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Synchronization: Classical Modeling Approach: I

Weakly coupled oscillators: Let xk ≡ (xk , yk )T and µk be bifurcation parameters:

ẋk = f k (xk ;µk ) + ε
N∑
j=1

g jk (xk , x j ) , k = 1, . . . ,N .

For N individual oscillators with frequencies ωk without coupling, how do they
synchronize under the perturbation?

Phase reductions: reduce to ODEs for the phases θk (t) of the oscillators where the
coupling functions Hjk (z) must be derived:

θ̇k = ωk + ε
N∑
j=1

Hjk (θk − θj ) , k = 1, . . . ,N .

Kuramoto-type models when Hjk (z) = ajk sin(z):

θ̇k = ωk + ε
N∑
j=1

ajk sin(θk − θj ) , k = 1, . . . ,N .

Original Kuramoto model had ajk = 1/N. The Kuramoto order parameter r , with
0 ≤ r ≤ 1, measures the degree of phase synchronization:

r =
1

N

∣∣∣ N∑
k=1

e iθk
∣∣∣ .
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Classical Modeling Approaches: II

Basic Results:

Perfect phase coherence when r = 1.

For N � 1, ∃ a phase transition to coherence at some ε = εc . When ε < εc
there is little phase coherence and r is small.

Synchronization studies of oscillators for Kuramoto-type models are ubiquitous
starting from Kuramoto’s seminal 1975 paper. (SIAM Moser prize 2022).

Y. Kuramoto, Lecture notes in Physics, 39, (1975).

Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer, (1984)
(9520 google citations).

Y. Kuramoto, H. Nakao, Phil. Trans. A., 377, (2019).

S. Strogatz, Physica D, 143, (2000); J. Acébron, Rev. Mod. Phys., 77, (2005).

B. Pietras, A. Daffertshofer, Physics Reports, 819, (2019), pp. 1–105.

One current research frontier (ICIAM 2023): coupled oscillators on networks.

Any other possibility? Today: oscillators coupled under a PDE diffusion field.
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Extensions with Diffusion: Chemical Turbulence

(Kuramoto, Prog. Theor. Phys. 94, (1995)): “ Let the intrinsic dynamics of the
individual cell activity be described by u̇ j = F (u j ) which has a limit cycle. The cells
are fixed in space sitting at x j . The system involves extra substance which mediates
the cellular interaction. This substance is secreted from each cell, and can diffuse over
the entire space.”

u̇ j = F (u j ) + g
[
A(x j )

]
, εAt = D∆A− A +

N∑
k=1

h(uk )δ(x − xk ) .

Kuramoto (and later R. Viana (2016)) focus on the quasi-static limit ε→ 0:

u̇ j = F (u j ) + g

(
N∑

k=1

σ(|x j − xk |)h(uk )

)
, j = 1, . . . ,N .

A normal form near a Hopf bifurcation of a steady-state yields the coupled CGL
equations, having a zoo of possible behaviors (“chemical turbulence”):

Ẇj = Wj +K(1 + ic1)
N∑

k=1

σ(|x j − xk |)(Wk −Wj )− (1 + ic2)|Wj |2Wj , j = 1, . . . ,N .

Limitations: A is singular at xk in R2 or R3. How to choose g and h in applications?
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Compartmental RD System: Overview

Our Modeling Framework: Nonlinear kinetics confined to a collection of spatially
segregated small “cells”. A passively diffusing scalar bulk species that can bind or
unbind with the “cell” membrane provides the coupling mechanism and allows one
intracellular species to be exchanged with the bulk.

Inspired by C. Kuttler, et al. J. Math. Bio. 53, (2006).

K. Showalter, I. Epstein, Chaos 25, (2015). “Novel dynamical phenomena occur
in structured media consisting of spatially distributed arrays of distinct
interacting reacting zones... BZ reaction in a microemulusion etc...”
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Motivation: Bulk-Cell with 1 Bulk Species

Quorum-sensing applications: involve dynamically active small “cells” that are
coupled spatially by a passive scalar bulk-diffusion field (PDE) “autoinducer” (AI).
Collective behavior occurs when cell population exceeds a threshold. (usually studied
in the “well-mixed” limit in a finite domain from ODE’s coupled to a global mode).

Collective behavior in “cells” due to coupling by diffusive chemical transport:

Collections of unicellular (eukaryotic) organisms such as starving yeast cells
(glycolysis) coupled only by extracellular signalling molecules (AI is
Acetaldehyde). (Ref: De Monte et al., PNAS 104(47), (2007).)

Amoeba colonies (Dicty) in low nutrient enviroments, with cAMP organizing the
aggregation of starving colonies; (Ref: Nanjundiah, Bio. Chem. 72, (1998),
Gregor et al. Science, 328, (2010).)

Catalyst bead particles (BZ particles) interacting through a chemical diffusion
field; (Ref: Tinsley, Showalter, et al., Physica D 239 (2010).)

Microemulsions of BZ aqueous droplets emersed in oil. (Ref: Tompkins et al.,
PNAS 2014).

Chaotic oscillations have been observed for a compartmentalized surface
reaction nanosystem. (Ref: Raab et al. Nature Communications 2023).



I: Diffusion-Induced Synchrony Memory-Dependence Numerics and Experiments II: Binding-Mediated Diffusion

Diffusion-Mediated Communication: Two Key Features

Triggered Oscillations: emergence of intracellular oscillations from a quiescent state
as either the cell density increases or reaction kinetic parameters change (i.e.
glycolysis, social amoeba, catalyst bead particles).

In the absence of coupling by bulk diffusion, the “cells” are in a quiescent state.
Oscillations occur via a switchlike response (Hopf bifurcation (HB)).

Analysis: find steady-states and identify when a HB occurs.

Synchronized Oscillations: How do intracellular oscillations that are occuring within
each “cell” synchronize owing to the PDE cell-bulk coupling?

Analysis: Must derive a new “Kuramoto-type” model for the intracellular
dynamics coupled to a memory-dependent bulk diffusion field.
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Formulation of the 2-D Model

Dimensionless Formulation: The autoinducer U(x , t) in the bulk satisfies the PDE:

Ut = D∆U − σU , x ∈ R2\ ∪Nj=1 Ωεj ; U(x , 0) = 0 ,

εD∂njU = d1jU − d2juj1 , x ∈ ∂Ωεj , j = 1, . . . ,N .

The cells Ωεj are disks of radius ε ≡ R0/L� 1, i.e. Ωεj ≡ {x | |x − x j | ≤ ε}.

Inside each cell there are m interacting species u j = (uj1, . . . , ujm)T , with intracellular
dynamics F j (u j ) for each j = 1, . . . ,N:

du j

dt
= F j (u j ) +

e1

ε

∫
∂Ωεj

(
d1jU − d2juj1

)
ds , e1 ≡ (1, 0, . . . , 0)T .

