Optimization of Trap Locations for Narrow
Capture Problems

Alexei Cheviakov and Michael Ward

Abstract The determination of the mean first passage time (MFPT) for a Brownian
particle in a domain that contains a collection of small absorbing traps in its interior
is a narrow capture problem with many biophysical applications. The average MFPT
is the expected capture time assuming a uniform distribution of starting points for
the random walk. We survey some results for determining the spatial locations of the
traps that minimize the average MFPT for certain 2-D and 3-D domains. In the limit
of small trap radii, the optimization of the average MFPT over the trap locations
can be reduced to the problem of seeking global minima of a discrete energy for an
interacting particle system that is encoded by the Neumann Green’s matrix. Open
problems for the optimization of the average MFPT are discussed.

1 Introduction

Narrow capture problems arise naturally in models of diffusive transport in cellular
biology owing to the highly heterogeneous spatial environment that diffusing sig-
naling molecules typically encounter before reaching a specific target site to initiate
some biological function [1-4]. Modeling these diffusing signaling molecules as
Brownian particles, a narrow capture problem involves calculating the mean time,
and other related averaged quantities, that such a particle takes in order to reach a
small target when it is confined within a multi-dimensional domain. More gener-
ally, an overview of results for a wide variety of first passage-problems and their
applications are given in [5] and [6].
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In this article, we exploit the connection between mean first passage time prob-
lems and PDE problems that have origins in electrostatics. In a bounded domain
Q containing N small traps, the mean first passage time u(x) for a narrow capture
problem is the solution to the singularly perturbed PDE
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The small traps Q. ;, each of radius O(e) < 1, are centered at locations xi, ..., Xy
within Q. We assume that the traps are well-separated in the sense that |x; — x;| =
O(1) fori # j and that dist(0L2,x;) = O(1) as ¢ — 0. The prototypical case in 2-D
and 3-D is where the traps are all either disks or spheres, respectively, of a common
radius . The average MFPT u, which assumes that the starting point for Brownian
motion is uniformly distributed over the domain, is the spatial average
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Our goal for a fixed N is to identify the locations Xi,...,Xy of the traps that
minimizes #. Such an optimal trap configuration is the one that most rapidly captures,
on average, a Brownian particle when the initial starting point for the random walk
is uniformly distributed in the domain.

With regards to full numerical PDE simulations, the identification of optimal
trap configurations for (1) is a challenging shape optimization problem since the
trap locations must be adjusted and the PDE re-meshed and re-solved at each iterate
of an optimization procedure. For an arbitrary 2-D domain with a collection of
circular traps of small radius € < 1, a closest-point method (CPM) coupled to a
particle-swarm optimizer was developed in [7] to compute optimal trap patterns.

From the viewpoint of asymptotic analysis, in the limit & — 0 strong localized
perturbation theory [8,9] can be used to derive an approximation u for the average
MFPT. For a survey of strong localized perturbation for MFPT problems and in other
contexts see [10]. In the limit &€ — O for a 2-D or 3-D domain, we obtain

u
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where m = 2 (2-D) or m = 3 (3-D). Here, for € — 0, uy is the outer approximation
for the solution to (1) when the traps are replaced by effective point singularities at
the “particles” x; € Q for j = 1,..., N. In this limiting problem, traps of different
shapes are encoded by their logarithmic capacitances or capacitances in a 2-D or 3-D
setting, respectively. These trap-shape dependent terms can be calculated separately
from certain local problems for Laplace’s equation that are valid in the near-field
region of a trap. The explicit solution to this limiting system in terms of the Neumann
Green’s function determines a discrete energy for our effective “interacting-particle”
system that is defined in terms of the Neumann Green’s matrix, which depends on
the trap locations. By applying particle-swarm optimization software to this discrete
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energy the asymptotic prediction for optimal trap configurations can be readily
computed for moderately small N. However, as is typically the case with optimizing
the discrete energy associated with other interacting-particle systems, as N increases
it becomes increasingly more challenging to numerically identify globally optimal
trap patterns owing to the existence of many local minima [12].

As shown in Appendix C of [11] the problem of identifying optimal trap config-
urations that minimize the average MFPT is closely related to a classical problem in
spectral theory of identifying trap locations that maximize the fundamental Neumann
eigenvalue for the Laplacian in the domain with traps. For this class of eigenvalue
problem, optimal trap locations have been analyzed in [13-19].

The outline of this brief survey is as follows. In §2 and §3 we highlight some
previous results obtained for certain specific 2-D and 3-D domains, respectively. For
a 2-D or 3-D domain with small traps, in §4 we relate the problem of minimizing
the average MFPT to the spectral problem of maximizing the fundamental Neumann
eigenvalue for the Laplacian. In §5 we discuss some related narrow capture and
escape problems, and we suggest a few open problems.

2 2-D Domains

A hybrid asymptotic-numerical method was implemented for (1) to identify optimal
trap configurations that minimize the average MFPT for disk-shaped domains [17],
for near-disk domains [7], and for elliptical-shaped domains [11,20]. For a class of
dumbbell-shaped domains, the optimal location of a single trap has been identified
in [17]. A full numerical approach to compute optimal trap configurations for (1)
using the closest point methodology (CPM) of [21] was developed in [7]. In this way,
approximate optimization results obtained from the hybrid asymptotic-numerical
theory, which is based on the assumption of small trap radii, were validated.

In a 2-D domain, strong localized perturbation theory can be applied to (1) in the
limit of small trap radii to derive a linear algebraic system (LAS) that determines
the average MFPT in terms of the spatial locations of N traps. In this asymptotic
limit, the spatial interaction between the traps is mediated by the Neumann Green’s
matrix, which is defined in terms of the Neumann Green’s function for the domain.

