
Cops-on-the-Dots: The Linear Stability of Crime Hotspots for a 1-D

Reaction-Diffusion Model of Urban Crime

Andreas Buttenschoen∗ , Theodore Kolokolnikov† , Michael J. Ward‡ , Juncheng Wei§

October 5, 2019

Abstract

In a singularly perturbed limit, we analyze the existence and linear stability of steady-state hotspot solutions for
an extension of the 1-D three-component reaction-diffusion (RD) system formulated and studied numerically in Jones
et. al. [Math. Models. Meth. Appl. Sci., 20, Suppl., (2010)], which models urban crime with police intervention. In our
extended RD model, the field variables are the attractiveness field for burglary, the criminal population density, and the
police population density. Our model includes a scalar parameter that determines the strength of the police drift towards
maxima of the attractiveness field. For a special choice of this parameter, we recover the “cops-on-the-dots” policing
strategy of Jones et. al., where the police mimic the drift of the criminals towards maxima of the attractiveness field.
For our extended model, the method of matched asymptotic expansions is used to construct 1-D steady-state hotspot
patterns as well as to derive nonlocal eigenvalue problems (NLEPs) that characterize the linear stability of these hotspot
steady-states to O(1) time-scale instabilities. For a cops-on-the-dots policing strategy, we prove that a multi-hotspot
steady-state is linearly stable to synchronous perturbations of the hotspot amplitudes. Alternatively, for asynchronous
perturbations of the hotspot amplitudes, a hybrid analytical-numerical method is used to construct linear stability phase
diagrams in the police versus criminal diffusivity parameter space. In one particular region of these phase diagrams,
the hotspot steady-states are shown to be unstable to asynchronous oscillatory instabilities in the hotspot amplitudes
that arise from a Hopf bifurcation. Within the context of our model, this provides a parameter range where the effect
of a cops-on-the-dots policing strategy is to only displace crime temporally between neighboring spatial regions. Our
hybrid approach to study the NLEPs combines rigorous spectral results with a numerical parameterization of any Hopf
bifurcation threshold. For the cops-on-the-dots policing strategy, our linear stability predictions for steady-state hotspot
patterns are confirmed from full numerical PDE simulations of the three-component RD system.

Key Words: Urban crime, hotspot patterns, nonlocal eigenvalue problem (NLEP), Hopf bifurcation, asynchronous

oscillatory instability, cops-on-the-dots.

1 Introduction

Motivated by the increased availability of residential burglary data, the development of mathematical modeling approaches

to quantify and predict spatial patterns of urban crime was initiated in [18–20]. One primary feature incorporated into these

models, which is based on observations from the available data (cf. [4]), is that spatial patterns of residential burglary are

typically concentrated in small regions known as hotspots; a feature believed to be attributable to a repeat or near-repeat

victimization effect (cf. [9], [30]). There have been two primary frameworks that have been used to model the effect of

police intervention on crime hotspot patterns. One approach, ideal for incorporating detailed real-world policing strategies,

is large scale simulations of agent-based models (cf. [10], [5]). However, with this approach, it is difficult to isolate the

effect of changes in the model parameters. An alternative approach, more amenable to analysis, is to formulate PDE-based
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reaction-diffusion (RD) systems that model the police population density as an extra field variable (cf. [10], [15], [16]).

More elaborate PDE models, such as in [31], formulate an optimal control strategy to minimize the overall crime rate by

allowing the police to adapt to dynamically evolving crime patterns.

In our PDE-based approach, motivated by [10] and [16], the police intervention is modeled by a drift-diffusion PDE,

in which we include a parameter that models the strength of the drift towards the maxima of the attractiveness field

for burglary. For this three-component RD system consisting of an attractiveness field coupled to the criminal and police

densities, we will study the existence and linear stability properties of steady-state hotspot patterns on a 1-D spatial domain

0 < x < S in a singularly perturbed limit. The specific non-dimensional three-component RD model of urban crime that

we will analyze is formulated as

At = ǫ2Axx −A+ ρA+ α , (1.1a)

ρt = D (ρx − 2ρAx/A)x − ρA+ γ − α− ρU , (1.1b)

τUt = D (Ux − qUAx/A)x , (1.1c)

where Ax = ρx = Ux = 0 at x = 0, S. Here A is the attractiveness field for burglary, while ρ and U are the densities

of criminals and police, respectively, all of which are assumed to be non-negative. In this model, α > 0 is the constant

baseline attractiveness, γ − α > 0 is the constant rate at which new criminals are introduced, D is the criminal diffusivity,

Dp ≡ D/τ is the police diffusivity, and ǫ≪ 1 characterizes the near-repeat victimization effect (cf. [18], [9], [30]). For q = 2,

this model is equivalent to that in [9]. For (1.1c), the total policing level U0 > 0 is a prescribed constant given by

U0 ≡
∫ S

0

U(x, t) dx . (1.2)

The integral
∫ S

0
U(x, t) dx is a conserved quantity, independent of t, as is seen by integrating (1.1c) over the domain and

using the no flux boundary conditions. In (1.1), the other model parameters D, τ , and q are all assumed to be positive

constants.

In (1.1), the parameter q > 0 measures the degree of focus in the police patrol towards maxima of the attractiveness

field. The choice q = 2, which recovers the PDE system derived and studied numerically in [10], is the “cops-on-the-dots”

strategy (cf. [10], [16]) where the police mimic the drift of the criminals towards maxima of A. In (1.1b), the police

population density at a given spatial location decreases the local criminal population at a rate proportional to the local

criminal population density (the −ρU term in (1.1b)). The resulting predator-prey type police interaction model (1.1) is

to be contrasted with the “simple police interaction” model formulated in [16], and analyzed in [22], where the −ρU term

in (1.1b) is replaced by −U .

In the absence of police, i.e. U0 = 0, (1.1) reduces to the two-component PDE system for A and ρ first derived and studied

in [18] and [20]. Pattern formation aspects for this “basic” crime model have been well-studied from various viewpoints,

including, weakly nonlinear theory (cf. [19]), bifurcation theory near Turing points (cf. [6], [8]) and the computation of global

snaking-type bifurcation diagrams (cf. [13]), rigorous existence theory (cf. [17]), and asymptotic methods for constructing

steady-state hotspot patterns whose linear stability properties can be analyzed via NLEP theory (cf. [11], [1], [21]).

Our goal here is to extend the analysis given in [22] for the existence and linear stability of hotspot steady-states for the

simple police interaction model to the predator-prey type interaction model (1.1). We will show that the seemingly minor

and innocuous replacement of −U from the model in [22] with −ρU in (1.1b) leads to a significantly more challenging linear

stability problem for hotspot equilibria. This is discussed in detail below.
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As in [22] and [11], we will analyze (1.1) in the limit ǫ→ 0 for the range D = O(ǫ−2). Since A(x) = O(ǫ−1) in the core

of the hotspot near x = 0, it is convenient as in [22] to introduce the new variables v, u, and D by

ρ = ǫ2vA2 , U = uAq , D = ǫ−2D , so that Dp = ǫ−2D/τ . (1.3)

In terms of A, v, and u, on the domain 0 < x < S, and with no flux boundary conditions at x = 0, S, (1.1) transforms to

At = ǫ2Axx −A+ ǫ2vA3 + α , (1.4a)

ǫ2
(

A2v
)

t
= D

(

A2vx
)

x
− ǫ2vA3 + γ − α− ǫ2uvA2+q , (1.4b)

τǫ2 (Aqu)t = D (Aqux)x , (1.4c)

In our analysis we will assume that D = O(1). Therefore, the asymptotic range of the police diffusivity Dp in (1.3) is

determined by τ .

In §2 we use a formal singular perturbation analysis in the limit ǫ→ 0 to construct hotspot steady-state solutions to (1.4)

that have a common amplitude. Our steady-state analysis is restricted to the range q > 1, for which the police population

density is asymptotically small in the background region away from the hotspots. In Proposition 2.1 and Corollary 2.2

below we establish that steady-state hotspot solutions exist only when U0 < U0,max ≡ S(γ − α)(q + 1)/(2q).

In §3 we use a singular perturbation analysis combined with Floquet theory to derive two distinct nonlocal eigenvalue

problems (NLEPs) characterizing the linear stability of hotspot steady-states of (1.4) on the parameter range O(1) ≪ Dp ≪
O(ǫ−1−q) with q > 1. This analysis is similar to, but more intricate than, that given in [22] and [11]. One such NLEP,

given below in Proposition 3.2, characterizes the linear stability properties of a multi-hotspot steady state solution, with

K ≥ 2 hotspots, to synchronous perturbations in the hotspot amplitudes. Alternatively, the second NLEP, given below

in Proposition 3.4, characterizes the linear stability properties of a multi-hotspot steady-state, with K ≥ 2 hotspots, to

K − 1 > 0 different spatial modes of asynchronous perturbations of the hotspot amplitudes. A complicating feature in the

analysis of these spectral problems, as compared to the analysis in [22], is that each of the two NLEPs has three distinct

nonlocal terms consisting of a linear combination of
∫

w2Φ,
∫

wq−1Φ, and
∫

wq+1Φ. Here w(y) =
√
2 sech y is the homoclinic

profile of a hotspot, and Φ(y) is the NLEP eigenfunction. As a result of this complexity, the determination of unstable

spectra for these NLEPs is seemingly beyond the general NLEP stability theory with a single nonlocal term, as surveyed

in [29]. For the simple police interaction model, studied in [22], the corresponding NLEPs had only two nonlocal terms.

In §4 we use a hybrid analytical-numerical strategy to determine the spectrum of the NLEP characterizing the linear

stability to synchronous perturbations. For arbitrary q > 1, the two different approaches developed in §4.1 and §4.2
provide clear numerical evidence that this NLEP has no unstable eigenvalues. This strongly indicates that, for any q > 1

and Dp satisfying O(1) ≪ Dp ≪ O(ǫ−1−q), a one-hotspot steady-state is always linearly stable and that a multi-hotspot

steady-state is always linearly stable to synchronous perturbations in the hotspot amplitudes. For the special case q = 2

of “cops-on-the-dots”, this linear stability conjecture is proved rigorously in §4.2.1. This proof of linear stability for q = 2

relies on some key identities that allow the NLEP with three nonlocal terms to be converted into an equivalent NLEP with

a single nonlocal term.

For general q > 1, in §5 we determine the threshold value of D corresponding to a zero-eigenvalue crossing of the NLEP,

as defined in Proposition 3.4, that characterizes the linear stability of a multi-hotspot steady-state to the asynchronous

modes on the range O(1) ≪ Dp ≪ O(ǫ−1−q). For a K-hotspot steady-state with K ≥ 2, this critical value of D, called the

competition stability threshold, is

Dc ≡
S

8K4π2α2 [1 + cos (π/K)]

[

(1− q)ω3 + qS(γ − α)ω2
]

, where ω ≡ S(γ − α)− 2qU0/(q + 1) , (1.5)
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on U0 < U0,max ≡ S(γ − α)(q + 1)/(2q). In the sub-regime O(ǫ1−q) ≪ Dp ≪ O(ǫ−1−q), a winding number analysis is used

in §5.1 to prove, for an arbitrary q > 1, that a multi-hotspot steady-state is linearly stable to asynchronous perturbations

in the hotspot amplitudes if and only if D < Dc (see Proposition 5.2 below).

For the special case q = 2 of “cops-on-the-dots”, in §6 we show how to transform the NLEP for the asynchronous

modes into an equivalent NLEP with only one nonlocal term, which is then more readily analyzed. With this reduction

of the NLEP into a more standard form, which only applies when q = 2, in Proposition 6.4 we prove that a K-hotspot

steady-state, with K ≥ 2, is always unstable to the asynchronous modes when D > Dc. Moreover, from a numerical

parameterization of branches of purely imaginary eigenvalues for this equivalent NLEP, we show that each of the K − 1

asynchronous modes can undergo, on some intervals of D, a Hopf bifurcation at critical values of the police diffusivity Dp

on the range Dp = O(ǫ−1). Overall, this hybrid approach provides phase diagrams in the ǫDp versus D parameter plane

characterizing the linear stability of the hotspot steady-states to asynchronous perturbations in the hotspot amplitudes.

Numerical evidence from PDE simulations suggests that hotspot amplitude oscillations arising from the Hopf bifurcation

can be either subcritical or supercritical, depending on the parameter set. Linear stability phase diagrams for various U0

are shown below in Fig. 9 and Fig. 10 for K = 2 and K = 3, respectively. One key qualitative feature derived from these

phase diagrams is that there is a region in the ǫDp versus D parameter space where the effect of police intervention is to

only displace crime temporally between neighboring spatial regions; a phenomenon qualitatively consistent with the field

observations reported in [3] for a “cops-on-the-dots” policing strategy.

As in [22], we emphasize that the interval in D where asynchronous hotspot amplitude oscillations occur disappears when

U0 = 0. Therefore, it is the third component of the RD system (1.4) that is needed to support these temporal oscillations.

In contrast, for most two-component RD systems with localized spike-type solutions, such as the the Gray-Scott and Gierer-

Meinhardt models (cf. [7], [14], [24], [12]), the dominant Hopf stability threshold for spike amplitude oscillations, based on

an NLEP linear stability analysis, is determined by the spatial mode that synchronizes the oscillations.

For q = 2, in §7 we validate the predictions of our linear stability analysis with full numerical PDE simulations of (1.4).

Finally, in §8 we compare our linear stability results for (1.4) for a “cops-on-the-dots” strategy with those in [22] for the

simple police interaction model. We also briefly discuss some specific open problems and new directions warranting study.

2 Asymptotic Construction of a Multiple Hotspot Steady-State

In the limit ǫ → 0, we use the method of matched asymptotic expansions to construct a steady-state solution to (1.4)

on 0 ≤ x ≤ S with K ≥ 1 interior hotspots of a common amplitude. We follow the approach in [22] in which we first

construct a one-hotspot solution to (1.4) centered at x = 0 on the reference domain |x| ≤ l. From translation invariance,

this construction yields a K interior hotspot steady-state solution on the original domain of length S = (2ℓ)K. On |x| ≤ ℓ,

(1.2) yields that
∫ ℓ

−ℓ
U dx = U0/K, where U0 is the constant total police deployment.

On the reference domain |x| ≤ l, we center a steady-state hotspot at x = 0, and we impose Ax = vx = ux = 0 at x = ±ℓ.
For this canonical hotspot problem, the steady-state problem for (1.4) is to find A(x), v(x), and the constant u, satisfying

ǫ2Axx −A+ ǫ2vA3 + α = 0 , |x| ≤ ℓ ; Ax = 0 , x = ±ℓ , (2.1a)

D
(

A2vx
)

x
− ǫ2vA3 + γ − α− ǫ2uvA2+q = 0 , |x| ≤ ℓ ; vx = 0 , x = ±ℓ , (2.1b)

where the steady-state police population density U(x) is related to u by

U = uAq , where u =
U0

K
∫ ℓ

−ℓ
Aq dx

. (2.2)
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For ǫ→ 0, we have A ∼ α+O(ǫ2) in the outer region, while in the inner region near x = 0, we set y = ǫ−1x and expand

A ∼ ǫ−1A0 and v ∼ v0 in (2.1). To leading-order, in the inner region we obtain from (2.1) that

A0 ∼ w(y)√
v0

, v ∼ v0 . (2.3)

Here v0 is a constant to be determined and w(y) =
√
2 sech y is the homoclinic solution of

w′′ − w + w3 = 0 , −∞ < y <∞ ; w(0) > 0 , w′(0) = 0 , w → 0 as y → ±∞ . (2.4)

Integrals of various powers of w(y), as needed below, can be calculated in terms of the Gamma function Γ(z) by (see [22]

and the appendix in [23])

Iq ≡
∫

∞

−∞

wq dy = 23q/2−1 [Γ(q/2)]
2

Γ(q)
. (2.5)

We will consider the range q > 1 where the dominant contribution to the integral
∫ ℓ

−ℓ
Aq dx arises from the inner region:

∫ ℓ

−ℓ

Aq dx ∼ ǫ1−qv
−q/2
0

∫

∞

−∞

wq dy = O(ǫ1−q) ≫ 1 .