Note: Time-scale is wrt dimensional intracellular reaction rate kR . Dimensionless
parameters: d1j (influx), d2j (efflux); σ (bulk decay rate); D (effective diffusivity);

σ ≡
kB

kR
, D ≡

(√
DB/kR

L

)2

, L = min |x i − x j | .

Asymptotic Limit: We will consider the singular perturbation limit ε→ 0.
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New Reduction: Memory-Dependent Oscillations in 2-D: I

Main Result

For ε→ 0, and with U(x ; 0) = 0, the intracelllular dynamics u j (t) for j = 1, . . . ,N is
approximated for t � O(ε2) by the integro-differential ODE system:

du j

dt
= F j (u j ) + e1Bj (t) ,∫ t

0
Bj
′(τ)E1(σ(t − τ)) dτ = ηjBj (t) + γjuj1(t)

+
N∑
k=1
k 6=j

∫ t

0

Bk (τ)e−σ(t−τ)

(t − τ)
e−|x j−xk |2/(4D(t−τ)) dτ .

Here E1(z) is the exponential integral, γe is Euler’s constant, and ηj and γj are

ηj = − log(ε2κ0jσ) , γj ≡
4πDd2j

d1j
, with κ0j ≡

e2(γe−D/d1j)

4D
.
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Memory-Dependent Oscillations in 2-D: II

In the bulk region at O(1) distances from the cell centers, we have for ε→ 0

U(x , t) ∼ −
1

4πD

N∑
j=1

∫ t

0

Bj (τ)e−σ(t−τ)

(t − τ)
e−|x−x j |2/(4D(t−τ)) dτ .

In the vicinity of the jth cell we have for ρ = ε−1|x − x j | = O(1) that

U ∼
Bj (t)

2πD
log ρ+

Bj (t)

2πd1j
+

d2j

d1j
uj1(t) .

This is a new “Kuramoto”-type system for memory-dependent oscillations of
spatially segregated oscillators coupled by bulk diffusion. Ref: M. Pelz, M. J.
Ward, Synchronized Memory-Dependent Intracellular Oscillations for a
Cell-Bulk ODE-PDE Model in R2, SIADS, 24(2), (2025) (60 pages).

Valid for arbitrary initial values u j (0) ≥ 0. Must analyze the initial transient
from the PDE to get the asymptotic matching behavior for Bj (t) as t → 0+.

Derivation: extend strong localized perturbation theory to a time-dependent
setting.
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2-D Transient Analysis Near a Cell

Assume uj1(0) > 0. Near jth cell let t = ε2τ . Then, V (ρ, τ) = U(x j + εy , ε2τ)
satisfies the leading-order “inner” problem (solvable by Laplace transforms):

Vτ = D

(
Vρρ +

1

ρ
Vρ

)
, ρ > 1 , τ ≥ 0 ; V (ρ, 0) = 0 ,

DVρ = d1jV − d2juj1(0) , on ρ = 1 .

Main Result

Suppose uj1(0) > 0. For ρ fixed and τ � 1, we have

V (ρ, τ) ∼ uj1(0)
d2j

d1j
+

Bj (τ)

2πD

(
log ρ+

D

d1j

)
,

Bj (τ) ∼ −
4πDd2ju1j (0)

d1j log
(
τ/
[
κ0je−γe

]) +O
([

log
(
τ/(κ0je

−γe )
)]−2

)
.

With t = ε2τ , we have |B′j (t)| → ∞ as t → 0+ if uj1(0) > 0.

Key: This far-field behavior of the transient solution is essential for providing the
“initial conditions” for Bj (t) for the integro-differential ODE system.
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Outline of Derivation: Singular Perturbation Theory I
“Quasi-Static Slender-Body Approximation:” For t = O(1), in the jth inner region set
V (y , t) = U(x j + εy , t) and y = ε−1(x − x j ) to get

∆yV = 0 , for ρ = |y | > 1 ; DVρ = d1jV − d2juj1(t) , on ρ = 1 .

For some Bj (t), the radially symmetric solution is

V (y , t) =
Bj (t)

2πD
log |y |+

Bj (t)

2πd1j
+

d2j

d1j
uj1(t) .

Self-consistent “Kuramoto model with diffusion”: In terms of Bj (t), we have

du j

dt
= F j (u j ) + Bj (t)e1 , j = 1, . . . ,N ,

where, from asymptotic matching of inner and bulk solutions, Bj (t) is found from

Ut = D∆U − σU , x ∈ R2\{x1, . . . , xN} ; U(x ; 0) = 0 ,

U ∼
Bj

2πD
log |x − x j |+

Bj

2πDν
+

Bj

2πd1j
+

d2j

d1j
uj1 , as x → x j , j = 1, . . . ,N ,

U(x , t)→ 0 , as |x | → ∞ for t > 0 .

(1)

Here ν ≡ −1/ log ε.
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Outline of Derivation: Singular Perturbation Theory II

Consider an auxilliary problem for vk (x , t) given by

∂tvk = D∆vk−σvk − Bk (t)δ(x − xk ) ; vk → 0 as |x | → ∞ ; vk (x , 0) = 0 ,

vk (x , t) ∼
Bk (t)

2πD
log |x − xk |+ Rk (t) , as x → xk .

Rk (t) is to be found in terms of Bk (t). From transient analysis: Bk (t)→ 0 as t → 0+.

Taking the Laplace transform: v̂k = −B̂k Ĝk where Ĝk (x , s) satisfies

∆Ĝk −
(σ + s)

D
Ĝk = −

1

D
δ(x − xk ) ; Ĝk → 0 as |x | → ∞ ,

we calculate

Ĝk (x , s) =
1

2πD
K0

(√
s + σ

D
|x − xk |

)
.

Using the inverse Laplace transform pair L−1
(
K0(a

√
s)
)

= (2t)−1e−a2/4t , we get

vk (x , t) = −
∫ t

0
Bk (τ)Gk (x , t−τ) dτ = −

∫ t

0

Bk (τ)e−σ(t−τ)

4πD(t − τ)
e−|x−xk |2/(4D(t−τ)) dτ .
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Outline of Derivation: Singular Perturbation Theory III

By expanding v̂k (x , s) as x → xk , we identify R̂k (s). From the inverse transform:

Rk (t) =
1

4πD
L−1

(
sB̂k (s)

(
log(s + σ)

s

))
+

Bk (t)

2πD

(
γe − log

(
2
√
D
))

.

