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Abstract

On a two-dimensional circular domain, we analyze the formation of spatio-temporal patterns
for a class of coupled bulk-surface reaction-diffusion models for which a passive diffusion process
occurring in the interior bulk domain is linearly coupled to a nonlinear reaction-diffusion process
on the domain boundary. For this coupled PDE system we construct a radially symmetric steady-
state solution and from a linearized stability analysis formulate criteria for which this base-state
can undergo either a Hopf bifurcation, a symmetry-breaking pitchfork (or Turing) bifurcation, or
a codimension-two pitchfork-Hopf bifurcation. For each of these three types of bifurcations, a
multiple-time scale asymptotic analysis is used to derive normal form amplitude equations charac-
terizing the local branching behavior of spatio-temporal patterns in the weakly nonlinear regime.
The novelty of this weakly nonlinear analysis is that the underlying spectral problem is nonstandard
since both the differential operator and the boundary conditions involve the eigenvalue parameter.
This requires care in formulating the spectral adjoint operator and the solvability condition, which
are central to implementing the multiple time-scale expansion. The normal form theory is illus-
trated for both Schnakenberg and Brusselator reaction kinetics, and the weakly nonlinear results
are favorably compared with numerical bifurcation results and results from time-dependent PDE
simulations of the coupled bulk-surface system. Overall, the results show the existence of either
subcritical or supercritical Hopf and symmetry-breaking bifurcations, and mixed-mode oscillations
characteristic of codimension-two bifurcations. Finally, the formation of global structures such as
large amplitude rotating waves is briefly explored through PDE numerical simulations.
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1 Introduction

If a passive linear diffusion process in a bounded domain is coupled to a nonlinear reaction-diffusion
process on the domain boundary, spatio-temporal patterns can occur that otherwise would not be
present without this bulk-surface coupling. Such a pattern formation mechanism is relevant in a variety
of applications in which boundaries play an active role in the overall dynamics. For instance, in
some biological cell signalling contexts certain proteins cycle from an active cellular membrane to
a cytoplasmic bulk via adsorption and desorption processes. Applications of this type include the
formation of surface-bound Turing patterns through symmetry-breaking instabilities (cf. [19], [23], [24])
as well as the onset of Min-protein pole-to-pole oscillations prior to cell division in E. Coli (cf. [15],
[16]). In many prior studies (eg. [23], [24], [19]), the coupled bulk-surface systems have mainly been
analyzed through either a linear stability analysis, which typically involves finding the conditions for
a Turing-type diffusion-driven instability, or from time-dependent PDE numerical simulations (cf. [21],
[20]).

In a simplified geometry consisting of a 1-D spatial bulk domain, these models become coupled
PDE-ODE models, and were studied in [8], [10], [9] and [12]. There, dynamically active units, modeled
by nonlinear ODEs, are spatially segregated and are coupled through a linear bulk diffusion field. This
setup serves as a modeling paradigm for the study of synchrony under diffusion sensing. In contrast to
the classical types of PDE-ODE models where the coupling occurs in all of space (cf. [17]), the type of
coupling considered here, and in [8]–[12], is restricted to the boundaries, and is expressed in terms of
Robin-type boundary conditions. In [8]–[12], this class of 1-D coupled PDE-ODE systems was analyzed
through a combination of linear stability analysis, direct numerical PDE simulations, and numerical
bifurcation software. The numerical bifurcation studies have allowed for the computation of global
branches of synchronous and asynchronous periodic solutions in terms of bulk diffusion coefficients and
coupling rates. As an extension of the linear stability theory, in [10] a weakly nonlinear analysis was
developed to study the local branching behavior of synchronous oscillations for the idealized case of a
single bulk species diffusing between two identical membranes, each consisting of a single active species.

To extend this previous work, our goal in this paper is to provide a comprehensive weakly nonlinear,
or normal form, analysis, to study the various bifurcations associated with a class of coupled bulk-surface
reaction-diffusion systems for which the bulk domain Ω consists of a disk of radius R,

Ω = {x ∈ R2 | ‖x‖ < R} . (1.1)

To formulate the coupled bulk-surface reaction-diffusion model we first suppose that two bulk species
U, V undergo passive diffusion with linear decay in Ω. This leads to PDEs in the bulk region, given by

∂U

∂t
= Du∆U − σuU ,

∂V

∂t
= Dv∆V − σvV , x ∈ Ω , t > 0 . (1.2)

Here Du, Dv are the constant bulk diffusion coefficients, and σu, σv are the constant bulk decay rates.
Since Ω is the disk, the Laplacian ∆ in (1.2) is conveniently written in terms of polar coordinates (r, θ)
as ∆ = ∂rr + r−1∂r + r−2∂θθ. Next, we suppose that the flux normal to the boundary is proportional
to the difference between the surface-bound species densities, denoted by u, v, and the bulk species
densities evaluated on the boundary. This yields linear Robin-type boundary conditions for (1.2):

Du

∂U

∂r

∣
∣
∣
∣
r=R

= Ku (u− U |r=R) , Dv

∂V

∂r

∣
∣
∣
∣
r=R

= Kv (v − V |r=R) , (1.3)
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where Ku, Kv are coupling rate constants, also known as Langmuir rate constants. Finally, on the
domain boundary the dynamics of the two surface-bound species are assumed to be governed by a
system of reaction-diffusion equations with periodic boundary conditions in the azimuthal coordinate:

∂u

∂t
=
du
R2

∂2u

∂θ2
−Ku (u− U |r=R) + f(u, v) ,

∂v

∂t
=
dv
R2

∂2v

∂θ2
−Kv (v − V |r=R) + g(u, v) . (1.4)

Here f(u, v) and g(u, v) represent given reaction kinetics, while du, dv are surface diffusion coefficients.
In the absence of surface diffusion, this model reduces to the coupled PDE-ODE system studied through
linear stability analysis in [19] for a slightly different boundary condition and with Gierer-Meinhardt
kinetics on the circular membrane. As a remark, since a biologically-realistic membrane possesses some
width, the coupled bulk-surface model, defined by (1.2)–(1.4), provides only an approximation to this
more complicated setting in the case where the width of the membrane is small in comparison with the
characteristic length scale of the bulk domain.

It is rather straightforward to derive conditions for the loss of stability of some steady-state radially
symmetric solution of the coupled bulk-surface system, which we shall refer to here as the base-state.
Determining these linear stability thresholds involves linearizing the coupled system around the base-
state and deriving a a transcendental equation for the growth rate of each possible spatial perturbation.
Naturally, the only allowed perturbations of the radially symmetric base-state will consist of linear
combinations of the circular harmonic functions for each given angular mode n.

Our primary goal herein is to characterize the dynamics of the coupled system in the weakly nonlinear
regime near either of three distinct bifurcations of the linearization; a Hopf bifurcation, for which
the spatial mode is trivial with a nonzero temporal frequency, a pitchfork bifurcation, for which the
spatial mode is nontrivial with a zero temporal frequency, and finally a codimension-two pitchfork-
Hopf bifurcation, which occurs when the previous two bifurcations coincide. By deriving amplitude,
or rather, normal form equations, we will characterize the branching behavior in the vicinity of these
three bifurcations. A key technical issue in our analysis is that the spectral problem, which arises
after linearizing our coupled bulk-surface system, is atypical since both the differential operator and
the boundary conditions involve the eigenvalue parameter. Hence, the appropriate definition of an
extended linearized operator, and an associated inner-product, with which the corresponding adjoint
linearized problem can be established, is at the core of performing a weakly nonlinear analysis using
a multiple time-scales expansion method. Our approach here to deal with this technical issue relies
on the framework developed in [7] for treating non self-adjoint spectral problems with eigenvalue-
dependent boundary conditions. The use of weakly nonlinear analysis to study pattern formation in
reaction-diffusion systems, convection processes, and fluid flows is well-established and ubiquitous in
the literature (cf. [3], [27]). We emphasize that the novelty of our weakly nonlinear analysis lies in the
systematic treatment of three distinct instabilities for arbitrary reaction kinetics on the surface, with
the underlying spectral problem being eigenvalue-dependent in the boundary conditions.

In our formulation, we will suppose that when uncoupled from the bulk domain, the reaction-
diffusion system on the surface (1.4) possesses a unique spatially uniform steady state, which is linearly
stable with respect to any spatial perturbation. Consequently, we will restrict the parameter space to
cases where du = dv in order to avoid the short-range activation combined with long-range inhibition
paradigm, typical of Turing instabilities. Rather than using the surface diffusion coefficients as bifur-
cation parameters, we will vary the bulk diffusion coefficients and the coupling rates, so that the loss of
stability of the base-state results from the diffusive coupling with the bulk domain. In terms of these
bifurcation parameters that are associated with the boundary conditions (1.3), in §2 we will show that
multi-scale expansion methods, as opposed to center manifold reductions, are particularly convenient
for deriving amplitude equations characterizing the local branching behavior.

Although arbitrary reaction kinetics are employed in our analysis, we will apply our weakly nonlinear
theory to either the well-known Schnakenberg or Brusselator kinetics. In nondimensional forms, the
Schnakenberg kinetics are

f(u, v) = a− u+ u2v , g(u, v) = b− u2v ; a, b > 0 , b− a < (b+ a)3 , (1.5)

while the Brusselator kinetics are given by

f(u, v) = a− (b+ 1)u+ u2v , g(u, v) = bu− u2v ; a > 0 , 0 < b < a2 + 1 . (1.6)
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To validate our weakly nonlinear theory, a combination of numerical bifurcation analysis, for the compu-
tation of global bifurcation branches, and full time-dependent PDE numerical simulations are employed.
Classical values for the parameters a and b are used. For the Schnakenberg kinetics, these are a = 0.1
and b = 0.9 (cf. [21]). For the Brusselator kinetics, a = 3 will be taken, while different values of b, all
with b < a2 + 1, will be considered. For these parameters values, the uncoupled bulk-surface system
without surface diffusion admits a unique stable steady state and no patterns appear. In this way, the
patterns observed arise from the coupling between the bulk and surface. We remark that a symmetry-
breaking bifurcation mechanism for particular forms of the nonlinearities has also been explored in [23]
and [21] through full PDE simulations.

The outline of this paper is as follows. In §2, for arbitrary reaction kinetics, we derive amplitude
equations (normal forms) near either a Hopf, a pitchfork, or a pitchfork-Hopf, bifurcation point of the
linearization of the base-state. In §3, we analyze these normal forms and interpret their equilibria in
terms of limit cycles or Turing-type patterns of the coupled original system. Subsections 3.1 and 3.2,
respectively, treat separately the codimension-one and the codimension-two cases. Numerical validation
of the weakly nonlinear theory with the classical Schnakenberg and Brusselator reaction kinetics is
provided in §4. §5 is distinct from the previous sections in that, through PDE simulations, it gives
a glimpse into novel nonlinear patterns that can occur for the coupled system away from bifurcation
points. In particular, the dynamics and formation of rotating waves is explored for a coupled bulk-
surface reaction-diffusion system with a slightly more general boundary condition than (1.3). Finally,
in §6, we briefly summarize the paper and discuss a few open problems that warrant further study.

2 Weakly nonlinear theory

In this section, the method of multiple time-scales is used to derive amplitude equations describing the
branching behavior near three distinct bifurcations:

• Trivial mode n = 0 undergoes a Hopf bifurcation, at which the bifurcating solution is invariant
under rotation and reflection symmetries.

• Nontrivial mode {n,−n} ∈ Z\{0} loses stability through a pitchfork bifurcation, at which the
bifurcating solutions are equivariant under rotation and reflection symmetries.

• Pitchfork-Hopf (Turing-Hopf), when the previous two bifurcations occur simultaneously.

From the linear stability analysis, curves of codimension-one bifurcation points and their codimension-
two intersection have been computed in the plane of parameters (Kv, Dv) (see Fig. 1 and Fig. 2). This
motivates introducing a two-parameter bifurcation analysis.

2.1 Preliminaries

Before formulating the multiple time-scale asymptotic expansion, the coupled bulk-surface system (1.1)–
(1.4) is rewritten as an evolution equation, which then facilitates below the introduction of an extended
linear operator and its adjoint:

Ẇ = F (W ) =







Du∆U − σuU
Dv∆V − σvV

du
R2uθθ −Ku (u− U) + f(u, v)
dv
R2vθθ −Kv (v − V ) + g(u, v)






. (2.1)

Here F is a nonlinear functional acting on W , defined as a space of vector functions whose components
satisfy the appropriate Langmuir boundary conditions:

W =







W =







U(r, θ)
V (r, θ)
u(θ)
v(θ)







∣
∣
∣
∣
∣
∣
∣
∣

Du∂rU |r=R = Ku (u− U |r=R)
Dv∂rV |r=R = Kv (v − V |r=R)







. (2.2)
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The radially symmetric steady-state (i.e. the base-state) for (2.1) is given by

We =






A0(0)
I0(ωur)
I0(ωuR)

eT1ue

B0(0)
I0(ωvr)
I0(ωvR)

eT2ue

ue




 ,

{

ωu =
√

σu

Du
, A0(0) =

KuI0(ωuR)
DuωuI

′

0
(ωuR)+KuI0(ωuR)

ωv =
√

σv

Dv
, B0(0) =

KvI0(ωvR)
DvωvI

′

0
(ωvR)+KvI0(ωvR)

, (2.3)

where ue = (ue, ve)
T is the surface steady-state vector satisfying the nonlinear algebraic equation

{

Kup0(0)ue − f(ue, ve) = 0

Kvq0(0)ve − g(ue, ve) = 0
,

{

p0(0) =
DuωuI

′

0
(ωuR)

DuωuI
′

0
(ωuR)+KuI0(ωuR)

q0(0) =
DvωvI

′

0
(ωvR)

DvωvI
′

0
(ωvR)+KvI0(ωvR)

. (2.4)

Here In(z) for n ∈ Z are the usual modified Bessel functions. Next, by expanding the nonlinear
functional about the base-state, we get

Ẇ = F (We)
︸ ︷︷ ︸

=0

+L(W −We) + B(W −We,W −We) + C(W −We,W −We,W −We) + . . . , (2.5)

where L is the linearized operator defined by

L(W ) =







Du∆U − σuU
Dv∆V − σvV

du
R2uθθ −Ku (u− U) + f e

uu+ f e
vv

dv
R2vθθ −Kv (v − V ) + geuu+ gevv






, (2.6)

while B and C are, respectively, bilinear and trilinear forms. For each n ∈ Z, the eigenfunctions for the
linearized operator are given by

Wn =






An(λ)
In(Ωur)
In(ΩuR)

eT1φn

Bn(λ)
In(Ωvr)
In(ΩvR)

eT2φn

φn




 einθ ,







Ωu =
√

λ+σu

Du
, An(λ) =

KuIn(ΩuR)
DuΩuI′n(ΩuR)+KuIn(ΩuR)

Ωv =
√

λ+σv

Dv
, Bn(λ) =

KvIn(ΩvR)
DvΩvI′n(ΩvR)+KvIn(ΩvR)

. (2.7)

The eigenvector φn = (φn, ψn)
T satisfies a homogeneous linear system

[Φn(λ)]φn =

[

Je − λI −

(

Kupn(λ) +
n2du
R2

)

E1 −

(

Kvqn(λ) +
n2dv
R2

)

E2

]

φn = 0 , (2.8)

with Je, E1, E2, pn(λ), and qn(λ) defined as

Je =

(
f e
u f e

v

geu gev

)

, Ei = eie
T
i ∈ R2×2 ,

{

pn(λ) =
DuΩuI

′

n(ΩuR)
DuΩuI′n(ΩuR)+KuIn(ΩuR)

= 1− An(λ)

qn(λ) =
DvΩvI

′

n(ΩvR)
DvΩvI′n(ΩvR)+KvIn(ΩvR)