Since q > 1, (2.2) shows that u depends to leading-order only on the inner region contribution from Aq. For ǫ≪ 1, we get

u ∼ ǫq−1ũe , where ũe ≡
U0v

q/2
0

KIq
. (2.6)

To determine v0, we integrate (2.1b) over −ℓ < x < ℓ, while imposing vx(±ℓ) = 0. This yields that

ǫ2
∫ ℓ

−ℓ

vA3 dx = 2ℓ (γ − α)− ǫ2u

∫ ℓ

−ℓ

vA2+q dx . (2.7)

Since A ∼ α = O(1) and A = O(ǫ−1) in the outer and inner regions, respectively, it follows that, when q > 1, the dominant

contribution to the integral arises from the inner region where v ∼ v0. In this way, and by using (2.2) in (2.7), we get

∫

∞

−∞
w3 dy

√
v0

∼ 2ℓ (γ − α)− ǫ2U0v0
K

∫ ℓ

−ℓ
A2+q dx

∫ ℓ

−ℓ
Aq dx

. (2.8)

By using A ∼ ǫ−1w(y)/
√
v0, together with (2.5), we calculate the integral ratio in (2.8) for ǫ→ 0 as

∫ ℓ

−ℓ
A2+q dx

∫ ℓ

−ℓ
Aq dx

∼ ǫ−2

v0

∫

∞

−∞
wq+2 dy

∫

∞

−∞
wq dy

=
ǫ−2

v0

23(q+2)/2−1

23q/2−1

(

Γ(1 + q/2)

Γ(q/2)

)2
Γ(q)

Γ(q + 2)
=
ǫ−2

v0

2q

q + 1
, (2.9)

by using Γ(x + 1) = xΓ(x). Then, by substituting (2.9) into (2.8), and using
∫

∞

−∞
w3 dy =

√
2π, we observe that

√
v0 > 0

holds only when the total level U0 of police deployment is below a threshold U0,max, i.e. when

U0 < U0,max ≡ 2ℓK (γ − α)
(q + 1)

2q
= S(γ − α)

(q + 1)

2q
. (2.10)

Here S = 2ℓK is the original domain length. For this range of U0, we can solve for v0 to get

v0 = 2π2

[

2ℓ(γ − α)− U0

K

2q

q + 1

]

−2

. (2.11)

We conclude that a K-hotspot steady-state exists when U0 < U0,max. On this range of U0, the amplitude of the hotspot,

defined by Amax ≡ A(0) ≫ 1, is given by

Amax ≡ A(0) ∼ ǫ−1A0(0) = ǫ−1w(0)√
v0

=
ǫ−1ω

πK
, where ω ≡ S(γ − α)− U0

2q

q + 1
. (2.12)
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We observe from (2.12) that the hotspot amplitude decreases with increasing K, U0, or q.

To complete the asymptotic construction of the hotspot, in the outer region we expand v ∼ ve(x) + . . . and use

A ∼ α+O(ǫ2). From (2.1b), we obtain to leading order that ve(x) satisfies

Dvexx = − (γ − α)

α2
, −ℓ < x < ℓ ; ve(0) = v0 , vex(±ℓ) = 0 , (2.13)

which is readily solved analytically. We summarize our leading-order results for a steady-state K-hotspot pattern as follows:

Proposition 2.1 Let ǫ → 0, q > 1, and 0 < U0 < U0,max, where U0,max is given in (2.10). Then, (1.4) admits a steady-

state solution on (0, S) with K interior hotspots of a common amplitude. On each sub-domain of length 2ℓ = S/K, and

translated to (−ℓ, ℓ) to contain exactly one hotspot at x = 0, the steady-state solution, to leading order, is given by

A ∼ w(x/ǫ)

ǫ
√
v0

, if x = O(ǫ) ; A ∼ α , if x = O(1) , (2.14a)

v ∼ ve =
ζ

2

[

(ℓ− |x|)2 − ℓ2
]

+ v0 , where v0 = 2π2K2

[

S(γ − α)− U0
2q

q + 1

]

−2

, (2.14b)

u ∼ ǫq−1ũe , where ũe ≡
U0v

q/2
0

KIq
and Iq ≡

∫

∞

−∞

wq dy = 23q/2−1 [Γ(q/2)]
2

Γ(q)
. (2.14c)

Here w(y) =
√
2 sech y is the homoclinic of (2.4) and ζ ≡ −(γ − α)/(Dα2).

In terms of the criminal and police densities, given by ρ = ǫ2vA2 and U = uAq from (1.3), we have the following:

Corollary 2.2 Under the same conditions as in Proposition 2.1, (2.14) yields to leading-order that

A ∼ w(x/ǫ)

ǫ
√
v0

, if x = O(ǫ) ; A ∼ α , if O(ǫ) ≪ |x| < ℓ , (2.15a)

ρ ∼ [w(x/ǫ)]
2
, if x = O(ǫ) ; ρ ∼ ǫ2veα

2 , if O(ǫ) ≪ |x| < ℓ , (2.15b)

U ∼ U0

ǫKIq
[w(x/ǫ)]

q
, if x = O(ǫ) ; U ∼ ǫq−1αqU0v

q/2
0

KIq
, if O(ǫ) ≪ |x| < ℓ , (2.15c)

where ve and v0 are given in (2.14) and w(y) =
√
2 sech y.
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Figure 1: The steady-state two-hotspot solution for S = 6, γ = 2, α = 1, U0 = 2, ǫ = 0.03, D = 0.3, Dp ≈ 16.667, for the
“cops-on-the-dots” q = 2 patrol, obtained from the asymptotic solution (2.15). These are the same parameter values used in the PDE
simulations shown in the left panel of Fig. 11 below.

In Fig. 1 we use (2.15) to plot the two-hotspot steady-state solution for a particular parameter set. This plot clearly

shows the concentration behavior of A, ρ, and U near the hotspot locations.
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From (2.15), we observe that the criminal population density near a hotspot is independent of the total police deployment

U0 and patrol focus q. Since q > 1, the police population density U(x) is small in the outer region, but is asymptotically

large near a hotspot.

We observe that our leading-order asymptotic result in (2.15) for the hotspot steady-state is equivalent to simply

replacing U0 in Proposition 2.1 and Corollary 2.2 of [22] with 2qU0/(q + 1). Since 2q/(q + 1) > 1 for q > 1, we conclude

that, for the same parameter values and level U0 of total police deployment, the steady-state hotspot amplitude is smaller for

the RD model (1.4) with predator-prey type police interaction than for the RD model of [22] with simple police interaction.

3 The NLEP for a K-Hotspot Steady-State Pattern

To analyze the linear stability of a K-hotspot steady-state solution, we must extend the singular perturbation approach

used in [22] to derive the corresponding nonlocal eigenvalue problem (NLEP). This is done by first deriving the NLEP for a

one-hotspot solution on the reference domain |x| ≤ ℓ, subject to Floquet-type boundary conditions imposed at x = ±ℓ. In
terms of this canonical problem, the NLEP for the finite-domain problem 0 < x < S with Neumann conditions at x = 0, S

is then readily recovered as in [22] (see also [11]). Since the analysis to derive the NLEP is similar to that in [22], we only

outline it below. Further details on the derivation of the NLEP are given in Appendix A.

3.1 Linearization with Floquet Boundary Conditions

Let (Ae, ve, ue) denote the steady-state with a single hotspot centered at x = 0 in |x| ≤ ℓ. We introduce the perturbation

A = Ae + eλtφ , v = ve + eλtǫψ , u = ue + eλtǫqη , (3.1)

where the asymptotic orders of the perturbations (O(1), O(ǫ) and O(ǫq)) are chosen so that φ, ψ, and η are all O(1) in the

inner region. By substituting (3.1) into (1.4) and linearizing, we obtain that

ǫ2φxx − φ+ 3ǫ2veA
2
eφ+ ǫ3A3

eψ = λφ , (3.2a)

D
(

2Aevexφ+ ǫA2
eψx

)

x
− 3ǫ2A2

eveφ− ǫ3A3
eψ − ǫ2(2 + q)ueveA

q+1
e φ− ǫ2+qveA

2+q
e η − ǫ3ueA

2+q
e ψ

= λǫ2
(

2Aeveφ+ ǫA2
eψ
)

,
(3.2b)

D
(

qAq−1
e uexφ+ ǫqAq

eηx
)

x
= ǫ2τλ

(

qAq−1
e ueφ+ ǫqAq

eη
)

. (3.2c)

As in [22], for K ≥ 2, we impose Floquet-type boundary conditions at x = ±ℓ for ψ, η, and φ:




η(ℓ)
ψ(ℓ)
φ(ℓ)



 = z





η(−ℓ)
ψ(−ℓ)
φ(−ℓ)



 ,





ηx(ℓ)
ψx(ℓ)
φx(ℓ)



 = z





ηx(−ℓ)
ψx(−ℓ)
φx(−ℓ)



 . (3.3)

Here z is a complex-valued parameter. Since φ is localized near the core of the hotspot, it is only the Floquet-type boundary

condition for the long-range components η and ψ that is essential to the analysis below. We will consider the case of a

single hotspot, where K = 1, separately in §3.2 below.

For K ≥ 2, the NLEP associated with a K-hotspot pattern on [−l, (2K − 1)l] with periodic boundary conditions, on

a domain of length 2Kl, is obtained by setting zK = 1, which yields zj = e2πij/K for j = 0, . . . ,K − 1. For these values

of zj in (3.3) we obtain the spectral problem for the linear stability of a K-hotspot solution on a domain of length 2Kl

with periodic boundary conditions. To relate the spectra of the periodic problem to the Neumann problem, in such a way

that the Neumann problem is still posed on a domain of length S, we proceed as in §3 of [22] (see also §3 of [11] and

7



the appendix of [23]). There it was shown that we need only replace 2K with K in the definition of zj . In this way, the

Floquet parameters in (3.3) for a hotspot steady-state on a domain of length S = 2lK, having K ≥ 2 interior hotspots and

Neumann boundary conditions at x = 0 and x = S is z = zj ≡ eπij/K for j = 0, . . . ,K − 1. For these values of z, the

following identity is needed below:

(z − 1)2

2z
= Re(z)− 1 = cos

(

πj

K

)

− 1 , j = 0, . . . ,K − 1 . (3.4)

We now begin our derivation of the NLEP. For (3.2a), in the inner region where Ae ∼ ǫ−1w/
√
v0, ve ∼ v0, we have that

ψ ∼ ψ(0) ≡ ψ0. It follows that the leading-order term Φ(y) = φ(ǫy) in the inner expansion of φ satisfies

Φ′′ − Φ+ 3w2Φ+
ψ(0)

v
3/2
0

w3 = λΦ . (3.5)

In the outer region ǫ≪ |x| ≤ ℓ, to leading order we obtain from (3.2) that

φ ∼ ǫ3α3ψ/[λ+ 1− 3ǫ2α2ve] = O(ǫ3), ψxx ≈ 0 , ηxx ≈ 0 . (3.6)

The goal of the calculation below is to determine ψ(0), which from (3.5) yields the NLEP. To do so, we must derive

appropriate jump conditions for ψx and ηx across the hotspot region centered at x = 0. This calculation, summarized in

Appendix A, then leads to linear BVP problems for ψ and η, from which we can calculate ψ(0).

As shown in Appendix A, we obtain that the outer approximation for ψ(x) satisfies

ψxx = 0 , |x| ≤ ℓ ; e0 [ψx]0 = e1ψ(0) + e2η(0) + e3 , ψ(ℓ) = zψ(−ℓ) , ψx(ℓ) = zψx(−ℓ) , (3.7a)

where we have defined [a]0 ≡ a(0+)− a(0−). Defining
∫

(. . . ) ≡
∫

∞

−∞
(. . . ) dy, the coefficients ej , for j = 0, . . . , 3, are

e0 ≡ Dα2 , e1 ≡ 1

v
3/2
0

∫

w3 +
ũe

v
1+q/2
0

∫

wq+2 ,

e2 ≡ 1

v
q/2
0

∫

w2+q , e3 ≡ 3

∫

w2Φ+
ũe

v
(q−1)/2
0

(q + 2)

∫

wq+1Φ .

(3.7b)

The BVP (3.7) is defined in terms of η(0), which must be found from a separate BVP (see Appendix A). In Appendix

A, we show that on the range

O(ǫq−1) ≪ τ ≪ O(ǫ−2) so that O(1) ≪ Dp ≪ O(ǫ−q−1) , (3.8)

we have that η(0) is determined from the following leading-order BVP:

ηxx = 0 , |x| ≤ ℓ ; d0 [ηx]0 = d1η(0) + d2 , η(ℓ) = zη(−ℓ) , ηx(ℓ) = zηx(−ℓ) . (3.9a)

In terms of v0 and ũe, as defined in (2.14), the constants d0, d1, and d2, are defined by

d0 ≡ Dαq, d1 ≡ τ̂λ

v
q/2
0

∫

wq, d2 ≡ τ̂λqũe

v
(q−1)/2
0

∫

wq−1Φ . (3.9b)

Here we have defined τ̂ by

τ̂ ≡ ǫ3−qτ . (3.10)

In view of (3.8), the BVP (3.9a) for q > 1 holds on the following range of τ̂ :

O(ǫ2) ≪ τ̂ ≪ O(ǫ1−q) , where Dp = ǫ1−qD/τ̂ . (3.11)

To calculate ψ(0) and η(0), we need the following simple result, as proved in Lemma 3.1 of [22]:
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Lemma 3.1 (Lemma 3.1 of [22]) For |x| < ℓ, suppose that y(x) satisfies

yxx = 0 , −ℓ < x < ℓ ; f0 [yx]0 = f1y(0) + f2 ; y(ℓ) = zy(−ℓ) , yx(ℓ) = zyx(−ℓ) , (3.12)

where f0, f1 and f2, are nonzero constants, and let z satisfy (3.4). Then, y(0) is given by

y(0) = f2

[

f0
ℓ

(z − 1)
2

2z
− f1

]

−1

= − f2
f0[1− cos (πj/K)] /ℓ+ f1

. (3.13)

Lemma 3.1 with f0 = e0, f1 = e1, and f2 = e2η(0) + e3, yields ψ(0) from (3.7). Similarly, η(0) is found from (3.9) by

using Lemma 3.1 with f0 = d0, f1 = d1, and f2 = d2. In this way, we get

ψ(0) = − e2η(0) + e3
e0[1− cos(πj/K)] /ℓ+ e1

, and η(0) = − d2
d0[1− cos(πj/K)] /ℓ+ d1

. (3.14)

Upon combining these two results, and using (3.7b) and (3.9b) for e0 and d0, respectively, we determine ψ(0) as

ψ(0) = − 1

Djα2 + e1

[

e3 −
e2d2

Djαq + d1

]

, (3.15)

where we have defined Dj , which satisfies Dj < Dj+1 for any j = 0, . . . ,K − 2, by

Dj ≡
D
ℓ

[

1− cos

(

πj

K

)]

, j = 0, . . . ,K − 1 , where l =
S

2K
. (3.16)

To determine the coefficient ψ(0)/v
3/2
0 in (3.5) in terms of the original parameters, which will yield the NLEP, we next

need to simplify the expressions for e1, e2, e3, d1, and d2 in (3.7b) and (3.9b), by using (2.6) for ũe and an explicit formula

for the integral ratio
∫

wq+2/
∫

wq, as given in (2.9). A short calculation yields that

e1 =

∫

w3

v
3/2
0

+
2qU0

(q + 1)Kv0
, e2 =

∫

wq+2

v
q/2
0

, e3 = 3

∫

w2Φ+
U0

√
v0

K
(q + 2)

∫

wq+1Φ
∫

wq
, (3.17a)

d1 = τ̂λ

∫

wq

v
q/2
0

, d2 = τ̂λq

(

U0
√
v0

K

)
∫

wq−1Φ
∫

wq
. (3.17b)

Upon substituting (3.17) into (3.15), we obtain, after some algebra, that

−ψ(0)
v
3/2
0

= χ0j

(

3

∫

w2Φ
∫

w3

)

+ χ1j

(

(q + 2)

∫

wq+1Φ
∫

wq+2

)

+ χ2j

(

q

∫

wq−1Φ
∫

wq

)

, (3.18a)

where we have defined

χ0j ≡
1

1 + κq + v
3/2
0 Djα2/

∫

w3
, χ1j ≡ χ0jκq , χ2j ≡ −χ0j

(

τ̂λκq

τ̂λ+Djαqv
q/2
0 /

∫

wq

)

. (3.18b)

Here κq is defined by

κq ≡ U0
√
v0

K
∫

w3

∫

wq+2

∫

wq
=

2qU0

ω(q + 1)
, where ω ≡ S(γ − α)− 2qU0

q + 1
. (3.19)

In calculating κq above, we evaluated the integral ratio in (3.19) using (2.9) and then recalled (2.14) for v0. We observe

from (3.19) that as U0 tends to the maximum policing level U0,max for which a steady-state exists, then ω → 0+ and

correspondingly κq → ∞.

