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Spatio-temporal dynamics associated with a class of coupled membrane-bulk PDE-ODE models in one spatial dimension is

analyzed using a combination of linear stability theory, numerical bifurcation software, and full time-dependent simulations.

In our simplified 1-D setting, the mathematical model consists of two dynamically active membranes, separated spatially by a

distance 2L, that are coupled together through a linear bulk diffusion field, with a fixed bulk decay rate. The coupling of the

bulk and active membranes arises through both nonlinear flux boundary conditions for the bulk diffusion field together with

feedback terms, depending on the local bulk concentration, to the dynamics on each membrane. For this class of models, it is

shown both analytically and numerically that bulk diffusion can trigger a synchronous oscillatory instability in the temporal

dynamics associated with the two active membranes. For the case of a single active component on each membrane, and in

the limit L → ∞, rigorous spectral results for the linearization around a steady-state solution, characterizing the possibility

of Hopf bifurcations and temporal oscillations in the membranes, are obtained. For finite L, a weakly nonlinear theory,

accounting for eigenvalue-dependent boundary conditions appearing in the linearization, is developed to predict the local

branching behavior near the Hopf bifurcation point. The analytical theory, together with numerical bifurcation results and

full numerical simulations of the PDE-ODE system, are undertaken for various coupled membrane-bulk systems, including two

specific biologically relevant applications. Our results show the existence of a wide parameter range where stable synchronous

oscillatory dynamics in the two membranes can occur.
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1 Introduction

In this paper we explore a new modeling paradigm for the synchronization or collective dynamics of spatially segregated,

but dynamically active, localized regions that are coupled spatially through a linear diffusion field. For the resulting class

of PDE-ODE models, spatial-temporal dynamics will be analyzed using a combination of linear stability theory, numerical

bifurcation software, and full time-dependent simulations. Our analysis will show that such a coupling by a linear diffusion

field is a robust mechanism for the initiation of synchronized oscillatory dynamics in the segregated compartments.

Coupled membrane-bulk dynamics, or the coupling of dynamically active spatially segregated compartments through a

linear bulk diffusion field, arises in many applications including, models of biological quorum sensing behavior (cf. [3], [21]),

models of the multistage adsorption of viral particles trafficking across biological membranes (cf. [4]), Turing patterns

resulting from coupled bulk and surface diffusion (cf. [17]), and models of the effect of catalyst particles on chemically

active surfaces (cf. [28]). For one such model, it was shown numerically in [10] that a two-component membrane-bulk

dynamics on a 1-D spatial domain can trigger synchronous oscillatory dynamics in the two membranes. In the context of

cellular signal transduction, the survey [14] emphasizes the need for developing more elaborate models of cell signaling

that are not strictly ODE based, but that, instead, involve spatial diffusion processes coupled with kinetics arising from

localized signaling compartments.

A related class of models, referred to here as quasi-static models, consist of linear bulk diffusion fields that are coupled
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solely through nonlinear fluxes defined at specific spatial lattice sites. Such systems arise in the modeling of signal cascades

in cellular signal transduction (cf. [18]), and in the study of the effect of catalyst particles and defects on chemically active

substrates (cf. [25], [22]). In [22] it was shown numerically that one such quasi-static model exhibits an intricate spatial-

temporal dynamics consisting of a period-doubling route to chaotic dynamics.

Motivated by these prior studies, the goal of this paper is to formulate and analyze a general class of coupled membrane-

bulk dynamics in a simplified 1-D spatial domain. In our simplified 1-D setting, we assume that there are two dynamically

active membranes, located at x = 0 and x = 2L, that can release a specific signaling molecule into the bulk region

0 < x < 2L, and that this secretion is regulated by both the bulk concentration of that molecule together with its

concentration on the membrane. In the bulk region, we assume that the signaling molecule undergoes passive diffusion

with a specified bulk decay rate. If C(x, t) is the concentration of the signaling molecule in the bulk, then its spatial-

temporal evolution in this region is governed by the dimensionless model

τCt = DCxx − C , t > 0 , 0 < x < 2L ,

DCx(0, t) = G(C(0, t), u1(t)) , −DCx(2L, t) = G(C(2L, t), v1(t)) ,
(1.1 a)

where τ > 0 is a time-scale for the bulk decay and D/τ > 0 is the constant diffusivity. On the membranes x = 0 and

x = 2L, the fluxes G(C(0, t), u1) and G(C(2L, t), v1) model the influx of signaling molecule into the bulk, which depends

on the bulk concentrations C(0, t) and C(2L, t) at the two membranes together with the local concentrations u1(t) and

v1(t) of the signaling molecule on the membranes. We assume that on each membrane, there are n species that can

interact, and that their dynamics are described by n-ODE’s of the form

du

dt
= F(u) + βP(C(0, t), u1)e1 ,

dv

dt
= F(v) + βP(C(2L, t), v1)e1 , (1.1 b)

where e1 ≡ (1, 0, . . . , 0)T . Here, u(t) ≡ (u1(t), . . . , un(t))
T and v(t) ≡ (v1(t), . . . , vn(t))

T is the concentration of the n

species on the two membranes and F(u) is the vector nonlinearity modeling the chemical kinetics for these membrane-

bound species. In our formulation (1.1 b), only one of these internal species, labeled by u1 and v1 at the two membranes,

is capable of diffusing into the bulk. The coupling to the bulk is modeled by the two feedback terms βP(C(0, t), u1) and

βP(C(2L, t), v1), where the coupling parameter β models the strength of the membrane-bulk exchange. In Fig. 1 we give

a schematic plot of the geometry for (1.1).

x=0 x=2L

Bulk region: Passive Diffusion

active 

membranes

Figure 1. Schematic plot of the geometry for (1.1) showing the bulk region 0 < x < 2L, where passive diffusion occurs,

and the two dynamically active membranes at x = 0 and x = 2L. One of the membrane species can be exchanged between

the membrane and the bulk.

In §2 we construct a steady-state solution for (1.1) that is symmetric about the midline x = L. The analytical construc-

tion of this symmetric steady-state solution is reduced to the problem of determining roots to a nonlinear algebraic system

involving both the local membrane kinetics and the nonlinear feedback and flux functions. We then formulate the linear

stability problem associated with this steady-state solution. In our stability theory, we must allow for perturbations that

are either symmetric or anti-symmetric about the midline, which leads to the possibility of either synchronous (in-phase)

or asynchronous (out-of-phase) instabilities in the two membranes. By using a matrix determinant lemma for rank-one
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perturbations of a matrix, we show that the eigenvalue parameter associated with the linearization around the steady-state

satisfies a rather simple transcendental equation for either the synchronous or asynchronous mode.

In §3 we analyze in detail the spectrum of the linearized problem associated with a one-component membrane dynamics.

For the infinite-line problem, corresponding to the limit L→ +∞, in §3.1 we use complex analysis together with a rigorous

winding number criterion to derive sufficient conditions, in terms of properties of the reaction-kinetics and nonlinear

feedback and flux, that delineate parameter ranges where Hopf bifurcations due to coupled membrane-bulk dynamics will

occur. Explicit formulae for the Hopf bifurcation values, in terms of critical values of τ in (1.1), are also obtained. In §3.1
further rigorous results are derived that establish parameter ranges where no membrane oscillations are possible. For the

finite-domain problem, and assuming a one-component membrane dynamics, we show in §3.2 that some of the rigorous

results for the infinite-line problem, as derived in §3.1, are still valid. However, in general, for the finite-domain problem

numerical computations of the winding number are needed to predict Hopf bifurcation points and to establish parameter

ranges where the steady-state solution is linearly stable.

We remark that for the case of a one-component membrane dynamics, the eigenvalue problem derived in §3.1, char-
acterizing the linear stability of the coupled membrane-bulk dynamics, is remarkably similar in form to the spectral

problem that arises in the stability of localized spike solutions to reaction-diffusion (RD) systems of activator-inhibitor

type (cf. [23] and [29] and the references therein). More specifically, on the infinite-line, the spectral problem for our

coupled membrane-bulk dynamics is similar to that studied in §3.1 of [23] for a class of activator-inhibitor RD systems.

For a one-component membrane dynamics, in §4 we illustrate the theory of §3 for determining Hopf bifurcation points

corresponding to the onset of either synchronous or asynchronous oscillatory instabilities. For the infinite-line problem,

where these two instability thresholds have coalesced to a common value, we illustrate the theoretical results of §3.1 for

the existence of a Hopf bifurcation point. For the finite-domain problem, where the two active membranes are separated

by a finite distance 2L, numerical computations of the winding-number are used to characterize the onset of either mode

of instability. The theory is illustrated for a class of feedback models in §4.1, for an exactly solvable model problem

in §4.2, and for two specific biological systems in §4.3. The biological systems in §4.3 consist of a model of hormonal

activity due to GnRH neurons in the hypothalamus (cf. [13], [19], and [7]), and a model of quorum sensing behavior

of Dictyostelium (cf. [9]). For the problems in §4.1–4.3, we supplement our analytical theory with numerical bifurcation

results, computed from the coupled membrane-bulk PDE-ODE system using the bifurcation software XPPAUT [6]. For

the Dictyostelium model and the model in §4.2, our results shows that there is a rather large parameter range where stable

synchronous membrane oscillations occur. Full numerical computations of the PDE-ODE system of coupled membrane-

bulk dynamics, undertaken using a method-of-lines approach, are used to validate the theoretical predictions of stable

synchronous oscillations.

In §5 we consider a specific coupled membrane-bulk model having two active components on each membrane. To enhance

the relevance of our coupled model, the dynamics on the membrane are taken from the seminal survey of [24], which

characterizes some key design principles for realistic biological oscillators. For the case where the two membranes are

identical, and have a common value of the coupling strength to the bulk medium, we use a numerical winding number

argument to predict the onset of either a synchronous or an asynchronous oscillatory solution branch that bifurcates from

the steady-state solution. The numerical bifurcation package XPPAUT [6] shows that there is a parameter range where

the synchronous solution branch exhibits bistable behavior. In contrast, in the heterogeneous case where the coupling

strengths to the two membranes are different, we show that the amplitude ratio of the oscillations in the two membranes

can be very large, with one membrane remaining, essentially, in a quiescent state.
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For the case of a one-component membrane dynamics on a finite domain, in §6 we formulate and then implement a

weakly nonlinear multiple time-scale theory to derive an amplitude equation that characterizes whether a synchronous

oscillatory instability is subcritical or supercritical near the Hopf bifurcation point. For a specific choice of the nonlin-

earities, corresponding to the model considered in §4.2, theoretical predictions based on the amplitude equation are then

confirmed with full bifurcation results computed using XPPAUT (cf. [6]).

The key theoretical challenge and novelty of our weakly nonlinear analysis in §6 is that both the differential operator and

the boundary condition on the membrane for the linearized problem involves the eigenvalue parameter. This underlying

spectral problem, with an eigenvalue-dependent boundary condition, is not self-adjoint and is rather non-standard. Moti-

vated by the theoretical approach developed in [8] to account for eigenvalue-dependent boundary conditions, we introduce

an extended operator L, and an associated inner product, from which we determine the corresponding adjoint problem. In

this way, we formulate an appropriate solvability condition in Lemma 6.1 that is one of the key ingredients, in our multiple

time-scale analysis, for deriving the amplitude equation characterizing the branching behavior of synchronous oscillations

near onset. We remark that a similar methodology of introducing an extended operator to treat a transcritical bifurcation

problem involving an eigenvalue-dependent boundary condition, which arises in a mathematical model of thermoelastic

contact of disc brakes, was undertaken in [26] and [27]. However, to our knowledge, there has been no previous work for

the corresponding Hopf bifurcation problem of the type considered herein.

Finally, we remark that, as far as we are aware, there has been rather little work in the mathematical literature on

membrane-bulk interactions. Several open problems in this area that warrant further investigation are discussed briefly

in §7. Additional recent studies of the effect of membrane-bulk coupling for certain two-component membrane dynamics

are given in [11] and in [12]. With the exception of the general formulation of the model in §2 and the specific example

considered in §5, this paper has focused on developing mathematical theory for membrane-bulk interactions with one-

component membrane dynamics. In [11], an asymptotic analysis of membrane-bulk oscillations is given for the specific

model of [10] with slow-fast Fitzhugh-Nagumo membrane kinetics. By exploiting the asymptotic limit of the slow-fast

structure, a phase diagram in parameter space where synchronous and asynchronous oscillations occur can, essentially,

be determined analytically by calculating the winding number associated with the linearized problem in the slow-fast

limit. In §5 of this paper, such a reduction was not possible for our only example of two-component dynamics, where

the winding number had to be computed numerically. In [12], membrane-bulk oscillations for a 2-component membrane

dynamics with Selkov kinetics is analyzed. The primary focus of [12] is to develop a weakly nonlinear theory to study

oscillations near a co-dimension-two Torus bifurcation point corresponding to a special parameter set where each of the

synchronous and asynchronous branches of oscillations exhibit an exchange of stability.

2 The Steady-State Solution and the Formulation of the Linear Stability Problem

In this section we construct a steady-state solution for (1.1), and then formulate the associated linear stability problem.

In (1.1), we have assumed for simplicity that the two membranes have the same kinetics and membrane-bulk coupling

mechanisms. As such, this motivates the construction of a steady-state solution for (1.1) that is symmetric with respect to

the midline x = L of the bulk region. The corresponding symmetric steady-state bulk solution Ce(x) and the membrane-

bound steady-state concentration field ue satisfy

D∂xxCe − Ce = 0 , 0 < x < L ; ∂xCe(L) = 0 , D∂xCe(0) = G (Ce(0), u1e) ,

F(ue) + βP(Ce(0), u1e)e1 = 0 .
(2.1)
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We readily calculate that

Ce(x) = C0
e

cosh [ω0(L− x)]

cosh(ω0L)
, ω0 ≡ 1/

√
D , (2.2 a)

where C0
e ≡ Ce(0) and ue are the solutions to the n+ 1 dimensional nonlinear algebraic system

−C0
e tanh(ω0L) = ω0G

(

C0
e , u1e

)

, F(ue) + βP(C0
e , u1e)e1 = 0 . (2.2 b)

In general it is cumbersome to impose sufficient conditions on F , P, and G, guaranteeing a solution to (2.2 b). Instead,

we will analyze (2.2 b) for some specific models below in §4 and in §5.
To formulate the linear stability problem, we introduce the perturbation

C(x, t) = Ce(x) + eλtη(x) , u(t) = ue + eλtφ ,

into (1.1) and linearize. In this way, we obtain the eigenvalue problem

τλη = Dηxx − η , 0 < x < L ; Dηx(0) = Ge
cη0 +Ge

u1
φ1 ,

Jeφ+ β(Pe
c η0 + Pe

u1
φ1)e1 = λφ .