We now highlight the derivation of this LAS. Under the assumption that the traps
Q; have a common shape, the outer problem u satisfies [11,22]

DAug=-1, xeQ\{x,....,xy}; Ghuuo=0, x€IQ;
up ~ Ajlog|x—x;|+A;/v as x—Xxj, j=1,...,N,

C))
where v = —1/log(ed) and A; for j = 1,..., N are to be determined. Here d is the
logarithmic capacitance associated with the assumed common trap shape, which is
independent of the orientation of the traps in the domain. It is defined by the solution
to the following local problem near a trap formulated in terms of y = 7! (x — x OF
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Ayw=0, y¢Q;; v=0, yedQ;,

_ (5)
v~logly|—logd +O(lyl™), as |y| > oo,

where Q; = Q. ;/e. If Q; are disks of a common radius & then Q; is the unit disk
and d = 1 from (5). Table 1 of [22] gives d for traps of other shapes.
The solution to (4) is

N
1
ug = =21 E ArG(X;Xg) + g, where Uy = — / up dx . (6)
e 12| Jo

Here uy is the approximation to the average MFPT (see (3)) and G(x;X;) is the
unique Neumann Green’s function satisfying

1
AG=—-6(x-X%x;), xeQ; 0,G=0, xedQ; /de:O,

1
G~—2—log|x—xj|+Rj+VXRj~(x—xj)+~- , as X—Xj.
v

Moreover, R; = R(x;) is the regular part of the Green’s function at x = x;. By
enforcing that ug in (6) satisfies the singularity conditions in (4), we obtain that

is given in terms of a LAS and a discrete energy ¢(Xi, ..., Xy ) defined by
_ |Q| . 2r ( )
=———+ —q(X1,...,Xn),
0% 2zDpvN TN T N ®
1|
h =el d |I+27v(I-E =——e.
where g=e GA an v ( )G | A 27rDNe
Here E = ee’ /N,e=(1,....,1)T, A = (A1,...,An)T, I is the identity matrix,
and v = —1/log(ed). The N X N symmetric Neumann Green’s matrix G, which
depends on the trap locations Xy, . . ., X, has matrix entries
(G)jj =R, and (G)ij=(G);i=G(x;;x;) for i #j. ©)

For v < 1, for which we can estimate A ~ |Q|e/(2xrDN) + O(v), (8) yields the
following two-term approximation for u in terms of v < 1:

_ B 2 . B [9]] 2ry
=1+ , th = + —
uy=idpg+0(v°), wi i 2DYN N

p(x1,....xn)|, p=elGe.

(10)

When G (x;Xx;) is known analytically as either an explicit formula or as a rapidly
converging infinite series, the optimal trap locations in the limit & — 0 can be
calculated numerically by applying particle swarm optimization schemes [23-25] to
the LAS (8) to minimize g and hence up. Domains for which G is readily available
are disks, rectangles (see §4.2 of [26] and §3.2 of [27]), and ellipses. In §2.1 and
§2.2 we highlight some results for optimal trap patterns for the disk and the ellipse.
For a spatially periodic arrangement of traps, in §2.3 we discuss results from [28]



Optimization of Trap Locations for Narrow Capture Problems 5

for the optimization of uy over the class of Bravais lattices with a fixed area of the
primitive cell.

2.1 The Unit Disk

For the unit disk, the Neumann Green’s function and its regular part for (7) are [17]

WL RP 3
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4 4 8

1 1
G(x;xj) = ~on log |x — x;| - Elog (|x|2|1i(j|2 +1-2x- Xj) +

1 x;I> 3
R(xj) = —ﬂlog (1 - |xj|2) + # e

1)

In this way, the Neumann Green’s matrix G in (8) and (10) is readily evaluated.

In [17] a restricted optimization of the discrete energy p(xy,...,Xy) for iy in
(10) was undertaken for 2 < N < 25 where the traps were forced to lie on concentric
rings about the origin, with possibly a center trap. For such two- and three-ring
patterns analytical expressions for p were derived in [17] in terms of the ring radii
and the number of traps on each ring. The results of this restricted optimization
process for p for 6 < N < 25 are shown in Fig. 1 (see also Table 2 of [17]). With the
restricted optimal values of p determined in this way, the two-term approximation
ilp in (10) can be estimated for a given € and D.

In [20] the results of the restricted optimization in [17] were compared with
corresponding results computed by optimizing u in the LSA (8) by using a particle
swarm optimizer on ¢ in (8) over the 2N variables x; = (x;,y;) with j =1,..., N
and |x;| < 1 (see [20] for details). In Fig. 2 we show a reasonably close comparison
between the optimal iy and uy for 6 < N < 25 when &€ = 0.05 and D = 1. In [20]
it was shown that as N increases the optimal trap configuration begins to deviate
significantly from a ring-type structure (see Figures 4a)-7a) of [20]).

Finally, we show that when N traps are equally-spaced on one ring of radius r
concentric within the unit disk, the approximate result i in (10) is an exact solution
to the LSA (8). For such a ring pattern, the Neumann Green’s matrix is cyclic and
symmetric and has the eigenpair (see Principal Result 4.3 of [17])

_ _ _ 1 N-1 2N 2 3N
Ge=ce, 0'—0'(;')_2”( log(Nr ) log(l r )+rN 7]
(12)
Since (I — E)e = 0, the solution to (8) for A is A = |Q|e/(2rDN), so that
R oY
0 =i = T2DNv (142m0v) . (13)

The optimal ring radius r. is found by setting do-/dr = 0 and solving for r = r..
For D =1 and € = 0.003, and for 2 < N < 10, in Fig. 3 we show a very close
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Fig. 1: The optimum configurations for N = 6 to N = 25 traps for the discrete energy
p in (10) for the class of two-ring and three-ring patterns, with possibly a centre trap.

comparison between r. obtained from (13) with that computed by the CPM from the
full PDE (1) for the restricted optimization problem where N equally-spaced traps
are restricted to one ring that is concentric within the unit disk (see Fig. 4 of [7]).

2.2 The Ellipse

A new rapidly converging infinite series representation for the Neumann Green’s
function G (x;X¢) and its regular part R(xp) for an elliptical-shaped domain Q =
{x = (x,y)|x*/a® + y*/b* < 1} with a > b was derived in §5 of [11].

In the analysis of [11], the ellipse was first mapped to a rectangular domain
0 < ¢ <&, and 0 < i < 27 using the elliptical coordinates (&, 77) defined by

x = fcoshécosny, y=fsinhésing, f=vVa®-b2, (14)
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10]0.05653(0.05624
11/0.04920(0.04900
1210.04291(0.04278
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Relative Difference between Average MFPT

Fig. 2: Left: The optimal average MFPT iij in the unit disk for a restricted optimiza-
tion with traps equally spaced on rings (see [17]) is compared with uy from the LSA
(8) for optimal trap locations. Right: The relative difference (o — iig) /iip versus N.

N| iy |u(CPM) 0.14
2 [0.4536] 0.4533 05 o © 012
3 0.5517| 0.5480 Clpe o o
4 10.5985| 0.5987 '
5[0.6251| 0.6275 > o ‘ Q |0
0.06

610.6417| 0.6411 7 o o
710.6527| 0.6467 0.5 o o 0.04
810.6604| 0.6609 0.02
910.6662| 0.6689 -1
10]0.6706| 0.6708 RV

(a) Optimal ring radius r. for N traps. (b) MFPT for the optimal 10 trap ring.

