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STABLE ASYMMETRIC SPIKE EQUILIBRIA FOR THE
GIERER-MEINHARDT MODEL WITH A PRECURSOR FIELD

THEODORE KOLOKOLNIKOV *, FREDERIC PAQUIN-LEFEBVRE f, AND MICHAEL J.
WARD 1

Abstract. Precursor gradients in a reaction-diffusion system are spatially varying coefficients
in the reaction-kinetics. Such gradients have been used in various applications, such as the head
formation in the Hydra, to model the effect of pre-patterns and to localize patterns in various spatial
regions. For the 1-D Gierer-Meinhardt (GM) model we show that a simple precursor gradient in
the decay rate of the activator can lead to the existence of stable, asymmetric, two-spike patterns,
corresponding to localized peaks in the activator of different heights. This is a qualitatively new
phenomena for the GM model, in that asymmetric spike patterns are all unstable in the absence of
the precursor field. Through a determination of the global bifurcation diagram of two-spike steady-
state patterns, we show that asymmetric patterns emerge from a supercritical symmetry-breaking
bifurcation along the symmetric two-spike branch as a parameter in the precursor field is varied.
Through a combined analytical-numerical approach we analyze the spectrum of the linearization
of the GM model around the two-spike steady-state to establish that portions of the asymmetric
solution branches are linearly stable. In this linear stability analysis a new class of vector-valued
nonlocal eigenvalue problem (NLEP) is derived and analyzed.

1. Introduction. We analyze the existence, linear stability, and bifurcation
behavior of localized steady-state spike patterns for the Gierer-Meinhardt reaction-
diffusion (RD) model in a 1-D domain where we have included a spatially variable
coefficient for the decay rate of the activator. We will show that this spatial hetero-
geneity in the model, referred to as a precursor gradient, can lead to the existence of
stable asymmetric two-spike equilibria, corresponding to steady-state spikes of differ-
ent height (see the right panel of Fig. 2). This is a qualitatively new phenomenon for
the GM model since, in the absence of a precursor field, asymmetric steady-state spike
patterns for the GM model are always unstable [29]. A combination of analytical and
numerical methods is used to determine parameter ranges where stable asymmetric
steady-state patterns for the GM model with a simple precursor field can occur. We
will show that these stable asymmetric equilibria emerge from a symmetry-breaking
supercritical pitchfork bifurcation of symmetric spike equilibria as a parameter in the
precursor field is varied.

Precursor gradients have been used in various specific applications of RD theory
since the initial study by Gierer and Meinhardt in [8] for modeling head development
in the Hydra. For other RD systems, precursor gradients have also been used in the
numerical simulations of [11] to model the formation and localization of heart tissue
in the Axolotl, which is a type of salamander. Further applications of such gradients
for the GM model and other RD systems are discussed in [11], [12], [21], and [9].
With a precursor field, or with spatially variable diffusivities, the RD system does not
generally admit a spatially uniform state. As a result, a conventional Turing stability
approach is not applicable and the initial development of small amplitude patterns
must be analyzed through either a slowly-varying assumption or from full numerical
simulations (cf. [13], [22], [23], [20]).

In contrast to small amplitude patterns, in the singularly perturbed limit of a
large diffusivity ratio O(¢72) > 1, many two-component RD systems in 1-D admit
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2 T. KOLOKOLNIKOV, F. PAQUIN-LEFEBVRE, M. J. WARD

spike-type solutions. In this direction, there is a rather extensive analytical theory on
the existence, linear stability and slow dynamics of spike-type solutions for many such
RD systems in 1-D (see [5], [6], [14], [15], [24] [25], [26], and the references therein).
To establish parameter regimes where spike-layer steady-states are linearly stable,
one must analyze the spectrum of the operator associated with a linearization around
the spike-layer solution. In this spectral analysis one must consider both the small
eigenvalues of order O(g2) associated with near-translation invariance and the large
O(1) eigenvalues that characterize any instabilities in the amplitudes of the spikes.
These latter eigenvalues are associated with nonlocal eigenvalue problems (NLEPs),
for which many rigorous results are available (cf. [4], [30], [28]).

Despite these advances, the effect of spatially heterogeneous coefficients in the
reaction kinetics on spike existence, stability, and dynamics is much less well under-
stood. With a precursor gradient, spike pinning can occur for the GM model (cf. [27],
[31]) and for the Fitzhugh-Nagumo model (cf. [2], [10]), while a plant hormone (auxin)
gradient is predicted to control the spatial locations of root formation in plant cells
[1]. In other contexts, a spatial heterogeneity can trigger a self-replication loop con-
sisting of spike formation, propagation, and annihilation against a domain boundary
[19]. More recently, clusters of spikes that are confined as a result of a spatial het-
erogeneity have been analyzed in 1-D in [16] and [18] for the GM and Schnakenberg
models, respectively, and in [17] for 2-D spot clusters of the GM model. In these
recent approaches the RD system with clustered spikes is effectively approximated by
a limiting equation for the spike density.

In our study we will consider the dimensionless GM model in 1-D with activator
a and inhibitor h, and with a smooth precursor p(z) > 0 in the decay rate of the
activator, given for ¢ < 1 by

2

(1.1a) ay zszam—u(x)a—l—%, || <L, ¢>0; az(£L,t) =0,

(1.1b) Thy = hyy —h 4+ a2, lz| < L, t>0; he(£L,t) =0.

Although our analytical framework can be applied more generally, we will exhibit
stable asymmetric spike-layer steady-states only for the specific precursor field

(1.2) pw(z) =1+ bx?,

where b > 0 is a bifurcation parameter. In our formulation in (1.1), we have for
convenience fixed the inhibitor diffusivity at unity and will use the domain length L
as the other bifurcation parameter.

In §2 we use a matched asymptotic approach to derive a differential algebraic
system of ODEs (DAEs) for a collection of spikes for (1.1), under the assumption that
the quasi-equilibrium spike pattern is stable on O(1) time-scales. The DAE system
is written in terms of 1-D Green’s functions, or equivalently as a tridiagonal system.
In §3 we provide two alternative approaches for computing global branches of two-
spike equilibria of the DAE system, for the u as given in (1.2), and we formulate a
generalized matrix eigenvalue problem characterizing the linear stability of branches
of equilibria. Numerical results for steady-state spike locations and spike heights,
denoting maxima of the inhibitor field, corresponding to global bifurcation branches
of two-spike equilibria are shown in §3.2 in terms of the precursor parameter b and the
domain half-length L. We show that the asymmetric branches of two-spike equilibria
emerge from a symmetry breaking pitchfork bifurcation from the symmetric branch at
a critical value b = b,(L). For b > 0.076, we show that this bifurcation is supercritical,
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Fig. 1: Left: steady-state spike locations 1 = —r_ and xo = r4 for L = 5 versus b

n (1.2). Right: height H of the rightmost spike versus b. Solid lines: linearly stable
to both the small eigenvalues and the large (NLEP) eigenvalues when 7 < 1. Dash-
dotted lines: unstable for the small eigenvalues but stable for the large eigenvalues
when 7 < 1. Dashed line: stable to the small eigenvalues but unstable to the large
eigenvalues when 7 < 1. Dotted line: unstable to both the small and large eigenvalues
when 7 < 1. Red dots: zero-eigenvalue crossings for the NLEP. Green squares: the
stable steady-state observed in the full PDE simulation of (1.1) shown in Fig. 2.
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Fig. 2: Time-dependent PDE simulations of (1.1) with L =5, ¢ = 0.05, and 7 = 0.25
for a precursor p(x) = 1+ bz? with b = 0.12. Initial condition is a quasi-equilibrium
two-spike solution with spike locations z1(0) = —1 and 22(0) = 3. Spike heights (left
panel), denoting maxima of the inhibitor field, and spike locations (middle panel)
versus time. Right: the steady-state asymmetric two-spike equilibrium, stable to the
small and large eigenvalues, corresponding to the green squares in Fig. 1.

and that the bifurcating branches of asymmetric equilibria are linearly stable as a
steady-state solution of the DAE dynamics.