= 1− Bn(λ)
. (2.9)

Here, the vectors e1 and e2 form the standard orthonormal basis in the phase space defined by the
species u and v. A nontrivial solution to system (2.8) will exist when the following transcendental
equation is satisfied:

Fn(λ) = det [Φn(λ)] = 0 . (2.10)

In the multi-scale analysis below, an application of the solvability condition requires the formulation
of an adjoint linear operator L⋆, defined by

L⋆(W ⋆) =







Du∆U
⋆ − σuU

⋆

Dv∆V
⋆ − σvV

⋆

du
R2u

⋆
θθ −Ku (u

⋆ − U⋆) + f e
uu

⋆ + geuv
⋆

dv
R2v

⋆
θθ −Kv (v

⋆ − V ⋆) + f e
vu

⋆ + gevv
⋆






. (2.11)
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For the special case of Langmuir boundary conditions, the dual space satisfies W
⋆ = W , which

means that both the boundary conditions and their adjoint are identical. Furthermore, the adjoint
eigenfunctions yield

W⋆
n =






An(λ)
In(Ωur)

In(ΩuR)
eT1φ

⋆
n

Bn(λ)
In(Ωvr)

In(ΩvR)
eT2φ

⋆
n

φ⋆
n




 einθ . (2.12)

It is then readily verified that Wn and W⋆
n form an orthogonal set of eigenfunctions, satisfying

〈W⋆
m,Wn〉 = 0 , if m 6= n , (2.13)

where the inner-product in (2.13) is defined by

〈W ⋆,W 〉 =

∫ 2π

0

∫ R

0

[
U⋆U + V ⋆V

]
rdrdθ +

∫ 2π

0

[u⋆u+ v⋆v]Rdθ . (2.14)

The set of eigenfunctions can be normalized so that 〈W⋆
n,Wn〉 = 1 for all n. Finally, using the previous

definitions of linear operators, eigenfunctions and inner-product, one may easily verify that the following
properties hold:

LWn = λWn , L⋆W⋆
n = λW⋆

n , 〈W ⋆,LW 〉 = 〈L⋆W ⋆,W 〉 . (2.15)

Lastly, we define more precisely the bilinear and trilinear forms that arise in the expansion (2.5).
They are defined by

B(Wj ,Wk) =





0
0

B (uj,uk)



 , C(Wj ,Wk,Wl) =





0
0

C (uj,uk,ul)



 . (2.16)

The first two components of B and C vanish since the diffusion process occurring in the bulk is linear.
The reduced bilinear and trilinear forms B and C are defined by

B(uj,uk) =
1

2
(I ⊗ uT

k )Heuj , C(uj,uk,ul) =
1

6
(I ⊗ uT

l )Te(uj ⊗ uk) ,

where ⊗ is the Kronecker product and He, Te are matrices involving the second and third order partial
derivatives

He =







f e
uu f e

uv

f e
uv f e

vv

geuu geuv
geuv gevv






, Te =







f e
uuu f e

uuv f e
uuv f e

uvv

f e
uuv f e

uvv f e
uvv f e

vvv

geuuu geuuv geuuv geuvv
geuuv geuvv geuvv gevvv






.

2.2 Multi-scale expansion

Let µ = (Kv, Dv)
T denote the vector of bifurcation parameters. As usual, a slow time-scale τ = ε2t,

with ε≪ 1, is introduced. Using the same scaling, the parameters are slightly perturbed,

µ = µ0 + ε2µ1, ‖µ1‖ = 1. (2.17)

Here µ0 is the bifurcation point and µ1 is a unit vector indicating the direction of the bifurcation. The
full system is then expanded in a regular asymptotic power series around the base-state as

W = We + εW1 + ε2W2 + ε3W3 +O
(
ε4
)
, (2.18)

6



where the subscript here refers to the expansion order rather than the mode of the eigenfunction. Next,
by inserting (2.17) and (2.18) into (2.5), and collecting powers of ε we obtain that

ε∂tW1 + ε2∂tW2 + ε3(∂tW3 + ∂τW1) = εLW1 + ε2






LW2 + B(W1,W1) +







0
ω2
vVe(r)e

T
2 µ1

0
−q0(0)vee

T
1 µ1













+ ε3






LW3 + 2B(W1,W2) + C(W1,W1,W1) +







0
∂t+σv

Dv0
V1e

T
2 µ1

0
−(v1 − V1|r=R)e

T
1 µ1













+O
(
ε4
)
,

(2.19)

where the vectors e1 and e2 are now the standard orthonormal basis in the parameter space defined by
Kv and Dv. The perturbed boundary conditions satisfy

3∑

j=1

εj (Du∂rUj +KuUj −Kuuj) +O
(
ε4
)
= 0 , r = R .

3∑

j=1

εj (Dv0∂rVj +Kv0Vj −Kv0vj)−
(
ε2q0(0)ve + ε3(v1 − V1)

)
βTµ1 +O

(
ε4
)
= 0 , r = R ,

(2.20)

where the vector β is defined by

β =

(
1

−Kv0/Dv0

)

. (2.21)

2.3 Weakly nonlinear analysis of patterns

The leading order solution corresponds to the base-state defined by (2.3) evaluated at the bifurcation
point µ = µ0. Next, by collecting terms at O (ε) we get the linearized problem

∂tW1 = L(µ0;W1) ,

{

Du∂rU1 = Ku(u1 − U1)

Dv0∂rV1 = Kv0(v1 − V1)
, r = R . (2.22)

Here the notation L(µ0; ·) indicates that the linear operator is evaluated at the bifurcation point. The
solution of the linearized system depends on the type of bifurcation and the spatial mode considered.
We will consider the following three cases:

• Hopf bifurcation. The critical eigenvalues and spatial mode are respectively λ = ±iλI and
n = 0, which yields

W1 = W0A0(τ)e
iλI t +W0A0(τ)e

−iλI t , (2.23)

where the eigenfunction W0 is evaluated at µ0 and λI = iλI .

• Pitchfork bifurcation. The critical eigenvalue is λ = 0 and because of the reflection symmetry,
if n 6= 0 is a critical spatial mode, then so is −n. Moreover, it is known that the center manifold
preserves the symmetries of the system. Therefore, the center eigenspace and manifold are also
two-dimensional, and the solution in the linear regime has the form

W1 = WnAn(τ) +W−nAn(τ) , (2.24)

where W±n are evaluated at µ0 and λ = 0.

• Pitchfork-Hopf bifurcation. The critical spatial modes are {0, n,−n}, with n 6= 0, and the
bifurcating eigenvalues of the linearized problem are {±iλI , 0}. This yields a four-dimensional
center eigenspace of the form

W1 = W0A0(τ)e
iλI t +W0A0(τ)e

−iλI t +WnAn(τ) +W−nAn(τ) . (2.25)

Again, all the eigenfunctions above are evaluated at the bifurcation point and the critical set of
eigenvalues.
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The goal of our analysis is to derive evolution equations for the complex amplitudes A0 and An, where
the subscript here indicates which spatial mode has exchanged stability through the bifurcation.

By collecting terms of order O(ǫ2) in (2.19), we obtain

∂tW2 = L(µ0;W2) + B(W1,W1) +







0
ω2
vVe(r)e

T
2 µ1

0
−q0(0)vee

T
1 µ1






, (2.26)

together with the appropriate boundary conditions, as obtained from (2.20):
{

Du∂rU2 = Ku(u2 − U2)

Dv0∂rV2 = Kv0(v2 − V2) + q0(0)veβ
Tµ1

, r = R . (2.27)

The evaluation of the quadratic terms B(W1,W1) will depend on whether we consider the bifurcations
(2.23), (2.24) or (2.25). Below, the nontrivial part of the bilinear form is stated explicitly for each case.

• Hopf bifurcation:

B(u1,u1) = A2
0B(φ0,φ0)e

2iλI t + 2|A0|
2B(φ0,φ0) + A0

2
B(φ0,φ0)e

−2iλI t . (2.28)

• Pitchfork bifurcation:

B(u1,u1) = A2
nB(φn,φn)e

2inθ + 2|An|
2B(φn,φ−n) + An

2
B(φ−n,φ−n)e

−2inθ . (2.29)

• Pitchfork-Hopf bifurcation:

B(u1,u1) = A2
0B(φ0,φ0)e

2iλI t + 2|A0|
2B(φ0,φ0) + A0

2
B(φ0,φ0)e

−2iλI t

+ A2
nB(φn,φn)e

2inθ + 2|An|
2B(φn,φ−n) + An

2
B(φ−n,φ−n)e

−2inθ

+ 2A0AnB(φ0,φn)e
i(nθ+λI t) + 2A0AnB(φ0,φ−n)e

i(−nθ+λI t)

+ 2A0AnB(φ0,φn)e
i(nθ−λI t) + 2A0AnB(φ0,φ−n)e

−i(nθ+λI t) .

(2.30)

Once again, because of the reflection symmetry, we have that φn = φ−n. By examining these bilinear
forms, the following ansatz can be formulated for the solution of the system (2.26):

• Hopf bifurcation:

W2 = W0000 + A2
0W2000e

2iλI t + |A0|
2W1100 + A0

2
W0200e

−2iλI t . (2.31)

• Pitchfork bifurcation:

W2 = W0000 + A2
nW0020 + |An|

2W0011 + An
2
W0002 . (2.32)

• Pitchfork-Hopf bifurcation:

W2 = W0000 + A2
0W2000e

2iλI t + |A0|
2W1100 + A0

2
W0200e

−2iλI t

+ A2
nW0020 + |An|

2W0011 + An
2
W0002

+ A0AnW1010e
iλI t + A0AnW1001e

iλI t + A0AnW0110e
−iλI t + A0AnW0101e

−iλI t .

(2.33)

Next, we briefly outline the computation of the term W0000. This term arises from the perturbation
of the bifurcation parameters within the base-state, and satisfies

L(µ0;W0000) +







0
ω2
vVe(r)e

T
2 µ1

0
−q0(0)vee

T
1 µ1







= 0 ,

{

Du∂rU0000 = Ku(u0000 − U0000)

Dv0∂rV0000 = Kv0(v0000 − V0000) + q0(0)veβ
Tµ1

, r = R .

(2.34)
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Solving for U0000, one obtains the same expression as for the steady-state profile, given by

U0000 = A0(0)
I0(ωur)

I0(ωuR)
eT1u0000 . (2.35)

Since the equation for V0000 is forced by a multiple of the steady-state solution, the reduction of order
method is used to yield the following ansatz:

V0000 = (γ0 + γ1(r))
I0(ωvr)

I0(ωvR)
, with γ1(0) = 0 , (2.36)

where γ1(r) is found to satisfy the second-order differential equation

γ′′1 (r)I0(ωvr) + γ′1(r)

(

2ωvI1(ωvr) +
1

r
I0(ωvr)

)

+
ωv

Dv0

eT2 µ1B0(0)I0(ωvr)ve = 0 . (2.37)

The ODE (2.37) is readily solved using rI0(ωvr) as an integrating factor. By integrating twice, we
obtain that

γ1(r) = −
eT2 µ1B0(0)ve

Dv0

∫ ωvr

0

ρ

[

1−

(
I1(ρ)

I0(ρ)

)2
]

dρ . (2.38)

Then, upon application of the perturbed boundary condition, we determine the constant γ0 as

γ0 = B0(0)v0000 + βTµ1
q0(0)B0(0)

Kv0

ve − γ1(R)−
Dv0B0(0)

Kv0

γ′1(R) . (2.39)

Next, the evaluation of U0000 and V0000 on the boundary leads to
(
U0000

V0000

)∣
∣
∣
∣
r=R

=

(
A0(0)u0000

B0(0)v0000 +∆Tµ1

)

, (2.40)

where the coefficient of the detuning vector is given explicitly by

∆ =
q0(0)B0(0)

Kv0

e1 +
ω2
vKv0R(I

2
0 (ωvR)− I21 (ωvR))/2− ωvKv0I0(ωvR)I1(ωvR)

(Dv0ωvI1(ωvR) +Kv0I0(ωvR))
2 e2 . (2.41)

Finally, the substitution of (2.40) into the constraint (2.34) for the membrane components determines
u0000 as

Φ0(µ0; 0)u0000 = αTµ1E2ue ⇒ u0000 = αTµ1[Φ0(µ0; 0)]
−1E2ue . (2.42)

Here the vector coefficient α is defined by

α = q0(0)e1 −Kv0∆

= (q0(0))
2e1 +

ωvK
2
v0

(Dv0ωvI1(ωvR) +Kv0I0(ωvR))
2

(

I0(ωvR)I1(ωvR) +
ωvR

2
(I21 (ωvR)− I20 (ωvR))

)

e2 .

(2.43)

Many of the nontrivial Wjklm can be found using the spatial and temporal reflection symmetries of the
reduced system. Here, the linear inhomogeneous problems to be solved are listed below.

Starting with the Hopf bifurcation, where W0200 = W2000, it is readily found that W2000 satisfies

L (µ0;W2000)− 2iλIW2000 = −B(W0,W0) ⇒ W2000 =






A0(2iλI)
I0(Ω2ur)
I0(Ω2uR)

eT1u2000

B0(2iλI)
I0(Ω2vr)
I0(Ω2vR)

eT2u2000

u2000




 (2.44)

where Ω2u and Ω2v are defined by

Ω2u =

√

σu + 2iλI
Du

, Ω2v =

√

σv + 2iλI
Dv

.
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Next, solving for W1100 leads to

L (µ0;W1100) = −2B(W0,W0) ⇒ W1100 =






A0(0)
I0(ωur)
I0(ωuR)

eT1u1100

B0(0)
I0(ωvr)
I0(ωvR)

eT2u1100

u1100




 . (2.45)

Finally, u2000 and u1100 each satisfy the following two-dimensional linear systems:

[Φ0(µ0; 2iλI)]u2000 = −B(φ0,φ0) , [Φ0(µ0; 0)]u1100 = −2B(φ0,φ0) . (2.46)

With regards to the pitchfork bifurcation, reflection symmetry guarantees that W0002 = W0020.
Hence, the systems to be solved and their solutions are given by

L (µ0;W0020) = −B(Wn,Wn) ⇒ W0020 =






A2n(0)
I2n(ωur)
I2n(ωuR)

eT1u0020

B2n(0)
I2n(ωvr)
I2n(ωvR)

eT2u0020

u0020




 e2inθ , (2.47)

and

L (µ0;W0011) = −2B(Wn,W−n) ⇒ W0011 =






A0(0)
I0(ωur)
I0(ωuR)

eT1u0011

B0(0)
I0(ωvr)
I0(ωvR)

eT2u0011

u0011




 . (2.48)

Here u0020 and u0011 satisfy the reduced linear systems

[Φ2n(µ0; 0)]u0020 = −B(φn,φn) , [Φ0(µ0; 0)]u0011 = −2B(φn,φ−n) . (2.49)

TheWjklm common to both the codimension-one and codimension-two bifurcations remain the same.
In addition to those terms, one needs to solve for the mixed coefficients W1010 and W1001 as follows:

L (µ0;W1010)− iλIW1010 = −2B(W0,Wn) ⇒ W1010 =






An(iλI)
In(Ωur)
In(ΩuR)

eT1u1010

Bn(iλI)
In(Ωvr)
In(ΩvR)

eT2u1010

u1010




 einθ , (2.50)

and

L (µ0;W1001)− iλIW1001 = −2B(W0,W−n) ⇒ W1001 =






An(iλI)
In(Ωur)
In(ΩuR)

eT1u1001

Bn(iλI)
In(Ωvr)
In(ΩvR)

eT2u1001

u1001




 e−inθ , (2.51)

where u1010 = u1001 (because φn = φ−n), which satisfies the further two-dimensional linear system

[Φn(µ0; iλI)]u1010 = −2B(φ0,φn) . (2.52)

The remaining coefficients are found trivially using symmetries, and are

W0101 = W1010 , W0110 = W1001 . (2.53)

2.4 Solvability condition and amplitude equations

Upon collecting terms of O (ε3) in (2.19), we obtain that

∂tW3 − L(µ0;W3) = −∂τW1 + 2B(W1,W2) + C(W1,W1,W1) +







0
eT2 µ1

∂t+σv

Dv0
V1

0
−eT1 µ1(v1 − V1|r=R)






, (2.54)
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while the O (ε3) terms in the boundary conditions (2.20) yield

∂r

(
DuU3

Dv0V3

)∣
∣
∣
∣
r=R

=

(
Ku(u3 − U3|r=R)
Kv0(v3 − V3|r=R)

)

+

(
0

βTµ1(v1 − V1|r=R)

)

. (2.55)

Next, suitable ansatzes are formulated based on the method of undetermined coefficients. Nonlinear
evolution equations for the amplitudes A0(τ) and An(τ) will arise from the application of a solvability
condition on (2.54) and (2.55).