Fig. 3: The optimal ring radius r. for N circular traps of radius € = 0.003 that
are equally-spaced on a ring concentric within the unit disk. Left: Comparison of
asymptotic results obtained by minimizing (13) with full numerical results computed
from the MFPT-PDE (1) by the CPM. Right: The optimal MFPT u(x) in the unit
disk computed from (1) from the CPM with N = 10 traps on a ring.
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where

a+b

&, = tanh™! (g) = —%logﬁ, with B = (a _ b) . (15)

For a given pair (x, y), (£, 7) is determined by inverting the transformation (14) as

1 PP A I 2
fzilog(l—2s+2 sz—s), s= £ /21f2 /7y . opExX ey - f7,
Tws ifx>0, y>0,

T -1 ifx<0,y>0,
mT+ns ifx<0, y<O0,
27 — 1y, ifx >0, y <0,

1/2
—/1+‘//12+4f2y2) /

with = sin”!
% ( ) f2

(16)
In this way, the Dirac point at Xy = (xg, yo) is mapped to (&g, 7o).
The analysis in §5 of [11] determined G as
1 3 1 1
G(x; =—( 24 2)—— 240 - —1 - —
06%0) = g (W7 # 0ol) = i (@ 457 = T log B 56
| & 8 17
—EZbg 1_[|1—ﬁ2”z,-| , for x#xq,
n=0 j=1
where |Q| = wab, &~ = max (&, &y), and the complex constants zy, . . ., zg are defined
in terms of (¢, 1), (§0,70) and B by
71 = e lE-glimo) o) = gRelé—bolti(n=m0) = o= g (&+&0)+i(n-m0)
74 = ﬁe§+§()+i(77*770) , 75 = Bze~f+~f{)+i(77+770) , 76 = e (EXE0)HOrm) (18)

77 = ﬁelf—fo\”(ﬂ“lo) , 78 = ﬁe—|§—§0|+i(77+770) )

By letting (£,717) — (&0, o), the regular part of the Neumann Green’s function is

Ixol> 3(a?+b%) 1 1 ) 2
R(x0) = —o- — —1 b) + - log (cosh? & - |
(X0) 210 1610 + o= og(a+b)+ 1,; log |cos &y —cos” 1o
é_,o 1 e} 1 0 8 (19)
_ 2 _ _p2ny _ & _ p2n 0
5y =3 2 Joe(1 =) = 5 ) log| | | 1171,
n=1 n=0 j=2
where z?. for j =2,...,8 are given by
Z(z) — ’32 , Zg — ﬁe—2§0 , Zg — B€2§0 , Z(S) — ﬁ262§0+2i770 ,
0 _ (20)

—2&+2i 0 _ 2i 0 _ 2i
g=e fo+2ino 29 =B, 73 = e

By using (17) and (19), the Neumann Green’s matrix G in (9), as needed in the
LAS (8), is readily evaluated. As a result, a particle swarm optimization procedure
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was used in [11] and [20] to identify how the optimal trap configurations depend on
the aspect ratio of the ellipse when its area is fixed as |Q| = wab = x. In the rapidly
converging infinite series (17) and (19), the aspect ratio of the ellipse is determined
by the parameter S, as defined in (15), which satisfies 0 < 8 < 1.

In particular, when N = 4, & = 0.05 and D = 1 we show in Fig. 4 and Fig. 5
that four optimally located traps become colinear with the semi-major axis of the
ellipse when the ellipse becomes sufficiently elongated (see Fig. 10 and 11 of [11]).
From our numerical computations using (8) we find that this transition to colinearity
occurs for an ellipse of area 7 when a = a. =~ 1.7. It is an open problem to calculate
the critical threshold a. analytically.

Fig. 4 Area of the quadrilat-

eral formed by four optimally 0.8 : — —
located traps of a common ——asymptotics for ellipse
radius & = 0.05 with D = 1 06 | - - -near-disk asymptotics | |
in a deforming ellipse of area ' + full PDE results

7 and semi-major axis a.
The optimal traps become
colinear as a increases. Solid
curve: results from (8). Dis- 02|
crete points: full numerical
CPM results. Dashed line near o N

a = 1: near-disk asymptotics 1 1.5 2 25 3 35
of [11]. a (semi-major axis)

0.4 r

Area(quad)

45 -1, -1,
45 4 05 0 05 1 15 2 - 0 1 2 2 4 0 1 2 3 45 0 15 3

Fig. 5: Optimal four-trap patterns for D = 1 in a deforming ellipse of area m with
semi-major axis a and a common trap radius € = 0.05. Left: a = b = 1. Middle Left:
a =1.577, b ~ 0.634. Middle Right: a = 1.675, b ~ 0.597. Right: a = 3.0, b = 1/3.
The optimal trap pattern is colinear along the major axis when a > a. = 1.75.

As motivated by the colinear trap pattern in Fig. 5, for a long and thin ellipse
where a = 1/6 > 1, b = § < 1, and |Q| = &, we use thin domain asymptotics to
formulate, as done in [11], a 1-D optimization problem for the optimal trap locations
and the optimal average MFPT. Thin domain asymptotics for MFPT problems with
a single trap have also been developed in a 2-D and 3-D setting in [29] and [30].
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From Appendix A of [11], for the thin ellipse the MFPT is approximated as
u(x,y) ~ 62D~ Uy(6x) + O(57"), where the 1-D profile Uy(X) satisfies

[FX)U)]"=-F(X), on |X|<1, with F(X)=V1l-X2, 1)

where X = 6x and with Uy and U bounded as X — +1. Assuming that Up(X) =
Uy (—X), the average MFPT for the thin ellipse with |Q| = 7 is estimated as

| s poVi—eia? 4 1
up ~ = dxdy ~ / F(X)Up(X)dX, (22
b [1/6 /5V1 52x2 Dré? Jo

where b = § < 1. For the approximating BVP (21), the colinear circular traps of a
common radius & centered on the semi-major axis are approximated by zero point
constraints for Uy at locations on the interval |X| < 1. Therefore, (21) is a multi-
point BVP, whose solution depends on the locations of the zero point constraints.
The optimal trap locations and optimal average MFPT are estimated by minimizing
the 1-D integral (22) for u with respect to the locations of these point constraints.