In §4 we derive a vector-valued NLEP characterizing spike amplitude instabilities
of steady-state spike patterns of (1.1). For the case of symmetric two-spike equilibria,
the vector-valued NLEP can be diagonalized, and we obtain necessary and sufficient
conditions for the linear stability of these patterns when 7 in (1.1) is sufficiently small.
The resulting stability thresholds are shown in the global bifurcation plots in §3.2.
However, for asymmetric two-spike equilibria, we obtain a new vector-valued NLEP
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4 T. KOLOKOLNIKOV, F. PAQUIN-LEFEBVRE, M. J. WARD

that cannot be diagonalized, and for which the NLEP stability results in [30] are not
directly applicable. For this new NLEP we determine analytically parameter values
corresponding to zero-eigenvalue crossings, and for 7 = 0 we numerically compute any
unstable eigenvalues by using a discretization of the vector-valued NLEP combined
with a generalized matrix eigenvalue solver.

In 5 we confirm our global bifurcation and linear stability results through full
PDE simulations of (1.1). As an illustration of our results, in Fig. 1 we plot the spike
locations and spike heights corresponding to steady-state branches of symmetric and
asymmetric two-spike equilibria in terms of the precursor parameter b for a domain
half-length L = 5. The two branches of asymmetric two-spike equilibria result from
an even reflection of solutions through the origin « = 0. In the right panel of Fig. 1,
where we plot the spike heights, we show the linear stability properties for the small
eigenvalues, as obtained from the linearization of the DAE system, and for the large
eigenvalues, as determined from computations of the vector-valued NLEP. The time-
dependent PDE simulations shown in Fig. 2 confirm that a quasi-equilibrium two-spike
pattern tends to a stable asymmetric equilibrium on a long time scale. The paper
concludes with a brief discussion in §6.

2. Derivation of the DAE System. We now derive a DAE system for the
spike locations for an N-spike quasi-equilibrium pattern, which is valid in the absence
of any O(1) time-scale instability of the pattern. Since this analysis is similar to that
given in [15] with no precursor field and in [27] for a precursor field, but with only
one spike, we only briefly outline the analysis here.

The spike locations z;, for j = 1,..., N, are assumed to satisfy |z;41—x;| > O(e),
with |z1 + L| > O(e) and |L — x| > O(g). As shown in [15] and [27], in the absence
of any O(1) time-scale instability of the spike amplitudes, the spikes will evolve on
the long time-scale o = £2t, and so we write z; = z;(0).

To derive a DAE system for x;(o), for j = 1,..., N, we first construct the solution
in the inner region near the j-th spike. We introduce the inner expansion

(2.1) a=Ag+eAi+..., h=Hy+ecH + -,

where 4; = A;(y,0) and H; = H;(y,0) for i = 0,1 and y = e~ !(z — x;). Upon
substituting (2.1) into (1.1), and using a; = —ea’; Ao, + O(*) where &y = du; /do, we
collect powers of € to obtain the following leading-order problem on —oco < y < co:

(22) AOyy - /,LjAO + A%/HO = O7 HOyy = 0,
where p1; = p(x;). At next order, we conclude on —oo < y < oo that

240 A2
(2.3a) LAy = Aryy — pj AL + ?OAl = F%

(2.3b) Hy,, = —A}.

Hy 4 yp' (x5) Ao — 2 Agy ,

From (2.2) we get that Hy = Hy;(o), where Hy;, independent of y, is to be
determined. In addition, the spike profile is given by

3
(2.4) Ao = piHojw (Viy) where w(z) = 3 sech?(2/2),
where w(0) > 0 with w’(0) = 0, is the well-known homoclinic solution to

(2.5) w —w+w?=0, —co<z<oo, w—0 as |z — 0.
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Since LAg, = 0, the solvability condition for (2.3a) is that

A2
x;/Agy dy = u'(xj)/onAoy dy+/H—SH1AOy dy
0y

' (z5) 1
26) =B [ ), v g [ (48),
() 1

where we have used integration by parts and the shorthand notation [ = [~ . From
a further integration by parts on the last term on the last line in (2.6), and using the

fact that Hi,, = —A2 is even, we obtain that
W), 1
(2.7) x; == UEAy g 6H3]I . hr+n Hyy —|— hm Hly ,

in terms of the integral ratios I; and Is defined by
JAjdy dy _ [ Addy

T ARy T A dy

By multiplying the ODE for Ay in (2.2) first by Ao, and then by Ay, we integrate the
two resulting expressions to obtain an algebraic system for I; and I, which yields

(2.8) I =

5
(2.9) L=—, I,=G6Hy.
11

Upon using (2.9) in (2.7), we conclude for each j = 1,..., N that

5u(e) 1

2.10 = —= 22— lim H 1 H .

(2.10) K 2 p(x;)  Hoj yrfoe Ty T A Hy

To determine Hy; for j = 1,...,N and the remaining term in (2.10) we need to

determine the outer solution.

Now in the outer region, defined away from O(e) regions near each z;, a is ex-
ponentially small. In the sense of distributions we then use Ag = Hojujw(\//ij) to
calculate across each x = x; that
(2.11)

12, (/ A} dy> d(w—w;) = " HE,; </ w?(2) dz) S(w—a;) = 645 Hyo (0 —a5)
S

owing to the fact that [w?z = [wdz = 6. In this way, the outer problem for h is
(2.12) - :—621{0] 5w —1;), |o|<L;  he(+L,0) =
The solution to (2.12) is

(2.13) Z HE G ;1)
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6 T. KOLOKOLNIKOV, F. PAQUIN-LEFEBVRE, M. J. WARD

where G(z;x;) is the 1-D Green’s function satisfying
(2.14) Gow—G=—-0(x—x;), |z|<L; Gy(x£L;z;) =0.
To match with the inner solutions near each x;, we require for each j =1,.., N that

(2.15) h(z;) = Hoj,  lim Hyy + lim Hiy = ho(2)4) + ha(2;-).-

In this way, by using (2.15) in (2.13) and (2.10) we obtain the following DAE system
for slow spike motion:

dx; 5u/(z;) 12 3/2 172 al 3/2 172
(2.16a) o -2 4 m|M Hj(Gz); + Zﬂi HiGa(xji2i) |
J J

i=1
i#]

N
(2.16b) Hy =6y pui?H2G(2j5,),
i=1
where p; = p(z;), (Go)j = [Ga(xjtr; ;) + Ga(xj—; 2;)] /2, and G(z; x;) is the Green’s
function satisfying (2.14). In (2.16), we have relabeled Hy; by H;.
A simple special case of (2.16) is for the infinite-line problem with L — oo, for
which G(z;2;) = $e~1*=%il. For this case, we calculate (G,); = 0 and G, (zj;2;) =