From (3.18b), we first derive the NLEP for the mode j = 0, which corresponds to synchronous perturbations of the

hotspot amplitudes. For this mode, we have D0 = 0 from (3.16). Therefore, from (3.18b), the coefficients reduce to

χ00 = 1/(1 + κq), χ10 = κq/(1 + κq), and χ20 = −κq/(1 + κq). With these values, we substitute (3.18a) into (3.5) to obtain

the following NLEP for the synchronous mode:
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Proposition 3.2 Let ǫ → 0, K ≥ 2, q > 1, and 0 < U0 < U0,max = (q + 1)S(γ − α)/(2q), and assume that D = ǫ2D =

O(1) and O(1) ≪ Dp ≪ O(ǫ−q−1). Then, the linear stability on an O(1) time-scale of a K-hotspot steady-state solution

for (1.4) to synchronous perturbations of the hotspot amplitudes is determined by the spectrum of the following NLEP for

Φ(y) ∈ L2(R):

L0Φ− w3

1 + κq

[

3

∫

w2Φ
∫

w3
+ κq(q + 2)

∫

wq+1Φ
∫

wq+2
− κqq

∫

wq−1Φ
∫

wq

]

= λΦ , (3.20)

where L0Φ ≡ Φ′′ − Φ+ 3w2Φ and κq is defined by κq = 2qU0/[ω(q + 1)], where ω ≡ S(γ − α)− 2qU0/(q + 1).

We remark that the NLEP (3.20) for the synchronous mode depends only on κq, and is independent of the criminal and

police diffusivities characterized by D and τ̂ , respectively.

Remark 3.3 In §3.2 we show that the NLEP in (3.20) also governs the linear stability of a one-hotspot steady-state

solution.

Next we consider the asynchronous modes where j = 1, . . . ,K − 1. For these modes, in order to obtain an NLEP with

as few bifurcation parameters as possible, we introduce in (3.18b) two additional rescaled parameters Du and τu defined by

Dj =

∫

w3

v
3/2
0 α2

Du , τ̂ = Djα
q v

q/2
0
∫

wq
τu . (3.21)

By using (3.21) in (3.18), an NLEP is obtained by substituting (3.18a) into (3.5). The result is summarized as follows.

Proposition 3.4 Let ǫ → 0, K ≥ 2, q > 1, 0 < U0 < U0,max = (q + 1)S(γ − α)/(2q), D = ǫ2D = O(1), and O(1) ≪
Dp ≪ O(ǫ−q−1). Then, the linear stability on an O(1) time-scale of a K-hotspot steady-state solution for (1.4) for the

asynchronous modes j = 1, . . . ,K − 1 is characterized by the spectrum of the following NLEP for Φ(y) ∈ L2(R):

L0Φ− χ0w
3

(

3

∫

w2Φ
∫

w3

)

− χ1w
3

(

(q + 2)

∫

wq+1Φ
∫

wq+2

)

− χ2w
3

(

q

∫

wq−1Φ
∫

wq

)

= λΦ , (3.22a)

where L0Φ ≡ Φ′′ − Φ+ 3w2Φ and w =
√
2 sech y is the homoclinic of (2.4). Here the coefficients of the multipliers are

χ0 =
1

1 + κq +Du
, χ1 = χ0κq , χ2 = −χ0κq

τuλ

1 + τuλ
; κq =

2q

q + 1

U0

ω
, ω ≡ S(γ − α)− 2q

q + 1
U0 . (3.22b)

For a given q > 1, the spectrum of the NLEP (3.22) depends on the three key parameters Du, τu, and κq. To relate

these parameters to the original criminal diffusivity D we use (3.21) and (3.16), and then (2.14) for v0 to get

D =

(

∫

w3

α2v
3/2
0

)

S

2K
[

1− cos
(

πj
K

)]Du =
ω3S

4K4π2α2
[

1− cos
(

πj
K

)]Du , j = 1, . . . ,K − 1 , (3.23)

where ω is defined in (3.22b). In addition, to map τu to the original police diffusivity Dp, we simply substitute (3.21) for τ̂

into (3.11) for Dp and use (3.16) for Dj and (2.14) for v0. In this way, for K ≥ 2, we obtain

Dp =
S
∫

wq

2Kαq
[

1− cos
(

πj
K

)]

(

ω

K
∫

w3

)q (
ǫ1−q

τu

)

, j = 1, . . . ,K − 1 . (3.24)

Remark 3.5 In view of (3.11) and (3.21) relating τ̂ and τu, the NLEP (3.22) holds not only when τu = O(1) but for the

entire range O(ǫ2) ≪ τu ≪ O(ǫ1−q). Since q > 1, this implies that we can consider the limiting cases τu → 0+ and τu → ∞
in (3.22), with the interpretation that τu ≫ O(ǫ2) and τu ≪ O(ǫ1−q), respectively.
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We refer to the NLEP (3.22) as a universal NLEP, since we need only determine, with respect to the bifurcation

parameters Du, τu and κq, when all discrete eigenvalues of (3.22) satisfy Re(λ) ≤ 0. The regions of linear stability with

respect to these key parameters can then be mapped to corresponding regions of stability with respect to the original

parameters D and Dp (for a given U0, S, γ, α, and q) by using (3.23) and (3.24). Correspondingly, we will also identify

parameter ranges for which the NLEP predicts instabilities owing to it having a discrete eigenvalue in Re(λ) > 0.

3.2 Derivation of the NLEP for a Single Hotspot: K = 1 case

To derive an NLEP for the case of a single hotspot, we simply impose Neumann boundary conditions directly at x = ±ℓ in
(3.7) and (3.9). This yields that ψ(x) = ψ(0) and η(x) = η(0) on |x| ≤ ℓ. From (3.9) and (3.7), we conclude that

η(0) = −d2
d1

ψ(0) = − 1

e1
(e2η(0) + e3) = − 1

e1

(

e3 −
e2d2
d1

)

.

By using the explicit expressions for the coefficients given in (3.17), we calculate ψ(0)/v
3/2
0 , which leads to the NLEP from

(3.5). In this way, we obtain that the NLEP for a single hotspot is also given by (3.20) of Proposition 3.2.

4 No Unstable Eigenvalues for the NLEP (3.20) for the Synchronous Mode

In this section, we study the NLEP (3.20) of Proposition 3.2, which applies to either amplitude perturbations of a one-

hotspot steady-state or synchronous perturbations of the amplitudes of a multi-hotspot steady-state.

4.1 Numerical Computations

We first show numerically that (3.20) has no unstable eigenvalues for any κq ≥ 0 and q > 1. To do so, we write (3.20) as

L0Φ− w3

(

a

∫

wq+1Φ+ b

∫

w2Φ+ c

∫

wq−1Φ

)

= λΦ , (4.1)

where the constants a, b, and c are defined by

a =
κq (q + 2)

(1 + κq)
∫

wq+2
, b =

3

(1 + κq)
∫

w3
, c = − qκq

(1 + κq)
∫

wq
. (4.2)

To numerically compute the discrete eigenvalues of (4.1) we convert this NLEP into a linear algebra problem using finite

differences. As we are interested only in even solutions, we consider (4.1) on [0,∞]. Since w(y) decays exponentially as

y → +∞, we truncate the positive half-line to the large interval x ∈ [0, L], where we chose L = 20 (decreasing L to

10 changes the results below by less than 0.01%). We discretize Φ(xj) ∼ Φj where xj = j∆x, for j = 0 . . . N − 1 and

∆x = L/(N −1), with N = 100. Increasing N to 200 changed the results below by less than 1%. We use standard centered

differences to approximate Φ′′ and the Trapezoid rule to approximate integrals in (4.1). In this way, we obtain the matrix

eigenvalue problem MΦ = λΦ, where Φ ≡ (Φ1, . . . ,ΦN )T . The eigenvalue of M with the largest real part then provides

an excellent approximation to the principal eigenvalue of (4.1).

In terms of κq this numerical approximation of the principal eigenvalue of (4.1) is plotted for q = 2, q = 3, and q = 4

in Fig. 2. The results shown in Fig. 2 suggests that (3.20) has no unstable eigenvalues for any κq ≥ 0 and q ≥ 1. Although

the NLEP (3.20) is only relevant to the stability of a hotspot steady-state only when q > 1, as a partial confirmation of the

numerical results in Fig. 2 we now show how to determine λ analytically from (4.1) when q = 1.
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Figure 2: Numerical approximation of the principal eigenvalue of (4.1) for q = 2, q = 3, and q = 4, with κ ∈ (0, 10). We observe
that λ < 0 in all cases, and that the principal eigenvalue is rather insensitive to changes in q as the curves are almost overlapping.

Let Φ and λ be any eigenpair of (4.1) for which
∫

w2Φ 6= 0 and
∫

Φ 6= 0. We multiply (4.1) by w2 and integrate. By

using the identity L0w
2 = 3w2, we obtain

(λ− 3)

∫

w2Φ = −(a+ b)

∫

w5

∫

w2Φ− c

∫

w5

∫

Φ . (4.3)

Next, we integrate (4.1) upon recalling L0Φ = Φ′′ − Φ+ 3w2Φ. This yields

(λ+ 1)

∫

Φ = 3

∫

w2Φ−
∫

w3

[

(a+ b)

∫

w2Φ+ c

∫

Φ

]

. (4.4)

By eliminating
∫

Φw2 and
∫

Φ from (4.3) and (4.4), we then obtain the following quadratic equation for λ:

c

∫

w5

(

3− (a+ b)

∫

w3

)

+

(

λ− 3 + (a+ b)

∫

w5

)(

c

∫

w3 + λ+ 1

)

= 0 . (4.5)

For q = 1, we obtain from (4.2) that a + b = 3/
∫

w3, and c = −κ1/
[

(1 + κ1)
∫

w
]

. Upon substituting these expressions

into (4.5), and using
∫

w3/
∫

w = 1 and
∫

w5/
∫

w3 = 3/2, we get
(

λ+
1

1 + κ1

)(

λ+
3

2

)

= 0 . (4.6)

Since κ1 ≥ 0, we conclude that the principal eigenvalue of (4.1) when q = 1 is

λ = − 1

1 + κ1
. (4.7)

Setting κ1 = 1 gives λ = −1/2, which agrees with the numerical result arising from a discretization of (4.1) (not shown).

4.2 A Hybrid Analytical-Numerical Approach

We now give an alternative approach that provides a sufficient condition to ensure that the NLEP (3.20) has no unstable

eigenvalues. This sufficient condition is then investigated numerically. For this hybrid analytical-numerical approach, we

write the NLEP (3.20) in the alternative form

L0Φ− 2w3

∫

f(w)Φ
∫

w3
= λΦ , (4.8a)

where L0Φ ≡ Φ′′ − Φ+ 3w2Φ, and f(w) is defined by

f(w) ≡ 3

2(1 + κq)
w2 +

(q + 2)κq
2(1 + κq)

wq+1

∫

w3

∫

wq+2
− qκq

2(1 + κq)
wq−1

∫

w3

∫

wq
. (4.8b)
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When κq = 0, where f(w) = 3w2/2, the NLEP (4.8a) has no unstable eigenvalues by Theorem 1 of [26] (see also Lemma

3.2 of [11]).

We multiply (4.8a) by the conjugate Φ̄ and integrate over the real line. Upon integrating by parts and taking the real

part we get

Iq[ΦR] + Iq[ΦI ] = −λR
∫

|Φ|2 , (4.9)

where Φ = ΦR + iΦI and λ = λR + iλI . Here the quadratic form is defined by

Iq[Φ] ≡
∫

(

(Φ′)
2
+Φ2 − 3w2Φ2

)

+ 2

∫

w3Φ
∫

f(w)Φ
∫

w3
. (4.10)

To show that λR < 0, so that there are no unstable eigenvalues of the NLEP (4.8), it is sufficient to show that the quadratic

form Iq[Φ] is positive definite. In Appendix C we establish the following lemma for I0[Φ].

Lemma 4.1 We have I0[Φ] > 0 ∀Φ 6≡ 0.

Since I0[Φ] > 0, our strategy is to continue in κq > 0 until we reach a point for which Iq[Φ] ceases to be positive definite.

To analyze this transition, we observe that Iq[Φ] =
∫

−ΦLΦ, where LΦ is the linear operator

LΦ ≡ L0Φ−
∫

f(w)Φ
∫

w3
w3 −

∫

w3Φ
∫

w3
f(w) . (4.11)

Since L is self-adjoint, it follows that Iq[Φ] is positive definite if and only if L has only negative eigenvalues. This motivates

the consideration of the following zero-eigenvalue problem for L:

LΦ = 0 , Φ ∈ L2(R) , Φ 6≡ 0 . (4.12)

To analyze (4.12) we use (4.11) to get

Φ =

∫

f(w)Φ
∫

w3
L−1
0 w3 +

∫

w3Φ
∫

w3
L−1
0 f(w) . (4.13)

Define c1 =
∫

f(w)Φ and c2 =
∫

w3Φ. By multiplying (4.13) by f(w) and then by w3 we get the linear system

c1 = c1

∫

f(w)L−1
0 w3

∫

w3
+ c2

∫

f(w)L−1
0 f(w)

∫

w3
, c2 = c1

∫

w3L−1
0 w3

∫

w3
+ c2

∫

w3L−1
0 f(w)
∫

w3
. (4.14)

Upon using L−1
0 w3 = w/2, and integrating by parts, we obtain that (4.14) has a nontrivial solution iff g(κq) = 0, where

g(κq) ≡ det





∫
wf(w)

2
∫
w3 − 1

∫
f(w)L−1

0
f(w)∫

w3
∫
w4

2
∫
w3

∫
wf(w)

2
∫
w3 − 1



 =

(
∫

wf(w)

2
∫

w3
− 1

)2

−
∫

w4

2
(∫

w3
)2

∫

f(w)L−1
0 f(w) . (4.15)

When κq = 0, we have f(w) = 3w2/2. Upon using L−1
0 w2 = w2/3,

∫

w4 = 16/3, and
∫

w3 =
√
2π, we calculate

g(0) =
1

16
− 16

3π2
< 0 . (4.16)

Thus, when κq = 0, the only solution to (4.14) is c1 = c2 = 0, and so (4.11) becomes L0Φ = 0, which has no nontrivial even

solution. By increasing κq, we conclude that a sufficient condition for guaranteeing no unstable eigenvalues of the NLEP

(4.8) is that on the range 0 < κq < κq0 we have g(κq) < 0. Here κq0 is defined by

κq0 = sup{κq | g(t) < 0 , t ∈ (0, κq)} . (4.17)
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Figure 3: Plot of numerically computed g(κq) versus κq, as defined in (4.15), for q = 2, 3, 4. For q = 2, g(κ2) is given analytically
in (4.22). On the range of κq for which g(κq) < 0, the NLEP (4.8) has no unstable eigenvalues.