• Hopf bifurcation. Since n = 0 is the unstable mode, the solution is radially symmetric of the
form

W3 = XeiλI t +Xe−iλI t , X =







x1(r)
x2(r)
x3
x4






. (2.56)

• Pitchfork bifurcation. The bifurcating branch is stationary and spatially inhomogeneous
(i.e. angularly dependent)

W3 = Y, Y =







y1(r, θ)
y2(r, θ)
y3(θ)
y4(θ)






. (2.57)

• Pitchfork-Hopf bifurcation. With X and Y defined as in the other cases, we have

W3 = XeiλI t +Xe−iλI t + Y . (2.58)

When treating the Hopf bifurcation, equations (2.54) and (2.55) represent a forced oscillatory system.
Typically, the presence of forcing with resonant terms generates secular growth of the solution. How-
ever, since boundedness of the solution is required on the fast time-scale, these secular terms must
be eliminated for self-consistency of the multiple time-scale asymptotic expansion. This elimination is
done using a solvability condition.

Upon substituting (2.56) into (2.54), and equating coefficients of eiλI t, we get

iλIX − L(µ0;X) = −W0
dA0

dτ
+






2B(W0,W0000) +







0

eT2 µ1Ω
2
vB0(iλI)

I0(Ωvr)
I0(ΩvR)

0
−eT1 µ1q0(iλI)






eT2φ0






A0

+
(
2B(W0,W1100) + 2B

(
W0,W2000

)
+ 3C

(
W0,W0,W0

))
|A0|

2A0 ,

(2.59)

where X satisfies the perturbed boundary condition given by

[

∂r

(
Dux1
Dv0x2

)∣
∣
∣
∣
r=R

−

(
Ku(x3 − x1|r=R)
Kv0(x4 − x2|r=R)

)]

=

(
0

βTµ1q0(iλI)e
T
2φ0

)

A0 . (2.60)

Since its bifurcating solution is stationary, a different argument must be invoked when treating the
pitchfork bifurcation. Again, the substitution of (2.57) into (2.54) leads to

− L(µ0;Y ) = −Wn

dAn

dτ
+






2B(Wn,W0000) +







0

eT2 µ1ω
2
vBn(0)

In(ωvr)
In(ωvR)

0
−eT1 µ1qn(0)






eT2φne

inθ






An

+ (2B(Wn,W0011) + 2B (W−n,W0020) + 3C (Wn,Wn,W−n)) |An|
2An +O

(

An, An
3
, A3

n

)

,

(2.61)
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where Y also satisfies the nontrivial boundary condition
[

∂r

(
Duy1
Dv0y2

)∣
∣
∣
∣
r=R

−

(
Ku(y3 − y1|r=R)
Kv0(y4 − y2|r=R)

)]

=

(
0

βTµ1qn(0)e
T
2φn

)

Ane
inθ +O(An) . (2.62)

Because of their orthogonality property, the contribution from other circular modes will vanish when
taking the inner-product with the adjoint eigenfunctionW⋆

n. Hence, these terms have not been explicitly
stated.

The same procedure is applied to the codimension-two case where a pitchfork bifurcation interacts
with a Hopf bifurcation. Equating coefficients of eiλI t leads to a linear inhomogeneous equation for the
coefficient X given by

iλIX − L(µ0;X) = −W0
dA0

dτ
+






2B(W0,W0000) +







0

eT2 µ1Ω
2
vB0(iλI)

I0(Ωvr)
I0(ΩvR)

0
−eT1 µ1q0(iλI)






eT2φ0






A0

+
(
2B(W0,W1100) + 2B

(
W0,W2000

)
+ 3C

(
W0,W0,W0

))
|A0|

2A0

+ (2B(W0,W0011) + 2B(Wn,W1001) + 2B(W−n,W1010) + 6C(W0,Wn,W−n)) |An|
2A0

+O
(

A0A
2
n, A0An

2
)

,

(2.63)

which is subject to the same boundary condition as for the Hopf bifurcation (see equation (2.60)).
The term Y , which is constant on the fast time-scale, satisfies

− L(µ0;Y ) = −Wn

dAn

dτ
+






2B(Wn,W0000) +







0

eT2 µ1ω
2
vBn(0)

In(ωvr)
In(ωvR)

0
−eT1 µ1qn(0)






eT2φne

inθ






An

+ (2B (Wn,W0011) + 2B (W−n,W0020) + 3C (Wn,Wn,W−n)) |An|
2An

+
(
2B(Wn,W1100) + 2B(W0,W0110) + 2B

(
W0,W1010

)
+ 6C

(
W0,W0,Wn

))
|A0|

2An

+O
(

An, An
3
, A3

n, |A0|
2An

)

,

(2.64)

and is subject to the same boundary as for the pitchfork bifurcation (see equation (2.62)).
The next two lemmas, involving our solvability conditions, provide necessary conditions under which

systems (2.59), (2.61), (2.63) and (2.64), together with the appropriate boundary conditions (2.60) and
(2.62), admit a solution. Lemma 2.1 is general, while Lemma 2.2 is specific to each bifurcation.

Lemma 2.1. Let {Wn,W
⋆
n} be an orthogonal pair composed of an eigenfunction and its adjoint, and

let λc denote the critical eigenvalue at a given bifurcation point µ = µ0 ∈ Rp (p independent bifurcation
parameters). Then,

L(µ0;Wn) = λcWn , L⋆(µ0;W
⋆
n) = λcW

⋆
n , λc =

{

iλI n = 0

0 n 6= 0
. (2.65)

Consider the following linear inhomogeneous system,

λcX − L(µ0;X) = F (2.66)

where X = (x1(r, θ), x2(r, θ), x3(θ), x4(θ))
T is subject to the inhomogeneous boundary condition

[

∂r

(
Dux1
Dvx2

)∣
∣
∣
∣
r=R

−

(
Ku(x3 − x1|r=R)
Kv(x4 − x2|r=R)

)]

=

(
ξ(θ)
η(θ)

)

. (2.67)

Then, a necessary condition for (2.66) to have a solution X subject to (2.67) is that

〈W⋆
n,F〉+

∫

∂Ω

U⋆
nξ dσ +

∫

∂Ω

V ⋆
n η dσ = 0 , (2.68)

where U⋆
n and V ⋆

n are the bulk components of the adjoint eigenfunction W⋆
n.
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Proof. The result follows from a careful application of the Fredholm alternative, where the inhomoge-
neous boundary condition is taken into account. We take the inner-product with the adjoint eigenfunc-
tion on each side of (2.66) to get

〈W⋆
n, λcX − L(µ0;X)〉 = λc 〈W

⋆
n, X〉 − 〈W⋆

n,L(µ0;X)〉 = 〈W⋆
n,F〉 . (2.69)

Next, by using the definition of the inner-product given in (2.14), one can write

〈W⋆
n,L(µ0;X)〉 = (2.70)

∫

Ω

(
U⋆
n

V ⋆
n

)T (
Du∆x1 − σux1
Dv∆x2 − σvx2

)

dA

︸ ︷︷ ︸
⋆

+

∫

∂Ω

(
u⋆n
v⋆n

)T (
du∆sx3 −Ku (x3 − x1) + f e

ux3 + f e
vx4

dv∆sx4 −Kv (x4 − x2) + geux3 + gevx4

)

dσ

︸ ︷︷ ︸
⋆⋆

, (2.71)

where Ω is a disk of radius R and ∆s = ∂σσ is the 1-D Laplace-Beltrami operator, with σ = Rθ being
the arc-length parameterizing the boundary. Next, using Green’s second identity, the first integral (⋆)
can be rewritten as follows:

∫

Ω

(
Du∆U

⋆
n − σuU

⋆
n

Dv∆V
⋆
n − σvV

⋆
n

)T (
x1
x2

)

dA+

∫

∂Ω

((
U⋆
n

V ⋆
n

)T (
Ku(x3 − x1) + ξ
Kv(x4 − x2) + η

)

−

(
x1
x2

)T (
Ku(u

⋆
n − U⋆

n)
Kv(v

⋆
n − V ⋆

n )

))

dσ .

(2.72)
In addition, the second integral can be treated using Lagrange’s identity and the angular periodicity of
surface bound components, as

⋆⋆ =

∫

∂Ω

(
du∆su

∗
n −Kuu

∗
n + f e

uu
⋆
n + geuv

⋆
n

du∆su
⋆
n −Kvv

⋆
n + f e

vu
⋆
n + gevv

⋆
n

)T (
x3
x4

)

dσ +

∫

∂Ω

(
Kuu

⋆
n

Kvv
⋆
n

)T (
x1
x2

)

dσ . (2.73)

Next, upon adding (2.72) and (2.73), we obtain after some algebra the following expression involving
the adjoint linear operator:

〈W⋆
n,L(µ0;X)〉 =

∫

Ω

(
Du∆U

⋆
n − σuU

⋆
n

Dv∆V
⋆
n − σvV

⋆
n

)T (
x1
x2

)

dA

+

∫

∂Ω

(
du∆su

⋆
n −Ku (u

⋆
n − U⋆

n) + f e
uu

⋆
n + geuv

⋆
n

du∆su
⋆
n −Kv (v

⋆
n − V ⋆

n ) + f e
vu

⋆
n + gevv

⋆
n

)T (
x3
x4

)

dσ +

∫

∂Ω

(
U⋆
nξ + V ⋆

n η
)
dσ

= 〈L⋆ (µ0;W
⋆
n) , X〉+

∫

∂Ω

(
U⋆
nξ + V ⋆

n η
)
dσ

= λc〈W
⋆
n, X〉+

∫

∂Ω

(
U⋆
nξ + V ⋆

n η
)
dσ . (2.74)

The result (2.68) is readily obtained after the substitution of (2.74) back into (2.69). �

Lemma 2.2. (Solvability condition). The imposition of the solvability condition for each of the
three bifurcations leads to the following amplitude equations:

• Hopf bifurcation. A necessary condition for the inhomogeneous system (2.59) and (2.60) to
have a solution X is that the amplitude A0(τ) satisfies the following ODE:

− 2πRB0(iλI)q0(iλI)e
T
2φ

⋆
0e

T
2φ0β

Tµ1A0 = −
dA0

dτ
+ 2 〈W⋆

0 ,B(W0,W0000)〉A0

+ 2πReT2φ
⋆
0e

T
2φ0

(

(B0(iλI))
2Ω2

v

R

2

(

1−

(
I1(ΩvR)

I0(ΩvR)

)2
)

eT2 µ1 − q0(iλI)e
T
1 µ1

)

A0

+
〈
W⋆

0 , 2B (W0,W1100) + 2B
(
W0,W2000

)
+ 3C

(
W0,W0,W0

)〉
|A0|

2A0 . (2.75)
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• Pitchfork bifurcation. A necessary condition for the inhomogeneous system (2.61) and (2.62)
to have a solution Y is that the amplitude An(τ) satisfies the following ODE:

− 2πRBn(0)qn(0)e
T
2φ

⋆
ne

T
2φnβ

Tµ1An = −
dAn

dτ
+ 2 〈W⋆

n,B(Wn,W0000)〉An

+ 2πReT2φ
⋆
ne

T
2φn

(

(Bn(0))
2ω2

v

R

2

(

1−
In−1(ωvR)In+1(ωvR)

(In(ωvR))2

)

eT2 µ1 − qn(0)e
T
1 µ1

)

An

+ 〈W⋆
n, 2B (Wn,W0011) + 2B (W−n,W0020) + 3C (Wn,Wn,W−n)〉 |An|

2An . (2.76)

• Pitchfork-Hopf bifurcation. A necessary condition for the inhomogeneous system (2.59),
(2.61), (2.60), and (2.62) to have solutions X and Y is that the amplitudes A0(τ) and An(τ)
satisfy the following system of ODEs:

− 2πRB0(iλI)q0(iλI)e
T
2φ

⋆
0e

T
2φ0β

Tµ1A0 = −
dA0

dτ
+ 2 〈W⋆

0 ,B(W0,W0000)〉A0

+ 2πReT2φ
⋆
0e

T
2φ0

(

(B0(iλI))
2Ω2

v

R

2

(

1−

(
I1(ΩvR)

I0(ΩvR)

)2
)

eT2 µ1 − q0(iλI)e
T
1 µ1

)

A0

+
〈
W⋆

0 , 2B (W0,W1100) + 2B
(
W0,W2000

)
+ 3C

(
W0,W0,W0

)〉
|A0|

2A0

+ 〈W⋆
0 , 2B(W0,W0011) + 2B(Wn,W1001) + 2B(W−n,W1010) + 6C(W0,Wn,W−n)〉 |An|

2A0 (2.77)

and

− 2πRBn(0)qn(0)e
T
2φ

⋆
ne

T
2φnβ

Tµ1An = −
dAn

dτ
+ 2 〈W⋆

n,B(Wn,W0000)〉An

+ 2πReT2φ
⋆
ne

T
2φn

(

(Bn(0))
2ω2

v

R

2

(

1−
In−1(ωvR)In+1(ωvR)

(In(ωvR))2

)

eT2 µ1 − qn(0)e
T
1 µ1

)

An

+ 〈W⋆
n, 2B (Wn,W0011) + 2B (W−n,W0020) + 3C (Wn,Wn,W−n)〉 |An|

2An

+
〈
W⋆

n, 2B(Wn,W1100) + 2B (W0,W0110) + 2B
(
W0,W1010

)
+ 6C

(
W0,W0,Wn

)〉
|A0|

2An .
(2.78)

In each of these three cases, W⋆
0 and W⋆

n are adjoint eigenfunctions associated with the adjoint linear
operator. Hence, they satisfy the following relations:

L⋆(µ0,W
⋆
0 ) = −iλIW

⋆
0 , L⋆(µ0,W

⋆
n) = 0 . (2.79)

Proof. The results stated above are obtained from a direct application of Lemma 2.1. �

The rearrangement of each of the differential equations given in Lemma 2.2 provides a system of
amplitude equations describing the branching behavior in the vicinity of the bifurcation point, in the
limit ε→ 0. For each of the three bifurcations the amplitude equations have the following form:

• Hopf bifurcation.
dA0

dτ
= gT1000µ1A0 + g2100|A0|

2A0 . (2.80)

• Pitchfork bifurcation.
dAn

dτ
= gT0010µ1An + g0021|An|

2An . (2.81)

• Pitchfork-Hopf bifurcation. In this case, one shall analyze a system of two amplitude equations
similar to their codimension-one analog. In each equation, the additional term corresponds to the
mixed-mode term (all the other terms remain the same as for their codimension-one counterpart).

dA0

dτ
= gT1000µ1A0 + g2100|A0|

2A0 + g1011|An|
2A0 , (2.82a)

dAn

dτ
= gT0010µ1An + g0021|An|

2An + g1110|A0|
2An . (2.82b)
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Explicit expressions for the coefficients of the nonlinear terms in the amplitude equations are

g2100 =
〈
W⋆

0 , 2B (W0,W1100) + 2B
(
W0,W2000

)
+ 3C

(
W0,W0,W0

)〉
, (2.83a)

g1011 = 〈W⋆
0 , 2B(W0,W0011) + 2B(Wn,W1001) + 2B(W−n,W1010) + 6C(W0,Wn,W−n)〉 , (2.83b)

g0021 = 〈W⋆
n, 2B (Wn,W0011) + 2B (W−n,W0020) + 3C (Wn,Wn,W−n)〉 , (2.83c)

g1110 =
〈
W⋆

n, 2B(Wn,W1100) + 2B (W0,W0110) + 2B
(
W0,W1010

)
+ 6C

(
W0,W0,Wn

)〉
, (2.83d)

where g2100, g1011 ∈ C and g0021, g1110 ∈ R. The coefficients of the linear terms consist of the projection
of the vectors g1000 ∈ C2 and g0010 ∈ R2 onto the detuning unit vector µ1. They are given by

g1000 = 2πReT2φ
⋆
0e

T
2φ0

(

B0(iλI)q0(iλI)β + (B0(iλI))
2Ω2

v

R

2

(

1−

(
I1(ΩvR)

I0(ΩvR)

)2
)

e2 − q0(iλI)e1

)

+ 4πRφ⋆
0

T
B (φ0, ũ0000)α , (2.84a)

g0010 = 2πReT2φ
⋆
ne

T
2φn

(

Bn(0)qn(0)β + (Bn(0))
2ω2

v

R

2

(

1−
In−1(ωvR)In+1(ωvR)

(In(ωvR))2

)

e2 − qn(0)e1

)

+ 4πRφ⋆
n
TB (φn, ũ0000)α , (2.84b)

where ũ0000 = [Φ0(µ0; 0)]
−1E2ue appears in the expression for u0000 (see equation (2.42)). The two

quantities are related to each other by

u0000 = ũ0000α
Tµ1 . (2.85)

In §4 below, the solution behaviors in the weakly nonlinear regime, as predicted after the numeri-
cal evaluation of the coefficients in the amplitude equations, will be compared with numerical PDE
simulations of the full coupled bulk-surface reaction-diffusion model.