Since L−1(s−1 log(s + σ)) = E1(σt) + log σ, we calculate

Rk (t) =
Bk (t)

2πD

[
γe − log

(
2

√
D

σ

)]
+

1

4πD

∫ t

0
B′k (τ)E1(σ(t − τ)) dτ . (2)

Finally, since U(x , t) =
∑N

k=1 vk (x , t) we let x → x j and enforce that the limiting
behavior of U(x , t) agrees with that required (magenta terms in (1)):

Rj (t) +
N∑
k=1
k 6=j

vk (x j , t) =
Bj (t)

2πD

(
1

ν
+

D

d1j

)
+

d2j

d1j
uj1(t) , j = 1, . . . ,N .

With Rj (t) as in (2) =⇒ get nonlocal system for Bj (t) in terms of uj1(t). �
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The NAS Characterizing Steady-States

Main Result

For the memory-dependent ODE system, suppose that Bj (0) = 0 and that
Bj (t)→ Bje and u j → u je as t →∞ for each j = 1, . . . ,N. Then, for j = 1, . . . ,N,
Bje and u je satisfy the N(m + 1) dimensional nonlinear algebraic system (NAS)

F j (u je) + e1Bje = 0 , ηjBje + 2
N∑
k=1
k 6=j

BkeK0

(√
σ

D
|x j − xk |

)
= −γjeT

1 u je .

Remark: This limiting NAS coincides with what can be derived using strong localized
perturbation analysis from the steady-state cell-bulk ODE-PDE system.

Linear stability of steady-states: Linearize the cell-bulk model around a steady-state:

U = Us(x) + eλtΦ(x) , u j = u js + eλtζj , j = 1, . . . ,N .

Use strong localized perturbation theory to derive a singularly perturbed PDE
eigenvalue problem. Solving it =⇒ nonlinear matrix eigenvalue problem.
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Nonlinear Matrix Eigenvalue Problem: Linear Stability

Main Result

For ε→ 0, any discrete eigenvalue for the linearization around a steady-state, for
which det(λI − Jj ) 6= 0 for any j = 1, . . . ,N where Jj ≡ Jac(F j ), satisfies

detM(λ) = 0 , where M(λ) ≡ I + νGλ + ν D P1 + 2πνDP2K(λ) ,

with ν = −1/ log ε and where P1, P2 and K are the diagonal matrices

P1 ≡ diag
( 1

d11
, . . . ,

1

d1N

)
, P2 ≡ diag

(d21

d11
, . . . ,

d2N

d1N

)
,

K(λ)≡ diag (K1, . . . ,KN) , where Kj ≡ eT
1

(
λI − Jj

)−1 e1 .

The matrix K(λ) depends on intracellular kinetics F j . Moreover, Gλ is the
eigenvalue-dependent Green’s matrix, depending on cell locations, with matrix entries

(Gλ)ij = (Gλ)ji ≡ K0

(√
σ + λ

D
|x j − xk |

)
, i 6= j ,

(Gλ)jj = Rλj ≡ log

(
2

√
D

σ + λ

)
− γe .
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Properties of the The GCEP

For ε→ 0, the set of discrete eigenvalues (point spectrum) of the linearization is

Λ(M) ≡ {λ | detM(λ) = 0} .

Main Result

For ε→ 0, a steady-state (SS) solution is linearly stable when ∀ λ ∈ Λ(M) we have
Re(λ) < 0. Moreover, along any parameter path of non-degenerate solutions to the
NAS for which Jj is non-singular, then λ = 0 is not a root of detM(λ) = 0.

If the NAS has a unique branch of solutions as a parameter is varied, then
stability cannot be lost through a zero-eigenvalue crossing on this branch.
Instead, seek Hopf bifurcations with λ = iλI .

The matrix M is complex-symmetric but non-Hermitian when λ = iλI .

Effective strategies for nonlinear matrix eigenvalue problems are often restriced
to Hermitian case, or where M(λ) is a polynomial or rational function of λ or
where λ enters as low rank. (N. Higham, V. Mehrmann; Guttel and Tisseur,
Acta Numerica, 94pp. (2017)). Not our situation!
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Numerics for the GCEP

The (globally coupled) nonlinear matrix eigenvalue problem (termed the GCEP) is

M(λ)c = 0 , =⇒ F(λ) ≡ det (M(λ)) = 0 ,

withM =M(λ;σ,D). The number of “unstable” eigenvalues Z of the linearization is

Z = {#λ | F(λ) = 0 , Re(λ) > 0} .

From the winding number of F(λ) over a large semi-circle in Re(λ) > 0:

Z = P −
1

π
[argF(iλI )]ΓI

,

where ΓI denotes the positive imaginary axis traversed upwards, and P is the
number of poles of M(λ) in Re(λ) > 0. This criterion gives Z at each point in
the (1/σ,D) parameter space =⇒ “stability map” or “scatter plot”,

HB boundaries: λ = iλI (D) and σ = σ(D) can have folds in D. Need to
Compute ReF(iλI ) = 0 and ImF(iλI ) = 0 using psuedo-arclength continuation.

For special cell configurations, the matrix spectrum of M is known and so
computing Z and HB points is much simpler. Otherwise challenging if N � 1.
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Properties of the The GCEP: III

What is encoded by the eigenvector c = (c1, . . . , cm)T of the GCEP M(λ0)c = 0?

For the jth cell the linearization predicts:

D∂ρU|ρ=1 ∼
1

2π

Bje +
∑

λ0∈Λ(M)

cje
λ0t

 , j = 1, . . . ,N ,

uj1 ∼ uj1e +
∑

λ0∈Λ(M)

Kj (λ0)cje
λ0t , j = 1, . . . ,N ,

where Kj (λ0) = eT
1

(
λ0I − Jj

)−1 e1.

Qualitatively:

If λ0 ∈ C, then Re (Kc) and Im (Kc) encode both the relative magnitude and
phase shift of small-scale oscillations for the permeable species uj1.

The relative magnitude of cj measures the strength of the signaling gradient
D∂ρU on the cell boundary ρ = 1 and so informs “diffusion-sensing”.
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Three Key Numerical Challenges

Challenge I: Numerical Computation of Integro-Differential System: A “naive”
integration would involve discretizing N(N + 1)/2 memory-dependent convolution
integrals, each with integrable singularities, on a time interval t to advance the
solution one time step to time t + ∆t. Impractical! (Need a time-marching scheme).

Challenge II: Scatter plot or Stability Phase diagram: Must compute Z at each
point in the 1/σ versus D parameter plane (pixelated) from:

Z = P −
1

π
[argF(iλI )]ΓI

, F(iλI ) = detM(iλI ) .

Special spatial configurations of cells: computed by finding matrix spectrum of M.

General: since M is complex symmetric ∃ an approach using a Takagi factorization.