(2.3)

Here we have defined η0 ≡ η(0), Ge
c ≡ Gc(C

0
e , u1e), G

e
u1

≡ Gu1
(C0

e , u1e), Pe
c ≡ Pc(C

0
e , u1e), and Pe

u1
≡ Pu1

(C0
e , u1e). In

addition, Je is the Jacobian matrix of the nonlinear membrane kinetics F evaluated at ue.

The formulation of the linear stability problem is complete once we impose a boundary condition for η at the midline

x = L. Due to the reflection symmetry of the spectral problem about the midline x = L, there are exactly two choices for

this boundary condition for this linearized problem. The choice η(L) = 0 corresponds to an anti-phase synchronization

of the two membranes (asymmetric case), while the choice ηx(L) = 0 corresponds to an in-phase synchronization of the

two membranes. The goal of our analysis is to analyze whether there can be any Hopf bifurcations associated with either

anti-phase or in-phase perturbations.

For the synchronous mode we solve (2.3) with ηx(L) = 0 to obtain that

η(x) = η0
cosh [Ωλ(L− x)]

cosh(ΩλL)
, Ωλ ≡

√

1 + τλ

D
, (2.4)

where we have specified the principal branch of the square root if λ is complex. Upon substituting (2.4) into the boundary

condition for η on x = 0 in (2.3), we readily determine η0 in terms of φ1 as

η0 = − Ge
u1
φ1

Ge
c +DΩλ tanh(ΩλL)

. (2.5)

We then substitute (2.5) into the last equation of (2.3), and rewrite the resulting expression in the form

(Je − λI)φ = p+(λ)φ1e1 , p+(λ) ≡ β

(

Ge
u1
Pe
c − Pe

u1
Ge

c − Pe
u1
DΩλ tanh(ΩλL)

Ge
c +DΩλ tanh(ΩλL)

)

. (2.6)

Similarly, for the asynchronous mode we solve (2.3) with η(L) = 0 to get

η(x) = η0
sinh [Ωλ(L− x)]

sinh(ΩλL)
.

Upon applying the boundary condition for η at x = 0 from (2.3), we can write η0 in terms of φ1 as

η0 = − Ge
u1
φ1

Ge
c +DΩλ coth(ΩλL)

. (2.7)

Upon substituting this expression into the last equation of (2.3), we can eliminate η0 to obtain

(Je − λI)φ = p−(λ)φ1e1 , p−(λ) ≡ β

(

Ge
u1
Pe
c − Pe

u1
Ge

c − Pe
u1
DΩλ coth(ΩλL)

Ge
c +DΩλ coth(ΩλL)

)

. (2.8)
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In summary, we conclude that an eigenvalue λ and eigenvector φ associated with the linear stability of the symmetric

steady-state solution (Ce(x), ue) is determined from the matrix system

(Je − λI − p±(λ)E)φ = 0 , E ≡ e1e
T
1 , where e1 ≡ (1, 0, . . . , 0)T . (2.9)

Here p+(λ) and p−(λ) are defined for the synchronous and asynchronous modes by (2.6) and (2.8), respectively. We now

seek values of λ for which (2.9) admits nontrivial solutions φ 6= 0. These values of λ satisfy the transcendental equation

det (Je − λI − p±(λ)E) = 0 . (2.10)

Since E is an n×n rank-one matrix, the transcendental equation (2.10) for the eigenvalue λ can be simplified considerably

by using the following well-known Matrix Determinant Lemma:

Lemma 2.1 Let A be an invertible n× n matrix and let a and b be two column vectors. Then,

det
(

A+ abT
)

=
(

1 + bTA−1a
)

det(A) . (2.11)

Therefore, (A+ abT )φ = 0 has a nontrivial solution if and only if bTA−1a = −1.

The proof of this result is straightforward and is omitted (see Lemma 1.1 of [5]). Applying this lemma to (2.10) and

(2.9), where we identify A ≡ Je − λI, a ≡ −p±e1, and b ≡ e1, we conclude that if λ is not an eigenvalue of Je, then λ

must satisfy

1− p±(λ)e
T
1 (Je − λI)

−1
e1 = 0 . (2.12)

To simplify (2.12), we write (Je − λI)
−1

in terms of the cofactor matrix M as

(Je − λI)
−1

=
1

det(Je − λI)
MT ,

where the entries Mij of M are the cofactors of the element ai,j of the matrix Je − λI. Since eT1 (Je − λI)
−1

e1 =

M11/det (Je − λI), we obtain that (2.12) reduces to the following more explicit transcendental equation for λ:

1− p±(λ)
M11(λ)

det (Je − λI)
= 0 , where M11(λ) ≡ det













∂F2

∂u2

∣

∣

∣

u=ue

− λ, · · · , ∂F2

∂un

∣

∣

∣

u=ue

· · · , · · · , · · ·
∂Fn

∂u2

∣

∣

∣

u=ue

, · · · , ∂Fn

∂un

∣

∣

∣

u=ue

− λ













. (2.13)

Here F2, . . . ,Fn denote the components of the vector F ≡ (F1, . . . ,Fn)
T characterizing the membrane kinetics.

For the special case of a two-component membrane dynamics of the form F = (f, g)T , with f = f(u1, u2) and

g = g(u1, u2), (2.13) reduces to

1− (gu2
− λ)

det (Je − λI)
p±(λ) = 0 , Je ≡







∂f
∂u1

∣

∣

∣

u=ue

, ∂f
∂u2

∣

∣

∣

u=ue

∂g
∂u1

∣

∣

∣

u=ue

, ∂g
∂u2

∣

∣

∣

u=ue






, (2.14)

where p±(λ) are defined in (2.6) and (2.8). An example of this case is considered below in §5.
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3 One-Component Membrane Dynamics

In this section we study the stability of steady-state solutions when the membrane dynamics consists of only a single

component. For this case, it is convenient to label u1 = u and to define F (C(0, t), u) by

F (C(0, t), u) ≡ F(u) + βP (C(0, t), u) . (3.1)

The symmetric steady-state solution Ce(x) is given by (2.2 a), where C0
e and ue satisfy the nonlinear algebraic system

−C0
e tanh(ω0L) = ω0G

(

C0
e , u1e

)

, F
(

C0
e , ue

)

= 0 , where ω0 ≡ 1/
√
D . (3.2)

In terms of F defined in (3.1), the spectral problem characterizing the stability properties of this steady-state solution

for either the synchronous or asynchronous mode is

DΩλ tanh(ΩλL) = −Ge
c +

F e
cG

e
u

F e
u − λ

, (sync) , DΩλ coth(ΩλL) = −Ge
c +

F e
cG

e
u

F e
u − λ

, (async) , (3.3)

where Ωλ ≡
√

(1 + τλ)/D is the principal branch of the square root. We will first derive theoretical results for the roots

of (3.3) for the infinite-line problem where L→ ∞.

3.1 Theoretical Results for a Hopf Bifurcation: The Infinite-Line Problem

For the infinite-line problem where L→ ∞, (3.3) reduces to the limiting spectral problem of finding the roots of G(λ) = 0

in Re(λ) ≥ 0, where

G(λ) ≡
√
1 + τλ− g(λ) , and g(λ) ≡ c+ aλ

b+ λ
. (3.4 a)

Here the constants a, b, and c, are defined by

a ≡ − Ge
c√
D
, b ≡ −F e

u , c ≡ 1√
D

[Ge
cF

e
u −Ge

uF
e
c ] . (3.4 b)

Our goal is to characterize any roots of G(λ) = 0 in Re(λ) > 0 as the coefficients a, b, and c, are varied, and in particular

to detect any Hopf bifurcation points. In (3.4), b represents the dependence of the local kinetics on the membrane-bound

species. If b > 0, this term indicates a self-inhibiting effect, whereas if b < 0 the membrane-bound species is self-activating.

The sign of Ge
c indicates the feedback from the environment to its own secretion. If Ge

c is positive (negative) it represents

negative (positive) feedback. We remark that the spectral problem (3.4) has the same form, but with different possibilities

regarding the signs of the coefficients, as the spectral problem studied in [23] characterizing the stability of a pulse solution

for a singularly perturbed reaction-diffusion on the infinite line.

We first use a winding number argument to count the number N of roots of G(λ) = 0 in Re(λ) ≥ 0 in terms of the

behavior of G(λ) on the imaginary axis of the λ-plane. If N = 0, the symmetric steady-state solution is linearly stable,

whereas if N > 0 this solution is unstable.

Lemma 3.1 Let N be the number of zeroes of G(λ) = 0 in Re(λ) > 0, where G(λ) is defined in (3.4). Assume that there

are no such zeroes on the imaginary axis. Then,

N =
1

4
+

1

π
[arg G]

∣

∣

ΓI+

+ P , (3.5)

where P = 0 if b > 0 and P = 1 if b < 0. Here [arg G]
∣

∣

ΓI+

denotes the change in the argument of G(λ) along the

semi-infinite imaginary axis λ = iω with 0 < ω <∞, traversed in the downwards direction.

Proof: We take the counterclockwise contour consisting of the imaginary axis −iR ≤ Imλ ≤ iR, decomposed as ΓI+∪ΓI
−

,
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where ΓI+ = iω and ΓI
−

= −iω with 0 < ω < R, together with the semi-circle ΓR, given by |λ| = R > 0 with | arg λ| ≤ π
2 .

We use the argument principle of complex analysis to obtain

lim
R→∞

[arg G]
∣

∣

C
= 2π(N − P ) , C ≡ ΓR ∪ ΓI+ ∪ ΓI

−

, (3.6)

where [arg G]
∣

∣

C
denotes the change in the argument of G over the contour C traversed in the counter-clockwise direction,

and P is the number of poles of G inside C. Clearly P = 1 if b < 0 and P = 0 if b > 0. We calculate G(λ) ∼
√
τReiθ/2

on ΓR as R → ∞, where θ = arg λ, so that limR→∞ [arg G]ΓR
= π/2. Moreover, since G(λ) = G(λ), we get that

[arg G]ΓI+
= [arg G]ΓI

−

. In this way, we solve for N in (3.6) to obtain (3.5). �

Next, we set λ = iω in (3.4 a) to calculate [arg G]
∣

∣

ΓI+

and detect any Hopf bifurcation points. Since we have specified

the principal branch of the square root in (3.4 a), we must have that Re(
√
1 + τλ) > 0. Therefore, if we square both sides

of the expression for G = 0 in (3.4 a) and solve for τ , we may obtain spurious roots. We must then ensure that Re(g) > 0

at any such root. Upon setting λ = iω in (3.4 a) and squaring both sides, we obtain that τ = i
(

1− [g(iω)]2
)

/ω. Upon

taking the real and imaginary parts of this expression we conclude that

τ =
1

ω
Im

(

[g(iω)]
2
)

=
2

ω
gR(ω)gI(ω) =

2(cb+ aω2)

(b2 + ω2)
2 (ab− c) . (3.7 a)

Here ω > 0 is a root of

Re
(

[g(iω)]
2
)

= 1 , (3.7 b)

for which gR(ω) > 0 and gI(ω) > 0 to ensure that Re(
√
1 + iτω) > 0 and τ > 0, respectively. In (3.7 a), g(iω) has been

decomposed into real and imaginary parts as g(iω) = gR(ω) + igI(ω), where

gR(ω) =
bc+ aω2

b2 + ω2
, gI(ω) =

ω(ab− c)

b2 + ω2
. (3.7 c)

In addition, if we separate
√
1 + iτω into real and imaginary parts, we readily derive that

Re
(√

1 + iτω
)

=
1√
2

[

√

1 + τ2ω2 + 1
]1/2

, Im
(√

1 + iτω
)

=
1√
2

[

√

1 + τ2ω2 − 1
]1/2

. (3.8)

We now apply the winding number criterion of Lemma 3.1 together with (3.7) to determine the location of the roots of

G(λ) = 0 for various ranges of a, b, and c, as the parameter τ is varied.

Proposition 3.1 Suppose that cb < 0 and that a ≤ 0. Then, no Hopf bifurcations are possible as τ > 0 is varied. Moreover,

if b > 0 we have N = 0, so that the symmetric steady-state solution is linearly stable for all τ > 0. Alternatively, when

b < 0 we have N = 1, and so the symmetric steady-state solution is unstable for all τ > 0.

Proof: We note that g(λ), defined in (3.4 a), is a bilinear form and is real-valued when λ is real. It does not have a pole

at λ = 0 since b 6= 0. Therefore, it follows that the imaginary axis λ = iω must map to a disk B centered on the real axis

in the (gR, gI) plane. When cb < 0 and a ≤ 0, it follows from (3.7 c) that gR < 0, and so this disk lies in the left half-plane

Re(g) < 0. When b > 0, we have that g(λ) is analytic in Re(λ) > 0, and so the region Re(λ) > 0 must map to inside the

disk B. As such, since Re
(√

1 + τλ
)

> 0, it follows that there are no roots to G(λ) = 0 in Re(λ) > 0, and so N = 0.

For the case b < 0, we use the winding number criterion (3.5). Since cb < 0 and a ≤ 0, we have gR(ω) < 0, so that

Re [G(iω)] = Re
[√

1 + iτω − g(iω)
]

> 0. We have arg G(iω) → π/4 as ω → +∞ and G(0) > 0, so that arg G(0) = 0. This

yields that [arg G]
∣

∣

ΓI+

= −π/4. In addition, since P = 1 in (3.5), we obtain that N = 1 for all τ > 0. �

Next, we establish the following additional result that characterizes N , independent of the value of τ > 0.



Oscillatory Dynamics for Two Active Membranes Coupled by Linear Bulk Diffusion 9

Proposition 3.2 When c > ab, there are no Hopf bifurcation points for any τ > 0. If in addition, we have

(I) b > 0 , and c/b < 1 , then, N = 0 ∀τ > 0 ,

(II) b < 0 , and c/b < 1 , then, N = 1 ∀τ > 0 ,

(III) b > 0 , and c/b > 1 , then, N = 1 ∀τ > 0 ,

(IV ) b < 0 , and c/b > 1 , then, N = 2 ∀τ > 0 .

(3.9)

Proof: We first observe from (3.8) and (3.7 c) that Im(G(iω)) > 0 for all τ > 0 when c > ab. Therefore, there can be no

Hopf bifurcations as τ is increased. To establish (I) of (3.9) we use G(0) > 0, since c/b < 1, arg G(iω) → π/4 as ω → +∞,

and Im(G(iω)) > 0 to conclude that [arg G]
∣

∣

ΓI+

= −π/4. Then, since b > 0 we have P = 0, and (3.5) yields N = 0. The

proof of (II) of (3.9) is identical except that we have P = 1 in (3.5) since b < 0, so that N = 1. This unstable eigenvalue

is located on the positive real axis on the interval −b < λ < ∞. To prove (III) we note that G(0) < 0 since c/b > 1, and

P = 0 since b > 0. This yields [arg G]
∣

∣

ΓI+

= 3π/4, and N = 1 from (3.5). This root is located on the positive real axis.