—3sign(z; — z;)e” 1%l In this way, we can rewrite (2.16) as

dz; 5u(x4) 1 & ) o
2.17 it S S - S’L T |zj—x; ,
(2.17a) do 2 1, + T, ; sign(z; — x;)e
i#j
N 1/2
1 s —s S

(2.17b) H; = 5251-@ loj—wil H; = ( ;/2> .

i=1 6/~Lj

From (2.16a), we observe that the DAE dynamics for the j-th spike is globally
coupled to all of the other spikes through full matrices. We now proceed as in [15] to
derive an equivalent representation of (2.16a) that is based only on nearest neighbor
interactions. To do so, we first write (2.16) compactly in matrix form as

(2.18) % = %up —2H"'PGh, G 'h =6UR?,
where G and P are defined in terms of the Green’s function by
(2.19a)
Gzi;z1) -+ G(zan) (Ga)1 -+ Ga(a132n)
G= A . P= L
G(zy;x) - G(zn;zN) Ge(rNsz1) -+ (Ge)n

In (2.18), U and H are diagonal matrices with diagonal entries (U4),;; = p(z;) and
(H);; = H,j for j =1,...,N, and we have defined

"(21)
H, H12 /ZL(rll)
(2.19b) h= : , h? = : , Up = :
H H? p'(zN)
N N w(zN)
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As shown in Appendix A of [15] (see also Appendix A of [14]), the inverse B = G~ of
the Green’s matrix and the product PG~! are each triangular matrices of the form
(2.20a)

C1 d1 0 €1 —d1 0
B: dl .. .. , 2PBEA: dl .. .. ,
c. . dN—l 7dN_1
0 dy_1 N 0 dn_1 eEN

where the matrix entries are given by

2.20b

( c1 l coth(zo — x1) + tanh(L + x1), ¢y = coth(xy —xn_1) + tanh(L — zy),
¢; = coth(z;11 — x;) + coth(z; —z;—1), j=2,...N-—1,
e1 = tanh(L + x1) — coth(xe — 21), eny =coth(zy —ay_1) — tanh(L — 2y),
ej = coth(z; —x;_1) —coth(xj41 —z;-1), j=2,...N—-1,
dj = —csch(zji — ), j=1,...,N—1.

For the infinite-line problem, we calculate for the limit L — oo that

2 2
1 _ 672(w27w1) ’ CN - 1 _ 672("3N7$N71)

2 2
1 2@’ N7

c1 —

, as L — o0,
(2.21)

er — as L — 0.

1— 62(:01\;7931\7,1) ’
Finally, upon substituting (2.20) into (2.18), we obtain the following more tractable,
but equivalent, tridiagonal representation of the DAE dynamics (2.16):

dx 5 1 2
(2.22) i H " Ah, Bh =6Uh".

3. Global Bifurcation Diagram of Spike Equilibria. In this section we
analyze bifurcation behavior for two-spike equilibria of (2.22) and study their stability
properties in terms of equilibrium points of the DAE system (2.22). From (2.22), the
equilibria satisfy the nonlinear algebraic system F(z1,z2, H1, Hy) = 0 for F € R*,
given component-wise by

(3.1)
5 H 5u H
7_-15_2/;((;11)) e+ dy ? FQE——M(M) 1

.7'-3 = 6 [/L($1)}3/2 le — ClHl — d1H2 5 .7:4 = 6 [M(IL’Q)]B/Q H22 — lel — CQHQ .

The linear stability properties of an equilibrium state (r4,r—, Hy, H_) of the DAE
dynamics (2.22) is based on the eigenvalues w of the matrix eigenvalue problem

(3.2) Jv =wDv,

where J = DF is the Jacobian of F and D is the rank-defective diagonal matrix with
matrix entries (D)1 = 1, (D)a2 = 1, (D)33 = 0, and (D)44 = 0. Since rank(D) = 2,
(3.2) has two infinite eigenvalues. The signs of the real parts of the remaining two
matrix eigenvalues classify the linear stability of the equilibrium point for (2.22).
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We will refer to these eigenvalues as the “small eigenvalues” for spike stability in
accordance with the term used in [14] in the absence of a precursor field.

We now outline a simple approach for computing branches of solutions to F =0
in terms of a parameter in the precursor field u(z). An alternative formulation is
given in §3.1 below. For the first approach, we introduce the spike height ratio s by

(3.3) s=—

and reduce (3.1) to the three-component system A (z1, 22, s) = 0 with A" € R3 defined
by

51 (1) 5 1 (z2) dy
4 = —— — d = —— - —=
(3 a‘) Nl 9 [L(.'Ifl) e1+dais, NQ 2 ,LL(I‘Q) €2 s )

(3.4b) Ny = 82 [u(x2)]*? (e1 + dis) — [p(x1)]*? (di + c28) .
In terms of solutions to N; = 0 for j = 1,...,3 the spike heights are

(c1 +dys)

34 Hl - )
(3:4) 6 [u(e) 2

H2 :SHl.

In (3.4) and (3.1), the constants ¢, ¢z, d1, €1, and ey are defined by (see (2.20b)):

¢y = coth(ze — x1) + tanh(L + x1), c¢o = coth(xe — 21) + tanh(L — z2),
(3.5) e1 =tanh(L + x1) — coth(ze — z1), ez = coth(za — 1) — tanh(L — x2),

dy = —csch(zg — 1) .

For the special case where u(x) is even, i.e. u(x) = u(—x), we label “symmetric”
spike equilibria as those solutions of (3.4) for which s = 1 and zy = —z;. For
this case, ¢; = ca, e = —ey, and N3(—z2,72,1) = 0. Moreover, we calculate that
es + di = tanh(zs) — tanh(L — x2), and so (3.4) reduces to finding a root x5 on
0 < 29 < L to the scalar equation S(z2) = 0 given by

(3.6) S(as) = ‘; ((j;)) _ % ftanh(L — 22) — tanh(z2)] .

It readily follows that when u(z) > 0 and p/(x) > 0, there is always a root to S =0
with 0 < z2 < L/2. Our bifurcation results shown below are for the quadratic
precursor field p(x) = 1 + bx? with b > 0, as given in (1.2). For this special choice

of p, instead of computing xo = x2(b) in (3.6) using Newton iterations, we can solve
S =01in (3.6) in the explicit form b = b(xs), where

[tanh(L — x5) — tanh(xs)]
%9 (5 — z2 [tanh(L — z3) — tanh(z3)])

(3.7) b=

By varying z2 on 0 < 25 < L/2 in (3.7), and keeping only points where b > 0,
we obtain a simple parametric representation of the symmetric two-spike equilibrium
solution branch with z; = —xz3. The common spike heights are given by

(3.8) H.=Hy5= [tanh(zg) + tanh(L — z2)] .

6 [1u(x2)]*/
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The linear stability with respect to the DAE dynamics (2.22) at each value of b on this
symmetric solution branch is obtained from a numerical computation of the matrix
spectrum of the generalized eigenvalue problem (3.2).