Challenge III: Numerical computation of HB parameter paths satisfying

detM(iλI ) = 0 for a large N ≈ 100 of non-identical cells with no special matrix

structure. (Not clear the best way to proceed.)
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Challenge I: Numerics for the Integro-Differential System

Need to numerically solve the integro-differential system for u j and Bj , j = 1, . . . ,N:

du j

dt
= F j (u j ) + e1Bj (t) ,∫ t

0
B′j (τ)E1(σ(t − τ)) dτ= ηjBj (t) + γjuj1(t)

+
N∑
k=1
k 6=j

∫ t

0

Bk (τ)e−σ(t−τ)

(t − τ)
e−a2

jk/(t−τ) dτ ,

where ajk ≡ |x j − xk |/
√

4D. Blue terms are the “nonlocal part”.

Initial conditions: Can assign arbitrary initial values u j (0) ≥ 0. Recall: For uj1(0) > 0
the transient analysis provided:

Bj (t) ∼ −
u1j (0)γj

log
(
t/(κje−γe )

) , as t → 0 ,

where κj = κ0jε
2. A similar result for Bj (t) can be derived when uj1(0) = 0.
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Duhamel integral: Overcoming history-dependence

Key: Develop a time-marching scheme! (Leslie Greengard’s 2023 ICIAM Plenary)

Recall first a simple preliminary ODE result:

Lemma

Let f (t) be continuous and define the convolution F(t) ≡
∫ t

0 eω(t−τ)f (τ) dτ so that
F ′(t) = ωF(t) + f (t) with F(0) = 0. We have the marching scheme

F(t + ∆t) = F(t)eω∆t + U(t,∆t) , with U(t,∆t) ≡ eω∆t
∫ ∆t

0
e−ωz f (t + z) dz .

An exponential time differencing ETD2 scheme, exact when f (t) is linear, yields, with
an error O

(
(∆t)3

)
, the approximation

F(t+∆t) ≈ F(t)eω∆t +f (t)

(
eω∆t − 1

ω

)
+[f (t + ∆t)− f (t)]

(
eω∆t − 1− ω∆t

ω2∆t

)
.
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Overview: Time-Marching Scheme

Idea: Develop a marching scheme for nonlocal part of the integro-differential system

Dj (t) = ηjBj (t) + γjuj1(t) +
N∑
k=1
k 6=j

Cjk (t) ,

Cjk (t) ≡
∫ t

0
Bj (τ)G(ajk , t − τ) dτ , G(ajk , t) ≡

e−σ(t−τ)

t − τ
e−|x j−xk |2/(4D(t−τ)) ,

Dj (t) ≡
∫ t

0
B′j (τ)E1 (σ(t − τ)) dτ .

Use “sum of exponentials method” applied to approximating E1(σt) and
G(ajk , t) by discretizing along certain hyperbolic-shaped paths in the Laplace
parameter space. [Refs: Monzon and Beylkin, Appl. Comput. Harm. Anal. 28,
(2010); S. Jiang. L. Greengard, S. Wang, Adv. Comput. Math., 41, (2015)].

Each convolution integral has an integrable singularity at t = τ . Decompose
into a local part, which is approximated analytically, and a history part. For the
history part, we have a Duhamel-type integral for each term in the discretization
that we can update with ETD2 for a marching scheme.

Develop a time-marching scheme for Bj (t) by a ETD2 scheme applied to all the
Duhamel-type integrals. Couple to the intracellular dynamics with RK4. Initial
values for Bj (t) known from far-field behavior of transient analysis.
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Sum-of-Exponentials Approximation I

Highlight marching scheme for Dj (t). Can do likewise for Cjk (t).

The “sum-of-exponentials” approximation along a family of hyperbolic paths Γ in the
Laplace transform space after path deformation from Bromwich contour ΓB :

E1(σt) =
1

2πi

∫
Γ

log (1 + s/σ)

s
est ds .

The paths are

Γ ≡ { s = χP(x) , x ∈ R} , where P(x) ≡ 1− sin(α+ i x) .

By discretizing uniformly in x as x` = `h, with −n < ` < n, (but non-uniformly in s):

E1(σt) ≈ En(t) ≡
n∑

`=−n

e` e
s`t ; e` ≡

χh

2π
cos (α+ i `h)

log (1 + s`/σ)

s`
, s` ≡ χP(x`) .
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Sum-of-exponentials approximation II
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Sum-of-Exponentials Approximation III

A lemma adapted from Monzon and Beylkin (2010) gives the error in the method.

Lemma

Consider the time interval 0 < δ ≤ t ≤ Tf , with Tf ≥ 1000δ and let εf with
0 < εf < 0.1 be a prescribed error-tolerance. Then, with h and χ defined by

h =
a(θ)

n
, χ =

2πβn(1− θ)

Tf a(θ)
, where a(θ) ≡ cosh−1

(
2Tf

δ(1− θ) sinα

)
,

where 0 < α− β < α+ β < π/2 and 0 < θ < 1, we have the uniform estimate

|E1(σt)− En(t)| ≤
εf√
t

on δ ≤ t ≤ Tf ,

when n is sufficiently large of the order

n = O ((− log εf + log log (Tf /δ)) log (Tf /δ)) .

Optimize α, β and θ to minimize the number of terms to get a prescribed accuracy.

Key: n grows very slowly as either εf decreases or as Tf /δ increases.
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Sum-of-exponentials approximation

Example

This sum creation for both the 2-D heat kernel and the exponential integral takes less
than 2s for n(I3) = 114.

εf n(I1) n(I2) n(I3)
10−3 31 (8.085 · 10−4) 49 (8.663 · 10−4) 91 (8.089 · 10−5)
10−6 45 (6.690 · 10−7) 75 (9.272 · 10−7) 114 (9.799 · 10−7)
10−9 64 (7.028 · 10−10) 110 (8.417 · 10−11) 150 (9.343 · 10−10)

Table: Number of terms 2n + 1 needed to approximate either the 2-D
heat kernel with degradation G2(a, t) = 1

4πt e
−a2/(4t)−σt with Laplace

transform L[G2](a, s) = 1
2πK0(a

√
s + σ) or E1(σt) to a precision εf for

the different intervals I1 = [10−3, 1], I2 = [10−3, 103], and
I3 = [10−5, 104].
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Time-Marching Scheme IV

Let ∆t � 1. Since the kernel has an integrable singularity we decompose

Dj (t) = DHj (t) + DLj (t) , where DHj (t) ≡
∫ t−∆t

0
B′j (τ)E1 [σ(t − τ)] dτ ,

DLj (t) ≡
∫ t

t−∆t
B′j (τ)E1 [σ(t − τ)] dτ =

∫ ∆t

0
B′j (t − z)E1(σz) dz .

Local term DLj (t): DLj (t) = b1B′j (t) + b2B′j (t −∆t) +O
(
(∆t)2

)
.