Following §4.2 of [11], we illustrate this approach for N = 4 colinear traps in
a thin ellipse. We assume that two optimal traps are located on either side of the
origin and that Uy(X) = Up(—X). By symmetry, we first solve (21) with U((0) =0
Up(dy) =0, and Uy(d) =0, where 0 < d; < d», to obtain

(—nsin_1X+cZ) ,ifd)y <X <1,
(brsin™' X +by) , ifd) <X <dy, (23)
c1, if0< X <dy,

Uo(X) = —1

FNp-

(sm X) + X% -

where ¢, ¢z, b1 and b, are given in terms of d; and d, by

2 sin!dp)? - (sin™' da) + d? — 42
— _d% _ (Sin—l dl) , b] — ( l) ( 2) 1 2 ,
in~!'dy —sin"! d,

2 2
c) = —d% +sin™! dr — (sin_l dz) , by=-by sin”! dy - d% - (sin_1 dl) .
(24)

The average MFPT, defined in (22), is determined in terms of d; and d; as

uo(dy, da) ~ ———= [Jo+ H(d1, d2)] , (25)

where the two integrals Jy and H (dy, d) are given by
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1 2
Jo = F(X) |(sin™" X) +X%- 'lX]dXz—O.703,
0 /0 ( )[(sm ) + msin” (X)
1 d>
ﬂ(dl,dz) = 6‘2/ F(X) dX+/ F(X) ((bl +7T) sin_l(X) +b2) dX (26)
dz d]
d
F(X in~!(X dXx .
+n/0 ( )(nsm ( )+c1)

To minimize uy, we use a grid search to maximize the function H(d;,d) on
0 < dy <dy < 1. Asderived in [11], this yields djop ~ 0.215 and dpop = 0.656. In
this way, and in terms of the original variables, the thin domain asymptotics predicts
that the optimal trap locations and the optimal average MFPT have the scaling law

0.215 0.656 0.0179

Xlopt ~ T > X2opt ~ T > UOmin = ﬂO(dlopta d20pt) ~ 2D

, @D
for b < 1. In Fig. 6 (left) (reproduced from Fig. 12 of [11]) we observe that the
scaling laws for the optimal distances on » < 0.5 almost exactly reproduce results
obtained from the CPM computed from the PDE (1) and from the hybrid asymptotic-
numerical theory based on the LAS (8). From Fig. 6 (right), we observe that the
scaling law for the optimal average MFPT closely approximates that from the CPM
and the LAS (8) only when b < 0.25.

‘ ‘ ‘ 05 ‘ ‘ ‘
" 4 ——asymptotics for ellipse —asymptotics for ellipse
S thin domain asymptotitcs 0 ) - - -near-disk asymptotics |
E 8 » full PDE results L N - thin domain asymptotics
.2 = § « full PDE results
T ENEER
= = \
i \
E ! \_ " ‘\
o \,
9 0.1
0.2 03 04 08 02 04 0.6 08 1
b (Seml—mlnor aXlS) b (semi-minor axis)

Fig. 6: Left: Optimal distances from the origin for a colinear four-trap pattern on
the major-axis of an ellipse of area m and semi-minor axis b. When b < 0.57 the
optimal pattern has two pairs of traps symmetrically located on either side of the
origin. Right: optimal average MFPT uon, versus b. Solid curves: optimal results
from the LAS (8). Discrete points: full PDE results for (1) computed from the CPM.
Dashed-dotted: thin-domain asymptotics (27). Dashed: near-disk results of [11].

For N < 50, in [20] optimum trap configurations and the optimum average MFPT
were computed numerically from a particle swarm optimization of the LAS (8) for

various domain eccentricities k = 4/1 — (b /a)?, where b = 1/a. In Fig. 7 (left) we
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plot the discrete energy g(xi,...,Xy) in (8) versus N for x = 0, 0.472, 0.802, and
0.995. Interestingly, we observe that as N increases, the optimal g seems to approach
a universal curve that is independent of «. In Fig. 7 (right) we show the computed
optimal trap configurations when « = 0.802 and « = 0.995.

0 10 20 30 40 50
Number of Traps R

Fig. 7: Left: For an ellipse of area m, the optimal values of the discrete energy
q(X1,...,xy) in (8) are plotted versus the number N of traps for a few ellipse
eccentricities «. Right: optimal trap pattern for N = 40 when « = 0.802 (top) and
k = 0.995 (bottom). The Delaunay triangulations are shown.

2.3 Periodic Trap Arrangements

Next we consider, as in [28], a periodic arrangement of traps, where the traps are
centered at the lattice points of a Bravais lattice

Az{mll+nl2‘m,n€Z}. (28)

The Wigner-Seitz (WS) cell centered at a fixed I € A is the set of all points that
are closer to I than to any other lattice point. The fundamental WS cell Q is the
one centered at the origin. We assume that traps of a common shape with radius
O(g) < 1, as characterized by the logarithmic capacitance d (5), are centered at
each lattice point. The WS cells for an oblique lattice with circular traps are shown
in Fig. 8.

Fixing the area |I| x I;| of the WS cells to unity, and formulating the MFPT PDE
in the fundamental WS cell, we seek to determine the specific Bravais lattice that
minimizes the average MFPT for

Daru=-1, xeQ\Q,; ueP, xe€iQ; u=0, xe€0dQ,, 29)



Optimization of Trap Locations for Narrow Capture Problems 13

Fig. 8 Wigner Seitz (WS)
cells for an oblique Bra-
vais lattice with genera- 1 [

tors I; = (21/4,0)" and

1.5

L =274 (1, 1) with cir- 05
cular traps (blue dots) of a ol
common radius &. The funda-

mental WS cell Q of unit area 0.5 ¢
is centered at the origin and
contains the red trap.

where the operator # denotes periodic boundary conditions on 0€2.