In Fig. 3 we plot g(κq) versus κq for q = 2, 3, 4. These results were obtained by numerically evaluating the integrals in

(4.15), after computing L−1
0 f(w) from a BVP solver. On the range for which g(κq) < 0, we conclude that Iq[Φ] is positive

definite so that the NLEP (4.8) has no unstable eigenvalues.

As a partial confirmation of the results in Fig. 3 we now show how to calculate g(κq) analytically when q = 2. When

q = 2, we have that ψ ≡ L−1
0 f satisfies

L0ψ = f , f = e0w
2 + e1w

3 + e2w , (4.18a)

where e0, e1, and e2, are defined by

e0 =
3

2(1 + κ2)
, e1 =

2κ2
1 + κ2

∫

w3

∫

w4
, e2 = − κ2

1 + κ2

∫

w3

∫

w2
. (4.18b)

By using (4.18a) for f(w), we calculate
∫

wf(w)

2
∫

w3
− 1 =

3

4(1 + κ2)
+

κ2
2(1 + κ2)

− 1 = − (1 + 2κ2)

4(1 + κ2)
. (4.19)

Next, upon using L0w
2 = 3w2, L0w = 2w3 and L0(w + yw′) = 2w, we calculate from (4.18a) that

ψ ≡ L−1
0 f =

e0
3
w2 +

e1
2
w +

e2
2
(w + yw′) . (4.20)

Upon using (4.20) and (4.18b), we obtain after some rather lengthy, but straightforward, algebra that
∫

w4

2
(∫

w3
)2

∫

fL−1
0 f =

κ22
2(1 + κ2)2

− 1

4(1 + κ2)2
(

κ22 + 2κ2
)

∫

w4

∫

w2
+

3

8(1 + κ2)2

(
∫

w4

∫

w3

)2

+
κ2

(1 + κ2)2

[

3

4
+

∫

w5

2
∫

w3

]

. (4.21)

We then simplify the expression in (4.21) by using
∫

w4 = 16/3,
∫

w2 = 4,
∫

w3 =
√
2π and

∫

w5 = 3
√
2π/2. In this way,

and by combining the resulting expression with (4.19), we obtain from (4.15) that

g(κ2) =
1

16(1 + κ2)2

[

(2κ2 + 1)2 − 8

3

(

κ22 + 5κ2 +
32

π2

)]

. (4.22)

Recalling the definition of the threshold κ20 in (4.17), a simple calculation using (4.22) yields κ20 = 1
2

[

7 +
√

46 + 256/π2
]

≈
7.74. The formula for g(κ2) in (4.22), and the threshold κ20, agrees with the numerical results shown in Fig. 3.

In summary, we have shown that whenever g(κq) < 0 in (4.15), the NLEP (4.8) has no unstable eigenvalues. This

sufficient condition for stability was implemented numerically for q 6= 2, and analytically for q = 2, which showed that the

NLEP has no unstable eigenvalues for κq below some threshold. On the other hand, the numerical results in Fig. 2 obtained

from a finite-difference approximation suggested that the NLEP (4.8) has no unstable eigenvalues for all κq > 0.
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4.2.1 No Unstable Eigenvalues for q = 2 and any κ2

In this subsection we provide a different approach to prove that for q = 2 that there are no instabilities associated with

synchronous perturbations of the hotspot amplitudes for any κ2 > 0. For q = 2, this NLEP has the general form

L0Φ− w3

[

a

∫

w3Φ+ b

∫

w2Φ+ c

∫

wΦ

]

= λΦ , Φ ∈ L2(R) ; L0Φ ≡ Φ′′ − Φ+ 3w2Φ . (4.23)

We will convert this NLEP into one with a single nonlocal term proportional to
∫

wΦ by using the two identities (cf. [22]):

L0w = 2w3 , L0(w
2) = 3(w2) . (4.24)

Let Φ and λ be any eigenpair of (4.23). We first multiply (4.23) by w, and then use the first of (4.24), together with Green’s

identity, to obtain
∫

wL0Φ =

∫

ΦL0w = 2

∫

w3Φ = a

∫

w4

∫

w3Φ+ b

∫

w4

∫

w2Φ+ c

∫

w4

∫

wΦ+ λ

∫

wΦ . (4.25a)

Next, we multiply (4.23) by w2, and then use the second of (4.24), together with Green’s identity, to obtain

∫

w2L0Φ =

∫

ΦL0w
2 = 3

∫

w2Φ = a

∫

w5

∫

w3Φ+ b

∫

w5

∫

w2Φ+ c

∫

w5

∫

wΦ+ λ

∫

w2Φ . (4.25b)

Equations (4.25a) and (4.25b) provide a matrix system for
∫

w2Φ and
∫

w3Φ of the form

(

3− λ− b
∫

w5 −a
∫

w5

b
∫

w4 a
∫

w4 − 2

)(∫

w2Φ
∫

w3Φ

)

=

(

c
∫

w5

−
(

λ+ c
∫

w4
)

)∫

wΦ . (4.26)

By inverting the matrix in (4.26), we obtain that

∫

w2Φ =
−(2c+ aλ)

∫

w5

(3− λ)
(

a
∫

w4 − 2
)

+ 2b
∫

w5

∫

wΦ ,

∫

w3Φ =
−
(

λ+ c
∫

w4
)

(3− λ) + bλ
∫

w5

(3− λ)
(

a
∫

w4 − 2
)

+ 2b
∫

w5

∫

wΦ , (4.27)

provided that

(3− λ)

(

a

∫

w4 − 2

)

+ 2b

∫

w5 6= 0 . (4.28)

By substituting (4.27) into (4.23), and using
∫

w2 = 4, we obtain after some algebra the following NLEP with a single

nonlocal term:

L0Φ− 2w3γ

∫

wΦ
∫

w2
= λΦ , where γ =

2(3− λ)(aλ+ 2c)

(λ− 3)
(

a
∫

w4 − 2
)

− 2b
∫

w5
. (4.29)

Conversely, suppose that Φ and λ is any eigenpair of (4.29). Upon multiplying (4.29) by w, and then by w2, and using

(4.24), we obtain from (4.29) that

(3− λ)

∫

w2Φ = 2γ

∫

w5

∫

w2

∫

wΦ , 2

∫

w3Φ =

(

2γ

∫

w4

∫

w2
+ λ

)∫

wΦ . (4.30)

Next, by adding and subtracting terms in (4.29) we get

L0Φ− w3

[

a

∫

w3Φ+ b

∫

w2Φ+ c

∫

wΦ+ ξ

]

= λΦ , ξ ≡
(

2γ
∫

w2
− c

)∫

wΦ− b

∫

w2Φ− a

∫

w3Φ , (4.31)

which reduces to (4.23) only when ξ = 0. We solve (4.30) for
∫

w3Φ, and for
∫

w2Φ which requires λ 6= 3. Then, upon

using (4.29) for γ, we can readily verify from (4.31) that ξ = 0. Therefore, any eigenpair of (4.29) with λ 6= 3 is also an

eigenpair of (4.23).
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For q = 2, the coefficients a, b, and c in (4.2) associated with synchronous perturbations of the hotspot amplitudes are

a =
4κ

(1 + κ)
∫

w4
, b =

3

(1 + κ)
∫

w3
, c = − 2κ

(1 + κ)
∫

w2
, (4.32)

where we label κ ≡ κ2. By combining (4.32) and (4.29), and using
∫

w4/
∫

w2 = 4/3 and
∫

w5/
∫

w3 = 3/2, we get

γ =
κ(3− λ)(3λ− 4)

2 [2(λ− 3)(κ− 1)− 9]
, (4.33)

while the condition (4.28) becomes (λ− 3)(κ− 1) 6= 9/2.

To prove that (4.29), with γ as in (4.33), has no unstable eigenvalues we will use a key inequality that can readily be

derived by proceeding as in (2.22) of [27] (see also equation (2.27) in §2 of [25]). Suppose that (4.29) has an eigenvalue with

Re(λ) ≥ 0. Then, the following inequality must hold:

T ≡ 2

(
∫

w4

∫

w2

)

|γ − 1|2 +Re
[

λ̄(γ − 1)
]

≤ 0 , (4.34)

where the bars denote modulus. From (4.33), we calculate that

γ − 1 =
−3λ2κ+ λ(9κ+ 4) + 6

4(κ− 1)λ− 12κ− 6
. (4.35)

We will now use (4.34), with (4.35), to show that the NLEP (4.29) cannot have any purely imaginary eigenvalues of the

form λ = iω. For λ = iω, we write γ − 1 in (4.35) as

γ − 1 =
z1
z2
, z1 = 6 + 3ω2κ+ iω(9κ+ 4) , z2 = −6(1 + 2κ) + 4iω(κ− 1) . (4.36)

Using
∫

w4/
∫

w2 = 4/3, we calculate from (4.34) that

T =
8

3

|z1|2
|z2|2

+Re

(

−iω z1
z2

)

=
8

3

|z1|2
|z2|2

− Re

(

iωz1z̄2
|z2|2

)

=
1

3|z2|2
[

8|z1|2 + 3ωIm (z1z̄2)
]

. (4.37)

Upon substituting (4.36) into (4.37), we obtain after some rather lengthy, but straightforward, algebra that

T =
12

36(1 + 2κ)2 + 16ω2(κ− 1)2

[

κ(κ+ 1)ω4 +
ω2

18

(

162κ2 + 243κ+ 64
)

+ 8

]

. (4.38)

This shows that T > 0 holds ∀κ > 0 and ω. From our key inequality (4.34), it follows that the NLEP (4.29) does not

undergo a Hopf bifurcation for any κ ≥ 0.

To conclude the analysis of linear stability we use a continuation argument in κ. With a, b, and c as given in (4.32), the

NLEP (4.23) has no unstable eigenvalues when κ = 0 by Theorem 1 of [26] (see also Lemma 3.2 of [11]). By our established

correspondence between the two NLEPs (4.23) and (4.29), this linear stability result can also be seen from (4.29), as (4.29)

has no unstable eigenvalues with λ 6= 3 when κ = 0. This latter result is immediate since when κ = 0, we have γ = 0 in

(4.29). Therefore, (4.29) reduces to L0Φ = λΦ, which has no unstable eigenvalues with λ 6= 3 (cf. [7]).

Next, if we continue in κ, we claim that all eigenvalues of (4.23) must remain in the stable left half-plane Re(λ) ≤ 0.

We establish this by contradiction. Suppose that at some point κ = κ0 > 0, a branch λ = λ(κ) of eigenvalues crosses the

imaginary axis, i.e. it satisfies Re(λ) = 0 and d
dκRe(λ) > 0 for some κ = κ0. Since λ(κ0) is pure imaginary, it follows that

(λ − 3)(κ − 1) 6= 9/2, and so the restriction (4.28) holds. Therefore, this eigenvalue must satisfy the NLEP (4.29) with

only one nonlocal term. Our proof above that the NLEP (4.29) has no purely imaginary eigenvalue provides the required

contradiction.

The key qualitative conclusion from this q = 2 “cops-on-the-dots” analysis is that for O(1) ≪ Dp ≪ O(ǫ−3) (see (3.8)),

there can be no synchronous linear instabilities of the amplitudes of a multi-hotspot steady-state for any policing level U0

below the threshold U0,max for which steady-state hotspot solutions exist.
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5 Analysis of the NLEP: Competition Instability

In this section we will analyze zero-eigenvalue crossings for the NLEP (3.22), corresponding to asynchronous perturbations

of the hotspot amplitudes. This zero-eigenvalue crossing will yield K − 1 critical values of the criminal diffusivity D. We

will determine the behavior of this stability threshold in terms of the police focus parameter q and policing level U0.

To determine the zero-eigenvalue crossing, we observe from (3.22) that when λ = 0, we have that L0Φ is proportional

to w3. As a result, by recalling the identity L0w = 2w3, and noting that χ2 = 0 when λ = 0, it follows that (3.22) has a

zero eigenvalue, with corresponding eigenfunction Φ = w, when

2 = 3χ0 + (q + 2)χ1 . (5.1)

By using (3.22b) for χ0 and χ1, we solve (5.1) for Du to conclude that the NLEP (3.22) has a zero eigenvalue at the critical

value of Du given by

Du =
1

2
(1 + qκq) , where κq =

2q

q + 1

U0

ω
. (5.2)

Then, by using (3.23), it follows that a zero-eigenvalue crossing occurs at D = Dj , for j = 1, . . . ,K − 1, given by

Dj =
S

8K4π2α2
[

1− cos
(

πj
K

)]

[

ω3 +
2q2U0

q + 1
ω2

]

, j = 1, . . . ,K − 1 . (5.3)

The smallest such threshold Dc = minj Dj on j = 1, . . . ,K − 1, referred to as the competition stability threshold, occurs

when j = K − 1. We write Dc as

Dc ≡ DK−1 =
S

8K4π2α2 [1 + cos (π/K)]
g(U0; q) , (5.4a)

where g(U0; q) is defined on the range 0 ≤ U0 < U0,max = S(γ − α)(q + 1)/(2q) by

g(U0; q) ≡ ω3 +

(

2q2

q + 1
U0

)

ω2 = (1− q)ω3 + qS(γ − α)ω2 , where ω = S(γ − α)− 2qU0/(q + 1) . (5.4b)

For a general value of q > 1, owing to the presence of the three distinct nonlocal terms in (3.22), it is analytically

intractable to perform a full linear stability analysis of hotspot steady-states on either side of the zero-eigenvalue crossing

value D = Dc. For the specific q = 2 “cops-on-the-dots” case, where some key identities can be used to reduce (3.22) to

an NLEP with only one nonlocal term, this linear stability problem is studied in §6 by using a hybrid analytical-numerical

approach. However, for a general q > 1, in §5.1 we show analytically that the NLEP (3.22) always has a unique unstable

eigenvalue in Re(λ) > 0 whenever D > Dc and τu → 0+, and has no unstable eigenvalue when D < Dc. In view of (3.24)

relating Dp to τu and the range (3.8) of Dp, this partial result proves that when O(ǫ1−q) ≪ Dp ≪ O(ǫ−1−q), the hotspot

steady-state constructed for q > 1 is always unstable when D exceeds Dc.