To parameterize asymmetric two-spike equilibria for the special case ;1 = 1+ ba?,
we isolate b from setting A7 = N2 = 0 in (3.4a). By equating the resulting two
expressions for b, we obtain an equation relating x; and s, in which we treat s as a
parameter. The remaining equation is N3 = 0 from (3.4b). In this way, for s # 1, we
calculate solutions x1 = x1(s), 2 = x2(s) to the two-component coupled system

(23 — 23) (e1 — dys) (e2 + C?) -5 |:CL‘2 (e1 —dys) — a3 <e2+ ‘i})] =0,

82 [1(@2)]* (er + dus) — [u(x)]*? (dy + e28) = 0,

(3.92a)

in which p(x) = 1+ ba?, where b is given by

- d18—61
o 5(E1 +(E%(61 — dls) '

(3.9b) b

The spike heights are then obtained from (3.4¢) in terms of the parameter s. This re-
formulation of (3.4) gives a convenient approach for parameterizing solution branches
of asymmetric two-spike equilibria in terms of the spike height ratio s. For the finite
domain case L < oo, the coefficients ¢, cq, €1, es, and dy, are given in (3.5), while
when L = oo, we use ¢; = co = 2/(1 — e 2@2721)) and ¢; = —ey = %
Finally, at each point on these solution branches the spectrum of the generalized
eigenvalue problem (3.2) is computed to determine the linear stability of asymmetric
spike equilibria to the small eigenvalues.

Although this approach works well for moderate values of s, for either very large
or small values of s the nonlinear algebraic system (3.9) is rather poorly conditioned.
As a result we need an alternative approach to compute two-spike equilibria.

3.1. Two-Spike Equilibria: An Alternative Parameterization. An alter-
native approach to parameterize symmetric and asymmetric two-spike equilibrium
solution branches for the special case where p(x) is even is described in Appendix A.
This approach leads to a nonlinear algebraic system in terms of v, r_, and ¢, where
¢ is the symmetry point in the interval —r_ < ¢ < ry at which h, = 0. Here zo =1

and 1 = —r_ are the two steady-state spike locations with spike heights Hi. As
shown in Appendix A, with this formulation we must solve
(3.10a) f(ry,0) =0, flr—,—€) =0, E(ry,0) —&(r—,—0) =0,

for r and ¢, where f(r,¢) and £(r,¢) are defined by

w(r) | 4(ga(r,r;0))
3.10b f(r0) = + = , E(r, ) =
( ) (r;£) u(r)y 5 glryr;e) (r.6)
where (g, (r,r;¢)) indicates the average of g, across x = r. Here g(x,r;¢) is the 1-D
Green’s function, with Dirac point r and left domain endpoint ¢, satisfying

u=32(r) g(4,r;0)
6 g (r,r;0)’

(3.11) Joz —g=—0(x—71), {<z<L; g =0 at z=1/¢,1L.

In the infinite domain case, where L = co, we calculate that

1 1
(312) glrrif) =3 (14, gllrf=c", (galrri0) =~
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286 so that (3.10b) becomes
2br 4 £(r.0) 2(1 + br2)=3/2 el
— rf) = .
L4+0r2  5(1+e2r=0)’ ’ 3 (1 + e2(t=m))2
288 The spike heights for the inhibitor are defined in terms of r4 by

e (4 b2)
©6g(ra,ra; ) 3(1 4 e2(Fre))

287 (3.13) f(r,0) =

289 (3.14) Hy

290  Alternatively, for the finite domain case, we calculate from (3.11) that
cosh(r — ¢) cosh(r — L) cosh(r — L)
i) = b)) = ————F
9(rr:6) sinh(L — ¢) 9l = SR
291 (3.15) )
(g (73 0)) = sinh(2r — L — £)
A 2sinh(L —¢)

292 so that (3.10b) becomes
(3.16)

203 f(r,l) = 2br 2sinh(2r — L — ¥)

14br2  5cosh(r — £)cosh(r — L)’

(1 +br?)~3/2sinh(L — ¢)
snf) = 6 cosh?(r — £) cosh(r — L)

294  For this finite domain case, the spike heights are given by

(14 br3)=3/2sinh(+ — L)

205 (3.17 Hy =-— .
(8:17) 6 cosh(+¢ —ry)cosh(ry — L)
16 T ‘ ) 03 %
1al —symmetric || \‘ —symmetric
—asymmetric | asymmetric
1.2 g 0.25 NG
_ [T
LA P ..
= e
- 0.2 e
Tos 1 = oz
~ i/
06 015 1f
0.4 F
0.2 0.1
0 0.1 0.2 03 0.4 0 0.1 0.2 0.3 0.4
b b

Fig. 3: Left: steady-state spike locations ry and —r_ for L = 2 versus b in (1.2).
Right: height H; of the rightmost spike versus b. Solid lines: linearly stable to
both the small eigenvalues and the large (NLEP) eigenvalues when 7 <« 1. Dash-
dotted lines: unstable for the small eigenvalues but stable for the large eigenvalues
when 7 < 1. Dashed line: stable to the small eigenvalues but unstable to the large
eigenvalues when 7 < 1. Red dot: zero-eigenvalue crossing of the NLEP on the
symmetric branch. Bifurcation from symmetric to asymmetric equilibria is subcritical.

296 To compute branches of two-spike equilibria as either b or L is varied, we write
297 (3.10) for r4 and ¢ in the form F(u,({) = 0, where

f(r-‘ra l)
208 (3.18) F(u,() = flr_, =) . with u=(ry,r_, 0T, ¢=@0,0)T.

§(re,1) —&(r—, =)
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3 T T 0.35

. —symmetrlc' | 03
—asymmetric

| 0.25

27 ®--.__
1 A (O Sl P
0.2
~
— 15 £
+ 0.15 N
= 4l —symmetric
R .
0 —asymimetric
0.5 0.05
0 ‘ ‘ ‘ 0 ‘ ‘ ‘
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
b b

Fig. 4: Similar caption as in Figs. 1 and 3. Left: steady-state spike locations r
and —r_ for L = 3 versus b. The pitchfork bifurcation is now supercritical. Right:
height H; of the rightmost spike versus b. Solid lines: linearly stable to both the
small eigenvalues and the large (NLEP) eigenvalues when 7 < 1. Dash-dotted lines:
unstable for the small eigenvalues but stable for the large eigenvalues when 7 < 1.
Dashed line: stable to the small eigenvalues but unstable to the large eigenvalues
when 7 < 1. There are only very small (nearly indistinguishable) zones along the
asymmetric branches that are unstable to the small eigenvalues. Red dots are where
the NLEP has a zero-eigenvalue crossing.

Families of solutions and branch points (corresponding to symmetry-breaking
pitchfork bifurcations) of this nonlinear system were computed using the two soft-
ware packages AUTO (cf. [7]) and coco (cf. [3]), thereby validating the diagrams
provided in Figs. 1, 3, 4, 5, 6 and 7. In Appendix A we give explicit formulas for the
Jacobian of F' with respect to u and the parameter vector (, since providing analyt-
ical Jacobians significantly improves the performance and accuracy of continuation
routines as opposed to using numerical Jacobians based on centered differences.

3.2. Numerical Bifurcation Results for Two-Spike Equilibria. For L = 2,
in the left panel of Fig. 3 we plot the numerically computed steady-state spike loca-
tions versus the precursor parameter b. In the right panel of Fig. 3, we plot the
corresponding height H, of the rightmost steady-state spike versus b. In addition,
in our plot of H; versus b we indicate by various line shadings the linear stability
properties of the steady-state solutions. We first observe that asymmetric two-spike
equilibria emerge from a subcritical symmetry-breaking bifurcation from the branch
of symmetric two-spike equilibria at the critical value b ~ 0.034. However, the asym-
metric solution branches are all unstable with regards to the small eigenvalues, as
indicated by the dash-dotted black curves in the right panel of Fig. 3. Below in the
left panel of Fig. 9 we show from a numerical computation of a vector-valued NLEP
that these asymmetric branches are all stable on an O(1) time-scale when 7 is suf-
ficiently small. These linear stability properties are qualitatively similar to that for
two-spike equilibria of the GM model with no precursor field (cf. [29]).

