial diffusion of a signaling chemical consists in introducing time delays into the spatially533

segregated system, which are well-known to cause oscillatory dynamics. This mechanism is at534

play here for the example with Sel’kov kinetics, as we observe from the stability diagram in535

Fig. 1 that no oscillations are possible as the bulk diffusivity gets too large, hence effectively536

suppressing time delays between the two localized ODE compartments. The role of diffusion537

induced delays on oscillations is discussed in a number of references, including [20] and §5 of538

[8]. However, for our second example based on the Lorenz model, both diffusion regimes yield539

qualitatively similar dynamics. Not surprisingly, we found the minimal coupling strength for540

synchronous chaos to be smaller in the infinite versus finite diffusion cases.541

Among the open problems related to bulk coupled PDE-ODE systems that warrant further542

investigation, it would be interesting to use global bifurcation software to numerically path-543

follow the solution branch originating from the torus bifurcation points detected in §3 for the544

Sel’kov model (see Fig. 4). This would allow us to determine whether this model can provide545

a bifurcation cascade leading to spatio-temporal chaos.546

It would also be interesting to extend our weakly nonlinear theory to analyze periodic ring547

spatio-temporal patterns in systems composed of several oscillators spatially segregated on a 1-548

D interval with periodic boundary conditions. The derivation of this novel class of models was549

given in [7], where it was also shown how Floquet theory can be employed to study the linear550

stability of symmetric steady states. Moreover, it would be interesting to perform a weakly551

nonlinear analysis for the quasi-steady state version of this modeling paradigm, whereby each552

ODE compartment acts as a localized source term within the diffusion equation. A model of553

this type is given in [20], as well as in [16] and [17] with applications to the study of spatial554

effects in gene regulatory systems. A weakly nonlinear analysis for a specific such system was555

given in [2].556
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Appendix A. Exact solution of the inhomogeneous linear systems arising at second561

order. In this appendix we briefly outline the computation of the coefficients Wjklm atO
(
ε2
)

562

of the multi-scale expansion. First, we have that W0000, which arises from the perturbation of563

the bifurcation parameters within the symmetric steady state, satisfies a linear inhomogeneous564

equation,565

(A.1) L(µ0;W0000) +

 ω2CeD1

−p0Eueβ1

−p0Eueβ1

 = 0 ,566

subject to inhomogeneous boundary conditions,567

D0∂xC0000 + κ
(
eT1 u0000 − C0000

)
=
κp0

D0
eT1 ueD1 , x = 0 ,

D0∂xC0000 − κ
(
eT1 v0000 − C0000

)
= −κp0

D0
eT1 ueD1 , x = 2L .

(A.2)568

It is readily seen that the solution must be even and that u0000 = v0000. As a result, a suitable569

ansatz to C0000(x) is given by570

(A.3) C0000(x) = K1
cosh(ω(L− x)))

cosh(ωL)
+K2(x− L)

sinh(ω(L− x))

cosh(ωL)
.571

By inserting (A.3) within (A.1) and (A.2), we can readily establish that the unknown constants572

are given by573

K1 = (1− p0)eT1 u0000 +
κω (tanh(ωL)(κL−D0) + κD0ω)

2D0 (D0ω tanh(ωL) + κ)2 eT1 ueD1,(A.4)574

K2 =
κω

2D0 (D0ω tanh(ωL) + κ)
eT1 ueD1.(A.5)575

576

Next, the evaluation of C0000 at the endpoints leads to577

(A.6) C0000|x=0,2L = (1− p0)eT1 u0000 + eT1 ueδD1, δ =
κω2L sech2(ωL)− κω tanh(ωL)

2(D0ω tanh(ωL) + κ)2
.578

Finally, the substitution of (A.6) within (A.1) leads to a n× n linear system for u0000 given579

by,580

(A.7) [Φ+(0)]u0000 = αTµ1Eue ⇒ u0000 = αTµ1 [Φ+(0)]−1Eue.581

Here, α is a two-dimensional vector defined by582

(A.8) α = p0ξ1 − β0δξ2, ξ1 =

(
1
0

)
, ξ1 =

(
0
1

)
.583

The linear inhomogeneous systems satisfied by the other Wjklm are listed as584

L (µ0;W2000)− 2iλ+
I W2000 = −B(W+,W+) , L (µ0;W0020)− 2iλ−I W0020 = −B(W−,W−) ,585

L (µ0;W0200) + 2iλ+
I W2000 = −B(W+,W+) , L (µ0;W0002) + 2iλ−I W0002 = −B(W−,W−) ,586