We remark that the generic form for the coefficients of the cubic terms of (2.80) - (2.82) is well-
known in the literature. Since the pitchfork bifurcation is simply a Hopf bifurcation with a zero-crossing
eigenvalue, these coefficients also arise from the weakly nonlinear analysis of a codimension-two Hopf-
Hopf bifurcation, in which the pair of critical eigenfunctions is fully complex. We refer the reader to
the appendix of [11], where a center manifold reduction was used to derive a two-dimensional system
of amplitude equations at a double-Hopf bifurcation.

The novelty of our analysis is that we have performed a systematic derivation yielding explicit
formulae for the normal form coefficients for the three distinct instabilities of our coupled bulk-surface
model. These results can be used for any nonlinear surface reaction kinetics specified on the circular
boundary. We remark that the bifurcation parameters employed here, being the bulk diffusion coefficient
Dv and the coupling rate constantKv, are key to understanding the specific role of bulk-surface coupling.
Our choice of performing an asymptotic multiple time-scale analysis, as opposed to a center manifold
type-reduction, was partially motivated by the computational convenience and flexibility of the method.
However, the main advantage of multi-scale theory concerns the nonstandard boundary conditions
(1.3) where the bifurcation parameters appear. In the computation of the linear term coefficient, a
center manifold approach would require us to differentiate the linearized operator (2.6) with respect
to bifurcation parameters that also appear in the boundary conditions. By simply keeping track of
the terms at each order within the boundary conditions, the method of multiple time-scales provides a
direct approach to compute the normal form without the need to explicitly differentiate the function
space with respect to the bifurcation parameters.

3 Bifurcation analysis of amplitude equations

In this section, the equilibria of the amplitude equations derived in the preceding section are analyzed.
Under nondegeneracy conditions, the stability properties of the steady states in the normal form are
preserved in the full model. Bifurcations of codimension-one and two are treated separately below.
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3.1 Codimension-one: Hopf and pitchfork bifurcations

For a Hopf bifurcation, the substitution of A0(τ) = ρ0(τ)e
iθ0(τ) within (2.80) yields a coupled system of

ODEs for the magnitude ρ0 and the phase θ0, given by

dρ0
dτ

= [ℜ (g1000)]
T µ1ρ0 + ℜ (g2100) ρ

3
0 ,

dθ0
dτ

= [ℑ (g1000)]
T µ1 + ℑ (g2100) ρ

2
0 . (3.1)

When it exists, a steady state ρ0e of (3.1) is given by

ρ0e =

√

−
[ℜ (g1000)]

T µ1

|ℜ (g2100)
| , (3.2)

where µ1 is a free two-dimensional unit vector. The transversality condition is violated when µ1 is
tangent to the Hopf stability boundary at µ0 ∈ R2, for which ρ0e from (3.2) vanishes. Consequently, it
can easily be argued that the vector ℜ(g1000) is normal to the stability curve and that a natural choice
for the orientation of µ1 is

µ1 = −
ℜ(g2100)

|ℜ(g2100)|

ℜ(g1000)

‖ℜ(g1000)‖
. (3.3)

Such a choice provides the maximal magnitude ρ0e given by

ρ0e =

√

‖ℜ (g1000) ‖

ℜ (g2100)
. (3.4)

The nontrivial fixed points ρ0e in (3.2) correspond to limit cycle of the complex amplitude A0(τ). The
stability of the limit cycles is given by the sign of the real part of the cubic term coefficient in (3.1).
Hence, one can distinguish between supercritical and subcritical bifurcations in the usual way:

ℜ(g2100) < 0 (Supercritical Hopf) , ℜ(g2100) > 0 (Subcritical Hopf) . (3.5)

Next, from substituting ρ0e into the equation for the phase in (3.1), the steady-state phase θ0 is

θ0(τ) = θ0(0) + θ̃0τ , with θ̃0 = [ℑ (g1000)]
T µ1 + ℑ (g2100) ρ

2
0e , (3.6)

where θ0(0) ∈ R denotes the phase shift symmetry of periodic solutions.
The following lemma uses the nontrivial steady state from the amplitude equation associated with

the Hopf bifurcation to give approximate periodic solutions of the full coupled bulk-surface PDE model
in the weakly nonlinear regime:

Lemma 3.1. (Periodic solutions in the weakly nonlinear regime). Let g2100 ∈ C be the cubic
term coefficient in (2.80), and assume that its real part is nonzero, hence excluding degenerate cases.
Then, in the limit ε → 0 with ε =

√

‖µ− µ0‖ denoting the square-root of the distance with the Hopf
bifurcation point, a leading-order approximate family of periodic solutions is given by

W (t) = We + ερ0e
[
W0e

i(λI t+θ0(0)) +W0e
−i(λI t+θ0(0))

]
+O

(
ε2
)
, (3.7)

for any θ0(0) ∈ R and with ρ0e defined by (3.4).
For the surface-bound activator species, let uamp denote the amplitude of the bifurcating limit cycle

near the Hopf bifurcation point. A leading-order approximation for uamp is

uamp = max
0≤t<Tp

{|u(t)− ue|} = 2ερ0e|e
T
1φ0|+O

(
ε2
)
, (3.8)

where the period Tp satisfies

Tp =
2π

λI
+O

(
ε2
)
. (3.9)

Finally, the periodic solution in (3.7) is asymptotically stable when ℜ(g2100) < 0 (supercritical Hopf)
and it is unstable for ℜ(g2100) > 0 (subcritical Hopf).
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Next, we consider the pitchfork bifurcation. Since the coefficients g0010 and g0021 in (2.81) are real,
we set An(τ) = ρn(τ)e

iθn(τ) into (2.81) to obtain a decoupled system of ODEs for ρn and θn given by

dρn
dτ

= gT0010µ1ρn + g0021ρ
3
n ,

dθn
dτ

= 0 . (3.10)

When they exist, fixed points of (3.10) are

ρne =

√

−
gT0010µ1

g0021
, θn(τ) ≡ θn ∈ R , (3.11)

where the constant θn accounts for the rotational equivariance of the pattern. The orientation of the
unit vector µ1 is chosen in a similar way as for the Hopf bifurcation, with the ”natural choice” being

µ1 = −
g0021
|g0021|

g0010
‖g0010‖

. (3.12)

This yields the following expression for ρne:

ρne =

√

‖g0010‖

|g0021|
. (3.13)

Again, the pitchfork bifurcation is classified according to the stability of the nontrivial steady state
of the amplitude equation. It readily follows that

g0021 < 0 (Supercritical pitchfork) , g0021 > 0 (Subcritical pitchfork) . (3.14)

Finally, this section is concluded with the analog of Lemma 3.1 for Turing-type patterns arising from
pitchfork bifurcations in the full coupled bulk-surface PDE model.

Lemma 3.2. (Spatially inhomogeneous equilibria in the weakly nonlinear regime). Let
g0021 ∈ R be the cubic term coefficient in (2.81), and assume that it is nonzero, hence excluding de-
generate cases. Then, in the limit ε → 0 with ε =

√

‖µ− µ0‖ denoting the square-root of the distance
from the pitchfork bifurcation point, a leading-order approximate family of spatially inhomogeneous
equilibria is given by

W = We + ερne
[
Wne

iθn +W−ne
−iθn

]
+O

(
ε2
)
, (3.15)

for any θn ∈ R and with ρne defined by (3.13).
For the surface-bound activator species, let uamp be the amplitude of the bifurcating Turing-type

pattern near the pitchfork bifurcation point. A leading-order approximation for uamp is

uamp = max
0≤θ<2π

{|u(θ)− ue|} = 2ερne|e
T
1φn|+O

(
ε2
)
. (3.16)

Finally, the patterned solution given by (3.15) is asymptotically stable when g0021 < 0 (supercritical
pitchfork), and it is unstable for g0021 > 0 (subcritical pitchfork).

3.2 Codimension-two: Pitchfork-Hopf bifurcation

In this subsection, the equilibria of the coupled amplitude equations (2.82) are analyzed for general
values of its coefficients. For this purpose, it is appropriate to rescale the time variable into the
original fast time-scale t. Hence, letting z0(t) = εA0(ε

2t)eiλI t and zn(t) = εAn(ε
2t), and recalling that

µ− µ0 = ε2µ1, the following Poincaré normal form can readily be obtained:

ż0 =
(
iλI + gT1000(µ− µ0)

)
z0 + g2100|z0|

2z0 + g1011|zn|
2z0 , (3.17a)

żn = gT0010(µ− µ0)zn + g1110|z0|
2zn + g0021|zn|

2zn . (3.17b)
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Since g2100, g1011 are complex-valued, while g0021, g1110 are real-valued, cylindrical polar coordinates are
appropriate for this normal form. Letting z0 = ρeiφ, zn = w ≥ 0, and µ = µ0 we obtain a system of
ODEs for the magnitudes w, r and the phase φ, given by

ẇ = g0021w
3+g1110wr

2 , ṙ = ℜ(g1011)w
2r+ℜ(g0021)r

3 , φ̇ = λI+ℑ(g2100)r
2+ℑ(g1011)w

2 . (3.18)

Since the third equation above is decoupled from the others, it need not be considered. The first two
ODEs in (3.18) can then be conveniently written as

ẇ = p11w
3 + p12wr

2 , ṙ = p21w
2r + p22r

3 , (3.19)

where p11 = g0021, p12 = g1110, p21 = ℜ(g1011) and p22 = ℜ(g2100). It is assumed that these coefficients are
nonzero and that p11p22−p12p21 6= 0, which is a necessary condition for the existence of the mixed-mode
steady-state.

To relate our results with those in [14], we augment (3.19) with linear terms to obtain

ẇ = w(δ1 + p11w
2 + p12r

2) , ṙ = r(δ2 + p21w
2 + p22r

2) , (3.20)

where δ1 and δ2 are generic unfolding parameters. This recovers the well-known canonical truncated
system of amplitude equations at a codimension-two pitchfork-Hopf and double-Hopf bifurcations. We
refer the reader to [14] and [18], where the phase portraits of (3.20) is classified. In the discussion
below, the approach and classification from [14] is followed.

We first reduce the number of parameters in (3.20) by setting w̄ =
√

|p11|w and r̄ =
√

|p22|r. After
a possible time rescaling if p11 < 0, and further dropping the bars to simplify the notation, this change
of variable yields

ẇ = w(δ1 + w2 + γr2) , ṙ = r(δ2 + ηw2 + dr2) , (3.21)

where γ, η and d are given by

γ =
p12
|p22|

, η =
p21
|p11|

, d =
p22
|p22|

= ±1 . (3.22)

Depending on the signs of the four quantities d, γ, η and d − γη, it is possible to distinguish between
12 topologically different stability diagrams in the plane of generic parameters (δ1, δ2) (see [14]). In
addition to the trivial equilibrium E0 = (0, 0), (3.21) possesses up to three additional steady states.
Two of those equilibria are located on the coordinate axes and are given by

E1 =
(√

−δ1, 0
)

for δ1 < 0 , and E2 =

(

0,

√

−
δ2
d

)

for
δ2
d
< 0 , (3.23)

while the last one corresponds to the mixed-mode equilibrium defined by

E3 =

(√

γδ2 − dδ1
d− γη

,

√

ηδ1 − δ2
d− γη

)

for
γδ2 − dδ1
d− γη

,
ηδ1 − δ2
d− γη

> 0 . (3.24)

With regards to the coupled bulk-surface model, these equilibria have a precise meaning in terms of
oscillatory and patterned solutions. They are classified below in Table 1.

Table 1: Classification of steady states of (3.21) and solution correspondence.

Amplitude solution Full model solution

Trivial steady state E0 Base-state solution We

First mode E1 Spatially inhomogeneous steady state
Second mode E2 Periodic solution around the base-state solution
Mixed-mode E3 Oscillations around a patterned solution (breather solution)
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We now summarize the bifurcations arising in the truncated system of amplitude equations (3.21).
Firstly, the single mode equilibria E1 and E2 bifurcate from the origin on the lines

H1 = {(δ1, δ2)|δ1 = 0} , H2 = {(δ1, δ2)|δ2 = 0} , (3.25)

and, respectively, exist for δ1 < 0 and for δ2/d < 0. Next, the mixed-mode equilibrium E3 bifurcates
from each of the single mode equilibria on the semi-infinite pitchfork lines, given by

T1 = {(δ1, δ2) | γδ2 = dδ1 , δ1 > 0 or δ1 < 0} , (3.26a)

T2 = {(δ1, δ2) | δ2 = ηδ1 , δ1 > 0 or δ1 < 0} , (3.26b)

whose orientations (whether for each case δ1 is positive or negative) are chosen such that T1 and T2
form the boundaries of the existence region of E3.

Cases for which d = 1 are known to be simple since the truncated system of amplitude equations
(3.21) does not possess any limit cycles. Such a situation corresponds to both pitchfork and Hopf
bifurcations being either subcritical or supercritical, with no fifth-order terms being needed in the
normal form. More intricate cases arise when d = −1 and d− γη > 0, at which E3 bifurcates through
a degenerate Hopf bifurcation on the semi-infinite line given by

C =

{

(δ1, δ2)

∣
∣
∣
∣
δ2 =

d(1− η)

γ − d
δ1, δ1 > 0 or δ1 < 0

}

. (3.27)

The stability of the bifurcating limit cycle is typically determined by including one fifth-order term to
the normal form. More details on this challenging computation are found in the classic reference [14].

In the next lemma, an affine transformation mapping parameter spaces is defined.