Finally, to prove (IV) we use G(0) < 0 and b < 0 to calculate [arg G]
∣

∣

ΓI+

= 3π/4 and P = 1. This yields N = 2 from (3.5).

A simple plot of
√
1 + τλ and g(λ) on the positive real axis for this case shows that there is a real root in 0 < λ < −b

and in −b < λ <∞ for any τ > 0. �

Next, we consider the range ab > c and bc > 0 for which Hopf bifurcations in τ can be established for certain subranges

of a, b, and c. To analyze this possibility, we substitute g(iω) into (3.7 b), to obtain that ω must satisfy

(

aω2 + bc
)2 − ω2(ab− c)2 =

(

b2 + ω2
)2
,

in the region bc+ aω2 > 0. Upon defining ξ = ω2, it follows for |a| 6= 1 that we must find a root of the quadratic Q(ξ) = 0

with ξ ∈ S, where

Q(ξ) ≡ ξ2 − a0ξ + a1 = (ξ − a0/2)
2
+ a1 − a20/4 , S ≡ {ξ | ξ > 0 and aξ > −cb } . (3.10 a)

We refer to S as the admissible set. Here a0 and a1 are defined by

a0 =
1

a2 − 1

[

(ab− c)
2
+ 2b(b− ac)

]

, a1 =
b2

1− a2
(

b2 − c2
)

. (3.10 b)

For the special case where a = ±1, we have

ξ = b2
(

c/b− 1

c/b+ 3

)

, if a = −1 ; ξ = −b2
(

c/b+ 1

3− c/b

)

, if a = 1 . (3.10 c)

Our first result shows shows that there are certain subranges of the regime ab > c and bc > 0 for which we again have

that no Hopf bifurcations can occur for any τ > 0.

Proposition 3.3 Suppose that b < 0, 0 < c/b < 1, and c/b > a. Then, N = 1 for all τ > 0.

Proof: We first establish, for any τ > 0, that Re(G(iω)) > 0 when ω > 0. We observe from (3.8) that Re(
√
1 + iτω) is a

monotone increasing function of ω, while gR(ω), defined in (3.7 c), is a monotone decreasing function of ω when c/b > a.

This implies that Re(G(iω)) is monotone increasing in ω when c/b > a. Since Re(G(0)) = 1 − c/b > 0 when c/b < 1, we

conclude that Re(G(iω)) > 0 for ω > 0. Then, since Re(G(iω)) → +∞ as ω → +∞, we obtain [arg G]
∣

∣

ΓI+

= −π/4. Using
this result in (3.5), together with P = 1 since b < 0, we get that N = 1 for all τ > 0. �
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We now use Lemma 3.1 and (3.10) to identify a parameter regime in the range ab > c with bc > 0 where there is a

unique Hopf bifurcation value for τ :

Proposition 3.4 Suppose that b < 0, c/b > 1 and a < 1. Then, we have either N = 0 or N = 2 for all τ > 0. Moreover,

N = 0 for 0 < τ ≪ 1 and N = 2 for τ ≫ 1. For a 6= −1, there is a unique Hopf bifurcation at τ = τH > 0 given by

τH =
2(cb+ aω2

H)

(b2 + ω2
H)

2 (ab− c) , ωH =

√

a0
2

+ ζ

√

a20
4

− a1 , (3.11 a)

where ζ = +1 if |a| < 1 and ζ = −1 if a < −1. Here a0 and a1 are defined in (3.10 b). When a = −1, we have

τH = −2(cb− ω2
H)

(b2 + ω2
H)

2 (b+ c) , ωH = |b|
√

c/b− 1

c/b+ 3
. (3.11 b)

Proof: We first establish that, for any τ > 0, there is a unique root ω⋆ to Re(G(iω)) = 0 in ω > 0. To prove this

we follow the proof of Proposition 3.3 to obtain that Re(G(iω)) is a monotone increasing function of ω when c/b > a.

Moreover, since Re(G(0)) = 1 − c/b < 0, as a result of c/b > 1, and Re(G(iω)) → +∞ as ω → +∞, we conclude that

there is a a unique root ω⋆ to Re(G(iω)) = 0 in the region ω > 0. The uniqueness of the root to Re(G(iω)) = 0, together

with the facts that G(0) = 1 − c/b < 0 and arg G(iω) → π/4 as ω → +∞, establishes that either [arg G]
∣

∣

ΓI+

= 3π/4

or [arg G]
∣

∣

ΓI+

= −5π/4 depending on whether Im(G(iω⋆)) > 0 or Im(G(iω⋆)) < 0, respectively. Therefore, since P = 1,

owing to the fact that b < 0, we conclude from (3.5) that either N = 0 or N = 2 for any τ > 0.

To determine N when either 0 < τ ≪ 1 or when τ ≫ 1, we examine the behavior of the unique root ω⋆ to Re(G(iω)) = 0

for these limiting ranges of τ . For τ ≫ 1, we readily obtain that ω⋆ = O(1/τ), so that Im(G(iω⋆)) > 0 from estimating

Im(
√
1 + iτω) and gI(ω) in (3.8) and (3.7 c). Thus, N = 2 for τ ≫ 1. Alternatively, if 0 < τ ≪ 1, we readily obtain that

ω⋆ = O(1), and that Im(G(iω⋆)) ∼ −gI(ω⋆) +O(τ2) < 0. Therefore, N = 0 when 0 < τ ≪ 1. By continuity with respect

to τ it follows that there is a Hopf bifurcation at some τ > 0.

To establish that the Hopf bifurcation value for τ is unique and to derive a formula for it, we now analyze the roots

of Q(ξ) = 0 for ξ ∈ S, where Q(ξ) and the admissible set S are defined in (3.10). In our analysis, we must separately

consider four ranges of a: (i) 0 ≤ a < 1, (ii) −1 < a < 0, (iii) a = −1, and (iv) a < −1.

For (i) where 0 ≤ a < 1, the admissible set S reduces to ξ > 0 since cb > 0. Moreover, we have Q(0) = a1 < 0 since

c/b > 1 and Q→ +∞ as ξ → +∞. Since Q(ξ) is a quadratic, it follows that there is a unique root to Q(ξ) = 0 in ξ > 0,

with the other (inadmissible) root to Q(ξ) = 0 satisfying ξ < 0. By using (3.10 a) to calculate the largest root of Q(ξ) = 0,

and recalling (3.7 a), we obtain (3.11 a).

The proof of (ii) for the range −1 < a < 0 is similar, but for this case the admissible set S is the finite interval

0 < ξ < −cb/a. Since Q(0) = a1 < 0 and Q is a quadratic, to prove that there is a unique root to Q(ξ) = 0 on this interval

it suffices to show that Q (−cb/a) > 0. A straightforward calculation using the expressions for a0 and a1 in (3.10 b) yields,

upon re-arranging terms in the resulting expression, that

Q (−cb/a) = c2b2

a2
− cb

a(1− a2)

[

(ab− c)2 + 2b(b− ac)
]

+
b2(b2 − c2)

1− a2
,

=
c2b2

a2
− cb

a(1− a2)
(ab− c)2 +

b2

1− a2

[

(b− c)2 + 2cb

(

1− 1

a

)]

.
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Since cb > 0 and −1 < a < 0 all three terms in this last expression for Q (−cb/a) are positive. Thus, there is a unique

root to Q(ξ) = 0 in 0 < ξ < −cb/a, which is given explicitly by (3.11 a).

When a = −1, the admissible set S is the interval 0 < ξ < cb. It is then readily verified that the explicit formula for ξ

given in (3.10 c) when a = −1 lies in this interval. In this way, we obtain (3.11 b).

Finally, we consider the range (iv) where a < −1, where the admissible set is 0 < ξ < −cb/a. Since c/b > 1 and a < −1

we have from (3.10 b) that a0 > 0 and Q(0) = a1 > 0. Thus the minimum value of Q(ξ) is at some point ξ = ξm > 0. To

prove that there is a unique root to Q(ξ) = 0 on 0 < ξ < −cb/a we need only prove that Q (−cb/a) < 0. By re-arranging

the terms in the expression for Q (−cb/a) we obtain, after some algebra, that

Q (−cb/a) = − cb3

a2(a2 − 1)

[

c

b
(1 + a2)− a

(

c2

b2
+ a2

)]

− b2

a2 − 1

[

(b− c)2 + 2cb
(a− 1)

a

]

.

Since cb > 0 and a < −1, we have that the expressions inside each of the two square brackets are positive, while the terms

multiplying the square brackets are negative. This establishes that Q (−cb/a) < 0 and the existence of a unique root to

Q(ξ) = 0 in 0 < ξ < −cb/a. By taking the smallest root of Q(ξ) = 0 on ξ > 0 we get (3.11 a). �

Our next result is for the case b > 0 on a subrange of where ab− c > 0.

Proposition 3.5 The following results hold for the case b > 0: (I) Suppose that c/b < a < 1. Then, we have N = 0 for

all τ > 0. (II) Suppose that c/b < 1 < a. Then, there is a Hopf bifurcation at some τ = τH > 0. If 0 < τ < τH , then

N = 2, whereas if τ > τH , then N = 0. The Hopf bifurcation value τH > 0 is given by

τH =
2(cb+ aω2

H)

(b2 + ω2
H)

2 (ab− c) , ωH =

√

a0
2

+

√

a20
4

− a1 , (3.12)

where a0 and a1 are defined in (3.10 b).

Proof: We first prove (I). When c/b < a < 1, we have from (3.7 c) that gR(ω) is monotone increasing with c/b = gR(0) <

gR(ω) < gR(∞) = a < 1. Since Re(
√
1 + iωτ) > 1 for all τ > 0, it follows that Re(G(iω)) > 0 on 0 ≤ ω < ∞, and

consequently [arg G]
∣

∣

ΓI+

= −π/4. Then, since P = 0, owing to b > 0, (3.5) yields that N = 0 for all τ > 0.

To prove (II) we consider the range c ≥ 0 and c < 0 separately, and we first examine the roots to Q(ξ) = 0 for ξ ∈ S,

as defined in (3.10). For the case c ≥ 0, the admissible set is ξ > 0. Since the quadratic Q(ξ) satisfies Q(0) = a1 < 0 when

0 < c/b < 1 < a, together with Q(ξ) → +∞ as ξ → ∞, it follows that there is a unique root to Q(ξ) = 0 on ξ > 0. This

yields the unique Hopf bifurcation value τH given in (3.12). Alternatively, suppose that c < 0. Then the admissible set is

ξ > −bc/a. We calculate Q (−bc/a) from (3.10), and after re-arranging the terms in the resulting expression, we obtain

Q (−cb/a) = c2b2

a2
+

cb

a(a2 − 1)

[

(ab− c)2 + 2b(b− ac)
]

+
b2(b2 − c2)

1− a2
,

=
bc

a

(ab− c)2

a2 − 1
+
b2(b2 − c2)

1− a2
+

c2b2

a2(a2 − 1)

[

−a2 − 1 +
2ab

c

]

.

Since each of the three terms in the last expression is negative when c/b < 1 < a, we have Q (−bc/a) < 0. It follows that

there is a unique root to Q(ξ) = 0 on −bc/a < ξ <∞, and consequently a unique Hopf bifurcation point.

Combining the results for c ≥ 0 and c < 0, we conclude that there is a unique Hopf bifurcation point τH > 0 when

c/b < 1 < a and b > 0. We now must prove the result that N = 0 for τ > τH and N = 2 for 0 < τ < τH . To establish

this result, we need only prove than N = 0 for τ ≫ 1 and N = 2 for 0 < τ ≪ 1. Then, by the uniqueness of τH , the

continuity of λ with respect to τ , and the fact that λ = 0 cannot be eigenvalue, the result follows. For τ ≫ 1, we obtain
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from the unboundedness of Re(
√
1 + iτω) as τ → +∞ for ω > 0 fixed that Re(G(iω)) > 0 on 0 ≤ ω < ∞ when τ ≫ 1.

Therefore, since [arg G]
∣

∣

ΓI+

= −π/4 and P = 0, owing to b > 0, (3.5) yields that N = 0 for τ ≫ 1. Next, since a > 1,

we readily observe that there are exactly two roots ω± with 0 < ω− < ω+ to Re(G(iω)) = 0 on 0 < ω < ∞, with the

property that ω− = O(1) and ω+ = O(τ−1) ≫ 1 when 0 < τ ≪ 1. We readily estimate that Im (G(iω+)) > 0 and

Im (G(iω−)) < 0 when τ ≪ 1. Therefore, since arg G(iω) → π/4 as ω → +∞ and arg G(0) = 0 since c/b < 1, we conclude

that [arg G]
∣

∣

ΓI+

= 7π/4 when 0 < τ ≪ 1. Finally, since P = 0, owing to b > 0, (3.5) yields N = 2 when 0 < τ ≪ 1. �

Our final result is for the range 1 < a < c/b with b < 0 where there can be either two Hopf bifurcation values of τ or

none.

Proposition 3.6 Suppose that b < 0 and 1 < a < c/b. Then, if c/b ≤ 3a+ 2
√
2(a2 − 1)1/2, we have N = 2 for all τ > 0,

and consquently no Hopf bifurcation points. Alternatively, if c/b > 3a+2
√
2(a2−1)1/2, then there are two Hopf bifurcation

values τH±, with τH− > τH+, so that N = 0 for τH+ < τ < τH− and N = 2 when either 0 < τ < τH+ or τ > τH−.

Proof: Since the proof of this result is similar to those of Propositions 3.4 and 3.5, we only briefly outline the derivation.

First, since necessarily c < 0, the admissible set for Q(ξ) in (3.10 a) is ξ ≥ 0, and hence we focus on determining whether

Q(ξ) = 0 has any positive real roots. For the range 1 < a < c/b, we calculate Q(0) = a1 > 0 from (3.10). As such it

follows that there are either two real roots to Q(ξ) = 0 in ξ > 0, a real positive root of multiplicty two, or no real roots.

From (3.10), there are two real roots only when a0 > 0 and a20/4− a1 > 0, where a0 and a1 are defined in (3.10 b).

Upon using (3.10 b) for a0 and a1, we can show after some lengthy but straightforward algebra that a0 > 0 when

c/b > 2a+
√
3a2 − 2, and a20/4− a1 > 0 when

(c

b
− 3a

)2

+ 8(1− a2) > 0 .

For any a > 1, the intersection of these two ranges of c/b is c/b > 3a+ 2
√
2(a2 − 1)1/2. On this range, Q(ξ) = 0 has two

positive real roots, and hence there are two Hopf bifurcation values of τ . For the range 1 < a < c/b < 3a+2
√
2(a2−1)1/2,

then either a0 < 0 or a20/4− a1 < 0, and so Q(ξ) = 0 has no positive real roots.