History term DHj (t): use the sum-of-exponentials approximation:

DHj (t) ≈
n∑

`=−n

e`HDj`(t) , HDj`(t) ≡
∫ t−∆t

0
B′j (τ)es`(t−τ) dτ .

Each history “mode” HDj`(t) is a Duhamel integral that can be updated:

HDj`(t + ∆t) = HDj`(t)es`∆t + UDj`(t,∆t) ,

UDj`(t,∆t) ≡ e2s`∆t
∫ ∆t

0
e−s`zB′j (t −∆t + z) dz ≈ b3`B

′
j (t) + b4`B

′
j (t −∆t) .

This ETD2 scheme has made the update UD`j exact for linear functions.

Overall: We can update Dj (t + ∆t) using only “local-in-time” information.
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Summary: Time-Marching Scheme I:

Notation: Let ti = i∆t and use B′j (ti ) ≈
(
Bj (ti )− Bj (ti−1)

)
/∆t for i ≥ 2. Transient

analysis gives B′j (∆t). Lag Bj in discretization. We have B
(i)
j ≈ Bj (i∆t),

u(i)
1 ≈ u1(i∆t), and u(i)

2 ≈ u2(i∆t).

Step 1: 0 y ∆t: Use classical RK4 for reaction-kinetics

u(1)
1 = u(0)

1 +
∆t

6
(k

(0)
1 + 2k

(0)
2 + 2k

(0)
3 + k

(0)
4 ) + B(0)∆t ,

u(1)
2 = u(0)

2 +
∆t

6
(k̃

(0)
1 + 2k̃

(0)
2 + 2k̃

(0)
3 + k̃

(0)
4 ) ,

with the classical RK4 weights. Here B(0) ≡ (B
(0)
1 , . . . ,B

(0)
N ) = 0.

In terms of the computed u(1)
1 ≈ u1(t1), we calculate from transient analysis

B(1) = (B
(1)
1 , . . . ,B

(1)
N )T (and with a improved approximation):

B
(1)
j = −

u
(1)
1j γj

log
(
∆t/(κje−γe )

) (1−
π2

6
[
log
(
∆t/(κje−γe )

)]2
)
.
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Summary: Time-Marching Scheme II:

Step 2: ∆t y 2∆t: Use RK4 scheme with a lagged B(1):

u(2)
1 = u(1)

1 +
∆t

6
(k

(1)
1 + 2k

(1)
2 + 2k

(1)
3 + k

(1)
4 ) + B(1)∆t,

u(2)
2 = u(1)

2 +
∆t

6
(k̃

(1)
1 + 2k̃

(1)
2 + 2k̃

(1)
3 + k̃

(1)
4 ) .

Update B(2) with

B(2) = A−1
(
M1B

(1) + ∆tΓu
(2)
1 − b2∆tB′(∆t)

)
,

where B′(∆t) is given by transient solution. Here Γ ≡ diag(γ1, . . . , γN), while

Ajj = b1 − ηj∆t , Ajk = −∆tE1

(
a2
jk/∆t

)
,

M1,jj = b1 −∆t
(∑n

`=−n e`e
2s`∆t

)
, M1,jk = ∆t

∑n
`=−n ωjk`b40` ,

for k 6= j ∈ {1, ...,N}. Note: ωjk` are weights from SOE approximation for Cjk (t).
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Summary: Time-Marching Scheme III:

Step 3: Recursive-step: ti y ti+1 for i ≥ 2:

u(i+1)
1 = u(i)

1 +
∆t

6
(k

(i)
1 + 2k

(i)
2 + 2k

(i)
3 + k

(i)
4 ) + B(i)∆t ,

u(i+1)
2 = u(i)

2 +
∆t

6
(k̃

(i)
1 + 2k̃

(i)
2 + 2k̃

(i)
3 + k̃

(i)
4 ) .

In terms of the computed u(i+1)
1 we calculate B(i+1) as

B(i+1) = A−1

MB(i) +NB(i−1) +

 n∑
`=−n

e`b4`

 B(i−2) + ∆tΓu(i+1)
1 −∆tH(i)

 ,

where the matrices M and N have entries

Mjj = b1 − b2 −
∑n
`=−n e`b3` , Mjk = ∆t

∑n
`=−n ωjk`b3` ,

Njj = b2 +
∑n
`=−n e`(b3` − b4`) , Njk = ∆t

∑n
`=−n ωjk`b4`,

for k 6= j ∈ {1, ...,N}.
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Summary: Time-Marching Scheme IV:

The history vector H(i) ≡ (H
(i)
1 , . . . ,H

(i)
N )T has entries

H
(i)
j =

n∑
`=−n

e`e
s`∆tH

(i)
Dj` −

N∑
k=1,k 6=j

ωjk`e
s`∆tH

(i)
Ck`

 ,

and is updated with the scheme

H(i)
D` = H(i−1)

D` es`∆t + b3`

(
B(i−1) − B(i−2)

)
∆t

+

b4`

(
B(i−2)−B(i−3)

)
∆t

, if i ≥ 4 ,

B′(∆t)b4` if i = 3 ,

H(2)
D` = e2s`∆tB(∆t) ,

H(i)
C` = H(i−1)

C` es`∆t + b3`B(i−1) + b4`B(i−2) , if i ≥ 3 ,

H(2)
C` = b40`B(∆t) .

Overall formulation: operator-splitting scheme of a semi-implicit kind. Reaction

kinetics treated explicitly using RK4 with a lagged B(i−1), while u(i)
1 appears implicitly

in the update to B(i). We use 114 discretization points and typically ∆t = 0.005.
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Examples of the Theory: Sel’kov Kinetics

Let u = (u1, u2)T be intracellular dynamics given by Sel’kov kinetics:

F1j (u1, u2) = αju2 + u2u
2
1 − u1 , F2j (u1, u2) = ζj

(
µj − (αju2 + u2u

2
1)
)
.

No-bulk feedback if d1j = 0. When isolated d2j = 0. With boundary efflux d2j > 0:

du j

dt
= F j (u j )− 2πd2ju1je1 , e1 ≡ (1, 0)T . (3)

0 0.5 1 1.5 2 2.5 3
0
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0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Left: limit cycle oscillations in cyan region for an isolated cell for ζj = 0.15,
d1j = d2j = 0. Right: magenta region where oscillations occur with boundary efflux d2j

and µj = 2, ζj = 0.15, d1j = 0. For d2j ≥ 0, ∃ a unique SS of (3) with det(Jj ) > 0.

Remark: With Sel’kov kinetics, ∃ a unique steady-state for the cell-bulk model.