The asymptotic analysis needed to analyze (29) is analogous to that done in
(4)—(8), except that now we must use the periodic source-neutral Green’s function
G (x), defined by

1
AG,=—-6(x), xe€Q; GpeP, xe€iQ; /Gpdxzo,
12| o (30)
G ~—Llog|x|+R +ﬁ+o(|xlz), as x—0,
P on Py

instead of the Neumann Green’s function. Setting N = 1 and |Q| = 1 in (8), we
obtain in terms of R), and the logarithmic capacitance d of the trap that

u ID (—log[ed]) + RD” 0 31)
A — — — —) .
uo o ogle , as ¢

In [31] a formula for the regular part R, was derived. By identifying a point x as
a complex number z = x + iy and by writing the Bravais lattice using the generators

acCandBeCasA = {ma +nB|m, ne z}, with Im(8/@) > 0 and Im(ag) = 1
to fix |Q| = 1, it was derived in [31] that, with £ = 8/a and e(w) = >,

1 1 =
R, = 5 log(2m) — . log|va(§’ e (%) l_[ (1-e(nd)?|. (32)
n=1

For a Bravais lattice with || = 1, Theorem 2 of [31] proved that R, in (32) is
minimized for a regular hexagonal lattice. From (31), this establishes that for Bravais
lattices, the average MFPT as & — 0 is smallest for the hexagonal lattice. A plot of
R, is shown in Fig. 9 for the one-parameter family of lattices A with @ = 1/Vsin 6
and B = ae'?. For the hexagonal and square lattices, where # = /3 and 6 = /2,
we calculate R, ~ —0.210262 and Ro = —0.208578, respectively. From Fig. 9 we
observe that R,o varies only slightly on the range 6 > 7/4. As a result, the average
MFPT is rather insensitive to the choice of lattice when 6 > /4.
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Fig. 9 Plot of R}, in (32) for
oblique lattices with unit area
of the primitive cell for which
1, = (1/+4/sin(8),0)T -0.16
and lz =

(cos(0)/+/sin(0), v/sin(0))T. £ -0.18
This yields @ = 1/Vsin 6

and 8 = @e'? in (32). The 0.2
minimum occurs for the

hexagon where 8 = 7 /3.

-0.14

-0.22

20 30 40 50 60 70 80 90
0 (degrees)

In [28], a higher order approximation for o was derived for a circular trap by
using the fact that, since Q has two lines of symmetry that intersect at the origin, the
usual gradient term VxG p|x= - X is absent in the local behaviour of G, in (30) as
x — 0. From Principal Result 4.1 of [28], for the special case where Q. is a circular
disk of radius & the following improved asymptotic approximation was derived:

R &2
i

R +o(g?), as &—0. (33)

1 1
—Elogs+7er + 3

_ 1
up ~ m (—10g8)+
For a square or hexagonal lattice, for which R, was evaluated above, (33) yields

-1 2 (1
ug ~ ) (log e +1.310533) — c (— loge + 0.155266) , (square)

D \2
-1 g (1 GY
o ~ 5 (loge +1.321117) - 5 (5 loge + 0.160559) , (hexagon).

We remark that the leading order result for the square lattice, without the O(&?)
correction, was derived previously in [32] by using the method of pseudo-potentials
together with a numerical evaluation of certain lattice sums.

3 3-D Domains

For a bounded 3-D domain containing N small traps, strong localized perturbation
theory was used in [33] to approximate ug in (3) for the MFPT-PDE (1). Related
results for the MFPT and the splitting probability were derived in [34] using the
method of pseudo-potentials. An extension of this narrow capture analysis has been
developed recently in [35] and [36] to calculate the MFPT, the splitting probability,
and conditional moments of the first passage time distribution in terms of the solution
to a single modified narrow capture PDE in a 3-D and 2-D setting, respectively.

Focusing on the MFPT, for the 3-D narrow capture problem we obtain, in place
of (5), that the local problem defined in the near-field region of a trap is to solve
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C:
Ayw=0, y¢Q;; v=0, yeodQ;; v~#+()(|y|_2)+~~~as ly| = 0.

| (35)
Here C| is the capacitance of the trap and Q; = Q, ;/&. The capacitance has two key
properties: it is invariant under rotations of the trap shape and, over all trap shapes
Q; of the same volume, C; is minimized for a spherical trap. The capacitance is
known analytically for some simple trap shapes (see Table 1 of [33]).
For the 3-D problem, the Neumann Green’s function G (X; X;) is defined by

1
AG = —-0(x-X;), x€Q; 0,G=0, x€0Q; /dezO,
12| Q
1 (36)
~m+Rj+Vij'(X—Xj)+"', as X —Xj,

where R; = R(X;) is the regular part of the Green’s function at x = Xx;.
As derived in Principal Result 3.1 of [33], the average MFPT u for ¢ — 0 is

CcTgC
(€2
(37)
Here C = (Cy,...,Cy)T,C = N‘I(Cl +...Cyp), and G is the Neumann Green’s
matrix in (9) now given in terms of the 3-D Green’s function (36). For identically-
shaped traps with a common capacitance C = Cy, for j = 1,..., N, (37) becomes

|sz|( 1 1

uy ~ — —+ —p.(X1,...,xy)+ 0 , Where =
W~ 5\ NE szc(l N) (8)) Pe

o |
°~D

1
dreNC

1
+ﬁp(x1,...,x1\/)+0(s)], where pEeTQe, (38)

withe = (1,..., 1)T. Asaresult, for N identical traps, to minimize the average MFPT
in (38), we must determine the global minimum of the discrete energy p(xy,...,Xy).

For the unit sphere, we can evaluate the Neumann Green’s matrix by using an
analytical result for the 3-D Neumann Green’s function and its regular part (see [33])

Gxix)) 1 .\ 1 . 1 | 2
X;X;) = — 1o
/ dn|x - x| 4nlx||x’ —-x;|  4rx & I —-x-x; + |x||x" — x/|
7
2 2
+ — +|x;|“) = —
61Q] (|X| X1 ) 107° (39)
1 1 1 Ix;1> 7
Rxj))=—F———>+ —log| ———— |+ — - —,
)= o) T g(1—|xj|2) ar 107

where |Q| = 47/3 and x’ = x/|x|? is the image point to x outside the unit sphere.
With the Neumann Green’s matrix easily calculated, a particle swarm optimizer can
be used to optimize u( from the discrete energies in (38) and (37).

For N < 20in [33] it was shown that the optimal trap locations lie, approximately,
on a concentric shell inside the unit sphere, with possibly a center trap. The optimal
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trap patterns for N < 100 identical traps and the optimal average MFPT were
computed numerically in [37] by optimizing the discrete energy p in (38).

4 Neumann Eigenvalue Problem for Laplacian

The problem of minimizing the average MFPT is closely related to the problem
of identifying the trap configuration that maximizes the lowest, or fundamental,
eigenvalue A of

Au+du=0, xeQ\UL Q.  du=0, xeoQ,

(40)
u=0, x€dQ., j=1,....N.