The determination of N follows in a similar way as in the proof of Proposition 3.5. �

3.2 A Finite Domain: Numerical Computations of the Winding Number

For finite domain length L, the synchronous and asychronous modes will, in general, have different instability thresholds.

For finite L, we use (3.3) to conclude that we must find the roots of G(λ) = 0, where we now re-define G(λ) as

G(λ) ≡ DΩλh (Ωλ) +Ge
c −

F e
cG

e
u

F e
u − λ

, h(Ωλ) ≡
{

tanh (ΩλL) , (synchronous)

coth (ΩλL) , (asynchronous)
, (3.13 a)

where Ωλ =
√

(1 + τλ)/D. It is readily shown that (3.5) still holds, and so

N =
1

4
+

1

π
[arg G]

∣

∣

ΓI+

+ P , (3.13 b)

where P = 0 if F e
u < 0 and P = 1 if F e

u > 0. To determine N for a specific membrane-bulk system, numerical computations

of [arg G]
∣

∣

ΓI+

must be performed separately for both the synchronous and asynchronous modes. This is illustrated below

in §4 for some specific membrane-bulk systems.
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We remark that some of the results in §3.1 are still valid when L is finite. To see this, we write (3.13 a) in the form

√
1 + τλ

h(Ωλ)

h(ω0)
= g(λ) , g(λ) ≡ cL + aLλ

b+ λ
, (3.14 a)

where ω0 = D−1/2, and where we have defined aL, b, and cL, by

aL ≡ − Ge
c√

Dh(ω0)
, b ≡ −F e

u , cL ≡ 1√
Dh(ω0)

[Ge
cF

e
u −Ge

uF
e
c ] . (3.14 b)

We remark that as L→ ∞, (3.14) reduces to the eigenvalue problem (3.4 a) for the infinite-line problem studied in §3.1.
With this reformulation, the left-hand side of (3.14 a) has the same qualitative properties as

√
1 + τλ that were used

in the proofs of some of the propositions in §3.1. In particular, Propositions 3.1–3.3 and part (I) of Proposition 3.5 still

apply provided we replace a and c in these results by aL and cL. We do not pursue this extension any further here.

4 Examples of the Theory: One-Component Membrane Dynamics

In this section we consider some specific systems to both illustrate our stability theory and to show the existence of

synchronous and asynchronous oscillatory instabilities induced by coupled membrane-bulk dynamics. Assuming a one-

component membrane dynamics, we determine the stability of the steady-state solution by numerically computing the

number N of eigenvalues of the linearization in Re(λ) > 0 from either (3.5) for the infinite-line problem, or from (3.13)

for the finite-domain problem. For some subranges of the parameters in these systems, the theoretical results of §3.1 for

the infinite-line problem determines N without the need for any numerical winding number computation.

To confirm our stability results for the case of a one-component membrane dynamics we also computed symmetric

steady-state solutions of (1.1) and bifurcations of this solution to periodic solutions by first spatially discretizing (1.1)

with finite differences. Then, from this method of lines approach, together with the path continuation program Auto

with the interface provided by XPPAUT (cf. [6]), branches of steady-state and periodic solution branches were computed

numerically. To confirm predictions of oscillatory dynamics, full time-dependent numerical solutions of the coupled PDE-

ODE system (1.1) were computed using the method of lines.

4.1 A Class of Feedback Models

We first apply the theory of §3.1 to a class of membrane-bulk problems on the infinite line, corresponding to letting

L→ ∞, of the form

τCt = DCxx − C , t > 0 , x > 0 ; DCx

∣

∣

x=0
= G(C(0, t), u) ; C → 0 as x→ ∞ ,

du

dt
= F (C(0, t), u) , where F (C(0, t), u) ≡ F(u) + σG(C(0, t), u(t)) ,

(4.1)

for some σ > 0. For this class, the flux on x = 0 acts as a source term to the membrane dynamics. A special case of (4.1),

which is considered below, is when the membrane-bulk coupling is linear and, for some κ > 0, has the form

G(C(0, t), u) ≡ κ [C(0, t)− u] . (4.2)

To apply the theory in §3.1 to (4.1) we first must calculate a, b, and c, from (3.4 b). We readily obtain that

b = −F ′(ue)− σGe
u , a = − Ge

c√
D
, c =

1√
D
Ge

cF ′(ue) , ab− c =
σ√
D
Ge

uG
e
c , (4.3)

where ue is a steady-state value for u. The first result for (4.1) shows that a Hopf bifurcation is impossible with a linear

membrane-bulk coupling mechanism.
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Proposition 4.1 Let Ce, ue be the steady-state solution for (4.1) with the linear membrane-bulk coupling (4.2). Let N

denote the number of unstable eigenvalues in Re(λ) > 0 for the linearization of (4.1) around this steady-state solution.

Then, for any τ > 0, we have N = 0 when F ′(ue) < FLth, and N = 1 when F ′(ue) > FLth, where FLth ≡ σκ/
[

1 + κ/
√
D
]

.

Proof: Since with the coupling (4.2) we have ab − c = −κ2σ/
√
D < 0, it follows by Proposition 3.2 that there are no

Hopf bifurcations for any τ > 0. To determine the stability threshold, we calculate a = −κ/
√
D < 0, b = −F ′(ue) + σκ,

and c = κF ′(ue)/
√
D, and apply the results of Proposition 3.2. We separate our analysis into three ranges of F ′(ue). First

suppose that F ′(ue) < 0. Then, since b > 0, c < 0, and a < 0, we have by (I) of Proposition 3.2 that N = 0. Next, suppose

that 0 < F ′(ue) < σκ, so that b > 0 and c > 0. We calculate that c/b > 1 if F ′(ue) > FLth, where FLth, which satisfies

0 < FLth < σκ, is defined above. Since c/b > 1, (III) of Proposition 3.2 proves that N = 1 for all τ > 0. Alternatively,

if 0 < F ′(ue) < FLth, then c/b < 1, and (I) of Proposition 3.2 proves that N = 0 for all τ > 0. Finally, suppose that

F ′(ue) > σκ. Then, c > 0, b < 0, so that bc < 0 and a < 0. We conclude from Proposition 3.1 that N = 1 for all τ > 0.

The proof is complete by combining these results on the three separate ranges of F ′(ue). �

This result for the non-existence of oscillations for a linear membrane-bulk coupling mechanism holds only for the case

of a single membrane-bound species. As shown in §5, when there are two species in the membrane, oscillatory dynamics

can occur even with a linear membrane-bulk coupling mechanism. Our next result for (4.1) specifies a class of nonlinear

coupling mechanisms G(C(0, t), u) for which no Hopf bifurcations of the steady-state solution are possible.

Proposition 4.2 When Ge
cG

e
u < 0, then the steady-state solution of (4.1) does not undergo a Hopf bifurcation for any

τ > 0. In particular, if Ge
u < 0 and Ge

c > 0, then for any τ > 0 we have N = 1 when F ′(ue) > Fth, and N = 0 when

F ′(ue) < Fth. Here Fth > 0 is the threshold value

Fth ≡ − σGe
u

1 +Ge
c/
√
D
. (4.4)

Proof: From (4.3) we have ab − c < 0 when Ge
cG

e
u < 0. Proposition 3.2 proves that there are no Hopf bifurcations for

any τ > 0. The second part of the proof parallels that done for Proposition 4.2, and is left to the reader. �

A similar analysis can be done for the case where Ge
u > 0 and Ge

c < 0. For this case, the steady-state solution is

unstable when Ge
c < −

√
D for all ranges of F ′(ue). When Ge

c > −
√
D, the steady-state is linearly stable only when

F ′(ue) < −σGe
u/

[

1 +Ge
c/
√
D
]

.

Our final result for (4.1) characterizes a class of nonlinear coupling mechanisms for which a Hopf bifurcation of the

steady-state solution does occur for some value of τ .

Proposition 4.3 Suppose that Ge
c > 0 and Ge

u > 0. Then, for the steady-state solution of (4.1), we have:

(I) If F ′(ue) > Fth , then N = 1 ∀τ > 0 ,

(II) If − σGe
u < F ′(ue) < Fth , then N = 2 for τ > τH , and N = 0 for 0 < τ < τH ,

(III) If F ′(ue) < −σGe
u , then N = 0 ∀τ > 0 .

(4.5)

Here τH > 0 is the unique Hopf bifurcation point, and Fth < 0 is defined in (4.4).

Proof: Since Ge
c > 0, we have a < 0 from (4.3). To establish (III) we calculate from (4.3) that b > 0 and c < 0 when
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F ′(ue) < −σGe
u. From the first statement of Proposition 3.1, we conclude that N = 0. To establish (II), we observe that

b < 0, c < 0, and c/b > 1 when −σGe
u < F ′(ue) < Fth < 0. Proposition 3.4 then proves that there is a unique Hopf

bifurcation value τ = τH > 0 on this range of F ′(ue), as given in (3.11). Finally, to establish (I), we observe that b < 0

and c/b < 1 when F ′(ue) > Fth. For the range c < 0, where Fth < F ′(ue) < 0, we have from Proposition 3.3 that N = 1.

Finally, for the range c > 0, where F ′(ue) > 0, Proposition 3.1 also yields that N = 1. �

We now discuss the limiting behavior of τH and the corresponding Hopf bifurcation frequency ωH , as given by (3.11),

at the two edges of the interval for F ′(ue) in (II) of Proposition 4.3. First, we observe that as F ′(ue) approaches −σGe
u

from above, we have that b → 0−. Therefore, from (3.11) we have a1 → 0, and so at this lower edge of the interval we

have ωH → 0+ and τH → +∞. At the other end of the interval, where F ′(ue) approaches Fth from below, we have that

c − b → 0, so that again a1 → 0 in (3.11). Therefore, from (3.11), we conclude at this upper edge of the interval that

ωH → 0+. However, since b = O(1), we have from (3.11 a) that τH → 2(1− a)/|b| = O(1) at the upper edge.

4.2 A Phase Diagram for an Explicitly Solvable Model

Next, we consider a simple model where a phase diagram characterizing the possibility of Hopf bifurcations can be

determined analytically for the infinite-line problem. For β > 0, γ > 0 and κ > 0, we consider

τCt = DCxx − C , t > 0 , 0 < x < 2L ,

DCx

∣

∣

x=0
= G(C(0, t), u) ≡ κ

(C(0, t)− u)

1 + β (C(0, t)− u)
2 ,

du

dt
= F (C(0, t), u) ≡ γC(0, t)− u ,

(4.6)

with identical membrane dynamics at x = 2L. The symmetric steady-state solution for (4.6) is Ce(x) given in (2.2 a),

where C0
e ≡ Ce(0) satisfies the cubic equation

(C0
e )

3β(γ − 1)2 tanh(ω0L)− C0
e [κω0(γ − 1)− tanh(ω0L)] = 0 , ω0 ≡

√

1/D0 . (4.7)

In our analysis, we will focus on periodic solutions that bifurcate from the steady-state solution branch where C0
e is

positive. From (4.7), the positive root is given explicitly by

C0
e =

√

κω0(γ − 1)− tanh(ω0L)

β(γ − 1)2 tanh(ω0L)
, ue = γC0

e , when κω0(γ − 1)− tanh(ω0L) > 0 . (4.8)

We first consider the infinite-line problem where L→ ∞ and we set D = 1 for convenience. Then, (4.8) reduces to

C0
e =

√

κ(γ − 1)− 1

β(γ − 1)2
. (4.9)

For this example, we calculate a, b, and c, in (3.4 b) as

a = −Ge
c = − 1

κ(γ − 1)2
[2− κ(γ − 1)] , b = 1 , c = (γ − 1)Ge

c , ab− c = −γGe
c . (4.10)

We now apply the theory of §3.1 to obtain the phase-diagram Fig. 2 in the parameter space κ versus γ. Since C0
e > 0 only

when γ > 1 and κ > 1/(γ − 1), the boundary between region I and II in Fig. 2 is κ = 1/(γ − 1). Next, we calculate that

ab − c < 0 and 0 < c/b < 1 when (γ − 1)−1 < κ < 2(γ − 1)−1, which is labeled as region II in Fig. 2. Therefore, in this

region, we conclude from condition (I) of Proposition 3.2 that the steady-state is stable for all τ > 0. Next, we calculate

from (4.10) that c/b < a < 1 when 2(γ − 1)−1 < κ < 2(γ − 1)−1(2 − γ)−1 and γ > 1, which is region III of Fig. 2. For

this range, Proposition 3.5 proves that the steady-state solution is stable for all τ > 0. Finally, region IV of Fig. 2 given
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by κ > 2(γ − 1)−1(2− γ)−1 for 1 < γ < 2, is where c/b < 1 < a. At each point in this region, Proposition 3.5 proves that

there is a Hopf bifurcation value τ = τH > 0, and that the steady-state solution is unstable if 0 < τ < τH .

1 1.5 2
2

4

6

8

10

12

γ

κ

I

II

III

IV

Figure 2. Phase diagram for (4.6) in the κ versus γ plane for the infinite-line problem whenD = 1. In region I, κ < (γ−1)−1

with γ > 1, and there is no steady-state solution. In region II, bounded by (γ − 1)−1 < κ < 2(γ − 1)−1 for γ > 1, we

have ab − c < 0 and b > 0, and the steady-state solution is linearly stable for all τ > 0. In region III, bounded by

2(γ − 1)−1 < κ < 2(γ − 1)−1(2 − γ)−1 for γ > 1, we have b > 0 and c/b < a < 1, and so by the first statement in

Proposition 3.5 there is no Hopf bifurcation and the steady-state solution is linearly stable for all τ > 0. In region IV,

bounded by κ > 2(γ − 1)−1(2 − γ)−1 for 1 < γ < 2, we have b > 0 and c/b < 1 < a, and so by the second statement in

Proposition 3.5 there is a Hopf bifurcation and the steady-state solution is unstable if 0 < τ < τH and is linearly stable

if τ > τH , where τH > 0 is given by (3.12).

1.3 1.4 1.5 1.6
5.5

5.6

5.7

5.8
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u

1.2 1.3 1.4 1.5 1.6 1.7
5.8

6

6.2

6.4

6.6

6.8

γ

u

Figure 3. Two typical bifurcation diagrams for u versus γ for (4.6) on a finite domain with L = 2, D = 1, τ = 0.1, and

β = 1. Left panel: κ = 9. Right-panel: κ = 10.5. The solid and dashed lines denote linearly stable and unstable branches of

steady-state solutions. The outer and inner closed loops correspond to branches of synchronous and asynchronous periodic

solutions, respectively. The solid/open circles indicate linearly stable/unstable periodic solutions, respectively.