In the left and right panels of Fig. 4 and Fig. 1 we plot similar global bifurcation
results for two-spike equilibria when L = 3 and L = 5, respectively. For these values
of L, we observe that the symmetry-breaking bifurcation is now supercritical and that
a large portion of the bifurcating asymmetric two-spike branch of equilibria is linearly
stable with regards to the small eigenvalues. Moreover, as shown below in the middle
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10 — ®-
8
PO —symmetric || 4 °2[ |\ T
T —asymmetric :
4o Y 1 —symmetric
s —asymmetric
0 0 e
0 0.5 1 1.5 2 0 0.2 0.4 0.6 0.8 1
b b

Fig. 5: Left: steady-state spike locations r; and —r_ for L = 10 versus b. Right:
height H; of the rightmost spike versus b. Solid lines: linearly stable to both the
small eigenvalues and the large (NLEP) eigenvalues when 7 < 1. Dash-dotted lines:
unstable for the small eigenvalues but stable for the large eigenvalues when 7 < 1.
Dashed line: stable to the small eigenvalues but unstable to the large eigenvalues
when 7 < 1. Dotted line: unstable to both the small and large eigenvalues when
7 < 1. Red dots are where the NLEP has a zero-eigenvalue crossing. In the right
panel we have not shown the hairpin turn that occurs when b =~ 1.67 that provides
the connection between an interior spike and a boundary spike solution.

and right panels of Fig. 9, these asymmetric solution branches are all linearly stable
for 7 sufficiently small with regards to the large eigenvalues for the range of values
of H between the two red dots shown in the right panel of Fig. 4 for L = 3 and of
Fig. 1 for L = 5. Overall, this establishes a parameter regime where linearly stable
asymmetric two-spike equilibria occur. For L = 3, this theoretical prediction of stable
asymmetric two-spike equilibria is confirmed below in Fig. 12 of §5 from full PDE
simulations of (1.1). For L = 5, a similar validation of the linear stability theory
through full PDE simulations was given in Fig. 2 of §1.

In Fig. 5 we plot global bifurcation results for two-spike equilibria when L = 10.
The right panel of Fig. 5 shows a parameter regime where stable asymmetric two-
spike equilibria can occur when 7 < 1. However, in contrast to the global bifurcation
diagrams when L = 2, 3,5, we observe that when L = 10 there are two zero-crossings
for the NLEP on each asymmetric solution branch, with the pattern being unstable
to both the small and large eigenvalues for some intermediate range of b. This linear
stability behavior with respect to the large eigenvalues is confirmed below in the
left panel of Fig. 10 through numerical computations of the spectrum of a vector-
valued NLEP. Moreover, we observe from Fig. 5 that asymmetric patterns originating
from a symmetry-breaking bifurcation of symmetric two-spike equilibria are path-
connected through a saddle-node point of high curvature to an unstable two-spike
steady-state consisting of a boundary spike of large amplitude and an interior spike
of small amplitude.

Similar results are shown in Fig. 6 for the infinite line problem where L = co. For
this case, stable asymmetric patterns occur near the symmetry-breaking bifurcation
point. Moreover, as for the case where L = 10, along the asymmetric solution branch
there is an intermediate range of b where the pattern is unstable to both the small
and large eigenvalues. This instability range of b for the large eigenvalues is observed
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5 : : 05 : :
—symmetric —symmetric
4||—asymmetric ] 04 r —asymmetric
I
&
- o ---_ .
+-0 2 1 o5 \  TTTTmmm=eaao.__\
Je
]
0 | 0 | T ——— -
0 0.1 02 03 0.4 0 0.1 02 03 0.4

b b

Fig. 6: Left: steady-state spike locations r; and —r_ for L = oo versus b. Right:
height H; of the rightmost spike versus b. Solid lines: linearly stable to both the
small eigenvalues and the large (NLEP) eigenvalues when 7 < 1. Dash-dotted lines:
unstable for the small eigenvalues but stable for the large eigenvalues when 7 < 1.
Dashed line: stable to the small eigenvalues but unstable to the large eigenvalues when
7 < 1. Dotted line: unstable to both the small and large eigenvalues when 7 < 1.
Red dots are where the NLEP has a zero-eigenvalue crossing. Observe that there is an
intermediate range of b along the asymmetric branches where the pattern is unstable
to both the small and large eigenvalues. The asymmetric patterns re-stabilize for
larger b and results in a spike of large amplitude and another of negligible amplitude.

Fig. 7: Symmetry-breaking bifurcation point b, versus L where the asymmetric
branches of two-spike equilibria bifurcate from the symmetric branch. The red dot
indicates the critical values b, ~ 0.0760, L, ~ 2.597, r1 . ~ 0.793 where this bifur-
cation switches between subcritical and supercritical. The bifurcation curve has a
vertical asymptote b ~ 0.095 as L — oo.

in Fig. 10 below from our computations of the spectra of the vector-valued NLEP.
However, when L = oo, there is no boundary spike solution and, as observed in Fig. 6,
the asymmetric solution branch no longer terminates at a finite value of b.

3.3. Computation of a Degenerate Bifurcation Point. From the global
bifurcation diagrams in Fig. 3 and Fig. 4 we observe that the symmetry-breaking
bifurcation switches from subcritical to supercritical on the range 2 < L < 3. We now
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describe a procedure to accurately compute the critical precursor parameter b = b,
and critical domain half-length I = L. where this switch occurs. The significance
of these critical values is that for L > L. the asymmetric solution branch is linearly
stable with regards to the small eigenvalues near the bifurcation point.

To formulate our procedure for computing these critical values we first define

(3.19) W(€) = &(ry (), €) = &(r-(£), =) ,

where ry = r4 (£) satisfy
f(T:t, ﬂ:g) = O .

Here £(r, ¢) and f(r, £) are defined in (3.10b). The asymmetric branch corresponds to a
non-zero root of W (¢) and the symmetry-breaking bifurcation occurs when W’(0) = 0.
To compute this point, denote r = r1(0), that is, the location of a symmetric spike
which satisfies f(r,0) = 0. Upon differentiating (3.19) implicitly and evaluating at
¢ = 0 we obtain that 7’ (0) = —r/, (0) = —r/, so that the bifurcation occurs when the
following system is satisfied:

(3.20) =0, f=0; r':—ﬁ' &rl+&=0.

fr’
In the left panel of Fig. 14 of Appendix A we include the Maple code that computes
this bifurcation point. For example, when L = 2 we obtain from solving (3.20) that
b = 0.03406 and r = 0.835585.
Since W (¥) is an odd function we have for small £ that

W (0) ~ EW'(0) + e3w +Oo(),

with all even derivatives of W being zero. The criticality of the bifurcation depends on
the sign of W"(0). A positive sign corresponds to a supercritical bifurcation, whereas
a negative sign corresponds to a subcritical bifurcation. The change of bifurcation
occurs when W (0) = W/(0) = 0. To compute W (0), we differentiate implicitly
and set £ = 0. We readily calculate that

W/(O) = 57"71/ + SZ ) WH(O) = 57"7‘70/2 + 267"470/ + £TTH + g% )
WW(O) = ETT‘T‘TIB + 357”7“1?7’/2 + 357“1?67J + 3£rrrlrll + 367"27'// + §r7"'” + 5@” .