In the remainder of this sub-section, we examine how the competition stability threshold Dc depends on the degree q of

patrol focus and the level U0 of police deployment. From (2.12), the maximum Amax of the steady-state attractiveness field

is Amax ∼ ǫ−1ω/(Kπ), which decreases as either ω decreases or as K increases. From Corollary 2.2, we observe that the

criminal density ρ at the hotspot locations is ρmax = [w(0)]
2
= 2, which is independent of q and U0, with ρ = O(ǫ2) away

from the hotspot regions. As a result, the total crime is reduced primarily by decreasing the number of stable steady-state

hotspots on the given domain. As such, we seek to tune the police parameters q and U0 so that the range of diffusivity D
for which a K-hotspot steady-state is unstable when τu → 0+ (see §5.1 below) is as large as possible. This corresponds to

minimizing the competition stability threshold Dc in (5.4), which is determined in terms of g(U0; q) in (5.4b).
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We first fix q > 1, and study how g(U0; q) depends on U0. On 0 < U0 < U0,max ≡ S(γ − α)(q + 1)/(2q), we find that

dg

dU0
= −ω 2q

q + 1

[

6q(q − 1)

q + 1
U0 + (3− q)S(γ − α)

]

. (5.5)

This shows that dg/dU0 < 0 on 0 < U0 < U0,max whenever 1 < q < 3. Thus, when the patrol is not too focused, i.e. when

1 < q < 3, increasing the overall policing level leads to a larger range of D where the hotspot steady-state is unstable when

τu → 0+. For q > 3, (5.5) also yields that

dg

dU0
> 0 on 0 < U0 < S(γ − α)

(

q − 3

3(q − 1)

)

< U0,max ;
dg

dU0
< 0 on S(γ − α)

(

q − 3

3(q − 1)

)

< U0 < U0,max . (5.6)

Therefore, with an overly focused police patrol (i.e. q > 3), the hotspot steady-state is destabilized only by having a

sufficiently large policing level. This is illustrated in Fig. 4 where we plot g(U0; q) versus U0 for several values of q.
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Figure 4: Competition stability threshold nonlinearity g(U0; q), as defined in (5.4b), versus U0 on the range 0 < U0 < U0,max ≡

S(γ − α)(q + 1)/(2q) for q = 1.5, 2.0, 2.5, 3.0, 3.5, when S = 6, γ = 2, and α = 1. Smaller values of q correspond to larger values of
U0,max, as represented by the intercept on the horizontal U0 axis.. Notice that g is not monotone in U0 when q > 3. From (5.4), the
competition threshold Dc is a positive scaling of g(U0; q).

Next, we fix U0 in 0 < U0 < U0,max and determine how g(U0; q) depends on q for q > 1. We readily calculate that

dg

dq
=

2ωU0

(q + 1)3
[

ω(q + 3)(q2 − 1)− 4q2U0

]

, where ω ≡ S(γ − α)− 2qU0/(q + 1) . (5.7)

This shows that dg/dq < 0 if 0 < ω < 4q2U0/[(q + 3)(q2 − 1)]. By using (5.7) for ω in terms of U0, this inequality yields

dg

dq
< 0 when U0,max

[

1 +
2q

(q + 3)(q − 1)

]

−1

< U0 < U0,max . (5.8)

The qualitative interpretation of this result is that if the policing level is sufficiently close to its maximum value U0,max,

an increase in the patrol focus parameter q yields a larger range in D where the hotspot steady-state is unstable when

τu → 0+, or equivalently when O(ǫ1−q) ≪ Dp ≪ O(ǫ−1−q).

5.1 Large Police Diffusivity O(ǫ1−q) ≪ Dp ≪ O(ǫ−1−q): An Instability Result for D > Dc

Letting τu → 0+, corresponding to the parameter range O(ǫ1−q) ≪ Dp ≪ O(ǫ−1−q), we now prove that the NLEP (3.22),

which applies to asynchronous perturbations of the amplitudes of the steady-state hotspot pattern, has an unstable positive

real eigenvalue whenever Du >
1
2 (1 + qκq). This will establish that a multi-hotspot steady-state is unstable for this range

18



of Dp whenever D exceeds the competition stability threshold Dc defined in (5.4). When τu → 0+, we have χ2 = 0 and so

(3.22) reduces to an NLEP with two nonlocal terms

L0Φ− χ0w
3

(

3

∫

w2Φ
∫

w3

)

− χ1w
3

(

(q + 2)

∫

wq+1Φ
∫

wq+2

)

= λΦ , where χ0 =
1

(1 + κq +Du)
, χ1 = χ0κq . (5.9)

To analyze (5.9), we first reformulate it into an NLEP with only one nonlocal term by using the key identity L0(w
2) =

3(w2) (cf. [22]). Upon multiplying (5.9) by w2, and then using Green’s identity, we readily calculate that

∫

w2Φ

(

3− 3χ0

∫

w5

∫

w3
− λ

)

= χ1(q + 2)

(
∫

w5

∫

wq+2

)∫

wq+1Φ . (5.10)

Since
∫

w5/
∫

w3 = 3/2 from (2.5), (5.10) yields that

∫

w2Φ =

(

χ1(q + 2)
∫

w5

3− 9χ0

2 − λ

)

∫

wq+1Φ
∫

wq+2
, (5.11)

provided that λ 6= 3 − 9χ0/2. Then, by substituting (5.11) back into (5.9), and using χ1 = χ0κq, we obtain the following

equivalent NLEP with only one nonlocal term (provided that λ 6= 3− 9χ0/2):

L0Φ− χc(λ)w
3

∫

wq+1Φ
∫

wq+2
= λΦ , where χc(λ) ≡ χ0κq(q + 2)

(

3− λ

3− 9χ0

2 − λ

)

. (5.12)

To interpret the apparent restriction that λ 6= 3 − 9χ0/2, we observe that since χ1 = χ0κq is proportional to U0 (see

(3.22b) for the definition of κq), it follows from (5.10) that for any eigenpair for which
∫

wq+1Φ 6= 0 for any q > 1, we must

have λ = 3− 9χ0,j/2 if and only if U0 = 0. For the case of no police, this recovers the result in equation (3.17) of [11] for

the unique discrete eigenvalue of the linearization of a K-hotspot steady-state of the basic two-component crime model.

We now show that the reformulated NLEP (5.12) has an unstable real eigenvalue whenever Du >
1
2 (1 + qκq). To do

so, we convert (5.12) into a root-finding problem. We write Φ = χc (L0 − λ)
−1
w3
∫

wq+1Φ/
∫

wq+2, multiply both sides

by wq+1, and then integrate over the real line. In this way, and by using (5.9) for χ0, we readily find that any discrete

eigenvalue of (5.12) in Re(λ) > 0 must be a root of ζ(λ) = 0 defined by

ζ(λ) ≡ Cc(λ)−F(λ) , (5.13a)

where

Cc(λ) ≡
1

χc(λ)
=

(1 + κq +Du)

κq(q + 2)
+

9

2κq(q + 2)(λ− 3)
, and F(λ) ≡

∫

wq+1 (L0 − λ)
−1
w3

∫

wq+2
. (5.13b)

When Du >
1
2 (1 + qκq), we claim that ζ(λ) = 0 has a real root in 0 < λ < 3, which yields an unstable eigenvalue for

the NLEP (5.12). To show this, we use L0w = 2w3 to calculate F(0) =
∫

wq+1L−1
0 (w3)/

∫

wq+2 = 1/2, and observe that

F(λ) → +∞ as λ→ ν−0 , where ν0 = 3 is the unique positive eigenvalue of L0 (cf. [7], [22]). Moreover, we observe that

Cc(λ) → −∞ as λ→ 3− , and Cc(0) =
(κq +Du − 1/2)

κq(q + 2)
,

which yields that Cc(0) > 1/2 when Du > 1
2 (1 + qκq). With these properties of Cc(λ) and F(λ), it follows from the

intermediate value theorem that ζ(λ) has a root at some value of λ on 0 < λ < 3.

This simple result proves that a multi-hotspot steady-state is unstable for τu → 0+, or equivalently for Dp on the range

O(ǫ1−q) ≪ Dp ≪ O(ǫ−1−q) whenever D exceeds the competition stability threshold Dc in (5.4).
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Next, by using a winding number criterion, we now obtain a more precise result for the spectrum of the NLEP (5.12),

which pertains to the special case τu → 0+. We do so by determining the number N of zeroes of ζ(λ) in Re(λ) > 0, which

corresponds to the number (counting multiplicity) of unstable eigenvalues of the NLEP (5.12).

To determine N , we calculate the winding of ζ(λ) over the Nyquist contour Γ traversed in the counterclockwise direction

that consists of the positive and negative imaginary axis, defined by Γ+
I (0 < Im(λ) < iR, Re(λ) = 0) and Γ−

I (−iR <

Im(λ) < 0, Re(λ) = 0) respectively, together with the semi-circle CR defined by |λ| = R > 0 for | arg(λ)| < π/2. From

(5.13b), Cc(λ) is a meromorphic function with a simple pole at λ = 3, whereas F(λ) is analytic in Re(λ) ≥ 0 except at the

simple pole at λ = 3. The simple poles of C(λ) and F(λ) do not cancel as λ→ 3−, since when restricted to the real line we

have F(λ) → +∞ while C(λ) → −∞ as λ → 3−. Therefore, ζ(λ) = C(λ) − F(λ) has a simple pole at λ = 3. Then, since

ζ(λ) is bounded on CR as R→ ∞, and ζ(λ) = ζ(λ), we let R→ ∞ and obtain from the argument principle that

N = 1 +
1

π
[arg ζ]Γ+

I
. (5.14)

Here [arg ζ]Γ+

I
denotes the change in the argument of ζ as λ = iλI is traversed down the positive imaginary axis 0 < λI <∞.

To calculate this argument change, we let λ = iλI and decompose ζ(iλI) = ζR(λI) + iζI(λI) and F(iλI) = FR(λI) +

iFI(λI), to obtain from (5.13) that

Im [ζ(iλI)] ≡ ζI(λI) = − bλI
9 + λ2I

−FI(λI) , (5.15a)

where b ≡ 9 [2κq(q + 2)]
−1

and FI(λI) ≡ Im [F(iλI)] is given by

FI(λI) =
λI
∫

wq+1
[

L2
0 + λ2I

]

−1
w3

∫

wq+2
. (5.15b)

Proposition 4.3 of [22] established that FI(λI) > 0 on λI > 0 when q = 2. Based on the numerical evidence shown in Fig. 5,

for both integer and non-integer values of q, we make the following conjecture:

0 5 10
0

0.1

0.2

0.3

Figure 5: Plot of FI(λI) versus λI , defined in (5.15b), for q = 1.5, 2.0, 2.5, 3.0 on the range 0 < λI < 12. This function is rather
insensitive to changes in q.

Conjecture 5.1 Consider FI(λI) ≡ Im [F(iλI)] as defined by (5.15b). Then, FI(λI) > 0 on λI > 0 holds for all q > 1.

Assuming that this conjecture holds, we obtain the key inequality from (5.15a) that Im [ζ(iλI)] < 0 for all λI > 0. Next,

we observe that as λI → ∞ we have ζ(iλI) → (1 + κq +Du) /[κq(q + 2)] > 0, and that ζ(0) = Cc(0)− 1/2 satisfies

ζ(0) > 0 if Du >
1

2
(1 + qκq) ; ζ(0) < 0 if Du <

1

2
(1 + qκq) . (5.16)

We readily conclude from these results that [arg ζ]Γ+

I
= 0 when Du >

1
2 (1 + qκq) and [arg ζ]Γ+

I
= −π when Du <

1
2 (1 + qκq).

From (5.14) it follows that N = 1 when Du >
1
2 (1 + qκq) and that N = 0 otherwise. We summarize our result as follows:
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Proposition 5.2 Let τu → 0+, which corresponds to the range O(ǫ1−q) ≪ Dp ≪ O(ǫ−1−q) of police diffusivity. Assume

that Conjecture 5.1 holds for q > 1. Then, under the conditions of Proposition 3.4, a multi-hotspot steady-state solution

is unstable to asynchronous perturbations of the hotspot amplitudes for an arbitrary q > 1 when D > Dc, and is linearly

stable to such perturbations whenever D < Dc. The instability when D > Dc is due to a unique unstable eigenvalue in the

spectrum of the NLEP (5.12). Here Dc is the competition threshold defined in (5.4).

This result provides a necessary and sufficient condition for the linear stability of the multi-hotspot steady-state for an

arbitrary q > 1. In the next section, we determine more refined stability results for the special case q = 2 corresponding to

“cops-on-the-dots”.

6 Asynchronous Perturbations: Linear Stability Analysis for q = 2

In this section we analyze the spectrum of the NLEP (3.22), relevant to asynchronous perturbations of the hotspot ampli-

tudes, for the specific case of cops-on-the-dots where q = 2. For q = 2, in §6.1 we reformulate the NLEP (3.22) with three

nonlocal terms into an NLEP with a single nonlocal term proportional to
∫

w3Φ, which is then more readily analyzed. We

will show that a police diffusivity on the range Dp = O(ǫ−1) leads to the possibility of oscillatory instabilities of the hotspot

amplitudes when D is below the competition stability threshold.

6.1 Reformulation as an NLEP with One Nonlocal Term

For q = 2, the NLEP (3.22) for Φ ∈ L2(R) has the form given in (4.23), where a, b, and c are now defined by

a ≡ 4χ1
∫

w4
, b ≡ 3χ0

∫

w3
, c ≡ 2χ2

∫

w2
, (6.1)

in terms of χ0, χ1, and χ2 as given in (3.22b).

We will convert the NLEP (4.23) with three nonlocal terms into an NLEP with a single nonlocal term proportional

to
∫

w3Φ, instead of proportional to
∫

wΦ as in (4.29) of §4.2.1. This alternative reduction is needed for the study of

asynchronous perturbations since from (3.22b) we have that χ2, and thus c, vanishes linearly in λ as λ → 0. With such a

vanishing c, we would have that γ−1 in (4.29) is not analytic at λ = 0, which makes (4.29) problematic for analysis. As

such, we require a different reformulation.

Let Φ and λ be any eigenpair of (4.23) with a, b, and c as defined in (6.1), in which limλ→0 λ
−1c = c0 where c0 is finite

and non-zero. Then, proceeding as in the derivation of (4.25a) and (4.25b) we obtain the matrix system

(

b
∫

w4 c
∫

w4 + λ
3− λ− b

∫

w5 −c
∫

w5

)(∫

w2Φ
∫

wΦ

)

=

(

2− a
∫

w4

a
∫

w5

)∫

w3Φ . (6.2)

By inverting the matrix in (6.2), we calculate that

∫

w2Φ =
−(2c+ aλ)

∫

w5

bλ
∫

w5 −
(

c
∫

w4 + λ
)

(3− λ)

∫

w3Φ ,

∫

wΦ =
(λ− 3)(2− a

∫

w4) + 2b
∫

w5

bλ
∫

w5 −
(

c
∫

w4 + λ
)

(3− λ)

∫

w3Φ , (6.3)

provided that

bλ

∫

w5 −
(

c

∫

w4 + λ

)

(3− λ) 6= 0 . (6.4)

By substituting (6.3) into (4.23), we obtain after some algebra, the following NLEP with a single nonlocal term:

L0Φ− χw3

∫

w3Φ
∫

w4
= λΦ , where χ =

(λ− 3)(2c+ aλ)
∫

w4

bλ
∫

w5 −
(

c
∫

w4 + λ
)

(3− λ)
. (6.5)
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Remark 6.1 The multiplier χ in the NLEP (6.5) is well-defined at λ = 0 when limλ→0 c/λ = c0 with c0 finite and non-zero.

This case is relevant to the study of the linear stability of asynchronous perturbations of the hotspot amplitudes.

We have so far established that, provided the condition (6.4) holds, an eigenpair of (4.23) is also an eigenpair of (6.5).

To complete the equivalence between (4.23) and (6.5), we now suppose that Φ, λ is an eigenpair of (6.5). Upon multiplying

(6.5) by w, and then by w2, we use the identities (4.24) to readily derive that

(2− χ)

∫

w3Φ = λ

∫

wΦ , (3− λ)

∫

w2Φ = χ

∫

w5

∫

w4

∫

w3Φ . (6.6)

We then add and subtract in (6.5) to get

L0Φ− w3

[

a

∫

w3Φ+ b

∫

w2Φ+ c

∫

wΦ+ ξ

]

= λΦ , ξ ≡
(

χ
∫

w4
− a

)∫

w3Φ− b

∫

w2Φ− c

∫

wΦ , (6.7)

which reduces to (4.23) only when ξ = 0. We calculate using (6.6) that for λ 6= 3, and limλ→0 c/λ finite and non-zero, that

ξ =

(

χ
∫

w4
− a− bχ

3− λ

∫

w5

∫

w4
− c(2− χ)

λ

)∫

w3Φ . (6.8)

Finally, by using (6.5) for χ in (6.8), we get ξ = 0, so that (6.7) reduces to (4.23).