For the finite-domain problem with L = 2, and for two values of κ, in Fig. 3 we plot numerically computed bifurcation

diagrams of u versus γ for both the steady-state and bifurcating periodic solution branches. For the corresponding infinite-

line problem, this corresponds to taking a horizontal slice at fixed κ through the phase diagram of Fig. 2. The results in

the left panel of Fig. 3 show that when κ = 9 the bifurcating branch of synchronous oscillations is linearly stable, while the
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asynchronous branch is unstable. To confirm this prediction of a stable synchronous oscillation for κ = 9 and γ = 1.45, in

Fig. 4 we plot the full numerical solution computed from the PDE-ODE system (4.6). Starting from the initial condition

C(x, 0) = 1, together with u1(0) = 0.4 and u2(0) = 0.5 in the left and right membranes, respectively, this plot shows

the eventual synchrony of the oscillations in the two membranes. In the right panel of Fig. 3, where κ = 10.5, we show

that the synchronous mode is stable for a wide range of γ, but that there is a narrow parameter range in γ where both

the synchronous and asynchronous modes are unstable. For the value γ = 1.28 within this dual-unstable zone, the full

numerical solution of the PDE-ODE system (4.6), shown in Fig. 5 reveals a phase-locking phenomena in the oscillatory

dynamics of the two membranes.

15 20 25
5.5

5.6

5.7

5.8

5.9

6

t

u 1, u
2

Figure 4. Full numerical solutions (left panel) of the PDE-ODE system for (4.6) for the finite-domain problem with L = 2,

D = 1, τ = 0.1, κ = 9, γ = 1.45, and β = 1. The initial condition is C(x, 0) = 1, with u1(0) = 0.4 and u2(0) = 0.5 in the

left and right membranes. On the infinite line the parameter values are in region IV of Fig. 2. For this value of γ and κ

we observe from the left panel of the global bifurcation diagram Fig. 3 that only the synchronous mode is stable. The full

numerical solutions for u1 and u2 (right panel) confirm this prediction.
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Figure 5. Full numerical solutions (left panel) of the PDE-ODE system for (4.6) for the finite-domain problem with

L = 2, D = 1, τ = 0.1, κ = 10.5, γ = 1.28, and β = 1. The initial condition is as given in Fig. 4. For this value of γ

and κ we observe from the right panel of the global bifurcation diagram Fig. 3 that the synchronous and asynchronous

periodic solutions are both linearly unstable. The full numerical solutions for u1 and u2 (right panel) reveal a phase-locking

phenomenon.
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4.3 Two Biologically-Inspired Models

Next, we consider two specific biologically-inspired models which undergo a Hopf bifurcation when parameters vary. The

first example is a simplified version of the GnRH neuron model from [13, 19, 7]. In this context, the spatial variable

C(x, t) is the GnRH concentration in the bulk medium while u is the membrane concentration of the activated α-subunits

of the G-protein Gi which is activated by the binding of GnRH to its receptor. As discussed in the Appendix, the functions

describing the boundary flux and the membrane kinetics for this model are as follows:

G(C(0, t), u) = −σ
[

1 + β

(

ι+ 1 + ζq

µ+ 1 + δq

)3 (

η +
s

ω + u

)3
]

, F (C(0, t), u) = ǫ

(

[C(0, t)]2

k2i + [C(0, t)]2
− u

)

, (4.11 a)

where s and q, which depend on C(0, t), are defined by

s ≡ [C(0, t)]4

k4s + [C(0, t)]4
, q ≡ [C(0, t)]2

k2q + [C(0, t)]2
. (4.11 b)

The fixed parameters in this model, as discussed in [13, 19, 7], can be obtained from fitting experimental data.

0 0.05 0.1

0

0.1

0.2

ReG

Im
G

Figure 6. Left figure: Numerical results, showing oscillatory dynamics, for C(x, t) in the GnRH model (4.11). The bulk

diffusion parameters are D = 0.003, τ = 1, and L = 1. The parameters in the membrane-bulk coupling and dynamics in

(4.11) are σ = 0.047, β = 5.256× 10−14, ι = 764.7, ζ = 3747.1, µ = 0.012, δ = 0.588, η = 0.410, ω = 0.011, ǫ = 0.0125,

ki = 464, ks = 1, and kq = 61. Right figure: Plot of the imaginary part versus the real part of G(iω) when λ = iω and ω

decreases from 3 (black dot) to 0. This shows that the winding number [arg G]
∣

∣

ΓI+

is 7π/4, and so N = 2 from (3.13 a).

For the bulk diffusion process we let D = 0.003, τ = 1, and L = 1. Since L/
√
D ≈ 18.3 ≫ 1, our analytical stability

theory for the infinite-line problem will provide a good prediction for the stability properties associated with this finite-

domain problem. By using the parameter values of [13], as written in the caption of Fig. 6, we calculate that

b = −F e
u = ǫ > 0 , a = −Ge

c/
√
D > 0 , F e

c > 0 , Ge
u > 0 . (4.12)

In the right panel of Fig. 6 we show a numerical computation of the winding number, which establishes that [arg G]
∣

∣

ΓI+

=

7π/4. Since b > 0, we conclude from (3.5) that N = 2. Our full numerical simulations of the PDE-ODE system in the left

panel of Fig. 6, showing an oscillatory dynamics, is consistent with this theoretical prediction. In fact, for the parameter

values in the caption of Fig. 6 we have a = 1.8223, b = 0.0125, and c = 0.0028. Since b > 0 and c/b < 1 < a, the second

statement in Proposition 3.5 proves that there is a Hopf bifurcation value of τ for the corresponding infinite-line problem.

We calculate τH ≈ 113.5 with frequency ωH ≈ 0.0169, which indicates a rather large period of oscillation at onset.

Another specific biological system is a model of cell signaling in Dictyostelium (cf. [9]). In this context, the spatial
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variable C(x, t) is the concentration of the cAMP in the bulk region, while u is the total fraction of cAMP receptor in the

active state on the two membranes (binding of cAMP to this state of the receptor elicits cAMP synthesis). As discussed

in the Appendix, the boundary flux and nonlinear membrane dynamics for this system are described

G(C(0, t), u) = −σ⋆
α
(

Λθ + ǫu[C(0,t)]2

1+[C(0,t)]2

)

(1 + αθ) + ( ǫu[C(0,t)]2

1+[C(0,t])2 )(1 + α)
,

F (C(0, t), u) = f2(C(0, t))− u[f1(C(0, t)) + f2(C(0, t))] ,

(4.13 a)

where

f1(C(0, t)) ≡
k1 + k2[C(0, t)]

2

1 + [C(0, t)]2
, f2(C(0, t)) ≡

k1L1 + k2L2c
2
d[C(0, t)]

2

1 + c2d[C(0, t)]
2

. (4.13 b)

The fixed parameters in this model, as discussed briefly in the Appendix, are given in (cf. [9]) after fitting the model to

experimental data. They are written in the caption of Fig. 7,

For the bulk diffusion process we let D = 0.2, τ = 0.5, and L = 1. For this case where L/
√
D ≈ 2.2, the analytical

stability results for the infinite-domain problem do not accurately predict the stability thresholds for this finite-domain

problem. For the parameter values in Fig. 7, we calculate that

b ≡ −F e
u > 0 , F e

c < 0 , Ge
u < 0 , Ge

c < 0 .

In the right panel of Fig. 7 we show that [arg G]
∣

∣

ΓI+

= 7π/4. Since b > 0, we conclude from (3.13) that N = 2. Our full

numerical simulations of the PDE-ODE system in the left panel of Fig. 7, showing an oscillatory dynamics, is consistent

with this prediction. For the parameter values in the caption of Fig. 7 we have a = 1.4223, b = 1.1525, and c = 0.2205.

We remark that since b > 0 and c/b < 1 < a, Proposition 3.5 proves that there is a Hopf bifurcation value of τ for the

corresponding infinite-line problem given by τH ≈ 0.5745.
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Figure 7. Left figure: Numerical results, showing oscillatory dynamics, for C(x, t) in the Dictyostelium model (4.13). The

bulk diffusion parameters are D = 0.2, τ = 0.5, and L = 1. The parameters in the membrane-bulk coupling and dynamics

in (4.13) are σ⋆ = 32, α = 1.3, Λ = 0.005, θ = 0.1, ǫ = 0.2, k1 = 1.125, L1 = 316.228, k2 = 0.45, L2 = 0.03, and cd = 100.

Right figure: Plot of the imaginary part versus the real part of G(iω) when λ = iω and ω decreases from 100 (black dot)

to 0. This shows that [arg G]
∣

∣

ΓI+

= 7π/4, and so N = 2 from (3.13).

The parameters used in Fig. 7 are adopted from [9] (page 245) except for the values of Λ, θ, α and σ. In Fig. 8 we plot the

numerically computed bifurcation diagram of steady-state solutions for (4.13) as D is varied, together with the branches

of synchronous periodic solutions. In the left panel of Fig. 8 we took Λ = 0.005, θ = 0.1 and τ = 1.3, corresponding
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to Fig. 7, while in the right panel of Fig. 8 we took Λ = 0.01, θ = 0.01 and τ = 1.2. For the latter parameter set, the

steady-state bifurcation diagram has an S-shaped bifurcation structure.
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Figure 8. Bifurcation diagram of steady-state and synchronous periodic solution branches for the Dictyostelium model

(4.13) with respect to the diffusivity D. The vertical axis is C(0). Left panel: Λ = 0.005, θ = 0.1 and τ = 1.3. Right panel:

Λ = 0.01, θ = 0.01 and τ = 1.2. In both panels the other parameter values used are the same as in Fig. 7. The solid/dashed

lines denote stable/unstable branches of steady-state solutions. The solid/open circles indicates stable/unstable periodic

solution branches of the synchronous mode. For the value D = 0.2 used in in the left panel of Fig. 7, we observe from the

left panel above that the steady-state solution is unstable (as expected).

5 Two-Component Membrane Dynamics: Extension of the Basic Model

In our analysis so far we have assumed that the two membranes are identical. We now extend our analysis to allow for

the more general case where the two membranes have possibly different dynamics. From the laboratory experiments of

Pik-Yin Lai [16], it was observed for a certain two-cell system that one cell can have oscillatory dynamics, while the other

cell is essentially quiescent. To illustrate such a behavior theoretically, we now modify our previous analysis to remove

the assumed symmetry of the bulk concentration about the midline at x = L, and instead consider the whole system on

0 < x < 2L. Allowing for the possibility of heterogeneous membranes, we consider

τCt = DCxx − C , t > 0 , 0 < x < 2L ,

DCx(0, t) = G1(C(0, t), u1) , DCx(2L, t) = G2(C(2L, t), v1) .
(5.1 a)

Here C(x, t) is the bulk concentration of the signal, while u1 and v1 are their concentrations at the two membranes x = 0

and x = 2L, respectively. Inside each membrane, we assume the two-component dynamics

du1
dt

= f1(u1, u2) + β1P(C(0, t), u1) ,
du2
dt

= g(u1, u2) ,

dv1
dt

= f2(v1, v2) + β2P(C(2L, t), v1) ,
dv2
dt

= g(v1, v2) ,

(5.1 b)

where the functions G1, G2, f1, f2, P, and g are given by

G1(C(0, t), u1) = κ1 [C(0, t)− u1(t)] , G2(C(2L, t), v1) = κ2 [v1(t)− C(2L, t)] ,

f1(u1, u2) = σ1u2 − q1u1 − q2
u1

1 + q3u1 + q4u21
, f2(v1, v2) = σ2v2 − p1v1 − p2

v1
1 + p3v1 + p4v21

,

g(θ, ξ) =
1

1 + θ4
− ξ , P(θ, ξ) = θ − ξ .

(5.1 c)
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This system, adopted from the key survey paper [24] for the design of realistic biological oscillators (see equation (8) of

[24]), models a gene expression process and protein production for a certain biological system. With our choices of Gi for

i = 1, 2 and P, we have assumed a linear coupling between the bulk and the two membranes. The parameter values for

σ, qi and pi, for i = 1, . . . , 3, used below in our simulations are the same as in Fig. 3 of [24].

A simple calculation shows that the steady-state concentrations u1e, u2e, v1e, and v2e, satisfy the nonlinear algebraic

system
σ1

1 + u41e
− q1u1e −

q2u1e
1 + q3u1e + q4u21e

+ β1(aeu1e + bev1e − u1e) = 0 ,

σ2
1 + v41e

− p1v1e −
p2v1e

1 + p3v1e + p4v21e
+ β2(ceu1e + dev1e − v1e) = 0 ,

(5.2)

where we have defined ae, be, ce, and de, by

ae ≡ κ1δ
−1 [Dω0 coth(2Lω0) + κ2] , be ≡ κ2δ

−1Dω0 csch(2Lω0) , ce ≡ κ1δ
−1Dω0 csch(2Lω0) ,

de ≡ κ2δ
−1 [Dω0 coth(2Lω0) + κ1] , δ ≡ D2ω2

0 +Dω0 (κ1 + κ2) coth(2Lω0) + κ1κ2 ,
(5.3)

where ω0 ≡ D−1/2. In terms of u1e, v1e, u2e, and v2e, we have

Ce(0) = aeu1e + bev1e , u2e =
1

1 + u41e
, Ce(2L) = ceu1e + dev1e , v2e =

1

1 + v41e
. (5.4)

To examine the stability of this steady-state solution, we introduce C(x, t) = Ce(x) + eλtη(x), together with

u1(t) = u1e + eλtφ1 , u2(t) = u2e + eλtφ2 , v1(t) = v1e + eλtψ1 , v2(t) = v2e + eλtψ2 .

Upon linearizing (5.1), we obtain after some algebra that the eigenvalue λ satisfies the transcendental equation

det







λ− f1u1
− f1u2

gu1

λ−gu2

+ β1 − β1A, −β1B

−β2C, λ− f2v1
− f2v2gv1

λ−gv2
+ β2 − β2D






= 0 . (5.5)

In (5.5) we have labeled gu1
≡ ∂u1

g(u1, u2), gu2
≡ ∂u2

g(u1, u2), gv1
≡ ∂v1

g(v1, v2), and gv2
≡ ∂v2

g(v1, v2). Moreover, we

have defined A, B, C, and D, by

A ≡ κ1∆
−1 [κ2 +DΩλ coth(2LΩλ)] , B ≡ κ2∆

−1DΩλ csch(2LΩλ) , C ≡ κ1∆
−1DΩλ csch(2LΩλ) ,

D ≡ κ2∆
−1 [κ1 +DΩλ coth(2LΩλ)] , ∆ ≡ D2Ω2

λ + κ1κ2 + (κ1 + κ2)DΩλcoth(2LΩλ) .

Here Ωλ ≡
√

1+τλ
D and fisj denote partial derivatives of fi where i = 1, 2 with respect to sj , s = u, v and j = 1, 2.