The values of r, r" and r” are obtained by differentiating f implicitly. This yields

T‘/:—E r//:_frr7/2+2fr€7q/+f€€
fr’ fr ’
TW _ frrrrls + 3frr€r/2 + 3fru7“/ + 3frrr/rll + 3frérll + ff“
a Ir ’

which are then evaluated at ¢ = 0. In this way, the set of equations
(3.21) =0, f=0; W(0)=0, W"(0)=0,

must be solved numerically to obtain the higher-order bifurcation point. The right
panel of Fig. 14 of Appendix A shows the Maple implementation. Although the system
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(3.21) is very large (its length is about 20,000 bytes in Maple), its numerical solution
is found instantaneously, yielding

(3.22) L=1L,=25972 b=b.=0.07596, 7r=r.=.792655.

We conclude that the symmetry-breaking bifurcation is supercritical when L > 2.5972
and is subcritical when L < 2.5972.

4. NLEP Stability Analysis. We now examine the stability on an O(1) time-
scale of steady-state spike equilibria of (1.1), labeled by a. and h.. We will derive
a new vector-valued nonlocal eigenvalue problem governing instabilities of the spike
amplitudes on an O(1) time-scale. From this vector-NLEP, we will analyze in de-
tail the linear stability of the two-spike equilibria constructed in §3 to these “large

eigenvalues” for the choice u = 1+ bx?.
To formulate the linear stability problem, we first introduce the perturbation
(4.1) a(x,t) = ae + eMo(x), h(z,t) = he + eMap(z),

into (1.1) and linearize. This leads to the singularly perturbed eigenvalue problem

2a,

he
(@20) e (4T =—Za, <L (L)=0.

(4.22) e Puw — u(2)e +

2
ae
_E¢:A¢a ‘13|SL, ¢x(iL):07

In the inner region near a spike at © = x;, we have from (2.4) that
ae ~ piHw (\/i;y;)  he ~ H;, where y; =¢ '(z—uaj),

i = p(xj), and w(z) = %sechz(z/Z). Here H; is the spike height obtained from the
steady-state of (2.22). Next, we introduce the localized eigenfunction

(4.3) D;(y;) = oz +ey;),
and obtain from (4.2a) that on —oo < y; < oo, and for each j =1,..., N,

P,
R 2 (Vigy;) @5 = i [w (VE7ys))" W = A@;,
J

(4.4)

where W, is a constant to be determined. Then, we let 2 = , /ii;y, and define <i>j (2) =
®; (2/\/1t7), so that (4.4) becomes

2e; . .
I & +2w(2)®; — py [wz)])?¥; = Zd;, —o0<z<00.

4.5

To determine ¥;, we must construct the outer solution for ¢ in (4.2b). In the

sense of distributions we calculate for € — 0 that

oo

(4.6) §a€¢ N ( / w(z)d, (=) dz) 5 — ;).

—00
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In this way, we obtain that the outer solution for ¢ in (4.2b) satisfies

oo

(4.72) Yy — 03) = —2 ZHJ\//TJ (/ w(2)®;(z) dz) Sz —xj;), |z|<L,
j=1

(4.7b) Yo(£L) =0, Oy =VI+7A.

In (4.7b) we must choose the principal branch of 6. The constants ¥; for j =1,..., N
are obtained from the matching condition that ¥; = ¢(x;) for j =1,...,N.
By solving (4.7) on each subinterval we readily derive a linear algebraic system

for @ = (¥y,..., Ux)" in the form
2 1/2 >
T —oo

where the diagonal matrices U and H have diagonal entries (U/),; = p(z;) and (H);; =
Hjfor j=1,...,N. In (4.8), B, is defined by

cin dia 0
(4.92) B=| M :
B ’ dn—1x
0 dnv—1x  cNx

where the matrix entries are given by

c1xn = coth(fy(xo — 1)) + tanh(0x (L + 21)) ,

ena = coth(Ox(zny — zn—1)) + tanh(0x(L — zn)),

cjx = coth(Ox(zj41 — x;)) + coth(Ox(z; —zj—1)), j=2,...N—1,
djx = —csch(Ox(zjp1 —2j5)), j=1,...,N—1.

(4.9b)

Next, upon substituting (4.8) into (4.5), we obtain the following vector-valued
NLEP for ® = (@1,...7<§N)T on —oo < z < 00;

N * wEAD dz N N
(4.10a) L@—wZLO;’Oi)\ =\XU1D; ® -0 as |z] > o0,
o w?dz
12 . . N .
(4.10b) 8= S UBUT (UPPH) LB =8 - &+ 2ud.
V147X

We then diagonalize £, by finding the eigenvalues £ye = y e and obtain that
(4.11) Ex=VAV!,

where V is the matrix of eigenvectors of £\ and A is the diagonal matrix of eigenvalues
with (A);; = xa,j, for j = 1,...,N. Then, by defining ® = V~'®, we obtain the
following vector-valued NLEP defined on —oo < z < oo with ® — 0 as |z| — oc:

[ wddz

0\ c=viuty.
o w?dz

(4.12) LP — w?A

This manuscript is for review purposes only.



460

161

462

163

464

465

466
167

STABLE ASYMMETRIC SPIKE EQUILIBRIA WITH A PRECURSOR FIELD 17

The key difference between this NLEP analysis and that for the Gierer-Meinhardt
model with no precursor field in [15] and [14] is that the NLEP cannot be diagonalized
into N separate scalar NLEPs, one for each eigenvalue of A. From (4.12) we observe
that the NLEPs are coupled through the matrix C.

We now study (4.12) for our two-spike symmetric and asymmetric equilibria con-
structed in §3 for p = 1 + ba?.

4.1. NLEP Analysis: Symmetric 2-Spike Equilibria. For the symmetric
two-spike case with o = —x1, we use U = p(a9)l and H = H.I, to get from (4.10b)
that
(4.13)

12
&\ =

V1I+71A

as obtained from (3.8). We readily calculate the matrix spectrum of B) as

[w(2)]¥? HBSY, where  [u(x2)]*? H, = tanh(zy) + tanh(L — z5),

Byvy = k1pvr; v = (1, 1)T, k1x = tanh(Oyxo) + tanh(0\ (L — x3)),

(4.14) .
Bavg = kapv2; v2 = (1,—-1)", Koy = coth(frza) + tanh(0y(L — z2)) .

In this way, for symmetric two-spike equilibria, we obtain that (4.12) is equivalent to
the two scalar NLEPs, with NLEP multipliers x1,» and x2,x, defined by

(4.15a)
. ) [ wddz A = ¥
LO —wAN—ZF——— = 3%, —0<z<o0; 20 as |2 = oo;
Joowrdz )

2 tanh(zg) + tanh(L — x2) )

4.15b A= = ’

( ) (A)11 = X1 NG SY (tanh(@Awg) + tanh(0x (L — x2))
2 tanh(xs) 4+ tanh(L — x2) )

4.15 Aoz = =

(4.15¢) (A)22 = x2.0 VIt (coth(@,\xz) + tanh(0x (L — 2))

468 where 0 = 1+ TA.