Hence, instabilities can only occur via Hopf Bifurcations.
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Two-Cell Patterns and Bench-marking

Goal: For cell-bulk model, explore effect of
changing d1j (influx), d2j (efflux), and kinetic
parameter αj while fixing ε = 0.03, µj = 2.0,
ζj = 0.15. Allow various cell configurations.

Typically initial conditions are chosen near the
steady-state so that scatter plots can inform
dynamics (at least locally).

Fast algorithm: Requires less than a minute to complete on 0 < t < 1500 on a Dell
Precision laptop i7 Intel Core with ∆t = 0.005 and two cells. Algorithm run times
scale well with N. Less than 3 minutes with N = 19.

FlexPDE commerical solver: requires many hours of CPU time with ε = 0.03 (cell
radius) for 0 < t < 1500 even for two cells!
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Two-Cell Patterns: Identical Cells I

Scatter plot in the 1/σ vs. D plane: Vary influx d1j for two identical cells.
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(a) d1j = 0.4
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0

1

2

3
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5

6

(b) d1j = 1.5

Figure: Two identical cells d2j = 0.2 (efflux) and αj = 0.9. Cells are in a quiescent
state with no cell-bulk coupling. Z = 0 is white, Z = 2 is blue, and Z = 4 is
magenta. The HB boundaries are superimposed: dashed HB curve is anti-phase mode
c = (1,−1)T and solid HB curve is in-phase mode c = (1, 1)T .

d1j = 0.4: ∃ a region where only anti-phase mode is unstable (top left blue).

d1j = 1.5: region where only in-phase mode is unstable is now much larger.
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Two-Cell Patterns: Identical Cells II
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(b) Im(λ) vertical path
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(d) Im(λ) horizontal path

Figure: Top row: vertical path with D = 0.75. For σ = 1/7 anti-phase mode
dominates. Bottom row: horizontal path with σ = 0.5. In-phase mode dominates.
The horizontal red line is Reλ = 0. HB frequencies do not vary much (right panels).
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Two-Cell Patterns: Identical Cells III

(a) u1j fast algorithm (b) u1j FlexPDE

(c) u2j fast algorithm (d) u2j FlexPDE

Figure: Parameters: Vertical path: D = 0.75, σ = 1/7 with d1j = 0.4, d2j = 0.2 and
αj = 0.9. The IC imposed was the steady-state with an anti-phase perturbation:

u(0)
1 = (u11s , u21s)T + 0.01 · (1,−1)T , and similarly for u(0)

2 . Also U(x , 0) = 0.
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Two-Cell Patterns: One Activated Cell I

Two non-identical cells: α1 = 0.4 and α2 = 0.9 , with d1j = 1.5 and d2j = 0.2 for
j = 1, 2. Cell with α1 = 0.4 is “activated”: has limit cycle oscillations if uncoupled
from bulk. The components of eigenvector c of M determine which cell is “quiet”.
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Key: As expected, the dominant mode of instability is for intracellular oscillations to

be concentrated to the first cell, while the second cell is essentially quiescent.
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Two-Cell Patterns: One Activated Cell II

600 650 700 750 800
0

0.5

1

1.5

cell 1

cell 2

(a) D = 4, σ = 1/2.
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0.5

1

1.5
cell 1

cell 2

(b) D = 2, σ = 1/6.

Figure: Intracellular dynamics u2j (t) at two points in the scatter plot: Left: D = 4,
σ = 1/2: wave-packet type-solution? or is it bad numerics? (hopefully not!) Right:
D = 2, σ = 1/6: regular oscillations for second cell but with smaller amplitude.
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Two-Cell Patterns: One Activated Cell III

(a) u1j fast algorithm (b) u1j FlexPDE

(c) u2j fast algorithm (d) u2j FlexPDE

Figure: Parameters: D = 3, σ = 1/2. The IC was the anti-phase perturbation:

u(0)
1 = (u11s , u21s)T + 0.01 · (1,−1)T . Similar for u(0)

2 . Fast algorithm reproduces the
wave-packet oscillations of cell 2 over long time intervals.



I: Diffusion-Induced Synchrony Memory-Dependence Numerics and Experiments II: Binding-Mediated Diffusion

Hexagonal Ring Pattern: One-Shell I

Fix rc = 2. Ring cells identical. Center cell x7 either “active” or “deactivated”

Case I: All cells identical with d1r = d17 = 0.4, d2r = d27 = 0.2 and αr = α7 = 0.9.
Each cell would be in a quiescent state without any cell-cell coupling.

Case II: Identical ring cells have d1r = 0.8, d2r = 0.2 and αr = 0.9. Center cell is
activated with d17 = 0.4, d27 = 0.2 and α7 = 0.5.

Case III: Same as Case II except that d27 = 0.5. Now the center cell is deactivated.
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Hexagonal Ring Pattern: One-Shell II

Scatter plots in the 1/σ vs. D plane for Cases I, II, and III:
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(b) II: center active
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(c) III: center deactivated

Figure: Z = 0 (white), Z = 2 (blue), Z = 4 (magenta), Z = 6, Z = 8 (green),

Z = 10 (orange), Z = 12 (purple) and Z = 14 (gray). The Kuramoto order

parameter is computed on the red-dashed path for identical cell Case I.
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Hexagonal Ring Pattern: Identical Cells

Kuramoto order parameter: Compute over 0 < t < 1500 with ∆t = 0.005:

Q(t) ≡
1

N
|

N∑
j=1

e iθj | , where θj ≡ arctan

(
u2j (t)− u2js

u1j (t)− u1js

)
∈ (0, 2π) ,

with u1js and u2js steady-states. Time-window: tlow = 1300 and tup = 1500:

Qave =
1

tup − tlow

∫ tup

tlow

Q(t) dt .

Left: Random IC (near SS). Right: Sign-Alternating IC (near SS). Magnitude 0.1
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Figure: Qave vs. D for σ = 4/7 on 0.25 < D < 1.25 along red dashed-path. A phase

transition to phase coherence occurs when D is near unity.
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Hexagonal Ring Pattern: Identical Cells

Top: D = 0.75: Middle: D = 1. Right: D = 1.25. Fast Algorithm: u2j (t).
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Figure: There is a transition to phase coherence near D = 1.
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Hexagonal Ring Pattern: Non-Identical Cells

Case II: Center-Cell C7 is activated:
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(c) D = 4.5, σ = 2.

Case III: Center-Cell C7 is now deactivated:
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(c) D = 1, σ = 5/9
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Centered Hexagonal Pattern: I

Figure: A centered hexagonal configuration of cells with two shells. Each shell has
identical quiescent cells, while the center cell is “activated”. Lattice generators:

L1 =
((

4
3

)1/4
, 0
)T

and L2 =
(

4
3

)1/4
(

1
2
,
√

3
2

)T
, so that |L1 × L2| = 1.