When there are two identical membranes, the eigenvector of the matrix in (5.5) corresponding to the eigenvalue at the

stability threshold is either (1, 1)T (in-phase synchronization) or (1,−1)T (anti-phase synchronization). For this identical

membrane case where β ≡ β1 = β2, in the left panel of Fig. 9 we plot the numerically computed bifurcation diagram in

terms of β, showing the possibility of either synchronous or asynchronous oscillatory dynamics in the two membranes. In

the right panel of Fig. 9 we plot the full numerical solution computed from the PDE-ODE system (5.1) when β = 0.4,

which reveals a synchronous oscillatory instability. The parameter values used in the simulation are given in the caption

of Fig. 9. To determine the number N of eigenvalues of the linearization in Re(λ) > 0 for the identical membrane case,

where f1 = f2 ≡ f , we recall that λ must be a root of (2.14). As such, we seek roots of G(λ) = 0 in Re(λ) > 0, where

G(λ) ≡ 1

p±(λ)
− (gu2

− λ)

det (Je − λI)
, Je ≡







∂f
∂u1

∣

∣

∣

u=ue

, ∂f
∂u2

∣

∣

∣

u=ue

∂g
∂u1

∣

∣

∣

u=ue

, ∂g
∂u2

∣

∣

∣

u=ue






. (5.6)

Here p+(λ) and p−(λ) are defined in (2.6) and (2.8), respectively. For our example we find that p±(λ) is non-vanishing
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Figure 9. Left panel: Bifurcation diagram with respect to β in the two identical membrane case. The larger and smaller

values of β at the two Hopf bifurcation points correspond to the synchronous and asynchronous modes respectively. The

branches of periodic solutions corresponding to synchronous and asynchronous oscillations are shown. There are secondary

instabilities bifurcating from these branches that are not shown. The solid/open circles indicates stable/unstable portions

of the periodic solution branches. The parameter values for bulk diffusion are D = 50, τ = 0.1, and L = 5, while the

parameter values for the membrane dynamics are identical for both membranes and are fixed at p1 = q1 = 1, p2 = q2 = 200,

p3 = q3 = 10, p4 = q4 = 35, σ1 = σ2 = 20, and κ1 = κ2 = 20.0. Right panel: Full numerical solution of the PDE-ODE

system (5.1) when β = 0.4, revealing a synchronous oscillatory instability.

in Re(λ) > 0. Then, by using the argument principle as in the proof of Lemma 3.1, and noting that G(λ) is bounded as

|λ| → +∞ in Re(λ) > 0, we obtain that

N = P +
1

π
[arg G]

∣

∣

ΓI+

. (5.7)

Here P is the number of roots of det (Je − λI) = 0 (counting multiplicity) in Re(λ) > 0, and [arg G]
∣

∣

ΓI+

denotes the

change in the argument of G(λ) along the semi-infinite imaginary axis λ = iω with 0 < ω <∞, traversed in the downwards

direction. In Fig. 10 we show a numerical computation of the winding number (5.7) near the values of β at the bifurcation

points of the synchronous and asynchronous solution branches shown in the left panel of Fig. 9.
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Figure 10. Winding number computation verifying the location of the Hopf bifurcation point of the synchronous mode

(left panel β = 0.6757) and the asynchronous mode (right panel β = 0.2931) corresponding to the bifurcation diagram

shown in the left panel of Fig. 9. The other parameter values are as given in the caption of Fig. 9. The formula (5.7)

determines the number N of unstable eigenvalues in Re(λ) > 0. For both plots P = 2 in (5.7). When the change in the

argument of G(iω) is −2π, then N = 0. Otherwise if the change in the argument is 0, then N = 2.
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However, when the two membranes are not identical, the matrix in (5.5) can have eigenvectors that are close to (1, 0)T

or (0, 1)T , which corresponds to a large difference in the amplitude of the oscillations in the two membranes. In such a

case, we will observe a prominent oscillation in only one of the two membranes. We choose the coupling strengths β1 and

β2 to be the bifurcation parameters, and denote µ by µ ≡ β2−β1. The other parameter values in the model are taken to be

the identical for the two membranes. To illustrate that a large oscillation amplitude ratio between the two membranes can

occur, in Fig. 11 we show full numerical results from the PDE-ODE system (5.1) with D = 1 when β1 = 0.2 and β2 = 0.7.

From this figure we observe that the concentration of the signaling molecule undergoes a large amplitude oscillation near

one boundary and a significantly smaller amplitude oscillation near the other boundary.

0 10 20
0

2

4

u 1

0 10 20
1.25802

1.25804

v 1

t

Figure 11. Left panel: plot of the oscillatory instability for the case of heterogeneous membranes as computed from the

PDE-ODE system (5.1) with D = 1, κ1 = κ2 = 0.1, and with the same parameters as in the caption of Fig. 9. The two

membranes differ only in their coupling strengths with β1 = 0.2 and β2 = 0.7. The oscillation is pronounced only in the

membrane at x = 0, with only a very small-scale oscillation in the second membrane at x = 2L with L = 5. Right panel:

similar plot showing u1 (left boundary) and v1 (right boundary) versus t, showing the large amplitude difference.

6 Weakly Nonlinear Theory for Synchronous Oscillations

In §3 we showed that, depending on the nature of the membrane-bulk coupling mechanism, spatial-temporal oscillations

are possible for a membrane-bulk model consisting of a single species on each membrane that is coupled through linear

bulk diffusion. These oscillations originate from a Hopf bifurcation associated with the symmetric steady-state solution

branch. In this section we develop a weakly nonlinear analysis in the vicinity of this Hopf bifurcation, which leads to an

amplitude equation characterizing small amplitude oscillations. By evaluating the coefficients in this amplitude equation,

we determine whether the Hopf bifurcation is supercritical or subcritical. This asymptotic prediction for the stationary

periodic solution near the bifurcation point is then compared favorably with full numerical results for a specific system.

We illustrate our weakly nonlinear theory only for the case of synchronous oscillations. The resulting model, assuming

only one species on the membrane, is formulated as

Cxx − 1

D
C =

τ

D
Ct , t > 0 , 0 < x < L ; Cx(L, t) = 0 ; DCx

∣

∣

x=0
= G(C(0, t), u) , (6.1 a)

with the local membrane dynamics

du

dt
= F (C(0, t), u(t)) . (6.1 b)
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The steady-state solution (Ce(x), ue) of (6.1) satisfies

∂xxCe −
1

D
Ce = 0 , 0 < x < L ; ∂xCe(L) = 0 ,

D∂xCe(0) = G(Ce(0), u) , F (Ce(0), ue) = 0 .
(6.2)

We choose the diffusivity D as the bifurcation parameter. We assume that when D = D0 the linearization of (6.1) around

the steady-state solution has a complex conjugate pair of imaginary eigenvalues, and that all the other eigenvalues of the

linearization satisfy Re(λ) < 0.

We will analyze the weakly nonlinear dynamics of (6.1) when D is close to D0. As such, we introduce ǫ ≪ 1 and a

detuning-parameter D1 by D = D0 + ǫ2D1, with D1 = ±1 indicating the direction of the bifurcation, so that

D = D0 + ǫ2D1 ,
1

D
=

1

D0 + ǫ2D1 +O(ǫ4)
=

1

D0
− ǫ2

D1

D2
0

+O(ǫ4) . (6.3)

To derive the amplitude equation, we will employ a formal two time-scale asymptotic method where we introduce the

slow time T = ǫ2t, so that d/dt = ∂/∂t+ ǫ2∂/∂T . For D −D0 = O(ǫ2), we then expand the solution to (6.1) as

C(x, t, T ) = Ce(x) + ǫC1(x, t, T ) + ǫ2C2(x, t, T ) + ǫ3C3(x, t, T ) + . . . ,

u(t, T ) = ue + ǫu1(t, T ) + ǫ2u2(t, T ) + ǫ3u3(t, T ) + . . . .
(6.4)

We then substitute (6.4) into (6.1) and equate powers of ǫ.

To leading-order in ǫ, we obtain the steady-state problem (6.2) when D = D0. This has the solution

Ce(x) = C0
e

cosh [ω0(L− x)]

cosh(ω0L)
, ω0 ≡ 1/

√

D0 , (6.5 a)

with C0
e ≡ Ce(0), where the constants C0

e and ue are determined from the nonlinear algebraic system

−C0
e tanh(ω0L) = ω0G(C

0
e , ue) , F (C0

e , ue) = 0 . (6.5 b)

The O(ǫ) system is the linearization of (6.1) around the steady-state solution, which is written as

C1xx − 1

D0
C1 =

τ

D0
C1t , t > 0 , 0 < x < L ; C1x(L, t, T ) = 0 ,

D0C1x

∣

∣

x=0
= C1G

e
c + u1G

e
u , on x = 0 ,

u1t = C1F
e
c + u1F

e
u , on x = 0 .

(6.6)

Here F e
j , G

e
j denote partial derivatives of F or G with respect to i evaluated at the steady-state solution (Ce(0), ue) at

x = 0, where j = {C, u}. At O(ǫ2), we have that C2(x, t, T ) and u2(t, T ) satisfy

C2xx − 1

D0
C2 =

τ

D0
C2t −

D1

D2
0

Ce , t > 0 , 0 < x < L ; C2x(L, t, T ) = 0 ,

D0C2x

∣

∣

x=0
= C2G

e
c + u2G

e
u +

1

2

(

C2
1G

e
cc + u21G

e
uu + 2C1u1G

e
cu

)

− D1

D0
Ge , on x = 0 ,

u2t = C2F
e
c + u2F

e
u +

1

2

(

C2
1F

e
cc + u21F

e
uu + 2C1u1F

e
cu

)

, on x = 0 .

(6.7)

In a similar notation, F e
cc denotes the second partial derivative of F with respect to C evaluated at the steady-state pair
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(Ce(0), ue). Lastly, the O(ǫ3) system for C3(x, t, T ) and u3(t, T ), where resonances will first appear, is

C3xx − 1

D0
C3 =

τ

D0
C3t −

D1

D2
0

C1 −
D1τ

D2
0

C1t +
τ

D0
C1T , t > 0 , 0 < x < L ; C3x(L, t, T ) = 0 ,

D0C3x

∣

∣

x=0
= C3G

e
c + u3G

e
u + C1C2G

e
cc + u1u2G

e
uu + (C1u2 + C2u1)G

e
cu

+
1

6

(

C3
1G

e
ccc + 3C2

1u1G
e
ccu + 3C1u

2
1G

e
cuu + u31G

e
uuu

)

− D1

D0
(C1G

e
c + u1G

e
u) , on x = 0 ,

u3t = −u1T + C3F
e
c + u3F

e
u + C1C2F

e
cc + u1u2F

e
uu + (C1u2 + C2u1)F

e
cu

+
1

6

(

C3
1F

e
ccc + 3C2

1u1F
e
ccu + 3C1u

2
1F

e
cuu + u31F

e
uuu

)

, on x = 0 .

(6.8)

When D = D0, (6.6) is assumed to have a complex conjugate pair of pure imaginary eigenvalues, and so we write

C1(x, t, T ) = A(T )eiλItη0(x) + c.c. , u1(t, T ) = A(T )eiλItφ0 + c.c. , (6.9)

for some λI > 0. Here η0(x) and φ0 is the eigenpair associated with the linearized problem, and c.c. denotes the complex

conjugate. An ODE for the unknown complex amplitude A(T ) will be derived by imposing a non-resonance condition on

the O(ǫ3) system (6.8). To normalize the eigenpair, we impose for convenience that η0(0) = 1.

Upon substituting (6.9) into (6.6), we obtain that η0(x) and φ0 satisfy

η′′0 − (1 + iλIτ)

D0
η0 = 0 , 0 < x < L ; D0η0x(0) = Ge

cη0(0) +Ge
uφ0 , η0x(L) = 0 ,

F e
c η0(0) + F e

uφ0 = iλIφ0 , on x = 0 .

(6.10)

We solve this system, and impose the normalization η0(0) = 1, to obtain

η0(x) =
cosh [Ωλ(L− x)]

cosh(ΩλL)
, φ0 =

F e
c

iλI − F e
u

, Ωλ ≡
√

1 + iτλI
D0

, (6.11)

where we must take the principal value of the square root. From the condition for η0x on x = 0 in (6.10), we obtain that

iλI is a root of the following transcendental equation, which occurs at the critical value D0 of D:

(D0Ωλ tanh(ΩλL) +Ge
c) (iλI − F e

u) + F e
cG

e
u = 0 . (6.12)

The spectral problem (6.10) is a nonstandard eigenvalue problem since the eigenvalue parameter appears in both the

differential operator as well as in the boundary condition on x = 0. Therefore, we cannot simply define the operator

L = D0

τ
d2

dx2 − 1
τ and consider the problem as a special case of Lu = λu, owing to the fact that the domain of L depends

on λ. Instead, we must extend our definition of L, construct its adjoint and find an expansion theorem following the

approach in [8] for treating non self-adjoint spectral problems with an eigenvalue-dependent boundary condition. This

formalism will then allow for a systematic imposition of a solvability condition on the O(ǫ3) problem (6.8), which leads

to the amplitude equation for A(T ).

Motivated by the form of (6.10), we define an operator L acting on a two-component vector U ≡ (u(x), u1)
T by

L





u(x)

u1



 ≡





D0

τ u
′′(x)− 1

τ u(x)

F e
c u(0) + F e

uu1



 , (6.13 a)

where u(x) satisfies the boundary conditions

ux(L) = 0 , D0ux(0) = Ge
cu(0) +Ge

uu1 . (6.13 b)
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The calculation in (6.11) shows that LU = iλIU , with normalization u(0) = 1, where U is given by

U =





cosh[Ωλ(L−x)]
cosh(ΩλL)

F e
c

iλI−F e
u



 . (6.14)

Next, we define an inner product of two vectors U ≡ (u(x), u1)
T and V ≡ (v(x), v1)

T by

〈U, V 〉 ≡
∫ L

0

u(x)v(x) dx+ u1v1 , (6.15)

where the overbar denotes complex conjugate, and where we restrict our attention to the subspace where

ux(L) = 0 , D0ux(0) = Ge
cu(0) +Ge

uu1 . (6.16)

With this definition of the inner product, we integrate by parts to establish that 〈LU, V 〉 = 〈U,L⋆V 〉, in terms of an

adjoint operator L⋆ defined by

L⋆V ≡





D0

τ v
′′(x)− 1

τ v(x)

F e
uv1 −Ge

uv(0)/τ



 . (6.17)

Here V is a two-component vector satisfying the adjoint boundary conditions

vx(L) = 0 , D0vx(0) = Ge
cv(0)− τF e

c v1 . (6.18)

A simple calculation shows that −iλI is also an eigenvalue of L⋆ (as expected), and that the eigenvector satisfying the

adjoint problem L⋆V = −iλIV , normalized by v(0) = 1, and where Ωλ is defined in (6.11), is

V =





cosh[Ωλ(L−x)]
cosh(ΩλL)

Ge
u

τ(F e
u+iλI)



 . (6.19)

With the determination of the solution to (6.6) now complete, we then proceed to the O(ǫ2) system (6.7). We substitute

(6.9) into (6.7) and separate variables to conclude that C2(x, t, T ) and u2(t, T ) must have the form

C2(x, t, T ) = g0(x, T ) + g1(x, T )e
iλIt + g2(x, T )e

2iλI t + c.c. ,

u2(t, T ) = h0(T ) + h1(T )e
iλIt + h2(T )e

2iλIt + c.c. ,
(6.20)

where gj(x, T ) and hj(T ) for j = 0, 1, 2 are to be determined. Since the problem for g1 and h1 is simply the linearized

problem (6.6), without loss of generality we can take g1 ≡ 0 and h1 ≡ 0. By comparing terms independent of powers of

eiλIt, we conclude, upon using η0(0) = 1, that g0 and h0 are real-valued and satisfy

g0xx − 1

D0
g0 = −D1

D2
0

Ce , 0 < x < L ; g0x(L) = 0 ,

Dg0x(0)− (g0(0)G
e
c + h0G

e
u) = |A|2Π2

2
− D1

D0
Ge , on x = 0 ,

g0(0)F
e
c + h0F

e
u = −|A|2∆2

2
on x = 0 .