Lemma 3.3. (Mapping parameter spaces). Let T be an affine transformation in R2 that maps
the generic parameter space defined by δ1 and δ2 to the original bifurcation parameter space defined by
Kv and Dv. Then, it must satisfy

T (δ1, δ2) = µ0 +R
(

±
π

2

) [
g0010 ℜ(g1000)

]
R
(

±
π

2

)(δ1
δ2

)

= µ0 +
[

R
(π

2

)

ℜ(g1000) R
(

−
π

2

)

g0010
](δ1

δ2

)

, (3.28)

where µ0 = (Kv0, Dv0)
T is the codimension-two bifurcation point and R(ϕ) is the anti-clockwise rotation

matrix in the Euclidean plane defined by

R(ϕ) =

(
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)

. (3.29)

Proof. The proof follows from the fact that g0010 and ℜ(g1000) are, respectively, normal to the pitchfork
n = 1 and Hopf n = 0 stability boundaries. �

This subsection concludes with Lemma 3.4, where the mixed-mode solution in the weakly nonlinear
regime is defined. Its stability will be discussed in §4.2 for two pitchfork-Hopf bifurcations involving
distinct reaction kinetics.

Lemma 3.4. (Mixed-mode solution in the weakly nonlinear regime). Let p11 = g0021, p12 =
g1110, p21 = ℜ(g1011) and p22 = ℜ(g2100) be the four cubic term coefficients of system (2.82). If none of
these coefficients vanish, and if p22p11−p12p21 is nonzero, then in the limit ε→ 0, with ε =

√

‖µ− µ0‖
denoting the square-root of the distance with the pitchfork-Hopf bifurcation point, a leading-order
approximate family of spatio-temporal oscillatory solutions is given by

W (t) = We + ε
(
ρne
[
Wne

iθn + c.c.
]
+ ρ0e

[
W0e

i(λI t+θ0(0)) + c.c.
])

+O
(
ε2
)
, (3.30)
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for any θn, θ0(0) ∈ R, as a result of the azimuthal and temporal phase shift symmetries. The pair
(ρne, ρ0e) corresponds to the mixed-mode equilibrium and is given by

(ρne, ρ0e) =





√

p12 [ℜ(g1000)]
T µ1 − p22 [g0010]

T µ1

p22p11 − p12p21
,

√

p21 [g0010]
T µ1 − p11 [ℜ(g1000)]

T µ1

p22p11 − p12p21



 , (3.31)

with the detuning vector µ1 chosen such that µ = µ0+ε
2µ1 is within the mixed-mode region of existence.

In particular, it can be taken to be parallel to the bisector of this region.
For the surface-bound activator species, let uamp be the amplitude of the bifurcating spatio-temporal

pattern near the pitchfork-Hopf bifurcation point. A leading-order approximation for it is given by

uamp = max
0≤θ<2π
0≤t<Tp

{|u(θ, t)− ue|} = 2ε
(
ρne|e

T
1φn|+ ρ0e|e

T
1φ0|

)
+O

(
ε2
)
. (3.32)

4 Validation of weakly nonlinear theory

In this section we validate the weakly nonlinear theory developed in §2 and §3 by comparing predictions
of this theory with either numerical bifurcation results or full numerical time-dependent PDE solutions.
In the comparisons we will consider both the Schnakenberg (1.5) and Brusselator (1.6) boundary reac-
tion kinetics. Since the parameter space is large, the bulk domain is restricted to the unit disk. For the
uncoupled case (with Ku = Kv = 0), the surface diffusion coefficients and reaction kinetic parameters
are chosen to ensure that there is a unique stable patternless solution for the reaction-diffusion system
on the domain boundary. In addition, since typical surface diffusion coefficients are smaller than their
bulk diffusion counterparts in applications, the condition du ≤ Du and dv ≤ Dv shall be imposed.
Ultimately, the bifurcation analysis will illustrate how varying the ratio of bulk diffusivity and coupling
coefficients can destabilize the system and lead to novel spatio-temporal dynamics.

4.1 Codimension-one bifurcation

By numerically computing the roots of the eigenvalue relation (2.10), we can readily determine a linear
stability diagram in the Dv versus Kv parameter space for the Schnakenberg and Brusselator boundary
kinetics. For a circular harmonic mode with either n = 0, 1, 2, the marginal stability curves in Dv versus
Kv parameter space, for a fixed set of parameters, are shown in Fig. 1 and Fig. 2 for the Schnakenberg
and Brusselator kinetics, respectively. In each phase diagram, the region of linear stability is located
to the left of all the curves. Our computations show that the trivial mode n = 0 loses stability through
a Hopf bifurcation, while for the nontrivial modes n = 1, 2, stability is lost via a Turing bifurcation
(zero-crossing eigenvalue).
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Figure 1: Linear stability diagram in the plane of parameters (Kv, Dv) with Schnakenberg reaction
kinetics. Other parameters are R = 1, Du = 1, σu = σv = 0.01, Ku = 0.1, du = dv = 0.1, a = 0.1, b =
0.9 . In the right panel, the symbol ”o” indicates supercritical while ”+” indicates subcritical.
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Figure 2: Stability diagram in the plane of parameters (Kv, Dv) with Brusselator reaction kinetics.
Other parameters are R = 1, Du = 1, σu = σv = 0.01, Ku = 0.1, du = dv = 0.5, a = 3, b = 7.5 . In the
right panel, the symbol ”o” indicates supercritical while ”+” indicates subcritical.

Some qualitative trends are suggested from these linear stability phase diagrams. Firstly, when both
bulk diffusion coefficients have the same order of magnitude, the Hopf bifurcation of the trivial mode
is the dominant instability. It occurs when the coupling of the inhibitor is much larger than that of
the activator, i.e. Kv/Ku ≈ 102. Secondly, when this ratio decreases while the ratio Dv/Du increases,
the primary instability switches to the Turing bifurcation of the first nontrivial mode (n = 1). This is
reminiscent of the classical Turing paradigm for pattern formation, whereby the inhibitor is required
to diffuse faster than the activator in order for a pattern to form.

The redrawn phase diagrams in the right panels of Fig. 1 and Fig. 2, indicating the local branching
behavior of the bifurcation, was obtained after numerically evaluating the cubic term coefficients in the
normal forms (2.80) and (2.81). For both reaction kinetics, supercritical Hopf and subcritical Turing
bifurcations are predicted to occur as the stability curves associated with the modes n = 0, 1 are crossed.
Although the transversal crossing of the rightmost curve associated with the mode n = 2 is predicted
to correspond to a supercritical Turing bifurcation, little attention is given to it in the subsequent
discussion since it corresponds to a secondary instability.

We emphasize that our conclusions only hold for the current set of fixed parameters given in the
captions of Fig. 1 and Fig. 2. In §4.1.2 we show that a conclusion of super- or subcriticality can depend
on the specific choices of reaction kinetic parameters and surface diffusion coefficients.

4.1.1 Periodic solutions arising from Hopf bifurcations

In this subsection the loss of stability through the supercritical Hopf bifurcation, as predicted by
our weakly nonlinear analysis in Fig. 1 and Fig. 2, is investigated. Numerical continuation methods
combined with PDE simulations are used to study the dynamics in the weakly nonlinear regime. As
a result of azimuthal invariance, a simple 1-D finite difference method-of-lines approach is used to
spatially discretize the coupled bulk-surface system, with the mean value theorem applied to derive an
ODE for the bulk species at the origin which avoids the singularity inherent to the Laplacian in polar
coordinates. Details of the discretization process are given in Appendix A.

We first study the loss of stability on the vertical line Kv = 5 from Fig. 1 which intersects the
n = 0 Hopf curve at Dv ≈ 2.17. Plots of global periodic solution branches using either Kv or Dv as
the bifurcation parameter are displayed in Fig. 3. These numerical bifurcation diagrams confirm the
prediction of the weakly nonlinear theory of a loss of stability through a supercritical Hopf bifurcation.

Next, in the vicinity of the bifurcation point, (3.8) of Lemma 3.1 is used to predict the amplitude of
the limit cycle. A graphical comparison between this predicted amplitude and corresponding numerical
results computed with AUTO is shown in Fig. 4. In the left panel of Fig. 4 a slight shift in the
bifurcation point caused by spatial discretization errors is observed. As the mesh is refined, the gap
between the bifurcation points computed from the spatially discretized system and directly from the
transcendental equation (2.10) by solving for pure imaginary roots is expected to shrink. This shift is
not as apparent in the right panel of Fig. 4 since the bulk diffusivity Dv was used to locate the Hopf
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Figure 3: Global periodic solution branches computed with AUTO [6] past a supercritical Hopf bifur-
cation for the Schnakenberg kinetics. The continuation parameter in the left panel is Dv with Kv = 5,
while in the right panel Kv is used with Dv ≈ 2.17. N = 200 points discretize the radial direction.
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Figure 4: Amplitude of periodic solutions in the weakly nonlinear regime for the Schnakenberg reaction
kinetics. The red curve is computed with AUTO using N = 200 equidistant mesh points in the radial
direction, while the black curve is obtained directly from the normal form (3.8) for 0 ≤ ε ≤ 0.1.
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Figure 5: Translation to the origin of the branches in Fig. 4. The curvature of the bifurcating branches
is correctly approximated by the weakly nonlinear theory.
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bifurcation point. From Fig. 5, the two branches essentially coincide after translation to the origin.
As a further validation of the weakly nonlinear theory, we now compare the predicted period of

oscillations near the Hopf point with corresponding numerical results extracted from PDE simulations.
As shown in the right panel of Fig. 6 for a particular choice of detuning vector µ1 normal to the stability
boundary (see the left panel of Fig. 6), the numerically computed period of oscillations is Tp ≈ 7.65.
This value agrees well with the result (3.9) from the weakly nonlinear theory.

Similar numerical experiments can be performed with the Brusselator reaction kinetics for the pa-
rameter set in the caption of Fig. 2. The results are qualitatively similar, with both the numerical results
and the weakly nonlinear analysis predicting a loss of stability through a supercritical Hopf bifurcation.
The periodic solution branches are displayed in Fig. 7 for the membrane-bound activator. Despite the
slight shift in the bifurcation point, we observe a good agreement between the curvature of the branches
computed with AUTO and from the weakly nonlinear theory (3.8). Moreover, at the bifurcation point,
the magnitude of the eigenvalues is larger for the Brusselator than for the Schnakenberg model. This
leads to a smaller oscillation period Tp ≈ 2.7719 for the Brusselator. The corresponding full numerical
simulation of the reduced PDE-ODE model is given in Fig. 8 for ε = 0.1 and µ1 = (0, 1)T .
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Figure 6: Full numerical simulation of the reduced PDE-ODE model with Schnakenberg kinetics. The
right panel shows the membrane-bound activator u(t) (red curve) which oscillates around the equilib-
rium solution (blue line). Notice here the good agreement with the solution in the weakly nonlinear
regime (black dashed coinciding curve). Implicit-explicit time-stepping (SBDF2) [25] is employed from
an initial condition given by (3.7) with t = 0, θ0(0) = π

2
and ε = 0.1. The bifurcation point and

detuning vector respectively satisfy µ0 = (5, 2.17)T and µ1 = (0.6, 0.8)T . The parameter values for the
simulation are indicated in the left panel by a red dot.
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Figure 7: Periodic solution branches past a supercritical Hopf bifurcation with the Brusselator reaction
kinetics. N = 200 equidistant meshpoints discretize the radial direction for the radially symmetric
reduced PDE-ODE model. Left panel: plot of the norm of the global solution branches computed with
AUTO. Middle and right panels: local branching behavior predicted from the weakly nonlinear theory
and from the bifurcation software AUTO are favorably compared.

As a result of the slight discrepancy between the bifurcation points computed in the spatially
discretized system as compared to the weakly nonlinear theory, it is misleading to compare the result of
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Figure 8: Full numerical simulation of the reduced PDE-ODE model with Brusselator kinetics. The
same numerical method and initial condition used in Fig. 6 are employed here. The parameters are
ε = 0.1, µ0 = (5, 2.32)T and µ1 = (0, 1)T . The red dot in the left panel indicates µ0 + ε2µ1, where the
simulation is performed.

a simulation with the analytical solution at a fixed parameter value. Therefore, a numerical convergence
study as the mesh size h = R/(N − 1) decreases, with N being the number of nodes used to discretize
the radial direction (assuming azimuthal symmetry), is provided in Fig. 9. Since second-order centered
differences are used, a quadratic rate of convergence is expected. Letting µnum

0 and µwna
0 denote,

respectively, the bifurcation points in the spatially discretized versus continuous systems, we expect
that

‖µnum
0 − µwna

0 ‖2 ≤ O(h2) , (4.1)

as h tends to zero. This (roughly) quadratic convergence is confirmed in Fig. 9 where we computed the
slope γ of the two curves, characterizing the convergence rates, as

Schnakenberg (left): γ ≈ 2.078 , Brusselator (right): γ ≈ 2.008 . (4.2)
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Figure 9: Convergence of numerically computed Hopf bifurcation points Dv0 as the step size decreases
for the Schnakenberg (left panel) and Brusselator (right panel) reaction kinetics with Kv = 5 and all the
other parameters being the same as in Fig. 1 and Fig. 2. Horizontal and vertical axis are displayed in a
log scale. The computation of the bifurcation point in the spatially discretized system is performed with
the software coco [4]. The reference bifurcation point is obtained directly by solving the transcendental
equation (2.10) for a pair of purely imaginary roots ±iλI and, therefore, is more accurate.

Next, we illustrate a delayed bifurcation behavior for the onset of oscillations. It is well-known
that a slow sweep of a parameter through a Hopf bifurcation point can cause delayed transitions to
oscillatory dynamics in systems of ODEs [1]. In order to observe such a delayed Hopf bifurcation effect
in our PDE setting, the following numerical experiment was performed: We let κ ≪ 1 be a second
small parameter and µ(t) ∈ R2 be a time-dependent vector of bifurcation parameters such that

µ(t) = µ0 + (1− κt)ε2µ1. (4.3)
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Here, the parameter ε does not need to be particularly small because the weakly nonlinear results from
§2 and §3 do not apply to time-dependent bifurcation parameters. Full numerical results of the delayed
bifurcation are shown in Fig. 10. The initial vector of bifurcation parameters is µ(0) = µ0 − ε2µ1, for
which the solution decays exponentially. The “static” bifurcation point is reached when t = κ−1, after
which the instability region is entered and sustained oscillations are expected. However, because of the
slow parameter sweep, the transition to oscillations is delayed; an effect clearly observed in Fig. 10.
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Figure 10: Delayed Hopf bifurcation for the Brusselator kinetics with κ = 10−3, ε = 0.5, µ0 = (5, 2.32)T

and µ1 = (0.63, 0.78)T (see (4.3)). The left panel shows the path of the time-dependent parameter
sweep, with the initial and final points being in the stability (bottom left) and instability (up right)
regions, respectively. Numerical results for the membrane-bound activator u(t) are shown in the right
panel. The “static” bifurcation point is reached when t = 1000, but the transition to a periodic solution
is delayed. The reduced PDE-ODE model (because of azimuthal invariance) is discretized using the
method of lines. The stiff ODE MATLAB solver ode23s is used for the numerical time integration.