L (µ0;W1100) = −2B(W+,W+) , L (µ0;W0011) = −2B(W−,W−) ,587588
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from which it follows that W0200 = W2000 and W0002 = W0020. Explicit solutions for W2000,589

W1100, W0020 and W0011 are given by590

W2000 =

(1− p+(2iλ+
I ))

cosh(Ω+
2I(L−x))

cosh(Ω+
2IL)

eT1 u2000

u2000

u2000

 , u2000 = −[Φ+(2iλ+
I )]−1B(φ+,φ+),591

W1100 =

(1− p0) cosh(ω(L−x))
cosh(ωL) eT1 u1100

u1100

u1100

 , u1100 = −2[Φ+(0)]−1B(φ+,φ+),592

W0020 =

(1− p+(2iλ−I ))
cosh(Ω−2I(L−x))

cosh(Ω−2IL)
eT1 u0020

u0020

u0020

 , u0020 = −[Φ+(2iλ−I )]−1B(φ−,φ−),593

W0011 =

(1− p0) cosh(ω(L−x))
cosh(ωL) eT1 u1100

u0011

u0011

 , u0011 = −2[Φ+(0)]−1B(φ−,φ−),594

595

where Ω±2I is defined by596

(A.9) Ω±2I =

√
k + 2iλ±I

D
.597

598

Appendix B. Derivation of well-mixed ODE system.599

In this appendix, we derive the ODE system (4.3) governing the dynamics in the D =∞600

case. For this purpose, we consider the intermediate case of a large (but finite) diffusivity601

D � 1 and expand the bulk variable C(x, t) in a regular asymptotic power series of 1
D � 1,602

(B.1) C = C0 +
1

D
C1 + . . . ,603

and upon inserting within604

1

D
Ct = Cxx −

k

D
C , 0 < x < 2L , t > 0 ,

− Cx(0, t) =
β

D
(eT1 u(t)− C(0, t)) , Cx(2L, t) =

β

D
(eT1 v(t)− C(2L, t)) ,

(B.2)605

we find, at leading-order, that C0 satisfies C0xx = 0 subject to C0x = 0 in x = 0, 2L. Hence,606

we effectively have that C0 ≡ C0(t) is spatially uniform. At the next order, we have607

(B.3) C1xx =
dC0

dt
+ kC0 ,608

and upon integrating from x = 0 to x = 2L and using the boundary conditions609

(B.4) − C1x|x=0 = β(eT1 u− C0) , C1x|x=2L = β(eT1 v − C0) ,610
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we obtain the following ODE for C0(t):611

(B.5)
dC0

dt
=

β

2L
eT1 (u+ v)−

(
k +

β

L

)
C0 .612

613
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[12] K. Josić and C. E. Wayne, Dynamics of a ring of diffusively coupled Lorenz oscillators, J. Statist.639
Phys., 98 (2000).640

[13] S. Lawley and P. Bressloff, Dynamically active compartments coupled by a stochastically gated gap641
junction, J. Nonlinear Sci., 27 (2017), pp. 1487–1512.642

[14] C. Levy and D. Iron, Dynamics and stability of a three-dimensional model of cell signal transduction,643
Journal of Mathematical Biology, 67 (2014), pp. 1691–1728.644

[15] C. Levy and D. Iron, Dynamics and stability of a three-dimensional model of cell signal transduction645
with delay, Nonlinearity, 28 (2015), pp. 2515–2553.646

[16] C. K. Macnamara and M. Chaplain, Diffusion driven oscillations in gene regulatory networks, Journal647
of Theoretical Biology, 407 (2016), pp. 51–70.648

[17] C. K. Macnamara and M. Chaplain, Spatio-temporal models of synthetic genetic oscillators, Mathe-649
matical Biosciences and Engineering, 14 (2017), pp. 249–262.650

[18] J. D. Meiss, Differential dynamical systems, vol. 14 of Mathematical Modeling and Computation, Society651
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2007.652

[19] J. Müller, C. Kuttler, B. A. Hense, M. Rothballer, and A. Hartmann, Cell-cell communication653
by quorum sensing and dimension-reduction, J. Math. Biol., 53 (2006), pp. 672–702.654

[20] F. Naqib, T. Quail, L. Musa, H. Vulpe, J. Nadeau, J. Lei, and L. Glass, Tunable oscillations and655
chaotic dynamics in systems with localized synthesis, Phys. Rev. E, 85 (2012), p. 046210.656
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