(6.21 a)

In the notation in (6.21 a) we have suppressed the dependence of g0 on T . Here we have defined Π2 and ∆2 by

Π2 ≡ 2Ge
cc + 2|φ0|2Ge

uu + 4Re(φ0)G
e
cu , ∆2 ≡ 2F e

cc + 2|φ0|2F e
uu + 4Re(φ0)F

e
cu , (6.21 b)



Oscillatory Dynamics for Two Active Membranes Coupled by Linear Bulk Diffusion 27

where |z| denotes the modulus of z. In a similar way, upon comparing e2iλIt terms, we obtain that g2 and h2 satisfy

g2xx − (1 + 2iτλI)

D0
g2 = 0 , 0 < x < L ; g2x(L) = 0 ,

Dg2x(0)− (g2(0)G
e
c + h2G

e
u) = |A|2Π1

2
, on x = 0 ,

g2(0)F
e
c + h2F

e
u − 2iλIh2 = −|A|2∆1

2
on x = 0 ,

(6.22 a)

and are complex-valued. Here, we have defined Π1 and ∆1 by

Π1 ≡ Ge
cc + φ20G

e
uu + 2φ0G

e
cu , ∆1 ≡ F e

cc + φ20F
e
uu + 2φ0F

e
cu . (6.22 b)

Next, we solve the problem (6.21) for g0(x) and h0 explicitly. Since the inhomogeneous term proportional to Ce in

the differential operator for g0 satisfies the homogeneous problem, we can readily determine the particular solution for

(6.21 a). With this observation, and after some algebra, we obtain that

g0 = g10 cosh [ω0(L− x)] +
P0D1L

2ω0
sinh [ω0(L− x)]− P0D1

2ω0
x sinh [ω0(L− x)] , (6.23 a)

where ω0 ≡
√

1/D0 and P0 is defined by

P0 ≡ − C0
e

D2
0 cosh(ω0L)

. (6.23 b)

In (6.23 a), the constant g10 is given by

g10 = D1χ1 + |A|2χ2 , (6.23 c)

where χ1 and χ2 are defined in terms of ∆2 and Π2, given in (6.21 b), by

χ1 ≡ P03G
e
u − P02F

e
u

P01F e
u − F e

cG
e
u cosh(ω0L)

, χ2 ≡ 1

2

(

∆2G
e
u −Π2F

e
u

P01F e
u − F e

cG
e
u cosh(ω0L)

)

. (6.23 d)

Here the three new quantities P01, P02, and P03, are defined in terms of P0 of (6.23 b), by

P01 ≡ D0ω0 sinh(ω0L) +Ge
c cosh(ω0L) , P03 ≡ F e

c

(

P0L

2ω0

)

sinh(ω0L) ,

P02 ≡ P0L

2ω0
[D0ω0 cosh(ω0L) +Ge

c sinh(ω0L)] +
P0D0

2ω0
sinh(ω0L)−

Ge

D0
.

(6.23 e)

In addition, the real-valued constant h0 is given by in terms of P0, P01, P02, P03, Π2, and ∆2, by

h0 = D1χ3 + |A|2χ4 , (6.24 a)

where χ3 and χ4 are defined by

χ3 ≡ P02F
e
c cosh(ω0L)− P01P03

P01F e
u −Ge

uF
e
c cosh(ω0L)

, χ4 ≡ 1

2

(

Π2F
e
c cosh(ω0L)−∆2P01

P01F e
u −Ge

uF
e
c cosh(ω0L)

)

. (6.24 b)

Finally, in our solvability condition for the amplitude equation to be derived below, we will need to evaluate g0 at x = 0.

Upon using (6.23 a) and (6.23 c), we can write g0(0) as

g0(0) = D1g0c + g0A|A|2 ; g0c ≡ χ1 cosh(ω0L) +
P0L

2ω0
sinh(ω0L) , g0A ≡ χ2 cosh(ω0L) . (6.25)

Next, we solve the problem (6.22) for g2 and h2. We readily calculate that

g2(x) = g02
cosh [Ω2λ(L− x)]

cosh(Ω2λL)
, Ω2λ ≡

√

1 + 2iτλI
D0

,
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where g02 and h2 satisfy the 2× 2 linear system

[D0Ω2λ tanh(Ω2λL) +Ge
c] g

0
2 +Ge

uh2 = −Π1

2
A2 , F e

c g
0
2 + (F e

u − 2iλI)h2 = −∆1

2
A2 .

Here Π1 and ∆1 are defined in (6.22 b). By solving this linear system, we obtain that

g2(0) ≡ g02 = χ6A
2 , h2 = χ5A

2 , (6.26 a)

where χ5 and χ6 are defined by

χ5 ≡ 1

2

(

Π1F
e
c −∆1(D0Ω2λ tanh(Ω2λL) +Ge

c)

(D0Ω2λ tanh(Ω2λL) +Ge
c) (F

e
u − 2iλI)−Ge

uF
e
c

)

,

χ6 ≡ 1

2

(

Π1(2iλI − F e
u) + ∆1G

e
u

(D0Ω2λ tanh(Ω2λL) +Ge
c) (F

e
u − 2iλI)−Ge

uF
e
c

)

.

(6.26 b)

With the solution of the O(ǫ2) system (6.7) complete, we now proceed to the O(ǫ3) problem (6.8), where the resonance

term comes into play. We substitute the expression of C1, u1 and C2, u2 from (6.9) and (6.20), respectively, into (6.8), and

identify all terms that are proportional to eiλIt. In order to eliminate resonance in (6.8), thereby ensuring that C3(x, t, T )

and u3(t, T ) remain bounded on asymptotically long time intervals of order t = O(ǫ−1), we require that the coefficients

of the eiλIt terms satisfy a certain compatibility condition. This leads to an amplitude equation for A(T ).

To derive this amplitude equation, we substitute

C3(x, t, T ) = C4(x, T ) + C3(x, T )eiλI t + C2(x, T )e2iλI t + C1(x, T )e3iλI t + c.c. ,

u3(t, T ) = U4(T ) + U3(T )e
iλIt + U2(T )e

2iλI t + U2(T )e
3iλIt + c.c. ,

(6.27)

together with (6.9) and (6.20) into (6.8), to obtain, after a lengthy but straightforward calculation, that C3, U3 satisfy

L





C3
U3



 ≡





D0

τ C3xx − 1
τ C3

F e
c C3(0) + F e

uU3



 = iλI





C3
U3



+





R1

A′φ0 −R3



 , 0 < x < L , (6.28 a)

where C3(x) satisfies the boundary conditions

C3x(L) = 0 , D0C3x
∣

∣

x=0
− [Ge

cC3(0) +Ge
uU3] = R2 . (6.28 b)

In the notation of (6.28) we have suppressed the dependence of C3 on T . In (6.28), R1 is defined by

R1 ≡ A′η0 −
D1

D0τ
(1 + iτλI)Aη0 , (6.29 a)

and the residuals R2 and R3 have the form

R2 = D1AR20 +A|A|2R21 , R3 = D1AR30 +A|A|2R31 . (6.29 b)

The coefficients R20 and R30 of the linear term in A are

R20 ≡ g0cG
e
cc + φ0χ3G

e
uu + φ0g0cG

e
cu + χ3G

e
cu − 1

D0
(Ge

c + φ0G
e
u) ,

R30 ≡ g0cF
e
cc + φ0χ3F

e
uu + φ0g0cF

e
cu + χ3F

e
cu ,

(6.29 c)

where g0c, χ3, and φ0, are defined in (6.25), (6.24 b), and (6.11), respectively. In addition, the coefficients R21 and R31 of

the cubic term in (6.29 b) are given by

R21 ≡1

2

[

Ge
ccc +Ge

uuuφ
2
0φ0 +Ge

ccu

(

φ0 + 2φ0
)

+Ge
cuu

(

φ20 + 2φ0φ0
)]

+ g0AG
e
cc + χ6G

e
cc + φ0χ4G

e
uu + φ0χ5G

e
uu +Ge

cu

(

φ0g0A + φ0χ6 + χ4 + χ5

)

,
(6.29 d)
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and

R31 ≡ 1

2

[

F e
ccc + F e

uuuφ
2
0φ0 + F e

ccu

(

φ0 + 2φ0
)

+ F e
cuu

(

φ20 + 2φ0φ0
)]

+ g0AF
e
cc + χ6F

e
cc + φ0χ4F

e
uu + φ0χ5F

e
uu + F e

cu

(

φ0g0A + φ0χ6 + χ4 + χ5

)

.
(6.29 e)

In (6.29 d) and (6.29 e), the quantities g0A, χ3, χ4, χ5, and χ6 are defined in (6.25), (6.24 b), and (6.26 b).

The following lemma, consisting of a compatibility relation between R1, R2, and R3, provides a necessary condition

for the existence of a solution to (6.28).

Lemma 6.1 A necessary condition for (6.28) to have a solution is that A(T ) satisfies

A′

[

∫ L

0

η0v dx+ φ0v1

]

=
D1

D0τ
(1 + iτλI)A

∫ L

0

η0v dx+ v1R3 −R2/τ , (6.30)

where V ≡ (v, v1)
T is the nontrivial solution, given in (6.19), to the homogeneous adjoint problem L⋆V = −iλIV .

Proof: We define U ≡ (C3, U3)
T , and we calculate from (6.28), and the definition of the inner product in (6.15), that

〈LU − iλIU , V 〉 =
∫ L

0

R1v dx+ (A′φ0 −R3) v1 . (6.31)

We then integrate by parts on the left-hand side of (6.31), and use the boundary conditions for v and C3 from (6.18) and

(6.28 b), respectively. In this way, we obtain

〈LU − iλIU , V 〉 =
∫ L

0

(

D0

τ
vxx − v

τ

)

C3 dx+ [F e
c C3(0) + F e

uU3] v1 +
D0

τ
[C3(0)vx(0)− C3x(0)v(0)]− iλI〈U, V 〉

=

∫ L

0

(

D0

τ
vxx − v

τ

)

C3 dx+

(

v1F
e
u − 1

τ
v(0)Ge

u

)

U3 −
v(0)

τ
R2 − iλI〈U, V 〉 ,

= 〈U,L⋆V + iλIV 〉 − v(0)

τ
R2 .

(6.32)

To obtain the compatibility condition, we compare (6.31) with (6.32) and use L⋆V + iλIV = 0. By substituting (6.29 a)

for R1 into this condition, and recalling that v(0) = 1, we readily obtain (6.30). �

Finally, upon substituting (6.29) into (6.30), we obtain the following amplitude equation for A(T ):

A′ = D1b1A+ b2A
2A , (6.33 a)

where the complex-valued coefficients b1 and b2, which are independent of D1, are given by

b1 ≡ 1

N

[

(1 + iτλI)

D0τ

∫ L

0

η0v dx+ v1R30 −R20/τ

]

, b2 ≡ 1

N [v1R31 −R21/τ ] , (6.33 b)

where we have defined N by

N ≡
[

∫ L

0

η0v dx+ φ0v1

]

. (6.33 c)

In (6.33 b), the coefficients R20, R30, R21, and R31, are defined in (6.29 c), (6.29 d), and (6.29 e). Moreover, v(x) and v1

are the components of the adjoint eigenfunction V , satisfying L⋆V = −iλIV , given in (6.19).

The ODE (6.33 a), commonly referred to as the Stuart-Landau equation, characterizes the weakly nonlinear behavior

of the oscillation near the critical stability threshold. We write A as A = reiθ and decompose b1 and b2 into real and

imaginary parts as b1 = b1R + ib1I and b2 = b2R + ib2I . From (6.33 a), we obtain that r and θ satisfy

r′ = r
(

D1b1R + b2Rr
2
)

, θ′ = D1b1I + b2Ir
2 . (6.34)
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The fixed points in r, when they exist, correspond to periodic solutions for A. These special solutions are

re =

√

−b1RD1

b2R
; θ = θ̃T , θ̃ ≡ D1b1I + b2Ir

2
e . (6.35)

For ǫ→ 0, and with D −D0 = ǫ2D1, we conclude from (6.4), (6.9), and (6.35), that there is a periodic solution near the

Hopf bifurcation point of the form




C(x, t, T )

u(t, T )



 ∼





Ce(x)

ue



+ ǫ



ree
i(λI+ǫ2θ̃)t





η0(x)

φ0



+ c.c.



 . (6.36)

The analysis of the amplitude equation (6.34) is routine, and depends on the signs of b1R and b2R. The Hopf bifurcation

is supercritical when b2R < 0 and is subcritical if b2R < 0. More precisely, if b1R > 0, the symmetric steady-state solution

(Ce(x), ue) is linearly stable if D1 < 0 and is unstable if D1 > 0. An unstable branch of periodic solutions exists in the

region D1 < 0 if b2R > 0 (subcritical Hopf). If b2R < 0, then there is a stable periodic solution branch in the region D1 > 0

(supercritical Hopf). In contrast, if b1R < 0, the symmetric steady-state solution (Ce(x), ue) is linearly stable if D1 > 0

and is unstable if D1 < 0. An unstable branch of periodic solutions exists in the region D1 > 0 if b2R > 0 (subcritical

Hopf). If b2R < 0, there is a stable periodic solution branch for D1 < 0 (supercritical Hopf).