The relationship between the spectra of (4.23) and of (6.5) is summarized as follows:

Lemma 6.2 Let Φ, λ, be an eigenpair of (4.23) where we assume that limλ→0 c/λ is finite and non-zero. Moreover, suppose

that (6.4) holds. Then, Φ, λ is an eigenpair of (6.5). Alternatively, if Φ, λ is an eigenpair of (6.5) with λ 6= 3, then if

limλ→0 c/λ is finite and non-zero, this eigenpair is also an eigenpair of (4.23).

Next, by using (6.1) for c, and noting from the expression for χ2 in (3.22b) that χ2 = 0 when λ = 0, we can eliminate

the removable singularity at λ = 0 for χ, defined in (6.5), by rewriting

χ =
(λ− 3)(2c0 + a)

∫

w4

b
∫

w5 −
(

c0
∫

w4 + 1
)

(3− λ)
, where c0 ≡ c

λ
=

2χ̂2
∫

w2
, χ̂2 ≡ χ2

λ
= − χ0τuκ2

τuλ+ 1
. (6.9)

From (6.1), and by setting q = 2 in (3.22b), we obtain that the terms a and b in (6.9) are given explicitly by

a ≡ 4χ0κ2
∫

w4
, b ≡ 3χ0

∫

w3
, where χ0 ≡ 1

1 + κ2 +Du
, κ2 =

4U0

3ω
, ω ≡ S(γ − α)− 4U0

3
. (6.10)

In the usual way, it can be shown that the discrete spectra of the NLEP (6.5) are the roots of ζ(λ) = 0 defined by

ζ(λ) ≡ C(λ)−F(λ) , (6.11a)

where

C(λ) ≡ 1

χ(λ)
=
b
∫

w5 −
(

c0
∫

w4 + 1
)

(3− λ)

(λ− 3)(2c0 + a)
∫

w4
, and F(λ) ≡

∫

w3 (L0 − λ)
−1
w3

∫

w4
. (6.11b)

By substituting (6.10) into (6.11b), we obtain after some rather lengthy, but straightforward, algebra that

C(λ) = 1

2
+

1

4κ2

(

τuλ+ 1

τuλ+ 1− 4τu
3

)

(

1 +Du − κ2 +
9

2(λ− 3)

)

. (6.11c)

In addition, by using L0w = 2w3, we can more conveniently rewrite F(λ) in (6.11b) as

F(λ) =
1

2
∫

w4

∫

w3(L0 − λ)−1 [(L0 − λ) + λ]w =
1

2
+

λ

2
∫

w4

∫

w3(L0 − λ)−1w . (6.11d)
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As a remark, we can use (6.11) to recover the competition stability threshold given in (5.2) when q = 2. To see this, we

set λ = 0 in (6.11d) and (6.11c) to get F(0) = 1/2 and

C(0) = 1

2
+

3

4κ2(3− 4τu)

[

Du −
(

κ2 +
1

2

)]

. (6.12)

Therefore, C(0) = 1/2, so that ζ(0) = 0 in (6.11a), when Du = 1/2 + κ2. This zero-eigenvalue condition agrees with (5.2).

6.2 Parametrization of the Hopf Bifurcation Threshold

In this subsection, we use (6.11) to determine an explicit parameterization of any Hopf bifurcation for the NLEP (6.5). We

set λ = iω, with ω > 0, and obtain by setting ζ(iω) = 0 in (6.11) that

(

1 + iωτu

1− 4τu
3 + iωτu

)

(

2

9
(1 +Du − κ2) +

1

iω − 3

)

=
8κ2
9

[

F(iω)− 1

2

]

. (6.13)

We then decompose F(iω) into real and imaginary parts to obtain from (6.11b) that

F(iω) = FR(ω) + iFI(ω) , FR(ω) ≡
∫

w3L0

[

L2
0 + ω2

]

−1
w3

∫

w4
, FI(ω) ≡ ω

∫

w3
[

L2
0 + ω2

]

−1
w3

∫

w4
. (6.14)

To determine a parameterization of the Hopf bifurcation curve, we first multiply both sides of (6.13) by iωτu+1−4τu/3,

and then separate the resulting expression into real and imaginary parts. This yields that

2

9
(1 +Du − κ2)−

3

9 + ω2
+

τuω
2

9 + ω2
=

8κ2
9

(

FR(ω)−
1

2

)(

1− 4τu
3

)

− 8κ2τu
9

ωFI(ω) , (6.15a)

2τuω

9
(1 +Du − κ2)−

3τuω

9 + ω2
− ω

9 + ω2
=

8κ2
9

(

τuω

[

FR(ω)−
1

2

]

+

(

1− 4τu
3

)

FI(ω)

)

. (6.15b)

We then solve (6.15a) for Du and substitute the resulting expression into (6.15b). This yields a quadratic equation for τu.

In this way, we obtain the following parameterization, with parameter ω, for any Hopf bifurcation curve τu = τu(ω) and

Du = Du(ω) for the NLEP (6.5):

Du = κ2 − 1 +
9

2

(

3

9 + ω2
+

8κ2
9

[

FR(ω)−
1

2

]

− η0τu

)

, (6.16a)

where τu is a root of the quadratic equation

η0τ
2
u − η1τu + η2 = 0 . (6.16b)

Here η0, η1, and η2 are defined by

η0 ≡ ω2

9 + ω2
+

32κ2
27

[

FR(ω)−
1

2

]

+
8κ2ω

9
FI(ω) , η1 ≡ 32κ2

27ω
FI(ω) , η2 ≡ 1

9 + ω2
+

8κ2
9ω

FI(ω) . (6.16c)

Since FI(ω) > 0 for ω > 0 (see part (v) of Proposition 4.3 in [22]), it follows that η1 > 0 and η2 > 0 for ω > 0. However,

the sign of η0 is unclear, owing to the fact that FR(ω) < 1/2 for ω > 0 (see the left panel of Fig. 4 of [22]).

To calculate the Hopf bifurcation curve we fix κ2 > 0 and let ω > 0 be a parameter, and then numerically compute

FR(ω) and FI(ω), as defined in (6.14), using a BVP solver. We then use (6.16b) to compute a τu > 0, which determines Du

from (6.16a). In this way, in the left panel of Fig. 6 we plot the Hopf bifurcation threshold τu versus Du for U0 = 2, U0 = 3,

and U0 = 4 for the fixed parameter set S = 6, γ = 2, and α = 1. In addition, the Hopf frequency ω is plotted versus Du
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Figure 6: Left panel: the Hopf bifurcation threshold for “cops-on-the-dots” in the τu versus Du plane, as computed from the param-
eterization (6.16), for U0 = 2 (solid curve), U0 = 3 (dashed curve), and U0 = 4 (dot-dashed curve) when S = 6, γ = 2, and α = 1.
Right panel: the corresponding Hopf bifurcation frequency ω versus Du.

in the right panel of Fig. 6. We emphasize that the Hopf curves in Fig. 6 are universal in the sense that, together with the

relation (3.23) and (3.24), they provide Hopf bifurcation thresholds for each of the asynchronous modes j = 1, . . . ,K − 1

in the Dp versus D parameter plane. In terms of these original parameters the Hopf curves are plotted in §7, where we will

also provide a detailed comparison of the linear stability results with full PDE numerical simulations of (1.4).

An interesting feature, as observed in Fig. 6, is that the Hopf bifurcation frequency ω tends to zero at each of the two

endpoints of the Hopf bifurcation curves, and that τu diverges at the lower endpoint in Du. To derive scaling laws for the

Hopf thresholds at these two endpoints, we will take the limit ω → 0 in (6.16). To do so, we need the following lemma, as

proved in Appendix B, which provides two-term expansions for FR(ω) and FI(ω) as ω → 0:

Lemma 6.3 As ω → 0, and with w(y) =
√
2 sech y, the real and imaginary parts of F(iω), as defined in (6.14), have the

asymptotics

FR(ω) ∼
1

2
− 3

64
ω2 +O(ω4) ; FI(ω) ∼

3ω

16
+ dIω

3 , dI ≡ −
∫

y2(w′)2

16
∫

w4
≈ −0.0285 . (6.17)

We substitute (6.17) into (6.16c) to obtain expressions for η0, η1, and η2 for ω → 0. In this way, for ω → 0, (6.16b)

becomes a singularly perturbed quadratic equation for τu

ω2τ2u
[

1 + κ2 +O(ω2)
]

− 2κ2τu

(

1 +
16

3
dIω

2 +O(ω4)

)

+ 1 +
3κ2
2

+ ω2

(

8κ2dI −
1

9

)

+O(ω4) = 0 . (6.18)

For ω → 0, (6.18) has a small root with τu = O(1) and a large root with τu = O(ω−2). By asymptotically calculating these

two roots, and then using (6.16a) and (6.17) to determine Du, we readily obtain two scaling laws valid near each of the

endpoints of the Hopf threshold curve shown in the left panel of Fig. 6.

In this way, we find that the small root corresponds to the right-hand endpoint of the Hopf curve, and for ω → 0

τu ∼ τ0 + ω2τ1 + · · · , Du ∼ κ2 +
1

2
− ω2

4

(

19

6
+

9κ2
4

+
1

κ2

)

; Du ∼ κ2 +
1

2
− (τ − τ0)

4τ1

(

19

6
+

9κ2
4

+
1

κ2

)

, (6.19a)

where τ0 and τ1 are defined by

τ0 ≡ 3

4
+

1

2κ2
, τ1 ≡ (1 + κ2) (1 + 3κ2/2)

2

8κ32
− 1

18κ2
− 8dI

3κ2
. (6.19b)
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In contrast, the large root of (6.18) corresponds to the left-hand endpoint of the Hopf curve. For ω → 0 we obtain

τu ∼
(

2κ2
1 + κ2

)

ω−2 +O(1) , Du ∼ 1

2
+ ω2b , where b ≡ 11

24
+ κ2

(

3

16
− 16

3
dI

)

+
1

4κ2
. (6.20)

This yields the key scaling law for the left endpoint of the Hopf curve that

τu ∼
(

2κ2
1 + κ2

)

b

Du − 1/2
, as Du → (1/2)

+
. (6.21)
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Figure 7: The Hopf bifurcation threshold for U0 = 2 (left panel), U0 = 3 (middle panel), and U0 = 4 (right panel), when S = 6,
γ = 2, and α = 1, computed numerically from the parameterization (6.16) (solid curves). The dashed curves are the asymptotics for
small ω near the right endpoint (6.19) (red curves) and the left endpoint (6.21) (blue curves). The asymptotic approximations are
seen to provide a good approximation to almost the entire Hopf bifurcation curve.

In Fig. 7 we compare the two asymptotic approximations (6.19) and (6.21) with results computed numerically from the

parameterization (6.16) for the same parameter values as in Fig. 6. Rather remarkably, we observe that the asymptotic

results provide a decent quantitative prediction of the entire Hopf bifurcation curve. This close agreement is due to the

Hopf frequency ω being relatively small on the entire range of the Hopf curve (see the right panel of Fig. 6).

In Proposition 6.4 given below in §6.3 we prove that a multi-hotspot steady-state is unstable whenever D > Dc ≡ κ2+1/2

for any τu > 0. This result is complementary to that in §5.1 where we proved a similar instability result for any q > 1,

but with τu → 0+. For the range D < Dc, we conjecture that the Hopf bifurcation curve in Fig. 7 sets the linear stability

boundary in the τu versus Du parameter space. This assertion is based on a continuation argument in τu. Recall from

Proposition 5.2 that for τu → 0+, the NLEP (3.22) has no unstable eigenvalues when D < Dc. By increasing τu for fixed

Du < Dc, our parameterization (6.16) has shown that eigenvalues of (6.5) can occur on the imaginary axis λ = iω, with

ω > 0, only on the range 1/2 < Du < Dc. For 0 < Du < 1/2, there are no purely imaginary eigenvalues for (6.5) for

any τu > 0, suggesting by continuity that Re(λ) ≤ 0 for (6.5). This suggests that below the Hopf bifurcation curve, the

multi-hotspot pattern is linearly stable, and that this hotspot steady-state is linearly stable for all τu > 0 when Du < 1/2.

A computational tool to investigate this conjecture is formulated in §6.3.

6.3 An Instability Result and the Winding Number Criterion

For the analysis below, for τu > 0 it is convenient to express C(λ) in (6.11c) in terms of partial fractions as

C(λ) = c0 +
c1

λ− 3
+

c2
λ− λp

, λp ≡ 4

3
− 1

τu
, (6.22a)

where λp > 0 iff 0 < τu < 3/4. In (6.22a), the coefficients c0, c1 > 0, and c2 are

c0 =
1

4

[

1 +
1

κ2
(1 +Du)

]

, c1 =
9

8κ2

(

9τu + 3

5τu + 3

)

, c2 =
1

κ2

(

1

5τu + 3

)[

(1 +Du − κ2)

(

5τu
3

+ 1

)

− 9τu
2

]

. (6.22b)
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Our instability result is as follows:

Proposition 6.4 For any τu > 0, and for q = 2, a multi-hotspot steady-state solution is unstable to asynchronous perturba-

tions of the hotspot amplitudes when D > Dc ≡ κ2+1/2 and for any police diffusivity Dp on the range O(1) ≪ Dp ≪ O(ǫ−3).

Proof: We need to prove that ζ(λ), defined in (6.11a), has a real positive root whenever τu > 0 and D > Dc. To do so, we

consider three ranges of τu. When τu < 3/4, we have from (6.22a) that C(λ) is continuous on 0 < λ < 3, with C(λ) → −∞
as λ→ 3−. In addition, from (6.12), we have C(0) > 1/2 when D > Dc. From (6.11b) we have F(0) = 1/2, F(λ) continuous

on 0 < λ < 3, and F(λ) → +∞ as λ → 3− (cf. [22]). Therefore, by the intermediate value theorem, there is a real root

to ζ(λ) = 0 on 0 < λ < 3. When τu > 3/4, (6.12) yields that C(0) < 1/2 when Du > Dc, while (6.22a) shows that C(λ)
has a simple pole at λ = λp ≡ 4/3 − 1/τu in 0 < λp < 3. Regardless of the sign of c2 in (6.22b), it readily follows that

ζ(λ) = 0 has a real positive root in 0 < λ < 3. Finally, suppose that τu = 3/4. Then, from (6.22) we have that C(λ) → c2/λ

as λ → 0, with c2 = [Du − (κ2 + 1/2)] /(3κ2) > 0 when Du > κ2 + 1/2. Therefore, since C(λ) → −∞ as λ → 3−, while

C(λ) → +∞ as λ→ 0+ when Du > κ2 + 1/2, it follows that ζ(λ) = 0 has a root on 0 < λ < 3. �

Next, we derive a winding number criterion that can be implemented numerically to count the number N of unstable

eigenvalues of the NLEP (6.5). This hybrid analytical-numerical approach will be useful for considering the range D < Dc

and τu 6= 3/4. For τu 6= 3/4, C(λ) in (6.22) is analytic in Re(λ) ≥ 0 except for a simple pole at λ = 3, and an additional

simple pole at λ = λp > 0 iff τu > 3/4. From a winding number analysis, analogous to that developed in §5.1, the number

N of roots of ζ(λ) = 0 in Re(λ) > 0, which is equivalent to the number of unstable eigenvalues of the NLEP (6.5), is

N = P +
1

π
[arg ζ]Γ+

I
, P =

{

1 , 0 < τu < 3/4

2 , τu > 3/4
. (6.23a)

Here ΓI+ is the positive imaginary axis traversed in the downwards direction. To numerically calculate [arg ζ]Γ+

I
, we let

λ = iω with ω > 0, and decompose ζ(iω) = ζR(ω) + iζI(ω). Since ζ(iω) = C(iω)−F(iω), we use (6.14) for F(iω) together

with (6.22) to calculate C(iω). This yields that

ζR(ω) = c0 −
3c1

9 + ω2
− λpc2
λ2p + ω2

−FR(ω) , ζI(ω) = − ω

(9 + ω2)(λ2p + ω2)

[

(c1 + c2)ω
2 + c1λ

2
p + 9c2

]

−FI(ω) . (6.23b)

Here FR(ω) and FIω) can be calculated numerically from (6.14), while c0, c1, and c2 are evaluated using (6.22b).