Next, we show that with Brusselator kinetics, there is a parameter regime where the Hopf bifurca-
tion switches from supercritical to subcritical. A new linear stability phase diagram illustrating this
transition is shown in Fig. 11. For this parameter set, the Hopf locus, provided by the trivial n = 0
mode (black curve), is the primary instability. The same parameter values as given in the caption of
Fig. 2 are used here, with the only difference being that the Brusselator kinetic parameter b has been
increased from b = 7.5 to b = 8.7. For this parameter set, we conclude that ratios of bulk diffusivity and
coupling given by Dv/Du ≫ 1 and Kv/Ku ≈ 1 are sufficient for the Hopf bifurcation to be subcritical.
Alternatively, when Dv/Du ≈ 1 and Kv/Ku ≫ 1, the Hopf bifurcation is supercritical. This criticality
change is also shown in Fig. 12, where we clearly observe that the real part of the cubic term coefficient
in (2.80) changes sign at some point along the Hopf locus.
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Figure 11: Stability curves associated with the modes n = 0, 1, 2 in the plane of parameters (Kv, Dv)
for the Brusselator kinetics. Other parameter values are R = 1, Du = 1, σu = σv = 0.01, Ku =
0.1, du = dv = 0.5, a = 3 and b = 8.7. The region of linear stability is located to the left of the n = 0
stability boundary, which corresponds to a locus of Hopf bifurcations. In the right panel, the symbol
’o’ indicates a supercritical bifurcation while ’+’ indicates a subcritical bifurcation. In the right panel,
notice the transition from sub to super-criticality along the n = 0 Hopf locus (black curve).
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Figure 12: Transition from a supercritical to a subcritical Hopf bifurcation bifurcation for the Brus-
selator kinetics. The plot shows that the real part of the coefficient g2100 in (2.80), when numerically
evaluated along the Hopf stability curve in Fig. 11, exhibits a sign-change.

To confirm this transition to a subcritical Hopf bifurcation as predicted from our weakly nonlinear
theory, we perform numerical simulations near the intersection point of the Hopf locus in Fig. 11 and
the horizontal line Dv = 9. The global bifurcating branch computed with AUTO is shown in the left
panel of Fig. 13. In the right panel of Fig. 13 we plot the corresponding numerically computed period
of oscillations. These numerical results confirm the predicted loss of stability through a subcritical
Hopf bifurcation. The results also suggest bistability between a large amplitude limit cycle and the
steady-state solution in a small parameter window prior to the bifurcation point. From the left panel
of Fig. 13, the stable and unstable branches of periodic solution merge at a fold point around Kv ≈ 0.8.
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Figure 13: The left panel shows the global bifurcating branch for the membrane-bound activator
species. The right panel shows the numerically-computed period as a function of the coupling Kv when
Dv = 9 (other parameters as in the caption of Fig. 11). Notice that the initial point matches the linear
period predicted by the asymptotic theory, indicated by a black ”x”. The computation is performed
with AUTO using N = 200 radial grid points in the bulk.

In Fig. 14, we compare the numerically computed amplitude of oscillations against results from our
weakly nonlinear theory for ε = 0.025. Despite the slight shift between the bifurcation points, good
agreement is once again obtained. However, we notice that the range over which the two branches
coincide is much more narrow than for their supercritical counterparts. This is likely due to the real
part of the cubic term coefficient in (2.80) having a rather small magnitude when Dv = 9 (see Fig. 12),
which suggests that the unresolved quintic term in the normal form may be quantitatively significant.

Finally, in Fig. 15 we show numerical PDE results of large amplitude relaxation oscillations that
can occur on the horizontal line Dv = 9 in Fig. 11. These oscillations, characterized by sharp varia-
tions followed by a rest period, are often observed in simpler ODE models having a subcritical Hopf
bifurcation. They are qualitatively distinct from the harmonic-type oscillations in Fig. 6 and Fig. 8.

26



1.0485 1.0486 1.0487 1.0488 1.0489 1.049 1.0491 1.0492 1.0493 1.0494
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

AUTO WNA

Figure 14: Local unstable periodic solution branch past a subcritical Hopf bifurcation for the Brusse-
lator kinetics with Dv = 9 (other parameters as in the caption of Fig. 11). The red curve is obtained
through numerical continuation using AUTO, while the black curve is the amplitude uamp as predicted
by the weakly nonlinear theory in (3.8) with ε = 2.5× 10−2.
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Figure 15: Highly nonlinear relaxation-type oscillations near a subcritical Hopf bifurcation for the
Brusselator kinetics. As shown in the left panel, the simulation is performed on the horizontal line
Dv = 9 with ε = 0.1. In the middle panel, the numerically computed spatio-temporal bulk oscillations
are plotted for the activator species U(r, t), with the radius r on the vertical axis and time t on the
horizontal axis. The right panel shows the corresponding relaxation oscillations for the membrane-
bound activator species. The initial condition corresponds to the unstable periodic solution in the
weakly nonlinear regime as given by (3.7) with θ0(0) =

π
2
, t = 0, ε = 0.1.

4.1.2 Turing patterns arising from pitchfork bifurcations

In this subsection the formation of spatially inhomogeneous steady states close to a pitchfork (or Turing)
bifurcation is investigated numerically. Since there is no azimuthal invariance near such bifurcations,
one cannot use 1-D finite differences to spatially discretize the system as in §4.1.1. Hence, the full
spatial structure of the model must be considered, and its discretization is done with the finite element
method as implemented by the PDE Toolbox of MATLAB [22]. To be more precise, linear triangular
elements are used to discretize the bulk domain, while the 1-D Laplace-Beltrami boundary diffusion
operators is handled with second-order centered differences using the nodes attached to the boundary.

As mentioned in [2], the computation of general equilibria to system of elliptic PDEs posed on
arbitrary 2-D or 3-D domains is a challenging task. For these domains, the spatial discretization
yields large and sparse systems of nonlinear equations for which traditional software like AUTO [6] and
MATCONT [5] are of limited use. It is to address these issues that a number of new MATLAB packages
such as pde2path [26] and Computational Continuation Core (coco) [4] have emerged in the research
community. While pde2path has been specifically designed for systems of elliptic PDEs, it cannot handle
nonstandard boundary conditions like those encountered in bulk-surface coupled models. The base-state
can been computed using the Equilibrium Point toolbox from coco, but our attempt to compute the
global bifurcating branch at a pitchfork bifurcation point has been unsuccessful. From a numerical
bifurcation analysis perspective, the situation is rather degenerate since rotational symmetry results in
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two critical eigenfunctions at the pitchfork bifurcation point. Consequently, the results exhibited in this
section mostly rely on full numerical time-dependent simulations using Implicit-Explicit time stepping;
an approach that unfortunately only reveals stable steady states (either patterned or patternless). In
practice, the simulation is stopped when the relative distance between the current and the previous
time-step becomes smaller than some given tolerance. More details regarding the spatial discretization
and the numerical methods are given in Appendix A.

First, the loss of stability of the modes n = 1 through subcritical pitchfork bifurcations as the
coupling rate Kv increases is investigated numerically. The reader is referred to Fig. 1 and Fig. 2,
where we consider the horizontal line Dv = 5 and its intersection with the n = 1 pitchfork curve. In
the right panel of Fig. 16 the amplitude of the membrane-bound activator species for the Schnakenberg
kinetics is shown. The black curve is the unstable bifurcating branch and is only valid locally. In
theory, the unstable (black) and the stable (red) branches should merge at a turning (or fold) point
near Kv ≈ 2.7976. Such a feature cannot be detected with the weakly nonlinear analysis from §2 or
with direct time-stepping numerical simulations. Instead, numerical continuation methods must be
employed. Having discussed the challenges associated with such a task earlier in this subsection, the
computation of the full branch is an open problem. Nevertheless, the solution in the weakly nonlinear
regime can be used as an initial condition for a direct numerical simulation, with the anticipation that
it evolves to the stable branch. The result of such an experiment is shown in Fig. 17 for ε = 0.01.
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Figure 16: Subcritical pitchfork bifurcation with the Schnakenberg kinetics and Dv = 5 (the other
parameters are given in the caption of Fig. 1). The left panel is a magnified version of the stability
diagram near the bifurcation point for ε = 0.1. The stability region is located to the right of the
blue curve, while the red curve indicates the parameter path. The right panel displays the maximal
amplitude of the membrane-bound activator, with the black curve obtained from the weakly nonlinear
theory (2.81) while the red curve is computed through successive numerical simulations. The boundary
of the circular bulk domain is discretized with N = 200 nodes.

The results of similar experiments using the Brusselator kinetics with Dv = 5 (see the phase diagram
in Fig. 2) are shown in Fig. 18 and Fig. 19. Notice here that the unstable branch goes farther backward
than in the Schnakenberg case before reaching a ”turning point” at around Kv ≈ 2.66. The pitchfork
bifurcation point is at Kv0 ≈ 3.02. Again, this is an example of a hard loss of stability of the base-state.

Despite being unable to compute bifurcating branches using numerical continuation methods, the
package coco (cf. [4]) can be used to estimate the shift in bifurcation points between the full model
and its finite element discretization. In Fig. 20 we show the results of such a convergence study, where
hmax is the maximal distance between two nodes on the mesh. Letting N be the number of equidistant
nodes on the circular boundary, then hmax is chosen as hmax = 2πR/N . As hmax tends to zero, the
discrepancy between the bifurcation points is expected to converge like

‖µnum
0 − µwna

0 ‖2 ≤ O(hγmax) , (4.4)

for some positive power γ. Estimating the slope of the curve in the right panel of Fig. 20 yields γ ≈ 1.97.
Similar quadratic convergence rate was obtained for bifurcation points of systems with radial symmetry
discretized with simple finite differences (see §4.1.1).
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Figure 17: A numerically computed stable pattern for t ≈ 45452 in the vicinity of a subcritical pitchfork
bifurcation under Schnakenberg kinetics. The black dashed curves in the right panel correspond to
the unstable membrane-bound patterns, while the red curves correspond to the stable patterns. The
solution in the weakly nonlinear regime, as given by (3.15) with ε = 0.01, n = 1 and θn = 0, is used
as an initial condition. Because the critical eigenvalues are very small near the bifurcation point, the
numerical solution only very slowly reaches the stable patterned state.
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Figure 18: Subcritical pitchfork bifurcation with the Brusselator kinetics, Dv = 5, and ε = 0.75 (the
other parameters are given in the caption of Fig. 2). Again, the unstable branch goes backward, under
which the base-state solution is linearly stable. The boundary of the circular bulk domain is discretized
with N = 200 nodes.
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Figure 19: A numerically computed stable pattern at t = 1000 (red curve), near the steady state, as
evolved from the unstable branch near a subcritical pitchfork bifurcation with the Brusselator kinetics
and ε = 0.1. The left panel shows the corresponding solution in the bulk.
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Figure 20: Convergence of pitchfork bifurcation points between the continuous versus the spatially
discretized system on the vertical line Dv = 5 for the Brusselator kinetics (see the plots in Fig. 2). The
right panel plots on a logarithmic scale the distance between the bifurcation points in the discrete versus
continuous systems as hmax tends to zero. The left panel shows the standard Euclidean norm of the
base-state solution as the parameter Kv increases past the pitchfork bifurcation point when N = 128
nodes are used on the boundary, yielding a maximal distance of hmax ≈ 4.9× 10−2.

In a different parameter regime, we now show that under Brusselator kinetics the branching behavior
at the pitchfork point can be supercritical instead of subcritical. For the parameter set in Fig. 21 a new
pitchfork bifurcation locus is plotted in the Dv versus Kv parameter plane. By numerically evaluating
the cubic coefficient of the normal form (2.81), the weakly nonlinear theory from §2 now predicts a
supercritical pitchfork bifurcation (see the right panel of Fig. 21). In comparison with the parameter
set used for the subcritical case in Fig. 2, we took a slightly different value for b in the Brusselator
kinetics, while the surface diffusion coefficients were increased to du = dv = 1.

To validate the prediction of supercriticality, numerical bifurcation results and full PDE simulations
are undertaken near a bifurcation point on the stability boundary. In the right panel of Fig. 22 the
amplitude of the patterned state for the membrane-bound activator whenKv increases on the horizontal
line Dv = 15 is shown. Here, a rather close agreement between (2.81) from the weakly nonlinear theory
and the numerical bifurcation results is obtained because the bifurcating branch is stable. Moreover, as
predicted by the theory, the amplitude of the patterned state scales as the square root of the distance
from the bifurcation point. The corresponding stable pattern computed from full PDE simulations with
ε = 0.1 is shown in Fig. 23 and favorably compared with results from the weakly nonlinear theory.
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Figure 21: Left panel: the pitchfork bifurcation (n = 1 mode) curve in the Dv versus Kv parameter
plane for Brusselator kinetics with a = 3 and b = 5. Other parameter values are R = 1, Du = 1, σu =
σv = 0.01, Ku = 0.1, du = dv = 1. The region of linear stability is to the left of the curve. Right panel:
the corresponding coefficient g0021 of the cubic term in the normal form (2.81), along the pitchfork
bifurcation locus. This coefficient is negative, indicating a supercritical pitchfork bifurcation.

Next, we give a convergence study comparing WFEM , the numerical solution to the spatially dis-
cretized system, with the leading-order asymptotic solution (3.15) in the weakly nonlinear regime, and
denoted by WWNA. Such an experiment is only valid when testing a stable patterned solution arising
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Figure 22: Stable bifurcating branch past a supercritical pitchfork bifurcation for the Brusselator
kinetics, with the rightmost point corresponding to ε = 0.2. The parameters are as given in Fig. 21.
The left panel shows the parameter path past the bifurcation point. The right panel compares uamp,
as obtained from the weakly nonlinear theory (2.81), with numerically computed results from PDE
simulations.
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Figure 23: Stable pattern near a supercritical pitchfork bifurcation of the n = 1 mode with ε = 0.1,
corresponding to the point indicated by a blue triangle on the bifurcation branch plotted in the right
panel of Fig. 22. Left panel: contour plot of the activator concentration in the bulk (U). Right panel:
membrane-bound patterns. A close agreement between the weakly nonlinear theory predicted by (3.15)
(black dashed curve) and the (nearly coinciding) numerical PDE results (red curve) is obtained. Here
the nonzero phase θn in (3.15) was calculated from the numerical solution, whose initial condition is
a linear combination of the base-state solution with the critical eigenvectors of the Jacobian of the
spatially discretized system.

from a supercritical pitchfork bifurcation. Referring to Fig. 23, the stable pattern for ε = 0.1 is repeat-
edly computed while decreasing hmax on a uniform grid. For each hmax value, the error is estimated
using the weakly nonlinear asymptotic solution as a substitute for the unknown exact solution.

A plot of the error as a function of hmax is shown in Fig. 24, where two different solution measures
are employed. Assuming sufficient regularity of the exact solution, and given that the mesh consists of
linear triangular elements, the error is expected to behave like

‖W −WFEM‖L∞ ≤ O
(
h2max| log hmax|

)
, as hmax → 0 , (4.5)

using the L∞ norm (see remark 4.41 in [13]). For the L2 norm, quadratic convergence rate is expected
(see Theorem 4.34 in [13])

‖W −WFEM‖L2 ≤ O(h2max) , as hmax → 0 . (4.6)

The plots in Fig. 24 confirm the bounds given in (4.5) and (4.6), with the error as measured with the L∞

norm (right panel) converging slightly faster than expected. The choice of a temporal discretization,
along with an associated stopping criteria for the solver, may influence the convergence of the numerical
solution. Although it should not affect the speed of convergence, the error estimates are also biased
since we are using the leading-order asymptotic solution (3.15) as a proxy for the exact solution.
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Figure 24: Convergence of the numerical solution as hmax approaches zero. Left panel: error measured
with the L2 norm (red curve) is compared with h2max. Right panel: the error in the L∞ norm (black
curve) is compared with h2max| log hmax|. The approximate weakly nonlinear solution is obtained from
(3.15) with ε = 0.1, n = 1 and the correct phase θn (so that the numerical solution matches the solution
in the weakly nonlinear regime).

4.2 Codimension-two bifurcations

As shown in Fig. 1 and Fig. 2 for the Schnakenberg and Brusselator kinetics, respectively, the stability
curves associated with the Hopf mode n = 0 and the pitchfork mode n = 1 intersect at a unique
codimension-two bifurcation point. In this subsection, we use the weakly nonlinear theory developed
in §3.2 to explore the dynamics of the full model in the vicinity of such a point.