0.2 0.66
0.64
0.15
0.62
Q
Q
0.1 0.6
=) S
0.58
0.05
0.56
0 0.54
1 2 3 4 5 1 2 3 4 5

Fig. 8: Critical values b, of the precursor parameter b (left panel) and the spike
location zg. (right panel) versus L where the NLEP (4.15) with multiplier x2 ) has
a zero-eigenvalue crossing for the linearization of a symmetric two-spike steady-state.
For z9 < xa., or equivalently for b > b., a competition instability on an O(1) time-
scale occurs.
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We first consider the competition mode corresponding to vy = (1, —1)T where the
multiplier of the NLEP in (4.15a) is x2,x, which depends on A through the product
T, so that x2x = x2.(7A). From Proposition 3.6 of [24], we conclude for this
competition mode that there is a unique eigenvalue in Re(\) > 0 for any 7 > 0 when
X2,2(0) < 2. By using (4.15c), we calculate that x2 (0) < 2 when

2tanh(xo) + 2tanh(L — x5) < coth(zy) + tanh(L — zq),

which, after some algebra, reduces to

1 2 th L
(4.16) coth(xsy) coth(L) > 2 — 0 < 2y < Zop = 5 log < + co ) 7

2 —coth L

provided that L > L. = log(2 + v/3) ~ 1.3169. We conclude that a competition
instability occurs whenever spikes become too close. When L < L., a competition
instability occurs for any x5 > 0. Equivalently, from (3.7), we conclude that on the
range L > L. a competition instability occurs along the symmetric branch of equilibria
whenever the precursor parameter b satisfies b > b, where

[tanh(L — x5.) — tanh(zz,)]

(4.17) be = Zae (5 — @20 [tanh(L — z2,) — tanh(z2.)]) |

In Fig. 8 we plot b. and xs. versus L on the range L > L. =~ 1.3169. Numerical
values for b, for different L correspond to the red dots on the symmetric branches
of equilibria shown in Fig. 1, and in Figs. 3, 4, 5, 6. For b < b., or equivalently for
Zg > Za., Proposition 3.6 of [24] can be used to prove that the two-spike symmetric
steady-state is linearly stable on O(1) time-scales whenever 7 in (1.1) is below a Hopf
bifurcation threshold 7. We refer the reader to [24] for the proof of this statement.

Next, we briefly consider the NLEP (4.15) for the synchronous mode v; = (1,1)7,
where the NLEP multiplier x; » is given in (4.15b). We calculate that x1.(0) = 2,
for any 7 > 0 and b > 0. As a result, from Theorem 2.4 of [28] (see also [30]) we
conclude that the NLEP for the synchronous mode has no eigenvalues in Re(\) > 0
when 7 = 0, or when 7 is sufficiently small. As similar to the analysis in [28] with
no precursor, a Hopf bifurcation can occur when 7 exceeds a threshold, which now
depends on b and L. We do not calculate this Hopf point numerically here.

We summarize our NLEP stability result for the symmetric two-spike steady-state
branch as follows:

PROPOSITION 1. Consider the two-spike symmetric steady-state solution for (1.1)
with precursor p(x) = 1+bx?, where the spike locations x1 and x2, with x5 = —x1 are
given in terms of b by (3.7). Suppose that L > L. = log(2 + v/3) ~ 1.3169 and define
the critical half-distance xo. between the spikes and the critical precursor parameter
be by (4.16) and (4.17), respectively. Then, for any b with b > b., or equivalently
for any xo with x9 < o, the NLEP (4.15) with multiplier x2,x for the competition
mode has a unique unstable eigenvalue in Re(\) > 0. Alternatively, if b < b, and
for 0 <7 < Tg, the two-spike symmetric steady-state is linearly stable on O(1) time-
scales to the competition mode. Finally, the NLEP (4.15) for the synchronous mode,
with multiplier x1,x, has no unstable eigenvalues when T > 0 is sufficiently small.

4.2. NLEP Analysis: Asymmetric 2-Spike Equilibria. We will analyze the
NLEP (4.10) for two-spike asymmetric equilibria for the special case where 7 = 0. To
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do so, we set F3 = F, = 01in (3.1) to calculate that

1( c1+dis 0
3/2q9, _ _ 1 1+dy
(4.18) U'*H =2, where Z= 5 ( 0 cs +di /s ) ,

with s = Hy/H;. As a result, since U and Z are diagonal matrices, we can write the
NLEP in (4.10) when 7 =0 as

foooo wEA D dz
iz AT

4.19 LD
(4.19) 7 wdz

=A@ & =2uUBtzUut.

Next, upon defining A by A = Z71B,, we calculate its matrix spectrum Av = kv,
which can be written as Byv = kZv. By using (4.9) for By with 7 = 0, and (4.18)
for Z, we conclude that x must satisfy

(4.20a) det (O~ 1ot is) d )y,
dl Co — R (CQ -+ ?1)

which yields that x satisfies the quadratic equation

d d
(420b) K2 ((2102 + codys + d% + 0151> —K (20102 + disco + 1561) +c1e9 — d% =0.

Observe that k1 = 1 is always an eigenvalue, and so ko can readily be found. A simple
calculation yields that the matrix spectrum of Z711, is

1) ’Ulz(i)a

_ crcp — di vy — —dy
o 0162+d%+d1 (CQS—|—61/S) ’ 2= Cl—lﬁlz(cl +d1$) ’

Next, we define the eigenvector matrix V), the diagonal matrix A, and the matrix C
by
(4.22)

(1 —d, (2 0 N
V_<s Cl—Kg(Cl+d18)>7 A_(O 2/&2)’ C=VTu—v,

so that & = 2UA™UL = UV)AUV)"". Finally, by setting & = (UV)'®, we
obtain the vector-valued NLEP (4.12), where A and C are defined explicitly in (4.22).

In the context of spike stability, the vector-valued NLEP (4.12) is a new linear
stability problem, for which the NLEP stability results for the scalar case in [30], [28],
and [4] are not directly applicable. Analytically, it is challenging to provide necessary
and sufficent conditions to guarantee that the NLEP (4.12) has no eigenvalues in
Re(A) > 0. However, one can analyze any zero-eigenvalue crossings, by using the
well-known identity Low = w?. By setting ® = (0,w)?, we observe from (4.12)
that a zero-eigenvalue crossing will occur when ko = 2. By using (4.21) for ko, a
zero-eigenvalue crossing occurs when

K1
(4.21)

(4.23) cic2 + 3d% = 2|d1‘ (628 + %) .

Here c¢1, co and d; are determined in terms of the steady-state spike locations x
and xo by (3.5), while s = Hy/H; parameterizes the branch of asymmetric two-spike
equilibria in either (3.4), or equivalently (3.9). An interpretation of the zero-eigenvalue
crossing is given in the following remark.
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Remark 4.1. Equilibria of the DAE system (2.22) are solutions to the nonlinear
algebraic system F(z1, 2o, Hi, Hy) = 0 for F € R*, as given in (3.1). For a fixed x;
and x2, we claim that the linearization of the subsystem F3 = F4 = 0 in (3.1) for the
spike amplitudes is not invertible when the NLEP has a zero-eigenvalue crossing. To
see this, we calculate along solutions to (3.1) that

Jy = Fan,  Fsm,
-\ Fam, Fam,

12,[1,?/2H1 —C1 7d1 _ ( c1 + 2d15 7d1 )
—d1 12/,&3/2}[2 — C2 _dl co + 2d1/8 .