To illustrate the use of (6.23b), we consider the phase diagram in the τu versus Du shown in Fig. 7 where U0 = 2,

S = 6, γ = 2, and α = 1. There, we predicted that there are no unstable eigenvalues of the NLEP when Du < 0.5. For

0.5 < Du < κ2 + 1/2 = 1.3, we predicted that there are no unstable eigenvalues of the NLEP when τu is below the Hopf

bifurcation threshold. For particular parameter values, in Fig. 8 we show that a numerical implementation of the winding

number criterion (6.23) confirms these predictions. Further numerical results using (6.23) for other parameter sets, and in

particular for the middle and right panels of Fig. 7, confirms the linear stability predictions of §6.2.

7 Comparison of Linear Stability Theory with PDE Simulations: q = 2

We first map the phase diagrams for linear stability from the τu versus Du plane of §6 for q = 2 to that of the ǫDp versus

D parameter plane. By setting q = 2 in (3.23) and (3.24), we obtain in terms of τu and Du that

D =
ω3SDu

4K4α2π2
[

1− cos
(

πj
K

)] , ǫDp =
Sω2

K3α2π2
[

1− cos
(

πj
K

)]

(

1

τu

)

, for j = 1, . . . ,K − 1 , (7.1)
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Figure 8: Plots of the path ζ(iω) = ζR(ω) + iζI(ω) for Du = 0.4 (left panel) and Du = 1.0 (right panel) on 0 < ω < ∞, when S = 6,
γ = 2, and α = 1, corresponding to the left panel of Fig. 7. Left panel: τu = 0.4 (dashed curve), τu = 5.0 (solid curve), for which
[arg ζ]

Γ
+

I

= −π and [arg ζ]
Γ
+

I

= −2π, respectively. For both values of τu, (6.23a) yields N = 0. Right panel: τu = 1.0 (dashed curve),

τu = 4.0 (solid curve), for which [arg ζ]
Γ
+

I

= −2π and [arg ζ]
Γ
+

I

= 0, respectively. Then, (6.23a) yields N = 0 for τu = 1.0 and N = 2

for τu = 4.0. These results are consistent with the linear stability phase diagram in the left panel of Fig. 7.

where ω = S(γ − α)− 4U0/3. From (5.4), the competition instability threshold when q = 2 with K ≥ 2 hotspots is

Dc =
ω3S

4K4α2π2 [1 + cos (π/K)]

(

κ2 +
1

2

)

, where κ2 =
4U0

3ω
. (7.2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.01 0.02 0.03 0.04 0.05

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Figure 9: The linear stability phase diagram for a two-hotspot steady-state in the ǫDp versus D parameter plane for cops-on-the-dots,
as obtained from (7.1), when S = 6, γ = 2, and α = 1. Left panel: U0 = 2. Middle Panel: U0 = 3. Right Panel: U0 = 4. The thin
vertical line in each panel is the competition stability threshold Dc of (7.2), which decreases rather substantially as U0 increases. The
shaded region is where the steady-state two-hotspot pattern is linearly stable. For D > Dc the hotspot solution is unstable due to a
competition instability, whereas in the unshaded region for D < Dc, the hotspot steady-state is unstable to an asynchronous oscillatory
instability of the hotspot amplitudes. PDE simulations of (1.4) at the marked points in the left panel are shown in Fig. 11.
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Figure 10: The linear stability phase diagram for a three-hotspot steady-state in the ǫDp versus D parameter plane for cops-on-the-
dots, as obtained from (7.1), when S = 6, γ = 2, and α = 1. Left panel: U0 = 2. Middle Panel: U0 = 3. Right Panel: U0 = 4. The
three-hotspot steady-state is linearly stable in the shaded region. The solid and dot-dashed curves are the Hopf bifurcation boundaries
for the (sign-alternating) j = 2 mode and the j = 1 mode, respectively. This steady-state undergoes an oscillatory instability below
the solid or dot-dashed curves. In each panel, the thin vertical line at the right edge of the shaded region is the competition stability
threshold Dc of (7.2). The additional thin vertical line in the right panel for U0 = 4 is where the Hopf boundary switches from the
j = 2 to the j = 1 mode. PDE simulations of (1.4) at the marked points in the left panel and at the marked point in the middle panel
are shown in Fig. 12 and Fig. 13, respectively.

The mapping (7.1), combined with the Hopf parameterization in the τu versus Du plane as given by (6.16), is readily

implemented numerically to determine a linear stability phase diagram in the ǫDp versus D parameter plane, representing

the diffusivity of the police and criminals, respectively. For three different values of U0, in Fig. 9 we plot this linear stability

phase diagram for a two-hotspot steady-state for the parameter set S = 6, γ = 2, and α = 1. A similar plot is shown in

Fig. 10 for a three-hotspot steady-state.

For various points in the ǫDp versus D parameter plane, we now validate our linear stability results by using the PDE

software VLUGR [2] to compute full numerical simulations of the RD system (1.4) with 1000 meshpoints. For the initial

condition for (1.4) we use a perturbation of the K-hotspot steady-state solution (see Corollary 2.2), given by

A(x, 0) =
1

ǫ
√
v0

K
∑

j=1

(1 + 0.01aj)w
[

ǫ−1(x− xj)
]

+ α



1−
K
∑

j=1

e−(x−xj)
2/ǫ2



 , (7.3a)

ρ(x, 0) =

K
∑

j=1

(

w[ǫ−1(x− xj)]
)2
, U(x, 0) =

U0

4ǫK

K
∑

j=1

(

w[ǫ−1(x− xj)]
)2
, (7.3b)

where the hotspot locations are at their steady-state values xj = S(2j − 1)/(2K) for j = 1, . . . ,K. In (7.3a), the random

coefficient aj of the 1% perturbation of the hotspot amplitudes is taken to be uniformly distributed in [−1, 1]. For the

PDE simulations reported below, we plot the amplitudes of the maxima of A versus t for the baseline parameter set S = 6,

γ = 2, and α = 1.
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Figure 11: The hotspot amplitudes for A computed numerically from the full PDE system (1.4) for a two-spot pattern with S = 6,
γ = 2, α = 1, U0 = 2, ǫ = 0.03, and q = 2 (cops-on-the-dots), at each of the three marked points in the linear stability phase diagram
shown in the left panel of Fig. 9. Left panel: D = 0.3 and ǫDp = 0.5, so that Dp ≈ 16.67 (∗ point). The spot amplitudes are stable
to asynchronous oscillations and to the competition instability. Middle panel: D = 0.3 and ǫDp = 0.1, so that Dp ≈ 3.33 (× point).
Spot amplitudes are unstable to asynchronous oscillations, leading to the oscillatory collapse of a hotspot. Right panel: D = 0.5 and
ǫDp = 0.1, so that Dp ≈ 3.33 (+ point). Spot amplitudes are unstable to a competition instability, leading to the monotonic collapse
of a hotspot. These results are consistent with the linear stability predictions in the left panel of Fig. 9.

For a two-hotspot solution, in Fig. 11 we validate our linear stability predictions shown in the left panel of Fig. 9 for

U0 = 2 and ǫ = 0.03. The numerical results shown in Fig. 11 suggest that the asynchronous hotspot oscillations, due to a

Hopf bifurcation, and the competition instability, due to a positive real eigenvalue, are both subcritical instabilities.
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Figure 12: The hotspot amplitudes computed numerically from the full PDE system (1.4) for a three-spot pattern with S = 6, γ = 2,
α = 1, U0 = 2, ǫ = 0.03, and q = 2 (cops-on-the-dots), at each of the three marked points in the linear stability phase diagram shown
in the left panel of Fig. 10. Left panel: D = 0.05 and ǫDp = 0.03, so that Dp = 1 (× point). The spot amplitudes are unstable
to asynchronous oscillations for the sign-altering j = 1 mode, which leads to the oscillatory collapse of the middle hotspot. The
amplitudes of the first and third hotspots are essentially synchronized and trace out nearly identical curves. Middle panel: D = 0.1
and ǫDp = 0.02, so that Dp ≈ 0.667 (+ point). Spot amplitudes are unstable to asynchronous oscillations to the j = 2 mode,
and are unstable to a competition instability for the sign-altering j = 1 mode. The latter instability has a larger growth-rate. An
overshoot behavior, followed by a collapse of the (essentially synchronous) first and third hotspots is observed. Right panel: D = 0.1
and ǫDp = 0.24, so that Dp = 8 (∗ point). Spot amplitudes are unstable to a competition instability for the sign-altering mode, but
are now linearly stable to the j = 2 oscillatory mode. A monotonic collapse of the first and third hotspots is observed. These results
are consistent with the linear stability predictions in the left panel of Fig. 10.

For a three-hotspot solution, PDE simulations of (1.4) are shown in Fig. 12 at each of the three marked points in the

linear stability phase diagram given in the left panel of Fig. 10. As discussed in the figure caption of Fig. 12, these results

again confirm the prediction of our linear stability analysis. For the parameter set corresponding to the middle panel of

Fig. 12, the hotspot steady-state is unstable to both a competition instability, due to the sign-altering j = 1 mode, as well
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as an oscillatory instability for the j = 2 mode, which would lead to anti-phase oscillations between the first and third

hotspots. However, since the linear growth-rate for such anti-phase oscillations is rather small (see the right panel of Fig. 6),

the competition instability, which is due to a positive eigenvalue in the spectrum of the NLEP, is the dominant instability.

Finally, in Fig. 13 we plot the numerically computed hotspot amplitudes, obtained from a PDE simulation of (1.4),

at the marked point in the middle panel of Fig. 10. For this parameter set, the three-hotspot steady-state is unstable to

both sign-altering (j = 1) and anti-phase (j = 2) temporal oscillations. The numerical results in Fig. 13 show that the

sign-altering mode is dominant and that small amplitude oscillations persist over rather long time intervals. In contrast to

the likely subcritical behavior observed in the left panel of Fig. 12, for this parameter set the results in Fig. 13 suggest a

supercritical oscillatory instability.
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Figure 13: The hotspot amplitudes computed numerically from the full PDE system (1.4) for a three-spot pattern with S = 6, γ = 2,
α = 1, U0 = 3, ǫ = 0.03, and q = 2 (cops-on-the-dots), at the marked point in the middle panel of the phase diagram in Fig. 10
where D = 0.02 and ǫDp = 0.01, so that Dp ≈ 0.333. The spot amplitudes are unstable to both asynchronous oscillations for the
sign-altering j = 1 mode and the anti-phase mode j = 2. Long-lived small-amplitude temporal oscillations that synchronize the first
and third hotspots are observed (indicated by nearly overlapping amplitudes for the first and third spots).

8 Discussion

We focus here on summarizing some of our main linear stability results for steady-state hotspot solutions of (1.4) for

the special case q = 2 of “cops-on-the-dots”; a PDE model originally derived in [10] from the continuum limit of an

agent-based model of urban crime with police intervention. For q = 2, our hybrid asymptotic-numerical analysis of the

NLEP linear stability problem has provided phase diagrams in the ǫDp versus D parameter space characterizing the linear

stability properties of multi-hotspot steady-states for (1.4). For D exceeding the threshold Dc given by (7.2), called the

competition stability threshold, we proved in Proposition 6.4 that multi-hotspot steady-state solutions are unstable for

all police diffusivities Dp on the range O(1) ≪ Dp ≪ O(ǫ−3). On the intermediate range of D given by D⋆ < D < Dc,

for some D⋆ > 0, our linear stability theory predicts that asynchronous hotspot amplitude oscillations will occur only if

the police diffusivity is below some Hopf bifurcation threshold. In §4, and more specifically in §4.2.1, we have established

through a detailed analysis of the additional NLEP given in (3.20) that a one-hotpot steady-state is linearly stable, and

that a multi-hotspot steady-state is always linearly stable to synchronous perturbations of the hotspot amplitudes when

O(1) ≪ Dp ≪ O(ǫ−3). Finally, in §7 our linear stability predictions were validated from full PDE numerical simulations of

(1.4).

For the case q = 2 of “cops-on-the-dots”, we now compare the linear stability results obtained in [22] for the simple police

interaction model, in which −ρU in (1.1b) is replaced by −U , with the results obtained herein for (1.4) for a predator-prey
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type police interaction. Although the overall qualitative shape of the various regions in the linear stability phase diagram

of the ǫDp versus D parameter plane is similar for the two models, there are two key quantitative differences. Firstly, the

competition instability threshold value of D for (1.4) can be written as (see (7.2) with q = 2)

Dc =
S

8K4π2α2 [1 + cos (π/K)]
g(ω) , where g(ω) ≡ −ω3 + 2S(γ − α)ω2 , ω = S(γ − α)− 4U0/3 , (8.1)

on 0 < U0 < U0,max ≡ 3S(γ − α)/4. For the simple police interaction model studied in [22], (8.1) still holds but with

ω replaced by ωs ≡ S(γ − α) − U0 (see equation (4.10) of [22]). For a given parameter set and fixed policing level U0,

since ω < ωs it follows that Dc is smaller for (1.4) than for the RD model in [22]. Consequently, the range of D where a

K-hotspot pattern with K ≥ 2 is unstable for all police diffusivities Dp is larger for (1.4) than it is for the RD model in

[22]. Secondly, with regards to asynchronous hotspot oscillations for a two-hotspot solution, we observe by comparing the

left panel of Fig. 9 with the left panel of Fig. 22 of [22] that the range of ǫDp where these oscillations occur is smaller for

(1.4) than it is for the RD model studied in [22], although the corresponding interval of D is roughly similar. A similar

conclusion holds for a three-hotspot steady-state solution (compare left panels of Fig. 10 and Fig. 24 of [22]). This indicates

that the parameter region where asynchronous hotspot oscillations occur is smaller for (1.4) than for the model in [22].

8.1 Open Problems and Further Directions

We now discuss a few open technical issues for our specific RD system (1.4). Firstly, in our NLEP linear stability analysis of

(3.22) to characterize asynchronous hotspot amplitude oscillations, we focused primarily on the case q = 2 of “cops-on-the-

dots”, where the identities (4.24) were central for recasting the NLEP (3.22) with three nonlocal terms into the NLEP (6.5)

with only one nonlocal term proportional to
∫

w3Φ. Since this special reduction is not available for q 6= 2, a full numerical

approach on the NLEP (3.22) would be needed to determine any Hopf bifurcation threshold for asynchronous oscillations

when q 6= 2. Secondly, our construction of the steady-state for (1.4), and our derivation of the NLEP, required that q > 1.