When Q is a 2-D bounded domain that contains traps of a common shape, it was
shown in [17] that 19 < 1 is the smallest positive root of
F()=0, where F(A) =det (I +2nvGy) . 41

Here v = —1/log(ed), d is the logarithmic capacitance of the identical traps, and
Gpg is the N X N Helmholtz Green’s matrix with matrix entries

(Gujj=Ru; and (Guij=(Guji=GuXi;x;) for i #j, (42)
where Gy (X;X;) and its regular part Ry ; satisfy
AGy +AGy =-0(x—X;), X€e€Q; 0,Gg =0, xeoQ;

1 (43)
GH~—2—log|x—xj|+RHj+0(l), as X —X;.
Vs

By expanding Gy for 4 < 1 and substituting the resulting expression into (41), it
was shown in Appendix C of [11] that

27Ny 4n*y?

Ay ~ —— —p(xl,...,xN)+O(v3), with  p(xy,...,Xy) = eTge,
1] 12|
(44)
where e = (1,..., l)T and G is the Neumann Green’s matrix. For an arbitrary

bounded 2-D domain, it follows by comparing (44) with (10) that, up to terms of
O(v?), the trap locations that maximize the rate at which a Brownian particle is
captured provide the minimizing trap configuration for the average MFPT.

A similar correspondence between the average MFPT and the fundamental Neu-
mann eigenvalue holds for a bounded 3-D domain. For a configuration of N traps
centered at x; € Q with capacitances C; for j = 1,..., N, it was shown in [33] that

47T8NC 16722
|| ||

Ao pe(X1,....,xN) +0(e}), where p.=C'GC. (45)
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Here C = N"'(Ci +...+Cy), C = (Cy,...,Cy)T, and G is the 3-D Neumann
Green’s matrix. By comparing (45) with (37) we conclude that, for £ — 0, the trap
locations that minimize the average MFPT also maximize Ay.

S Discussion and Open Challenges

We have surveyed some previous results for the optimization of the average MFPT
for various narrow capture problems in a 2-D or 3-D domain. In the limit of small trap
radii, we have shown that these optimization problems typically involve minimizing
certain discrete energies for interacting particle systems, which are encoded by
Green’s matrices. These discrete energies that are derived from the strong localized
perturbation analysis of the MFPT PDE are all closely related to the classical Fekete
point energies [38,39] of interacting Coulombic particle systems. When the Green’s
matrix can be calculated either explicitly or as a rapidly converging infinite series, a
particle swarm optimizer can be readily used on the discrete energies to numerically
determine the optimal trap set for a moderately small number of traps.

Our brief survey has focused on narrow capture problems with interior traps.
Related narrow escape problems where the traps are located on the boundary of
a domain have been analyzed for 2-D domains in [27,40,41] and for the sphere
in [42] (see also the references therein). For the narrow escape problem from a
sphere, optimal boundary trap configurations together with a scaling law have been
computed in [43] and [12] from minimizing the appropriate discrete energy, which
is defined in terms of an explicit analytical formula for the surface Neumann Green’s
function. A survey of results for the narrow escape problem is given in [4].

A related narrow capture problem is the Berg-Purcell [44] problem that involves
calculating the effective capacitance and effective trapping rate of a sphere that has
a large number N of small nanotraps on its otherwise reflecting boundary. Strong
localized perturbation theory has been used to derive a discrete energy, involving the
exterior surface Neumann Green’s function, that determines the effective capacitance
[45,46]. For equally-distributed points, and in the limit N — oo, a scaling law for
the discrete energy has been used to derive an explicit formula for the effective
trapping rate in the dilute trap fraction limit that improves upon the heuristic Berg-
Purcell formula. This “first principles” result for the homogenized trapping rate has
a similar form to some empirically postulated trapping rates used in [47] and [48].
Related work that determines the effective trapping rate for a simple model of semi-
permeable traps is given in [49] and [50]. More biologically elaborate boundary
trapping models that include the effect of patchy particles and or finite receptor
kinetics have been analyzed recently in [51-53]. Based on an integral equation
formulation of the relevant PDE, a fast full numerical solver for narrow capture and
narrow escape problems in the sphere, which can effectively treat 2000 or more
nanotraps, has been developed in [54].

Various extensions of the narrow capture modeling framework discussed in this
survey can be incorporated into our hybrid asymptotic-numerical theory. For a col-
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lection of traps that are only partially absorbing, we need only replace the boundary
condition v = 0 on each trap by the Robin condition d,,v + bv = 0. From a numerical
boundary integral solver on the local problems (5) and (35), the constants d;(b) and
C;(b) can be computed for the 2-D and 3-D cases, respectively. A corresponding
modified discrete energy can then be readily derived and optimized.

As a further extension of the methodology, in the 2-D case it was shown in [28]
how to use a complex variable approach together with a least squares fitting to
numerically calculate the logarithmic capacitance for a cluster of non-overlapping
traps that are centered at some point in Q. Such trap clusters are characterized by
inter-trap separations of O(¢) in a confining domain of radius O(1).

The numerical treatment for problems involving clusters of traps is closely related
to the challenging problem of calculating the MFPT in the non-perturbative setting
where the traps do not have asymptotically small radii. In this context, an exact so-
lution involving bipolar coordinates was found in [55] for calculating the MFPT in a
circular domain containing one non-concentric disk of arbitrary radius. For a spher-
ical domain containing non-overlapping spheres of arbitrary radii, a semi-analytical
method based on the generalized method of separation of variables (GMSV) was
developed in [56] to calculate the Green’s function for the Laplacian in the perforated
domain. In this approach, the global approximate solution is represented as a linear
combination of local solutions involving solid harmonics centered near at each in-
clusion. Translation addition theorems for solid harmonics are then used for deriving
a linear algebraic system that allows all the boundary conditions to be satisfied. This
semi-analytical approximation of the Green’s function is key for estimating vari-
ous stationary quantities such as the escape probability, harmonic measure, and the
MFPT. This GMSV approach of [56] should be ideal for estimating the capacitance
of a cluster of non-overlapping spherical traps in R3. For the same class of domains,
an extension of this GMSV methodology was developed in [57] to approximate
the Green’s function for the reduced-wave equation. This Green’s function arises in
calculating the Laplace transform for the time-dependent probability distribution.

We now discuss a few open problems related to narrow capture problems.

To easily implement a particle swarm optimizer on the discrete energy associated
with the Neumann Green’s matrix it is essential to efficiently calculate the Neumann
Green’s function and its regular part. For the 2-D case, this can be done for a
disk, for a rectangle [26,27], and for an ellipse. For 3-D domains, the Neumann
Green'’s function can be readily calculated for a sphere. For a triclinic cell in 3-D,
the source neutral periodic Green’s function can be evaluated in terms of rapidly
converging infinite series [58]. For arbitrary 2-D or 3-D domains, a key open problem
is to develop a fast multipole algorithm, such as done in [59] for the reduced-wave
equation, to rapidly calculate the Neumann Green’s function and its regular part for
(7) and (36). By using such a fast numerical evaluation of the Neumann Green’s
matrix, it should be numerically tractable to use a particle swarm optimizer on either
the LAS (8) for the 2-D domain or on (37) for a 3-D domain so as to numerically
identify optimal trap configurations.