Near a codimension-two bifurcation point, a linear approximation of the intersecting stability curves
is obtained by using the leading-order result (2.82) from the weakly nonlinear analysis. This is done by
applying Lemma 3.3 to the generic single-mode stability boundary defined in (3.25). This yields,

β1 = T (H1) = µ0 +R
(

−
π

2

)

g0010 , β2 = T (H2) = µ0 +R
(π

2

)

ℜ(g1000) , (4.7)

where β1 and β2 are, respectively, tangent to the pitchfork and Hopf stability boundaries.
Next, the cubic term coefficients in (3.20) are evaluated numerically for the Brusselator and Schnaken-

berg models. These results are given in Table 2. The dynamics of the truncated normal system (3.20)
are then classified in Table 3 into two distinct cases. In this table, the reader is referred to (3.22) for
the definition of γ, η and d.

Table 2: Numerical evaluation of the coefficients pij in the normal form (3.20) for the codimension-two
bifurcation point for the Schnakenberg and Brusselator kinetics. The parameter values are the same as
in the caption of either Fig. 1 (Schnakenberg) or Fig. 2 (Brusselator).

Schnakenberg Brusselator
µ0 (4.26, 3.10)T (4.25, 3.38)T

p11 0.19096 1.3146
p12 −1.2752 0.87043
p21 −2.3796 −0.52089
p22 −0.48351 −0.162

Table 3: Two specific pitchfork-Hopf unfoldings (see Table 7.5.2 in [14])

Schnakenberg (case VIII) Brusselator (case VIa)
d -1 -1
γ < 0 > 0
η < 0 < 0

d− γη < 0 > 0
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Figure 25: Parametric portraits in the space of generic parameters (δ1, δ2) (left panel) and original
bifurcation parameters (Kv, Dv) (right panel) for the Schnakenberg kinetics with parameter values as
in Fig. 1. In the left panel, the line H1 is the vertical δ2-axis (blue), while the line H2 is the horizontal
δ1-axis (black). The semi-infinite lines T1 and T2, respectively, correspond to the red dashed and full
lines. Application of the map (3.28) to the curves in the left panel yields the curves in the right panel.
In particular, the lines H1,2 are mapped to β1,2 (see (4.7)), which are tangent to the pitchfork and Hopf
stability boundaries.
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Figure 26: Phase diagrams of the coupled system of amplitude equations (3.21) with unfolding of type
VIII (see [14]). The mixed-mode equilibrium E3 from panels 4 and 5 is a hyperbolic saddle.

From Table 3, and based on §4.2, it follows that the case involving the Schnakenberg kinetics is sim-
ple, whereas for the Brusselator kinetics the mixed-mode equilibrium E3 undergoes a Hopf bifurcation
that is degenerate in the truncated cubic normal form. In this more difficult case, it is an open problem
to calculate the fifth-order term in the normal form which, if nonzero, would eliminate this degeneracy.

Parametric portraits for the simple case are given in Fig. 25. The four lines H1, H2, T1, and T2
divide the (δ1, δ2) parameter plane into six open regions, for which the corresponding phase portraits
are shown in Fig. 26. In region 1, there is a unique unstable equilibrium E0. Stability is gained when
crossing into region 2, which also generates an unstable equilibrium E2. When entering region 3 from
region 2, a stable equilibrium (E2) bifurcates from the origin while E0 becomes unstable again and
E1 remains unstable. From regions 3 to 4, the mixed-mode equilibrium E3 bifurcates from E1. Next,
entering region 5 from region 4 causes E1 to vanish. When finally crossing the T1 line into region 6,
the mixed-mode equilibrium collapses with the single mode equilibrium E2, causing E2 to lose stability.
Moreover, when it exists in regions 4 and 5, the mixed-mode E3 is a hyperbolic saddle whose stable

33



manifold forms the boundary between the basin of attraction of the stable equilibrium E2 and some
unknown dynamics with large w amplitude.

Restoring the angular variable to (3.20), some equilibria must be interpreted differently. In Fig. 26,
the phase portraits may be viewed with the r-axis rotating around the w-axis. Hence, both E2 and E3

now correspond to limit cycles, with their stability properties remaining the same. The equilibria E0

and E1 each remain steady states of the system. The line H2 becomes a supercritical Hopf bifurcation,
H1 remains a subcritical pitchfork bifurcation, while T1 and T2 each remain a mixed-mode bifurcation.

Since for this simple case the nondegeneracy conditions are satisfied, the stability results associated
with the normal form can be interpreted in the context of the bulk-surface PDE model. The origin E0

becomes the base-state (2.3), E1 corresponds to an unstable Turing-type pattern of the first circular
harmonic, and E2 to radially symmetric nonlinear oscillations. The mixed-mode E3 corresponds to
nonlinear oscillations around a spatially inhomogeneous equilibrium, which is a type of breather solution.
When mapped to the parameter space defined by Kv and Dv, its area of existence becomes fairly narrow
(see regions 4 and 5 in the right panel of Fig. 25). Because the mixed-mode solution possesses the
stability property of a saddle, bistability between a radially symmetric periodic solution and a large
amplitude Turing pattern is expected in this region.

We remark that another equilibrium corresponding to a stable Turing pattern state must also exist
because of the dissipative nature of the system, which prevents the solution from becoming unbounded.
In §4.1, numerical evidence for the existence of such a large amplitude stable Turing pattern near a
subcritical pitchfork bifurcation was shown for both the Schnakenberg and Brusselator kinetics.

Although it is expected to be unstable, a numerical simulation starting very near the mixed-mode
solution should stay near it for some time before drifting away exponentially. PDE simulation results are
presented in Fig. 27 for parameter values taken in region 5 and with the initial condition corresponding
to E3. Good agreement between the weakly nonlinear and numerically computed mixed-mode PDE
membrane-bound patterns is shown in the left panel of Fig. 28. This agreement is expected for early
simulation time. In the right panel of Fig. 28, we observe that the difference between the PDE numerical
solution and the asymptotic mixed-mode solution in the weakly nonlinear regime grows in time.

As time increases, our full numerical results show a transition toward a spatially homogeneous peri-
odic solution. However, in this parameter region, bistability is expected and a different initial condition
may lead, instead, to a spatially inhomogeneous equilibrium. Fig. 29 presents two simulation outcomes
performed in region 5, where different initial conditions have led to either a spatially homogeneous
periodic solution or a stable Turing pattern.
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Figure 27: Interaction of a supercritical Hopf and subcritical pitchfork bifurcations for the Schnakenberg
kinetics. The simulation corresponds to region 5 (left panel). Right panel: a space-time contour plot of
the membrane-bound activator species u(θ, t), showing oscillations around a spatial pattern. Equation
(3.30) with ε = 0.1, n = 1 and phases θ0(0) = θn = 0 is used as an initial condition.
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Figure 28: Same simulation as in Fig. 27. Left panel: membrane-bound PDE numerically computed
solution (red curve) and the nearly coinciding weakly nonlinear solution (black dashed curve) at time
t = 100. Right panel: difference between these two solutions plotted versus time using the L2 norm.

Figure 29: Bistability between a spatially homogeneous periodic solution (left panel) and a stable
Turing pattern (right panel) for the Schnakenberg kinetics, with bifurcation parameters taken from
region 5 with ε = 0.1. Left panel: the initial condition is the mixed-mode solution in the weakly
nonlinear regime, with the space-time contour plot showing the long-time oscillatory dynamics of the
simulation in the right panel of Fig. 27. Right panel: the initial condition is the base-state solution
slightly perturbed with the critical eigenvectors of the Jacobian of the spatially discretized system.
Notice here that the oscillations become extinguished as time increases.

Next, we discuss the more intricate case that results from the Brusselator kinetics (see Table 3).
Parametric portraits are given in Fig. 30, with corresponding phase diagrams provided in Fig. 31. The
regions 1, 2, 3, and 7 yield the same phase diagrams as for the simple case analyzed above. Here,
region 7 of Fig. 30 corresponds to region 6 of Fig. 25. When crossing the line T1 from regions 3 to 4, E3

bifurcates from E2, with E2 losing stability. In region 4, E3 is a stable focus while E0, E1, and E2 are all
unstable. On the line C, the equilibrium E3 undergoes a Hopf bifurcation within the truncated system
of amplitude equations (3.21). Because only cubic terms are included, the bifurcation is degenerate
and the family of limit cycles persist only on the line itself. Also, for this threshold value there is a
heteroclinic connection between the two single mode equilibria. In region 5, the four equilibria are
unstable. Finally, between regions 5 and 7, the successive crossing of the lines T2 and H2 causes the
mixed-mode equilibrium to collapse on E1, after which E1 collapses at the origin.

Restoring the angular variable to the truncated system of amplitude equations, we expect torus
(Neimarck-Sacker) bifurcations for parameter values on a curve tangent to C and an exponentially thin
(as (δ1, δ2) → 0) region of parameters near C corresponding to some kind of chaotic behaviour (see [18]
and [28]). The possibility of such intricate dynamics is interesting, but it seems likely to be confined to
an extremely small region of parameter space that would be virtually undetectable in PDE simulations.
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Figure 30: Parametric portraits in the space of generic parameters (δ1, δ2) (left panel) and original
bifurcation parameters (Kv, Dv) (right panel) with Brusselator kinetics. The lines H1,2 and T1,2 are
described in the caption of Fig. 25, with the additional line C (equation (3.27)) in cyan color in the left
panel. Applying the affine transformation defined in Lemma 3.3 yields the plot in the right panel.
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Figure 31: Phase diagrams of the truncated system of amplitude equations (3.21) with unfolding
of type VIa (see Fig. 7.5.5 of [14]). The phase diagram corresponding to the line C in Fig. 30 is
structurally unstable, i.e. the retention of generic higher-order terms will remove the degeneracy of the
Hopf bifurcation and introduce a heteroclinic orbit (see [14] and [18] for more details).

In order to remove the degeneracy of the Hopf bifurcation, higher-order terms should be added
to the normal form. Since this challenging computation, starting from our coupled bulk-surface PDE
model, is left as an open problem, some bifurcation results from regions 4, 5 and on the line C in Fig. 30
cannot be transferred to the original system. It is nevertheless possible to investigate numerically the
breather-type solutions within this narrow parameter regime (when considering the space defined by
the original bifurcation parameters). Fig. 32 shows simulation results for short times, and for parameter
values taken in region 5, where the mixed-mode solution is expected to be unstable.
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Figure 32: Interaction of a supercritical Hopf and subcritical pitchfork bifurcations for Brusselator
kinetics with ε = 0.1. The simulation corresponds to region 5 (see left panel). Right panel: a space-
time contour plot of the membrane-bound activator species u(θ, t), which exhibits oscillations around
some spatial pattern. The initial condition is the mixed-mode solution in the weakly nonlinear regime.
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Figure 33: Same simulation as in Fig. 32 for the Brusselator kinetics, with ε = 0.1. Left panel:
the membrane-bound numerical (red curve) and the nearly coinciding weakly nonlinear (black dashed
curve) solutions at time t = 50. Right panel: difference between these two solutions plotted over time
using the L2 norm.

The right panel of Fig. 33 shows that the distance between the numerical solution and the solution
in the weakly nonlinear regime grows over time. However, in contrast to the previous case with the
Schnakenberg kinetics, the long time integration in Fig. 34 clearly reveals a transition towards a spatially
inhomogeneous steady-state and the absence of bistability with the spatially homogeneous periodic
solution. This is consistent with the phase diagram for parameters in region 5 in Fig. 30 and Fig. 31.

Finally, we remark that when applied to systems of PDEs, the normal form analysis of codimension-
two bifurcations must be interpreted with care, especially when degenerate local bifurcations occur in
the system of amplitude equations [29]. Moreover, the parameter regime and phase space ranges where
the conclusions hold can be fairly narrow, making it very difficult for PDE direct numerical simulations
to reproduce delicate dynamical behaviors that occur in the ODE amplitude equations.

5 Global dynamics via full numerics: rotating waves

In this section, full numerical simulations are used to briefly explore novel dynamical behaviors in the
highly nonlinear regime, away from bifurcation points, that are due to the bulk-surface coupling. For
the Brusselator reaction kinetics, we study the formation of rotating waves and show that they arise
when a nontrivial spatial mode undergoes a Hopf bifurcation. Allowing for different adsorption and
desorption rates for each species seems to be a key condition behind the formation of such waves.
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Figure 34: Transition between the mixed-mode solution and a stable Turing pattern for the Brusselator
kinetics for bifurcation parameters taken from region 5 of Fig. 31 with ε = 0.1. Left panel: a space-time
contour plot. Right panel: plot of the L2 norm of the numerical solution. The initial transient has been
removed for both plots.

We consider here a modified coupled bulk-surface model for which the rates of adsorption and
desorption are different for each species. Let ra and pa be the per capita activator and inhibitor rates of
adsorption. Similarly, let rd and pd be the per capita desorption rates. Then, the boundary conditions
in (1.3) are reformulated as

Du∂rU |r=R = rdu− raU |r=R , Dv∂rV |r=R = pdv − paV |r=R . (5.1)

Similar boundary conditions are considered in [19] and [21]. These new boundary conditions modify
the dynamics on the surface, so that (1.4) is replaced by

∂tu =
du
R2
∂θθu− rdu+ raU |r=R + f(u, v) , ∂tv =

dv
R2
∂θθv − pdv + paV |r=R + g(u, v) . (5.2)

After calculating the radially symmetric base-state for this modified bulk-surface model, a linear sta-
bility analysis readily provides a transcendental equation for the growth rate λ associated with the
circular harmonic of mode n. In place of (2.10), the growth rates are roots of Fn(λ) = 0, where

Fn(λ) =

(

λ− f e
u +

rd

1 + raIn(ΩuR)
DuΩuI′n(ΩuR)

+
n2du
R2

)(

λ− gev +
pd

1 + paIn(ΩvR)
DvΩvI′n(ΩvR)

+
n2dv
R2

)

− f e
vg

e
u . (5.3)

Following a remark from [19] on the conditions underlying the emergence of traveling waves, we
restrict the parameter space by setting the diffusion coefficients to be equal for both species. More
specifically, the following set of parameters is considered:

R = 1, Du = Dv = 1, σu = σv = 0.5, du = dv = 0.5, ra = 0.1, rd = 1, pa = 1, pd = 0.1, a = 3 .
(5.4)

By allowing the Brusselator kinetic parameter b in (1.6) to be free in equation (5.3), in Fig. 35 we show
numerically that the system undergoes a series of Hopf bifurcations, each of which is associated with
a spatial mode n. Notice in the left panel of Fig. 35 that the trivial mode is the first to lose stability.
Hence, we expect the waves to coexist with radially symmetric oscillations in the fully nonlinear regime.