For q = 1, corresponding to a peripheral interdiction policing strategy (cf. [10]), the complicating feature of the analysis is

that there is now a non-negligible police population density both within the core of a hotspot and in the outer region away

from the hotspots. This makes the asymptotic construction of a hotspot steady-state considerably more intricate, and leads

to an NLEP with a rather different structure. Thirdly, for q = 2 it would be worthwhile to undertake a weakly nonlinear

analysis to characterize the local branching behavior near a Hopf bifurcation point of the asynchronous hotspot amplitude

oscillations. In contrast to the RD model of simple police interaction studied in [22], where only subcritical amplitude

oscillations were found numerically, it appears that either subcritical or supercritical hotspot amplitude oscillations can

occur for (1.4) (compare Fig. 11 and Fig. 12 with Fig. 13). The significance of analytically establishing the supercriticality

of the Hopf bifurcation is that it would determine the parameter range where crime is only displaced temporally between

neighboring hotspots over very long time intervals, without achieving a reduction in the overall total crime.

An open problem with a wider scope would be to study hotspot patterns for the RD system (1.4) when the criminal

diffusivity satisfies D = O(1). For the basic two-component crime model with no police intervention, on this range it

was shown in [21] that new hotspots of criminal activity can nucleate from an otherwise quiescent, largely crime-free,

background, near a saddle-node bifurcation point of hotspot equilibria. It would be interesting to analyze whether this

“peak-insertion” effect persists for (1.4) when the effect of police is included. Finally, it would be worthwhile to extend our

1-D analysis to a 2-D spatial domain to determine whether hotspot amplitudes in 2-D can undergo asynchronous temporal

oscillations, leading to the temporal displacement of crime between neighboring spatial regions.
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8.2 Qualitative Remarks: Role of Police Intervention

From our steady-state hotspot analysis, as summarized in Corollary 2.2, the criminal density in a hotspot region is inde-

pendent of the policing level. However, the maxima of the attractiveness field do decrease if additional police are added

(U0 increases) or if their movement towards maxima of the attractiveness becomes more pronounced (q increases). In fact,

there is a critical level U0,max of policing for which no steady-state hotspot patterns can occur.

However, in the event that that the police deployment U0 is fixed below the level required to eliminate the occurrence

of any crime hotspot, the key issue is how should the movement of the police be directed so as to reduce the overall total

crime in the region. It is readily shown that the total crime in the region at a given time is proportional to the number of

observable crime hotspots that can exist on the region. As such, within the context of the model, the police effort should

be directed to try to minimize the maximum number of dynamically stable steady-state hotspots that can occur for the

given region, and more specifically to shrink the parameter regime where these hotspots are stable, and hence observable,

in time.

The analysis in §5 showed that there is a critical value of the diffusivity of criminals, referred to as the competition

stability threshold, such that a particular steady-state hotspot pattern is unstable if the criminal diffusivity exceeds this

value. This critical value depends on the number of hotspots, the overall policing level, and the police focus towards maxima

of the attractiveness field. Given that, in our model, the movement of criminals is not directly influenced by the police

(i.e. D is a constant), the goal to decrease the overall amount of crime (i.e. the maximum number of stable hotspots) was

to reduce this critical threshold of the criminal diffusivity by varying the policing level and police focus. Paradoxically we

showed that an over-zealous policing effort focused on the hotspot regions (q increasing) is not beneficial to reducing the

maximum number of observable crime hotspots when the overall level of police deployment is too low.

When the criminal diffusivity is below, but sufficiently close to, the competition stability threshold, in the context of our

model the only strategy to decrease the number of observable crime hotspots is for the police to focus their movement towards

observable hotspots in a sufficiently sluggish way (smaller Dp). With this strategy, we have shown that temporal oscillations

in the amplitudes of the hotspots can be initiated, which has the effect of initiating a periodic-in-time displacement of crime

between adjacent spatial regions. A problem left open in our study is to determine whether this temporal periodic sloshing

in the intensity of adjacent crime hotspots eventually leads to the destruction of certain hotspots, and consequentially an

overall reduction in total crime, or in fact persists for all time. However, the existence of oscillatory dynamics in the intensity

of the hotspots is qualitatively consistent with field observations reported in [3] for a “cops-on-the-dots” policing strategy.

Finally, we remark that if the criminal diffusivity is sufficiently below the competition threshold, our phase diagrams have

shown that no police intervention will be useful for reducing the overall total crime.

A Derivation of the Jump Conditions: The NLEP

In this appendix we derive the BVPs (3.7) and (3.9), with jump conditions, that are needed to obtain the NLEP (3.22).

To derive the BVP (3.7) with a jump condition for ψx across the hotspot region, we integrate (3.2b) over an intermediate

domain −δ < x < δ with ǫ ≪ δ ≪ 1. We use the facts that Ae ∼ ǫ−1w/
√
v0, φ ∼ Φ(y), Ae(±δ) ∼ α, and ue = ǫq−1ũe as

given in (2.14), to obtain, upon letting δ/ǫ→ +∞, that

ǫDα2 [ψx]0 + 2Dα [vexφ]0 = 3ǫ

∫

∞

−∞

w2Φ dy +
ǫψ(0)

v
3/2
0

∫

∞

−∞

w3 dy

+
ǫ(q + 2)ũe

v
(q−1)/2
0

∫

∞

−∞

wq+1Φ dy +
ǫũeψ(0)

v
1+q/2
0

∫

∞

−∞

wq+2 +
ǫη(0)

v
q/2
0

∫

∞

−∞

wq+2 dy +O(ǫ2λ) ,
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where we have introduced the notation [a]0 ≡ a(0+) − a(0−) to indicate that the evaluation is to be done with the outer

solution. In addition, we have used the shorthand notation that
∫

(. . . ) ≡
∫

∞

−∞
(. . . ) dy. Since φ = O(ǫ3) in the outer

region from (3.6), we can neglect the second term on the left-hand side of the expression above. For eigenvalues for which

λ≪ O(ǫ−1), the expression above simplifies to

Dα2[ψx]0 = 3

∫

w2Φ+
ψ(0)

v
3/2
0

∫

w3 +
(q + 2)ũe

v
(q−1)/2
0

∫

wq+1Φ+
ũeψ(0)

v
1+q/2
0

∫

wq+2 +
η(0)

v
q/2
0

∫

wq . (A.1)

Then, in (3.2b), we use φ = O(ǫ3) in the outer region from (3.6), together with the fact ǫqηAq
e ≪ O(ǫ) since q > 1. In this

way, (3.2b) and (A.1) yield the leading-order BVP problem for ψ given in (3.7) with a jump condition for ψx across x = 0:

To formulate a similar BVP for η(x), we integrate (3.2c) over −δ < x < δ, with ǫ≪ δ ≪ 1, and let δ/ǫ→ ∞ to obtain

Dαq [ηx]0 +Dqαq−1O(ǫ2) = ǫ3−qτλ

[

qũǫ

v
(q−1)/2
0

∫

wq−1Φ+
η(0)

v
q/2
0

∫

wq

]

. (A.2)

Moreover, in the outer region we obtain from (3.2c) that

Dαqηxx +O(ǫ2) = ǫ2τλ
[

αqη +O(ǫ2)
]

. (A.3)

For λ = O(1), we can neglect the O(ǫ2) term on the left hand side of the jump condition (A.2) when O(ǫ2) ≪ O(ǫ3−qτ),

which implies that τ ≫ O(ǫq−1). On this range of τ we obtain the jump condition

Dαq [ηx]0 ∼ ǫ3−qτλ

[

qũe

v
(q−1)/2
0

∫

wq−1Φ+
η(0)

v
q/2
0

∫

wq

]

. (A.4)

Likewise, when λ = O(1), we have from (A.3) that ηxx ≈ 0 to leading-order in the outer region when τ ≪ O(ǫ−2). Therefore,

upon combining these two bounds, in our analysis for q > 1 we will consider the parameter range

O(ǫq−1) ≪ τ ≪ O(ǫ−2) . (A.5)

Upon using Dp = ǫ−2D/τ , (A.5) implies the following range of the police diffusivity:

O(1) ≪ Dp ≪ O(ǫ−1−q) . (A.6)

Finally, by introducing the new variable τ̂ by τ̂ ≡ ǫ3−qτ we obtain from (A.4) that

Dαq [ηx]0 ∼ τ̂λ

[

qũe

v
(q−1)/2
0

∫

wq−1Φ+
η(0)

v
q/2
0

∫

wq

]

. (A.7)

From (A.5), we obtain that both the jump condition (A.7) holds and that ηxx ≈ 0 in the outer region when τ̂ satisfies

O(ǫ2) ≪ τ̂ ≪ O(ǫ1−q) , (A.8)

where q > 1. For this range of τ̂ , which implies the range (A.6) for the police diffusivity, we obtain the BVP (3.9) for

η(x) with the specified jump condition for ηx across x = 0. We remark that when τ̂ = ǫ3−qτ , the police diffusivity Dp is

Dp = O(ǫ1−q), which is a specific scaling law on the range given in (A.6).
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B Proof of Lemma 6.3

We first determine FR(ω) in (6.14) for ω → 0. We use (L2
0 + ω2)−1 = L−2

0 − ω2L−4
0 +O(ω4) for ω → 0, to obtain that

FR(ω) =

∫

w3L−1
0 w3

∫

w4
− ω2

∫

w3L−3
0 w3

∫

w4
+O(ω4) . (B.1)

Since L−1
0 w = 1

2 (w + yw′) and L−1
0 w3 = w/2 (see equation (3.7) of [24]), we get using integration by parts that

FR(ω) =
1

2
− ω2

2
∫

w4

∫

w3L−2
0 w +O(ω4) =

1

2
− ω2

2
∫

w4

∫

(

L−1
0 w3

) (

L−1
0 w

)

+O(ω4) ,

=
1

2
− ω2

8
∫

w4

∫

w (w + yw′) +O(ω4) =
1

2
− ω2

8
∫

w4

[∫

w2 +
1

2

∫

y
(

w2
)′

]

.

(B.2)

Upon integrating the last expression in (B.2) by parts, and then using
∫

w2/
∫

w4 = 3/4 from (2.5), we conclude that

FR(ω) =
1

2
− ω2

∫

w2

16
∫

w4
+O(ω4) =

1

2
− 3ω2

64
+O(ω4) , as ω → 0 . (B.3)

This yields the result for FR(ω) given in (6.17) of Lemma 6.3.

Next, we derive the asymptotics of FI(ω) as ω → 0. By letting ω → 0 in (6.14) for FI , we obtain that

FI(ω) = ω

∫

w3L−2
0 w3

∫

w4
− ω3

∫

w3L−4
0 w3

∫

w4
+O(ω5) . (B.4)

Upon integrating by parts, and then using L−1
0 w3 = w/2 we obtain that

FI(ω) = ω

∫ (

L−1
0 w3

)2

∫

w4
− ω3

∫ (

L−1
0 w3

) (

L−3
0 w3

)

∫

w4
+O(ω5) =

ω

4

∫

w2

∫

w4
− ω3

2
∫

w4

∫

wL−2
0

(

L−1
0 w3

)

+O(ω5) . (B.5)

Next, we use L−1
0 w3 = w/2,

∫

w2/
∫

w4 = 3/4, and
∫

wL−2
0 w =

∫ (

L−1
0 w

)2
from integration by parts. Then, (B.5) becomes

FI(ω) =
3ω

16
− ω3

4
∫

w4

∫

(

L−1
0 w

)2
+O(ω5) . (B.6)

Finally, we use L−1
0 w = (w + yw′)/2, so that upon integration by parts (B.6) becomes

FI(ω) =
3ω

16
− ω3

16
∫

w4

[∫

w2 +

∫

y(w2)′ +

∫

y2(w′)2
]

+O(ω5) =
3ω

16
− ω3

16
∫

w4

∫

y2(w′)2 +O(ω5) . (B.7)

This completes the derivation of the two-term expansion of FI(ω) as ω → 0 given in (6.17) of Lemma 6.3. By using
∫

w4 = 16/3 and w =
√
2 sech(y), a numerical quadrature yields that FI(ω) = 3ω/16 + dIω

3 +O(ω5), with dI ≈ −0.0285.

C Proof of Lemma 4.1

In this appendix we prove Lemma 4.1, i.e. we establish the following inequality

I0[Φ] =

∫

[(Φ′)2 +Φ2 − 3w2Φ2] + 3

∫

w3Φ
∫

w2Φ
∫

w3
> 0 , ∀Φ 6≡ 0 . (C.1)

To this end, we consider the following quadratic form

Qa[Φ] ≡
∫

[(Φ′)2 +Φ2 − 3w2Φ2] + 2a

∫

w3Φ
∫

w2Φ
∫

w3
+ 2b

(
∫

w3Φ)2
∫

w4
, (C.2)
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where

b =
5

4
− a . (C.3)

By setting p = 3 in Lemma 5.3 (2) of [28] we infer that

∫

[(Φ′)2 +Φ2 − 3w2Φ2] + 2

(∫

w3Φ
)2

∫

w4
> 0 , (C.4)

and hence Q0[Φ] > 0 (since 2b = 5/2 > 2 when a = 0). Next, we observe that Qa[Φ] = −
∫

ΦLΦ, where L is the self-adjoint

linear operator

LΦ ≡ L0Φ−
(

a

∫

w2Φ
∫

w3
+ 2b

∫

w3Φ
∫

w4

)

w3 − a

∫

w3Φ
∫

w3
w2 . (C.5)

We will continue in the parameter a until we reach a point for which L has principal eigenvalue zero, i.e. there exists an

eigenfunction satisfying LΦ = 0 for some Φ 6≡ 0. At this point, Qa[Φ] ceases to be positive definite.

To study this zero-eigenvalue problem we set c1 =
∫

w3Φ and c2 =
∫

w2Φ. We will use the identities L−1
0 w3 = 1

2w,

L−1
0 w2 = 1

3w
2,
∫

w3L−1
0 w2 =

∫

w2L−1
0 w3 = 1

2

∫

w3, and
∫

w2L−1
0 w2 = 1

3

∫

w4. Upon multiplying LΦ = 0 in (C.5) by w

and integrating by parts, we get

c1 =

(

a
c2
∫

w3
+ 2b

c1
∫

w4

)
∫

w4

2
+
a

2

c1
∫

w3

∫

w3 , (C.6)

which yields
(

b+
a

2
− 1
)

c1 +
a

2

∫

w4

∫

w3
c2 = 0 . (C.7)

Similarly, we multiply LΦ = 0 by w2 and integrate by parts to get

c2 =

(

a
c2
∫

w3
+ 2b

c1
∫

w4

)
∫

w5

3
+
a

3

c1
∫

w3

∫

w4 . (C.8)

Upon using
∫

w5 = (3/2)
∫

w3, (C.8) becomes

(

a

3

∫

w4

∫

w3
+ b

∫

w3

∫

w4

)

c1 +
(a

2
− 1
)

c2 = 0 . (C.9)

The homogeneous linear system (C.7) and (C.9) for c1 and c2 has a nontrivial solution if and only if H(a) = 0, where

H(a) ≡
(

b+
a

2
− 1
)(a

2
− 1
)

− a2

6

(
∫

w4

∫

w3

)2

− ab

2
. (C.10)

Recalling the choice of b in (C.3), and using
∫

w4 = 16/3 and
∫

w3 =
√
2π, we readily calculate from (C.10) that

H(a) = −1

4
+

(

1

4
− 64

27π2

)

a2 . (C.11)

We calculate that H(0) < 0 and H(2) < 0, so that H(a) < 0 for a ∈ [0, 2].

In this way, we conclude that Q 3
2
[Φ] > 0 ∀Φ 6≡ 0, which means that

Q 3
2
[Φ] :=

∫

[

(Φ′)
2
+Φ2 − 3w2Φ2

]

+ 3

∫

w3Φ
∫

w2Φ
∫

w3
− 1

2

(
∫

w3Φ)2
∫

w4
> 0 , (C.12)

and hence I0[Φ] > 0 as claimed. If
∫

w3Φ = 0, then by Lemma 5.1 (1) of [28], I0[Φ] > 0. If
∫

w3Φ 6= 0, then I0[Φ] > 0.
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