For 2-D or 3-D domains with a collection of interior traps, it would be interesting
to derive an approximate scaling law for the optimal average MFPT when N — oo.
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Intuitively, one might expect that the optimal trap configuration for large N has a near
lattice structure in the interior of the domain with only a small modification needed
near the domain boundary. It would be interesting to investigate this conjecture and
to relate the large N limiting problem, but with N 3’ ; [Q.;| < 1, to results that can
be derived by homogenization theory in the dilute trap fraction limit.

Another open problem is to determine the optimal lattice arrangement for a 3-D
periodic lattice with identical shaped traps centered at the lattice points. The main
challenge here is to provide a tractable analytical formula for the regular part of the
periodic source-neutral Green’s function for the 14 distinct Bravais lattices.

Finally, it would also be worthwhile to investigate optimizing MFPT problems
for some highly challenging situations where the traps are not stationary, such as
in [60], in §4.3 of [7], and in [61]. In particular, the optimal distance from the origin
for a trap that rotates with a given angular velocity on a ring concentric within the
unit disk was shown in [60] to have a highly intricate bifurcation structure.

Acknowledgements We gratefully acknowledge the contributions of our collaborators, Andrew
Bernoff, Jason Gilbert, Sarafa Iyaniwura, Theodore Kolokolnikov, Alan Lindsay, Colin MacDonald,
Wesley Ridgway, Michele Titcombe, and Tony Wong to some of the work described herein.

References

1. O. Bénichou, R. Voituriez, From first-passage times of random walks in confinement to
geometry-controlled kinetics, Physics Reports. 539, 225-284, (2014).

2. D.Holcman, Z. Schuss, Time scale of diffusion in molecular and cellular biology, J. of Physics
A: Math. and Theor. 47, 173001, (2014).

3. J. Yang, I. Kupka, Z. Schuss, D. Holcman, Search for a small egg by spermatozoa in restricted
geometries, J. Math. Biol. 73, 948-964, (2016).

4. D. Holcman, Z. Schuss, The Narrow Escape Problem, SIAM Review. 56, 213-257, (2014).

5. S. Redner, A Guide to First-Passage Processes, (Cambridge University Press, Cambridge,
2001).

6. R. Metzler, G. Oshanin, S. Redner, eds., First-passage phenomena and their applications,
(World Scientific, Singapore, 2014).

7. S.Iyaniwura, T. Wong, M. J. Ward, C. Macdonald, Simulation and optimization of mean first
passage time problems in 2-D using numerical embedded methods and perturbation theory,
Multiscale Model. Simul. 19, 1367-1393, (2021).

8. M. J. Ward, W. D. Henshaw, J. B. Keller, Summing logarithmic expansions for singularly
perturbed eigenvalue problems, SIAM J. Appl. Math. 53, 799-828, (1993).

9. M.J. Ward, J. B. Keller, Strong localized perturbations of eigenvalue problems, SIAM J. Appl.
Math. 53, 770-798, (1993).

10. M. J. Ward, Spots, traps, and patches: Asymptotic analysis of localized solutions to some
linear and nonlinear diffusive systems, Nonlinearity 31, R189, (2018).

11. S.Iyaniwura, T. Wong, C. B. Macdonald, M. J. Ward, Optimization of the mean first passage
time in near-disk and elliptical domains in 2-D with small absorbing traps, SIAM Review 63,
525-555, (2021).

12. W.J. M. Ridgway, A. Cheviakov, Locally and globally optimal configurations of N particles
on the sphere with applications in the narrow escape and narrow capture problems, Phys. Rev.
E., 100, 042413, (2019).



20

13

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Alexei Cheviakov and Michael Ward

. A. Burchard, J. Denzler, On the geometry of optimal windows, with special focus on the
square, SIAM J. Math. Anal. 37, 1800-1827, (2006).

E. M. Harrell, P. Kroger, K. Kurata, On the placement of an obstacle or a well so as to optimize
the fundamental eigenvalue, SIAM J. Math. Anal. 33, 240-259, (2001).

A. Henrot, On minimization problems for eigenvalues of the Laplacian, J. Evol. Equat. 3,
443-461, (2003).

J. Denzler, Windows of given area with minimal heat diffusion, Trans. Amer. Math. Soc. 351,
569-580, (1999).

T. Kolokolnikov, M. S. Titcombe, M. J. Ward, Optimizing the fundamental Neumann eigen-
value for the Laplacian in a domain with small traps, Europ. J. Appl. Math. 16, 161-200,
(2005).

D. Coombs, R. Straube, M. J. Ward, Diffusion on a sphere with localized traps: Mean first
passage time, eigenvalue asymptotics, and Fekete points, STAM J. Appl. Math. 70, 302-332,
(2009).

F. Paquin-Lefebvre, S. Iyaniwura, M. J. Ward, Asymptotics of the principal eigenvalue of
the Laplacian in 2-D periodic domains with small traps, Europ. J. Appl. Math. 33, 646-673,
(2021).

J. Gilbert, A. Cheviakov, Global optimization of the mean first passage time for narrow capture
problems in elliptic domains, Europ. J. Appl. Math. 34, 1269-1287, (2023).

Y. Chen, C. B. Macdonald, The closest point method and multigrid solvers for elliptic equations
on surfaces, SIAM J. Sci. Comp. 37, A134-A155, (2015).

V. Kurella, J. C. Tzou, D. Coombs, M. J. Ward, Asymptotic analysis of first passage time
problems inspired by ecology, Bull. Math. Biol. 77, 83-125, (2015).

A.Ismael, F. Vaz, L. N. Vicente, A particle swarm pattern search method for bound constrained
global optimization, J. Global Optim. 39, 197—219, (2007).

J. Currie, D. I. Wilson, N. Sahinidis, J. Pinto, OPTI: Lowering the barrier between open
source optimizers and the industrial MATLAB user. Foundations of computer-aided process
operations, 24 (2012).

J. Kennedy, Particle swarm optimization. Encyclopedia of machine learning, 760-766, (2010).
T. Kolokolnikov, M. J. Ward, J. Wei, Spot self-replication and dynamics for the Schnakenburg
model in a two-dimensional domain, J. Nonl. Sci, 19, 1-56, (2009).