Remark 6.1 A similar weakly nonlinear analysis can be done to determine whether an asynchronous periodic solution

branch is subcritical or supercritical at the Hopf bifurcation point. To consider this case, we simply replace the no-flux

condition at x = L for η(x), v(x), and Cj(x) for j = 1, . . . , 3 with a homogeneous Dirichlet condition. We do not carry

out the details of this calculation here.

6.1 Numerical Validation of the Weakly Nonlinear Theory

We now apply our weakly nonlinear theory to the explicitly solvable model system of §4.2, where G(C(0, t), u) and

F (C(0, t), u) are given in (4.6). Since, for this example, F (C(0, t), u) is linear in its variables, the only nonlinearity in

(6.1) arises from G(C(0, t), u). In our analysis, we will focus on periodic solutions that bifurcate from the steady-state

solution branch where C0
e ≡ Ce(0) is positive, and given explicitly in (4.8). For this system we compare predictions from

the amplitude equation (6.33) with full numerical results computed from the numerical bifurcation software XPPAUT

(cf. [6]). The numerical procedure used to compute these bifurcation diagrams is described in §4.
Treating D as the main bifurcation parameter we numerically computed steady-state and periodic solution branches of

(6.1) for two values of γ. In our numerical experiments, we found that a periodic solution bifurcates via a Hopf bifurcation

from the positive steady-state solution branch. As shown in Fig. 12, by tuning the parameter γ, while holding the other

parameters fixed, the Hopf bifurcation was found to change from supercritical to subcritical.

By using the amplitude equation (6.33), our weakly nonlinear asymptotic theory predicts that the switching point from

a supercritical to a subcritical Hopf bifurcation occurs at γ = 1.628 (accurate to three decimal places), which agrees with

the corresponding numerical result. Furthermore, the amplitude equation also allow us to approximate the solution near

the Hopf bifurcation point as shown in (6.36). For the local variable u(t), we obtain from (6.36) that the amplitude of the

periodic solution can be written as

|u(t, T )− ue| = ǫre|ei(λI+ǫ2θ̃)tφ0 + c.c.| = 2ǫre|φ0| , (6.37)

where re is the fixed point of the amplitude equation given in (6.35). Here ǫ ≪ 1 and φ0 is the eigenfunction of u(t),
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Figure 12. Bifurcation diagrams with diffusivity D as bifurcation parameter showing either a supercritical or subcritical

Hopf bifurcation structure for (6.1), with coupling functions given in (4.6), for two values of γ. Left panel: γ = 1.55

(supercritical). Right panel: γ = 1.7 (subcritical). The solid and dashed lines denote stable and unstable steady-state

solutions, respectively. Open circles indicate the max/min amplitude of unstable periodic solutions, while the solid dots

correspond to linearly stable periodic solution branches. The bulk diffusion parameters are τ = 0.1 and L = 5. The

membrane kinetic and coupling parameters are β = 1 and κ = 12.

given explicitly in (6.11). If we define uamp ≡ |u(t, T )− ue| and plot ±uamp versus the diffusivity D, then uamp should be

proportional to ǫ ≡ √
D −D0 in the vicinity of the Hopf bifurcation point D0. The quantity uamp is plotted in Fig. 13.
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Figure 13. Left panel: Comparison of bifurcation diagrams near a subcritical Hopf bifurcation obtained from the bifurca-

tion software XPPAUT and from the weakly nonlinear analysis. Red dots indicate the amplitude of the unstable periodic

solution uamp (see the text) obtained from the amplitude equation (6.33) and the black circles are from the bifurcation

software. The black and blue curves are the corresponding fitted parabola and the curvature of the two curves are 5.6

(black) and 5.0 (blue), respectively, at the Hopf bifurcation point D0 = 0.9879 (red dots) and D0 = 0.9874 (black circles).

The computations are done with 80 interior spatial meshpoints. Right panel: Plot of the Hopf bifurcation point D0 versus

the number of spatial meshpoints of the discretized system. The parameter values are the same as those used in Fig. 12

with γ = 1.7.

The left panel of Fig. 13 shows a comparison between the analytical and numerical bifurcation diagrams near a subcritical

Hopf bifurcation point D0. In our numerical experiments, since we discretized the PDE-ODE system (6.1), with coupling

functions (4.6), with finite differences into a system of ODEs, some error is incurred in predicting the location of the Hopf

bifurcation value D0. In contrast, in the implementation of the weakly nonlinear theory we solved the transcendental

equation (6.12) for a complex conjugate pair of imaginary eigenvalues and D0 directly. Therefore, the D0 calculated
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from (6.12) is more accurate than the one computed from the numerics and it results in the shifting of the bifurcation

point D0, as shown in the left panel of Fig. 13. The right panel of Fig. 13 shows how the numerically calculated value

D0 shifts towards the more accurate value, computed from (6.12), when we increase the number of spatial meshpoints

in the discretized system. Although, there is a small difference in predicting the value of D0, the amplitude calculated

by the weakly nonlinear theory shows good agreement with the corresponding amplitude computed from the numerical

bifurcation software, as evidenced by the close comparison of the curvature of the two curves in Fig. 13 at D = D0.
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Figure 14. Left panel: Comparison of bifurcation diagrams near a supercritical Hopf bifurcation obtained from the bifur-

cation software XPPAUT and from the weakly nonlinear analysis. The notations are the same as those in Fig. 13 except

now the red dots and black circles denote the stable periodic solution branch. The curvature of the two curves are 9.8

(black) and 9.3 (blue), respectively, at the Hopf bifurcation point D0 = 1.7591 (red dots) and D0 = 1.7583 (black circles).

The computations are done with 80 interior spatial meshpoints. Right panel: Plot of the Hopf bifurcation point D0 versus

the number of spatial meshpoints of the discretized system. The parameter values are the same as those used in Fig. 12

with γ = 1.55.

Fig. 14 compares the numerical bifurcation diagram with the asymptotic prediction near a supercritical Hopf bifurcation

point D0. The amplitude of the stable periodic orbits calculated by the weakly nonlinear theory and the numerical

simulations are seen to compare favorably. The right panel of Fig. 14 shows that the numerically calculated Hopf bifurcation

point shifts toward the more accurate value as the number of interior meshpoints increase.

7 Discussion

On a one-dimensional spatial domain, we have introduced and analyzed a class of models that couple two dynamically

active membranes, separated spatially by a distance 2L, through a linear bulk diffusion field. For this class of models, we

have shown both analytically and numerically that bulk diffusion can trigger a stable synchronous oscillatory instability

in the temporal dynamics associated with the two active membranes.

There are many open problems in this direction that warrant further study. One main direction is to consider more

thoroughly the case of multi-species membrane dynamics. More specifically, although a numerical winding number com-

putation is readily implemented for multi-species membrane dynamics, there is a need to extend the theoretical spectral

results of §3.1 to the case of more than a single membrane-bound species (see §5 for an example of a two-species dynamics).

Furthermore, it would be interesting to extend the weakly nonlinear analysis of §6 to the case of multiple membrane-

bound species. It would also be scientifically relevant to both formulate and analyze related PDE-ODE models, where

the membrane-bulk coupling strength can vary dynamically, so as to create periodic bursts of synchronous oscillatory
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behavior, followed by intervals of quiescent behavior, in the two membranes. Triggered oscillations and bursters due to

slowly varying external or internal parameters have been well-studied in a purely ODE context (cf. [1], [2], [15], [20]).

A second open direction, amenable to a numerical bifurcation approach, would be to study the linear stability of

bifurcating branches of synchronous and asynchronous periodic solutions, and to explore any secondary instabilities

emanating from these branches. For our examples of one-species membrane dynamics, the bifurcating synchronous solution

branch in Fig. 3 (see also Fig. 8) has a rather large parameter range of stability. Can these observations be made into

a more general statement for other coupled membrane-bulk models? For a specific two-component coupled membrane-

dynamics with Selkov kinetics, it has been shown that synchronous and asynchronous oscillations can each undergo an

exchange of stability at the same parameter set (cf. [12]). In [12], an analytical theory to examine oscillatory dynamics

near such a co-dimension-2 bifurcation was given. In addition, for a two-species membrane dynamics, as shown in the left

panel of Fig. 9, there can be secondary instabilities off of the primary periodic solution branches, and the global bifurcation

structure is much more complicated. It would be interesting to explore these issues numerically, with an aim of potentially

discovering whether there can be any period-doubling route to chaotic dynamics such as was observed computationally

in [22] for a related model consisting of a linear RD system with nonlinear fluxes at fixed lattice sites.

A further open direction relates to our assumption that the bulk diffusion field has a constant diffusivity and undergoes

a linear bulk degradation. It would be worthwhile to extend our analysis to allow for either a nonlinear degradation of

the signaling molecule in the bulk, a nonlinear diffusivity, or to allow for a sub-diffusive bulk diffusion process. Either of

these three additional effects could be important in various biological applications.

Finally, an extension of our analysis to the case of multiple spatial dimensions, such as where reaction dynamics can

occur either on closed surfaces, or within localized compartments, should be undertaken.
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Appendix A Two Specific Biological Models

The Dictyostelium Model

The amoeba Dictyostelium discoideum is one of the most studied organism in biology. There are many stages in

the life cycle of each such amoeba cell. When nutrient is readily available, they live as single cell organisms. However,

when food becomes scarce, each cell starts to release cyclic AMP (cAMP) in order to attract other cells, and at the

same time themselves are attracted by the cAMP signal emitted by others. This secretion results in an aggregation of

individual amoeba to form aggregate centers [9]. This intercellular communication mechanism presents some similarities

with the endocrine system in higher organisms. In [9] a two-variable model was proposed to describe the cAMP (cyclic

adenosine monophosphate) oscillations in Dictyostelium cells. This minimal model was obtained from a reduction of a more

elaborate model based on desensitization of the cAMP receptor which consists of variables representing molecules such as

the active(R) and desensitized(D) forms of the receptor, free(C) and active form(E) of adenylate cyclase, intracellular(Pi)

and extracellular(P) cAMP, and substrate ATP(S). In [9] this minimal model was used to analyze the bursting and

birhythmicity observed in experiments with amoeba cells. The model is formulated as

dρt
dt

= f2(γ)− ρt(f1(γ) + f2(γ)) ,
dγ

dt
= σ∗ψ(ρt, γ)− keγ , (A.1 a)
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where

f1(γ) ≡
k1 + k2γ

2

1 + γ2
, f2(γ) ≡

k1L1 + k2L2c
2
dγ

2

1 + c2dγ
2

, ψ(ρt, γ) ≡
α
(

Λθ + ǫρtγ
2

1+γ2

)

(1 + αθ) +
(

ǫρtγ2

1+γ2

)

(1 + α)
. (A.1 b)

Here ρt is the total fraction of receptor in the active state, α and γ denote the normalized concentration of intracellular

ATP and extracellular cAMP, θ is the ratio of Michaelis constants for the E and C forms of adenylate cyclase, Λ is

the ratio of catalytic constants of forms C and E of adenylate cyclase, ǫ is the coupling constant for activation of C by

cAMP-receptor complex in active state, k1 is the rate constant for the modification step from R to D, L1 is the equilibrium

ratio of the states R and D, k2 is the rate constant for modification step from R to D in the presence of cAMP, L2 is the

corresponding equilibrium ratio, ke is the ratio of maximum activity for extracellular phosphodiestease and the Michaelis

constant of extracellular phosphodiesterase for cAMP, cd is the ratio of dissociation constants of cAMP-receptor complex

in R and D states, σ∗ is calculated as some combination of other constants. For a more detailed discussion of this model

see [9] (pp. 195–258).

Since the cAMP molecules can diffuse in space, in our model we assume that the extracellular cAMP is also a function

of location, so that γ = γ(x, t). We assume that it can diffuse freely in space, with some bulk decay, but that all the

reactions occur on the boundaries of amoeba cells. In this way, our model for cAMP, given a cell at x = 0 and at x = 2L,

and with τ ≡ 1/ke is

τ
dγ

dt
= D

d2γ

dx2
− γ , t > 0 , 0 < x < L ; γx(L, t) = 0 , Dγx(0) = −σ⋆ψ(ρt, γ(0, t)) ,

dρt
dt

= f2(γ(0, t))− ρt [f1(γ(0, t)) + f2(γ(0, t))] .

(A.2)

The GnRH Model

Gonadotropin-releasing hormone (GnRH) is a decapeptide secreted by GnRH neurons in the hypothalamus that reg-

ulates the reproductive function in mammals. There are about 800-2000 GnRH neurons scattered in a few areas of the

hypothalamus. Each GnRH neuron releases GnRH to portal blood in an oscillatory profile with a period of several minutes

and they synchronize to produce large GnRH pulses with a period ranging from twenty minutes to one hour. Experiments

reveal that GnRH neurons express GnRH receptors. Based on these biological facts, a possible synchronization mechanism

of GnRH neurons was proposed in [19, 7, 13]. In this model, it is assumed the the GnRH neurons are coupled through

GnRH in the extracellular environment. This model was able to predict that oscillations occur over a one hour period.

Assuming two neurons, one each at x = 0 and at x = 2L, this model system is

gt = Dgxx − g , t > 0 , 0 < x < L ; gx(L, t) = 0 , Dgx(0) = −σj , (A.3 a)

with the three-component membrane dynamics

αt = φα

(

[g(0, t)]nα

knα
α + [g(0, t)]nα

, α

)

, α = {s, q, i} . (A.3 b)

with coefficients ns = 4, nq = 2 and ni = 2. In (A.3 a), σ reflects the secretion efficiency, and the boundary flux is

j ≡ 1 + β

(

ι+ 1 + ζq

µ+ 1 + δq

)3 (

η +
s

ω + i

)3

, (A.3 c)

(see [19, 13] for further details and definition of the parameters). In (A.3 a), s, q and i denote the concentration of three

G-proteins, GS , GQ and GI , respectively. It is postulated that the release of GnRH is mediated through activation (GS ,

GQ) and inhibition (GI) of these proteins. With the assumption that the time scales of s and q are much faster than i,

we use a quasi-steady state approximation to fix s and q at (approximately) their steady-state values. This leads to the
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following reduced coupled system

gt = Dgxx − g , t > 0 , 0 < x < L ; gx(L, t) = 0 , Dgx(0) = G (g(0, t), i) , (A.4 a)

with the one-component membrane dynamics and boundary flux given by

it = ǫ

(

[g(0, t)]2

k2i + [g(0, t)]2
− i

)

, G (g(0, t), i) = −σ
[

1 + β

(

ι+ 1 + ζq

µ+ 1 + δq

)3 (

η +
s

ω + i

)3
]

, (A.4 b)

Here, s and q, which depend on g(0, t), are given by

s =
[g(0, t)]4

k4s + [g(0, t)]4
, q =

[g(0, t)]2

k2q + [g(0, t)]2
. (A.4 c)
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