For b = 8, full PDE numerical computations of this modified bulk-surface model reveal three distinct
types of temporally oscillatory solutions depending on the initial data. A clockwise rotating wave is
shown in Fig. 36, an anti-clockwise rotating wave is shown in Fig. 37, and finally a radially symmetric
oscillatory solution is shown in Fig. 38. For each case, appropriate initial conditions favoring a particular
mode have led to the desired dynamics. We have also tried to compute a standing wave by stimulating
the modes n = ±1, but our numerical results suggest such a solution to be unstable.
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Figure 35: Real (left panel) and imaginary (right panel) parts of the most unstable eigenvalues,
computed from (5.3), for the mode n = 0, 1, 2 as the kinetic parameter b increases. The parameters
are given in (5.4).
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Figure 36: Clockwise rotating waves for the Brusselator kinetics (1.6) with b = 8 and for the parameter
set (5.4). The initial condition corresponds to a perturbation of the base-state solution favoring the
mode n = 1. The left panel shows a space-time contour plot of the membrane-bound activator species.
In the right panel, the L2 norm of the solution converges to some equilibrium values after an initial
oscillatory transient.
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Figure 37: Anti-clockwise rotating waves with the Brusselator kinetics (1.6) and the same parameter
values as in Fig. 36. The initial condition corresponds to a perturbation of the base-state solution
favoring the mode n = −1. The left panel shows a space-time contour plot of the membrane-bound
activator species. In the right panel, we see the L2 norm of the solution converging to some equilibrium
values in a similar fashion as for the clockwise waves.
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Figure 38: Radially symmetric oscillations with the Brusselator kinetics and the same parameter
values as in Figs. 36–37. The initial condition corresponds to a perturbation of the base-state solution
favoring the trivial mode (n = 0). The left panel shows a space-time contour plot of the membrane-
bound activator species, which clearly exhibits spatially uniform oscillations. In the right panel, the
solution in L2 norm undergoes sustained oscillations.

These numerical results give only a glimpse of novel global solution structures for coupled bulk-
surface models that can occur away from bifurcation points. A rigorous analysis of the existence of
such rotating traveling waves, including a precise determination of the parameter space involving the
adsorption and desorption rates where they occur, is beyond the scope of this paper.

6 Discussion

On a two-dimensional circular domain, we have introduced and analyzed a class of coupled bulk-surface
reaction-diffusion models for which a passive diffusion process occurring in the interior bulk domain is
linearly coupled to a nonlinear reaction-diffusion process on the domain boundary. In §2, a multiple
time-scale approach was employed to systematically derive amplitude equations near three different
instabilities: the Hopf, the pitchfork (or Turing), and the pitchfork-Hopf bifurcations. In §3, we used
the normal form equations to determine the stability of bifurcating branches in the weakly nonlinear
regime. The theory was illustrated using the classical Schnakenberg and Brusselator kinetics in §4,
where good agreement between numerical and analytical solutions was observed. Our hybrid analytical-
numerical approach has shown that the linear coupling of a diffusive bulk to an active membrane can
lead to either oscillatory dynamics or pattern formation. Finally, the formation of rotating waves is
explored through numerical simulations in §5.

Several open problems related to coupled bulk-surface reaction-diffusion systems warrant further
investigation. One challenge concerns the computation of global bifurcating branches, a task amenable
to numerical bifurcation analysis. The classical software AUTO [6] has been successfully applied to the
reduced 1-D radially symmetric model with angular invariance (in the context of Hopf bifurcations),
but it cannot handle implicit systems of differential equations such as those obtained after discretizing
the full 2-D model using finite elements (see Appendix A for details). A promising alternative to AUTO
that has been explored is the software package coco (cf. [4]). The Equilibrium Point toolbox from
coco, combined with the PDE toolbox from MATLAB [22], has been used to compute base-state
solution families of the full model. Successive mesh refinement has revealed quadratic convergence
between the bifurcation points predicted by the weakly nonlinear theory and as detected by coco.
However, because of rotational symmetries, we have been unable to numerically branch off at a pitchfork
bifurcation point. These bifurcations are characterized by the crossing of two nearly identical eigenvalues
(spatial discretization causes some loss of symmetry) through the origin, and thus there are two critical
eigenvectors at the branch point. Further work in this direction is needed in order to numerically resolve
the bifurcating branch arising from this rather degenerate bifurcation point.

The weakly nonlinear analysis carried out in this work has revealed a rich bifurcation structure
consisting of both subcritical and supercritical codimension-one bifurcations, as well as codimension-
two pitchfork-Hopf bifurcations. On two occasions, the cubic normal forms derived in §2 were not
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sufficient to capture the dynamical behavior of the original system up to topological equivalence. The
first situation, discussed in §4.1.1 for the Brusselator membrane kinetics, concerns the transition from
a supercritical to a subcritical Hopf bifurcation. There, parameter values at which the bifurcation
becomes a degenerate Hopf (Bautin) bifurcation were found. For the same kinetics, the classification
of codimension-two bifurcations in §4.2 has also revealed some degeneracy in the phase portraits of the
truncated system of amplitude equations, which resulted from the mixed-mode equilibrium undergoing
a Hopf bifurcation. For those two cases, the computation of an additional (nonzero) term is needed
to fully resolve the degeneracy in the normal forms. Further details on this lengthy computation for
simpler ODE models can be found in [18] and [14].

Through numerical simulations, our work has revealed the existence of clockwise and anti-clockwise
rotating waves coexisting with radially symmetric oscillations. Hence, an open question amenable to
a more rigorous PDE theory approach consists of proving the existence and the stability of the waves.
Key to this problem is the appropriate reformulation of the model into a moving coordinate frame.
Also, it would be worthwhile to precisely delineate the region in the adsorption-desorption parameter
space where rotating traveling waves can occur.

With their confined geometry, and because of the clear distinction between the dynamics in the
domain and on its boundary, coupled bulk-surface reaction-diffusion models are ideal for investigating
intracellular pattern-forming systems. For instance, a bulk-surface model for the spatio-temporal Min
protein patterning within E. Coli was formulated in [15] in a two-dimensional elliptical geometry. To
our knowledge, prior studies are often limited to linear stability analysis and full numerical simulations
(cf. [19], [21]). An open problem is to extend the weakly nonlinear theory developed in §2 to some
biologically relevant bulk-surface models in more general classes of domains (cylinders, spheres, ellipses).

Appendix A Numerical methods

In this appendix, the various numerical techniques employed in this paper are briefly explained. We
first focus on the finite differences discretization of the model with radial symmetry. Then, we present
the finite element discretization of the full bulk-surface reaction-diffusion system. Finally, the specific
Implicit-Explicit time-stepping method used for most numerical simulations is discussed.

A.1 Finite differences for the radially symmetric case

Assuming angular invariance of the coupled bulk-surface system, (1.2) and (1.4) become

∂U

∂t
=
Du

r

∂

∂r

(

r
∂U

∂r

)

− σuU ,
∂V

∂t
=
Dv

r

∂

∂r

(

r
∂V

∂r

)

− σvV , 0 < r < R , (A.1)

du

dt
= −Ku (u− U |r=R) + f(u, v) ,

dv

dt
= −Kv (v − V |r=R) + g(u, v) . (A.2)

The coupling between the PDEs in the bulk and the ODEs on the boundary occurs through the same
linear Robin-type boundary conditions as given in (1.3).

We let h = R/(N − 1) be the step size, where N is the number of mesh points. We then approximate
Uj(t) ≈ U(h(j − 1), t) and Vj(t) ≈ V (h(j − 1), t), for j = 1, . . . , N . Next, employing the method of

lines yields the following system of ODEs for the vector W = (U1, . . . , UN , V1, . . . , Vn, u, v)
T ∈ R2N+2:

Ẇ = AW + F (W ) . (A.3)

Here, A ∈ R(2N+2)×(2N+2) is the block diagonal matrix defined by

A =





DuL− σuI−Ku(
2
h
+ 1

R
)eNe

T
N O O

O DvL− σvI−Kv(
2
h
+ 1

R
)eNe

T
N O

O O O



 , (A.4)
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where I ∈ RN×N is the identity matrix, eN = (0, . . . , 1)T ∈ RN and each instance of O is an appropriate
matrix of zeros. Also, L ∈ RN×N corresponds to the discrete radially symmetric Laplacian, defined by

L =
1

h2










−4 4 0 . . . 0
1
2

−2 3
2

. . . 0
...

. . . . . . . . .
...

0 . . . 1− 1
2(N−2)

−2 1 + 1
2(N−2)

0 . . . 0 2 −2










. (A.5)

Finally, the nonlinear function F (W ) : R2N+2 → R2N+2 is defined by

F (W ) =







Ku

(
2
h
+ 1

R

)
ueN

Kv

(
2
h
+ 1

R

)
veN

−Ku (u− UN) + f(u, v)
−Kv (v − VN) + g(u, v)






. (A.6)

A.2 Finite element discretization

Let Ω be the two-dimensional circular bulk domain of radius R. In order to derive the weak formulation
for equation (1.2) at each t > 0, we multiply it by φ ∈ H1(Ω) and integrate by parts using the boundary
conditions (1.3). This yields that

∫

Ω

φUt = Ku

∫

∂Ω

φ(u− U)−Du

∫

Ω

∇φ · ∇U − σu

∫

Ω

φU , ∀φ ∈ H1(Ω), (A.7a)
∫

Ω

φVt = Kv

∫

∂Ω

φ(v − V )−Dv

∫

Ω

∇φ · ∇V − σv

∫

Ω

φV , ∀φ ∈ H1(Ω) . (A.7b)

We then define an appropriate mesh on Ω. First, we can parametrize the boundary ∂Ω by the
arc-length as

∂Ω =
{
X(σ) ∈ R2 | 0 ≤ σ < 2πR

}
. (A.8)

For simplicity, the nodes on the boundary are chosen to be evenly spaced by an arc-length step size of
dσ = 2πR/N , where N is the number of nodes on the boundary. Let Ntotal denote the total number of
mesh points in Ω, which includes those on the boundary. A partition can then be defined as follows:

∆hmax
= {xi = X((i− 1)dσ) | i = 1, . . . , N} ∪ {xi | ‖xi‖ < R for i = N + 1, . . . , Ntotal} , (A.9)

where hmax is the maximal distance between two adjacent nodes, defined by

hmax = max
j

min
i 6=j

‖xi − xj‖. (A.10)

In Fig. 39, we plot two different meshes approximating the unit disk given N = 200 boundary nodes.
Now, let Shmax

(Ω) be the space of piecewise linear functions defined on the mesh ∆hmax
and define

a basis {φi} such that any element Uhmax
∈ Shmax

(Ω) can be uniquely written as

Uhmax
=

Ntotal∑

i=1

Ui(x)φ(x) . (A.11)

Hence, the weak formulation (A.7) is approximated as

∫

Ω

φiUt = Ku

∫

∂Ω

φi(u− U)−Du

∫

Ω

∇φi · ∇U − σu

∫

Ω

φiU , for i = 1, . . . , Ntotal , (A.12a)
∫

Ω

φiVt = Kv

∫

∂Ω

φi(v − V )−Dv

∫

Ω

∇φi · ∇V − σv

∫

Ω

φiV , for i = 1, . . . , Ntotal . (A.12b)

42



-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 39: Two different meshes approximating the unit disk for N = 200, obtained with the PDE
Toolbox of MATLAB [22]. In the left panel, the mesh is finer near the boundary than in the center of
the bulk domain. In contrast, in the right panel, we have set hmax ≡ dσ.

Assuming that the first basis functions φi(x) for i = 1, . . . , N form a piecewise linear basis for the polyg-
onal approximation of the boundary, we can approximate the bulk U, V and surface u, v concentrations
by

Uhmax
=

Ntotal∑

i=1

Ui(t)φi(x) , Vhmax
=

Ntotal∑

i=1

Vi(t)φi(x) , uhmax
=

N∑

i=1

ui(t)φi(x) , vhmax
=

N∑

i=1

vi(t)φi(x) .

(A.13)
Then, substituting (A.13) into (A.12) we obtain the following linear system of ODEs:

MU̇ = − (KuQ+DuK+ σuM)U +KuQBTu, (A.14a)

MV̇ = − (KvQ+DvK+ σvM)V +KvQBTv, (A.14b)

where the vectors U , V ∈ RNtotal and u, v ∈ RN are defined by

U =






U1(t)
...

UNtotal
(t)




 , V =






V1(t)
...

VNtotal
(t)




 , u =






u1(t)
...

uN(t)




 , v =






v1(t)
...

vN(t)




 , (A.15)

and the matrices M, K, and Q, all in RNtotal×Ntotal , are

Mi,j =

∫

Ω

φiφj , Ki,j =

∫

Ω

∇φi∇φj , Qi,j =

∫

∂Ω

φiφj , i, j = 1, . . . , Ntotal . (A.16)

Finally, the rectangular matrix B ∈ RN×Ntotal is defined by

B = [IN×N |ON×(Ntotal−N)] , (A.17)

where IN×N is the identity matrix and ON×(Ntotal−N) is the appropriate matrix of zeros.
Simple finite differences are used to approximate the reaction-diffusion process on the boundary.

Using the same notation, (1.4) is approximated by

u̇ = duD2u−Ku (u− BU ) +
N∑

i=1

f(ui, vi)ei , v̇ = dvD2v −Kv (v − BV ) +
N∑

i=1

g(ui, vi)ei , (A.18)
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where the vectors ei for i = 1, . . . , N form the standard Euclidean basis in RN . Also, D2 ∈ RN×N is
the discrete one-dimensional Laplacian with periodic boundary conditions, defined as

D2 =
1

(dσ)2










−2 1 0 . . . 1
1 −2 1 . . . 0
...

. . . . . . . . .
...

0 . . . 1 −2 1
1 . . . 0 1 −2










. (A.19)

Now, let W (t) ∈ R2Ntotal+2N be the time-dependent solution of the spatially discretized bulk-surface
system, defined as

W =







U

V

u

v






. (A.20)

Combining the equations in (A.14) with (A.18), we obtain an implicit system of differential equations
for Ẇ , given by

CẆ = AW + F (W ), (A.21)

where C, A ∈ R(2Ntotal+2N)×(2Ntotal+2N) are block diagonal matrices defined by

C =







M O O O

O M O O

O O IN×N O

O O O IN×N






,

A =







− (KuQ+DuK+ σuM) O O O

O − (KvQ+DvK+ σvM) O O

O O duD2 O

O O O duD2






,

(A.22)

where once again each instance of O is an appropriate matrix of zeros. Finally, the nonlinear terms in
(A.21) are defined as

F (W ) =







KuQBTu

KvQBTv

−Ku (u− BU ) +
∑N

i=1 f(ui, vi)ei
−Kv (v − BV ) +

∑N

i=1 g(ui, vi)ei






. (A.23)

We conclude this appendix with the definition of two different solution measures used in this paper.
First, we define the infinity norm as

‖W ‖∞ = max
i=1,...,Ntotal

|eTi W | , (A.24)

where the set {ei} forms the standard Euclidean basis in R2Ntotal+2N . Then, we can approximate the
L2(W) norm using quadratures as

‖W ‖L2(W) =
√

W T C̃W , (A.25)

where C̃ is a mass matrix, defined in terms of M (see (A.16)), by

C̃ =







M O O O

O M O O

O O MN×N O

O O O MN×N






, with MN×N =

dσ

6










4 1 0 . . . 1
1 4 1 . . . 0
...

. . . . . . . . .
...

0 . . . 1 4 1
1 . . . 0 1 4










. (A.26)
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A.3 Implicit-explicit time-stepping

Two different implicit-explicit time-stepping schemes have been used in our PDE numerical simulations:
1-SBDF and 2-SBDF, where the acronym SBDF stands for Semi-Implicit Backward Difference Formula
[25]. The single-step method 1-SBDF is employed to obtain the appropriate initial condition for the
multi-step method 2-SBDF. When applied to the system (A.21), the two methods yield

1-SBDF : (C−∆tA)W n+1 = CW n +∆tF (W n) , (A.27)

2-SBDF : (3C− 2∆tA)W n+1 = 4CW n + 4∆tF (W n)− CW n−1 − 2∆tF (W n−1) , (A.28)

where ∆t is the time-step and W n ≈ W (n∆t) is the approximate solution. Hence, given an initial
condition W 0, we can compute the solution at the next time-step W 1 using 1-SBDF, after which both
W 0 and W 1 are used as initial conditions in 2-SBDF.

The same time-stepping can also be applied to the spatially discretized radially symmetric system
(A.3), where one simply needs to replace the matrix C with the appropriate identity matrix.

Finally, we remark that the time-step ∆t used in our simulations never exceeded 10−2.
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