S. Pillay, M. J. Ward, A. Peirce, T. Kolokolnikov, An asymptotic analysis of the mean first
passage time for narrow escape problems: Part I: Two-dimensional domains, Multiscale Model.
Simul. 8, 803-835, (2010).

S. Iyaniwura, M. J. Ward, Asymptotic analysis for the mean first passage time in finite or
spatially periodic 2-D domains with a cluster of small traps, ANZIAM J. 63, 1-22, (2021).
D. S. Grebenkov, A. T. Skvortsov, Mean first-passage time to a small absorbing target in an
elongated planar domains, New J. Phys. 22, 113024, (2020).

D. S. Grebenkov, A. T. Skvortsov, Mean first-passage time to a small absorbing target in
three-dimensional elongated domains, Phys. Rev. E. 105, 054107, (2022).

X. Chen, Y. Oshita, An application of the modular function in nonlocal variational problems,
Arch. Rat. Mech. Anal. 186, 109-137, (2007).

D. C. Torney, B. Goldstein, Rates of diffusion-limited reaction in periodic systems, J. Stat.
Phys. 49, 725-750, (1987).

A. Cheviakov, M. J. Ward, Optimizing the principal eigenvalue of the Laplacian in a sphere
with interior traps, Math. and Comput. Model. 53, 1394-1409, (2011).

S. Condamin, O. Bénichou, M. Moreau, Random walks and Brownian motion: A method of
computation for first passage times and related quantities in confined geometries, Phys Rev.
E. 75, 021111, (2007).

P. C. Bressloff, Asymptotic analysis of target fluxes in the three-dimensional narrow capture
problem, Multiscale Model. Simul. 19, 612--632, (2021).

P. C. Bressloff, Asymptotic analysis of extended two-dimensional narrow capture problems,
Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 477, 20200771, (2021).

J. Gilbert, A. Cheviakov, Globally optimal volume-trap arrangements for the narrow-capture
problem inside a unit sphere, Phys. Rev. E. 99, 012109, (2019).



Optimization of Trap Locations for Narrow Capture Problems 21

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

E. B. Saff, A. B. J. Kuijlaars, Distributing many points on a sphere, Math. Intelligencer 19,
5-11, (1997).

E. A. Rakhamanov, E. B. Saff, Y. M. Zhou, Minimal discrete energy on the sphere, Math. Res.
Lett. 1, 647-662, (1994).

A. Singer, Z. Schuss, D. Holcman, Narrow escape, Part II: The circular disk, J. Stat. Phys.
122, 465-489, (20006).

D. S. Grebenkov, Universal formula for the mean first passage time in planar domains, Phys.
Rev. Lett. 117, 260201, (2016).

A. F. Cheviakov, M. J. Ward, R. Straube, An asymptotic analysis of the mean first passage
time for narrow escape problems: Part II: The sphere, Multiscale Model. Simul. 8, 836-870,
(2010).

A. Cheviakov, D. Zawada, Narrow-escape problem for the unit sphere: Homogenization limit,
optimal arrangements of large number of traps, and the N2 conjecture, Phys. Rev. E. 87,
042118, (2013).

H. C. Berg, E. M. Purcell, Physics of chemoreception. Biophys. J. 20, 193-219, (1977).

A. E. Lindsay, A. J. Bernoft, M. J. Ward, First passage statistics for the capture of a Brownian
particle by a structured spherical target with multiple surface traps, Multiscale Model. Simul.
15, 74-109, (2017).

A. E. Lindsay, A. J. Bernoff, Numerical approximation of diffusive capture rates by planar
and spherical surfaces with absorbing pores, SIAM J. Appl. Math. 78, 266-290, (2018).

C. B. Muratov, S. Y. Shvartsman, Boundary homogenization for periodic arrays of absorbers,
Multiscale Model. Simul. 7, 44-61, (2008).

A. M. Berezhkovskii, M. I. Monine, C. B. Muratov, S. Y. Shvartsman, Homogenization of
boundary conditions for surfaces with regular arrays of traps, J. Chem. Phys. 124, 036103,
(2006).

A. J. Bernoff, A. E. Lindsay, D. D. Schmidt, Boundary homogenization and capture time
distributions of semi-permeable membranes with periodic patterns of reactive sites, Multiscale
Model. Simul. 16, 1411-1447, (2018).

A. E. Lindsay, A. N. Hernandez, B. Quaife, Trapping of planar Brownian motion: Full first
passage time distributions by Kinetic Monte-Carlo, asymptotic and boundary integral methods,
Multiscale Model. Simul. 20, 1284-1314, (2022).

G. Handy, S. D. Lawley, Revising Berg-Purcell for finite receptor kinetics, Biophysical J., 120,
2237-2248, (2021).

S. D. Lawley, Boundary homogenization for trapping patchy particles, Phys. Rev. E. 100,
032601, (2019).

C. E. Plunkett, S. D. Lawley, Boundary homogenization for patchy surfaces trapping patchy
particles, J. Chem. Phys. 158, 094104, (2023).

J. Kaye, L. Greengard, A fast solver for the narrow capture and narrow escape problems in the
sphere, J. Comput. Phys., 5, 100047, (2020).

R. Stana, G. Lythe, C. Molina-Paris, Diffusion in a disk with inclusion, STAM J. Appl. Math.
81, 1287-1302, (2021).

D. S. Grebenkov, S. D. Traytak, Semi-analytical computation of Laplacian Green’s functions
in three-dimensional domains with disconnected spherical boundaries, J. Comput. Phys. 379,
91-117, (2019).

D. S. Grebenkov, Diffusion toward non-overlapping partially reactive spherical traps: Fresh
insights into classical problems, J. Chem. Phys. 152, 244108, (2020).

S. Tyagi, Coulomb potentials in two and three dimensions under periodic boundary conditions,
J. Chem. Phys. 122, 014101, (2005).

M. C. Kropinski, B. D. Quaife, Fast integral equation methods for the modified Helmholtz
equation, J. Comput. Phys. 230, 425-434, (2011).

J. C. Tzou, T. Kolokolnikov, Mean first passage time for a small rotating trap inside a reflective
disk, Multiscale Model. Simul. 13, 231-255, (2015).

A. E. Lindsay, J. C. Tzou, T. Kolokolnikov, Optimization of first passage times by multiple
cooperating mobile traps, Multiscale Model. Simul. 15, 920-947, (2017).