Experiment: For all 19 cells: d1j = 0.8 (influx) and d2j = 0.2. The center cell has
α1 = 0.5, and so is activated. Inner inner and outer shells: αj = 0.7 and αj = 0.8.
These cells are all quiescent when uncoupled from bulk.

For σ = 1 and D = 0.3: Qave = 0.237: Rather little phase coherence.

For σ = 1 and D = 0.7: Qave = 0.975: Strong phase coherence.

Key Conclusion: One single “active” cell can lead to strong phase coherence for the
ENTIRE cell population as D increases past a threshold.
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Centered Hexagonal Pattern: II

Top: D = 0.3. Middle: D = 0.5. Bottom: D = 0.7. Fast Algorithm: u2j (t).
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Discussion

Ref: M. Pelz, M. J. Ward, Synchronized Memory-Dependent Intracellular Oscillations
for a Cell-Bulk ODE-PDE Model in R2, SIADS 242, (2025), (60 pages).

Summary: The new memory-dependent integrodifferential system replaces the usual
Kuramoto ODE-paradigm for modeling situations where the intracellular dynamics for
a collection of cells is coupled through a 2-D time-dependent bulk-diffusion field.

End-Game: Fast-algorithm allows exploration of synchronization for large N large with
Kuramoto order parameter; identify possible chimera states and pattern-formation
aspects such as discrete spiral waves and target patterns induced by bulk-mediated
coupling.

Hybrid Analytic-Numerical Approach: Classical analytical applied math techniques
(singular perturbations, transforms, special functions, complex analysis) used together
with some modern innovative numerical approaches (sum-of-exponential method,
marching schemes, nonlinear matrix eigenvalue problems).

Viable Extensions: Cell-bulk with two-bulk species, 3-D cell-bulk, include drift fields,
finite domains. Next step: explore specific applications in math bio (glycolysis) and
chemical physics (microemulsions).
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Topic II: Binding-Mediated Diffusion

Classical Turing: Let the activator u and inhibitor v satisfy

ut = Duuxx + f (u, v) , vt = Dvvxx + g(u, v) ; ux = vx = 0 , x = 0, L .

Turing Analysis: Suppose that the base state (ue , ve), where
f (ue , ve) = g(ue , ve) = 0, is linearly stable when Du = Dv = 0, i.e. Tr(Je) < 0 and
det(Je) > 0, where Je is Jacobian of the kinetics, with f eu > 0 and g e

v < 0. A
necessary condition for its instability with diffusion is

Dv

Du
f eu + g e

v > 2

√
Dv

Du
det(Je) , (The DDR condition) .

Challenge: The DDR condition for onset of (symmetry-breaking) spatial patterns from
the base state usually needs Dv/Du to be significantly larger than unity. However, in
many biological and chemical systems “freely” diffusing morphogens (small molecules)
have comparable diffusivities.

Key Question: How to obtain symmetry-breaking without the need for a possibly

unrealistically large differential diffusivity ratio condition?
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Overcoming the DDR condition

Fine-tuning kinetics to near neutrally stable spatially uniform states (J. Pearson,
JChemPhys 90 (1989)). (Not a robust mechanism).

Adding immobile species to make a “2+1” component system, where added
species is non-diffusing (V. Klika et al., BMB 74(2012); K. Korvasova et al., J.
Theor. Bio. 367, (2015); (Can lead to spatial discontinuities).

Random RD sytems with many components can partially overcome the DDR
requirement (Haas and Goldstein, Phys. Rev. Lett 126, (2021)). (Large
computational study, hard to analyze).

Other models have ligand binding effects being a key mechanism for pattern formation:

Bulk-membrane or bilayer RD systems: RD processes inside a domain are
coupled to RD processes on the surface (Levine and Rappel, Phys. Rev. E. 72
(2005); Madzvamuse et al. Proc. Roy. Soc. A, 471, (2015); Paquin-Lefebvre et
al., SIADS 18(2019); Krause et al. BMB, 82(2020)).

Agent-Based Models: Discretized Diffusion in 2-D and Localized Reactions:
Rauch and Millonas, J.Theo. Bio., 226(2004). “In the mechanism we propose,
reactions occur within cells. Signal transduction leads to the production of
messenger molecules, which diffuse between cells at approximately equal rates,
coupling the reactions occurring in different cells.”
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Motivation: Cell-Bulk model with 2 Bulk Species

Binding-Mediated Diffusion in Biology

Many postulated mechanisms for morphogen
transport: Ref: P. Muller et al., Morphogen
Transport, Development 140, (2013). (“Drunken
sailor model”).

Hindered-diffusion or binding-mediated diffusion is
a key model for tissues: Ref: Stapornwongkul and
Vincent, Nat. Rev. Genetics, 22, 2021.

Conditions for the emergence of asymmetry is
important in embryogenesis: Ref: Sozen et al.,
Development, 474, (2021).

“Morphogens diffuse freely in the extracellular space, but tissue geometry and

transient binding interactions affect spreading. Therefore, one can distinguish between

free (or local) and effective diffusion rates. Whereas free diffusivity depends on the

molecule’s size, effective diffusivity takes into account the effect of morphogen binding

and unbinding to receptors on cell surfaces and in the extracellular matrix.” Ref: K.

Stapornwongkul, J. Briscoe Development, (2022)
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Motivation: Cell-Bulk with 2 Bulk Species

Binding-mediated diffusion: Freely diffusing species can bind at different rates to
ligands on the compartment boundaries. Our Conjecture: This introduces “effective”
diffusion coefficients whose ratio may be large enough for “symmetry-breaking”.

Key: Binding rates modeled
by Robin BC on the cell
boundaries.

Specific Goal: Formulate and analyze a 2D bulk cell model with identical
activator-inhibitor kinetics restricted to “cells”. Assume identical bulk parameters.

Key Question: Is the ratio of inhibitor to activator membrane binding rates a key
bifurcation parameter allowing for “symmetry-breaking”?

Ref: M. Pelz, MJW, Symmetry-Breaking Bifurcations for Compartmental RD systems
in 2-D, Frontiers in Applied Math, 9, (2023).

Ref: M. Pelz, MJW, Phil. Trans. Roy. Soc. A381, (2023). (1-D theory).
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PDE-ODE Model in 2-D: Dimensionless Formulation

For Ω ∈ R2, the N reaction compartments Ωj are disks of a common radius ε� 1:
Ωj = {x | |x − x j | ≤ ε}. Assume disks are well-separated |x i − x j | = O(1) for i 6= j .

In the bulk region, the bulk fields U, V satisfy

Ut =Du ∆U − σu U, Vt = Dv ∆V − σv V , x ∈ Ω \ ∪Nj=1 Ωj ,

εDu ∂nU = d1,j U − d2,j ξj , εDv ∂nV = b1,j V − b2,j ηj , x ∈ ∂Ωj , ∀j ,
∂n U = 0, ∂n V = 0, x ∈ ∂Ω ,

and are coupled to intracellular reaction kinetics Fj ∈ R2 for j = 1, . . . ,N by

du j

dt
= F j

(
u j

)
+ e1

∫
∂Ωj

(d1,j U − d2,j ηj ) dS + e2

∫
∂Ωj

(b1,j V − b2,j ηj ) dS ,

where u j = (µj , ηj )
T , e1 = (1, 0)T and e2 = (0, 1)T .
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Theoretical Framework for Analysis

Singular perturbation analysis for ε→ 0 to construct steady-states and derive
linear stability problem. No spatially uniform steady-state in general.
Global steady-states found from a nonlinear algebraic system (NAS) in terms of
the reduced-wave Green’s function G for Ω.
Linearized stability: Eigenvalue problem for point spectra involves root finding
on a nonlinear matrix eigenvalue problem (GCEP) (challenging in general!).

Question: Is “Symmetry-Breaking” controlled by a ratio of membrane binding rates?

Simplest Configurations: Ring type: cells equidistantly spaced on a ring concentric
within a disk. ∃ a symmetric steady-state solution (SSS) when Fj = F ∀j . Can stable
asymmetric-equilibria bifurcate from the SSS by varying the binding rate ratio?

Key: circulant matrix structure for the
NAS and the GCEP allow for a much sim-
pler analysis.
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GM Kinetics: A Two-Cell Ring Pattern

Consider GM reaction kinetics F ≡
(
µ2/η, µ2

)T
common to the two cells.

Let Ω be unit disk. Bulk parameters: common diffusivites Du = Dv = 5 and
σu = σv = 0.6. Cell radius: ε = 0.03� 1. Ring radius: r = 0.5. Membrane binding
rates: d1,j = d2,j ≡ du = 0.09 and b1,j = b2,j ≡ dv .

Bifurcation Parameter: ρ ≡ dv/du . What is effect of varying ring radius r?

Linearly stable asymmetric steady-states emerge at a supercritical pitchfork point ρp

along the SSS branch. Right: ρp increases rapidly as the ring radius r (i.e. distance)

between the cells increases.
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FlexPDE: Confirmation of Theory

FlexPDE simulations:: Left: convergence to the SSS for ρ = 5 < ρp . Right:

convergence to a stable asymmetric steady-state for ρ = 15 > ρp .
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Hysteresis for GM kinetics: Varying du.

(a) du = 0.08 (b) du = 0.05

3-D Bifurcation diagram for symmetric and asymmetric steady-states of a two-cell ring

pattern with ring radius r = 0.5 with GM kinetics. Hysteresis is observed: a subcritical

pitchfork bifurcation occurs from the SSS branch at ρ = ρp with emerging unstable

asymmetric steady-states (ASS) regaining stability at a secondary fold point ρs .

Extent of hysteresis increases when du decreases. Parameters: Du = Dv = 5,

σu = σv = 0.6, ε = 0.03, and r = 0.5.
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Confirmation of Hysteresis for GM with FlexPDE

FlexPDE results du = 0.08: Left: convergence to asymmetric SS for nearby IC when

ρ = 7.2 is in hysteresis band ρs ≈ 6.28 < ρ < ρp ≈ 7.71. Right: convergence to

asymmetric SS for ρ = 15 > ρp . IC is small anti-phase perturbation of the SSS.
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Hysteresis for GM: Varying du or Dv/Du

Varying du : Dv = Du = 5. Transition from sub- to super-criticality.

du 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.135

ρp 7.71 7.67 11.42 8.62 9.79 11.82 15.65 24.82 70.62 > 1000 or @
µe 2.78 2.55 3.21 2.28 2.20 2.14 2.10 2.06 2.04

ρs 6.28 6.93 6.83 8.60 - - - - - -
µe1 3.27 3.09 3.46 2.56 - - - - - -
µe2 1.12 1.35 0.88 1.93 - - - - - -

Pitchfork point ρp for SSS and fold points ρs for ASS vs. du . Supercritical pitchfork
emerges at du = 0.85. Other parameters: σu = σv = 0.6, ε = 0.03, r = 0.5.

Varying Dv : du = 0.8 and Du = 5 (same other parameters).

Dv/Du 0.37 0.38 0.4 0.6 0.8 1 3 5 8

ρp > 1000 or @ 198.0 72.6 14.3 10.1 8.62 6.13 5.79 5.61
µe 2.44 2.43 2.34 2.30 2.28 2.22 2.20 2.19

ρs 188.6 71.3 14.2 10.0 8.60 6.12 5.78 5.60
µe1 2.74 2.72 2.63 2.59 2.56 2.49 2.48 2.47
µe2 2.06 2.05 1.98 1.95 1.93 1.88 1.87 1.86

Note: Hysteresis still occurs when du = 0.08 as Dv/Du is increased. Pitchfork from

SSS occurs EVEN for some range of Dv/Du < 1! (when inhibitor is slow diffuser)
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Topic II: Discussion I

Framework: Compartmental RD models in 2-D provide a conceptual framework for
modeling binding-mediated diffusive transport with two bulk species.

2D Extension: Analyze periodic cell arrangements in R2. Symmetry-breaking
bifurcations for a spatially periodic steady-state (the “SSS” pattern) of small cells
centered at lattice points of a 2-D Bravais lattice (e.g Hexagonal lattice), as
controlled by membrane binding rate ratio.

Technical Challenge: “Bifurcation” from edge of continuous spectrum.

Key for analysis: An explicit Floquet-Bloch reduced-wave G-function (Belykin).

Which “anti-phase” Floquet-Bloch mode in Brilloiun zone leads to
symmetry-breaking?

Develop a weakly nonlinear theory to predict sub- or super-critical (in progress).
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Topic II: Discussion II

Take-away: Binding ratio of the two species on the compartments can control the
emergence of symmetry-breaking bifurcations of a SSS (→ stable asymmetric
equilibria) even when bulk diffusivities are equal. Robust mechanism for generating
stable asymmetric steady-states. Similar results to GM for Rauch-Millonas or
FitzHugh-Nagumo intracellular kinetics, but now also possibility of Hopf bifurcations.

Biological Limitation: In 2-D, asymptotic analysis needs small compartment radii and
spatially segregated compartments (not applicable to tissues). Can we instead
consider asymptotic limit of binding-mediated diffusion on checkerboard patterns with
O(1) cells or with thin “roads”?

Need Different Asymptotics and More Numerics:

Homogenization approach likely useful.

Thin channel asymptotics: reduction of PDE to a network model?

Numerics needed for steady-state and stability problem in Wigner-Seitz cell.
(open)
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