A simple calculation shows that det(J3) = 0 if and only if

(4.24) c1es + 3d% = —2d; (CQS + Ci) :
S

which is the condition derived in (4.23) for the zero-eigenvalue crossing of the NLEP.

The condition (4.23) for a zero-eigenvalue crossing is indicated by the red dots on
the asymmetric branches of equilibria shown in Fig. 1, and in Figs. 3, 4, 5, 6. For the
corresponding scalar NLEP case, where C is a multiple of the identity, the rigorous
results of [30] prove that Re(A) < 0 if and only if kg < 2, and that an unstable real
eigenvalue exists if ko > 2. We now investigate numerically whether these optimal
linear stability results persist for the vector-valued NLEP.

4.2.1. Numerical Computation of the Vector-Valued NLEP. We com-
T

pute the discrete eigenvalues of the vector-valued NLEP (4.12) for d = (él, <f>2) ,
where A and C are defined in (4.22). To do so, we use a second-order centered finite
difference discretization of the NLEP, where the nonlocal term is discretized using the
trapezoidal rule. We discretize (4.12) on 0 < z < zps using the nodal values

3 .
zj=h(j—1), hEanfl, wj:w(zj)zisech2(%]), j=1,...,n,
v = (\IJI,17 R \Ijl,na \112,17 .. ‘7q]2,’n)T )

where W) ; ~ ®1(z;) and Wy ; ~ ®y(2;) for j = 1,...,n. We impose that & = 0 at
z = 0, zps, which is discretized by centered differences. The resulting block-structured
matrix eigenvalue problem for the pair ¥ € R?” and X is given by

(4.25a) (Kn + M) ¥ = AP, W,

where the matrices K,, € R?™2" M, € R?™2" and P,, € R?™?" are defined by

_ K 0 _ M 0 _ 011I 012I
(4.25b) K = ( 0 K ) » Mn= ( 0 Ky'M ) » Pn= ( corl el )
Here I € R™" is the identity, and ¢;; for 1 < 4,7 < 2 are the matrix entries of the

2 x 2 matrix C defined in (4.22). In (4.25b), the n x n tridiagonal matrix K and the
full » x n matrix M are defined, respectively, by

2 2
Kig=Kpn-1=75, Ki=—-735—-14+2w;, for 1=1,...n,
’ ) h2 h2
(4.25¢) )
Kiit1=Kiji-1=-—, for i=2,....,n—1,

h2’
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and

For n = 250 and z); = 15, the matrix spectrum of (4.25) is computed numerically
using a generalized matrix eigenvalue solver from EISPACK at each point along the
asymmetric solution branches of two-spike equilibria. In Fig. 9 we plot the first two
eigenvalues of (4.25), defined as those with the largest real parts, versus the height H
of the rightmost spike for L = 2,3,5. In terms of H, we recall that the asymmetric
branches of equilibria for these values of L were shown in the right panels of Figs. 3,
4 and 1, respectively. From Fig. 9 we observe that the first two eigenvalues are
real-valued except for a small range of H; when L = 2, where they form a complex
conjugate pair. These numerical results confirm the zero-eigenvalue crossing condition
(4.23), obtained by setting ko = 2, as evidenced by the intersection of the heavy-solid
curves and the horizontal blue lines in Fig. 9. However, most importantly, the results
in Fig. 9 establish numerically that the vector-valued NLEP (4.12), which is valid
for 7 = 0, has no unstable discrete eigenvalues whenever ko < 2, and that there is a
unique unstable discrete eigenvalue when k9 > 2. Increasing the number of gridpoints
n or the cutoff z,; did not alter the results to two decimal places of accuracy.

For L = 10 and for the infinite domain problem with L = oo, in Fig. 10 we
plot the first two eigenvalues of (4.25) versus the precursor parameter b along the
asymmetric solution branches of Fig. 5 and Fig. 6. From Fig. 10 we observe that along
these solution branches the NLEP has two zero-eigenvalue crossings, corresponding
to where ko = 2, and that the vector NLEP has a unique unstable eigenvalue between
these crossings. This linear stability behavior is encoded in the global bifurcation
diagrams for L = 10 and L = oo shown in the right panels of Fig. 5 and Fig. 6,
respectively.

5. Validation from PDE Simulations. In this section, we validate our global
bifurcation and linear stability results for the precursor field p(x) = 1+bx? from time-
dependent PDE simulations of (1.1). In our simulations, we give initial conditions
for (1.1) that correspond to a two-spike quasi-equilibrium solution, where the spike
heights satisfy the constraint in (2.22) for given spike locations x; and x5 at t = 0.

For L = 5 and b = 0.12, the results from the PDE simulations shown in Fig. 2
confirm that a quasi-equilibrium two-spike pattern tends to a stable asymmetric two-
spike equilibrium on a long time scale, as predicted by the bifurcation diagram shown
in the right panel of Fig. 1. The other parameter values are shown in caption of Fig. 2.
In contrast, if b = 0.18, from the PDE simulation results shown in Fig. 11 we observe
that a two-spike quasi-equilibrium solution undergoes a competition instability leading
to the destruction of a spike. For this parameter set, there is no stable asymmetric
two-spike steady-state pattern as observed from the right panel of Fig. 1.

Similarly, for L = 3 and b = 0.09, we observe from the full numerical results
shown in Fig. 12 that the quasi-equilibrium two-spike pattern converges as ¢ increases
to a stable asymmetric steady-state pattern. As shown in the bifurcation diagram
given in the right panel of Fig. 4 there is a stable asymmetric two-spike steady-state
for these parameter values.
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Fig. 9: Plot of the first (heavy solid) and second (dashed) eigenvalues (ordered by the
largest real parts), as computed from the discretization of the vector-valued NLEP
(4.12) versus the height H of the rightmost spike along the asymmetric solution
branches shown in Figs. 3, 4 and 1 for domain half-lengths L = 2 (left), L = 3
(middle) and L = 5 (right), respectively. Numerical evidence shows that when ko < 2,
the vector NLEP has no unstable eigenvalues, and that a unique positive eigenvalue
occurs when kg > 2. Here kg is defined in (4.21) and the zero-eigenvalue crossing
occurs when ko = 2, leading to (4.23). The thin horizontal blue line is the zero-
eigenvalue crossing.

05

X (NLEP)

06 0.1 04

Fig. 10: Plot of the first (heavy solid) and second (dashed) eigenvalues (ordered by
the largest real parts), as computed from the discretization of the vector-valued NLEP
(4.12) versus the precursor parameter b along the asymmetric solution branches shown
in Figs. 5 and 6 for a domain half-length L = 10 (left panel) and an infinite domain
L = oo (right panel), respectively. The NLEP has two zero-eigenvalue crossings
(intersection with the horizontal blue line) on each portion of the asymmetric branch
at parameter values where ko = 2 (see Fig. 5 and Fig. 6). Between the zero-eigenvalue
crossings the vector NLEP has a unique unstable real eigenvalue.

Finally, for L = 10, in Fig. 13 we show results for two-spike solutions computed
from PDE simulations of (1.1) for b = 0.15 and for b = 0.20. In the left panel of
Fig. 13 we show a stable asymmetric two-spike steady-state for b = 0.15 as computed
numerically from (1.1), starting from an initial condition chosen to be close to the
stable asymmetric pattern predicted from the global bifurcation diagram in Fig. 5.
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Fig. 11: Time-dependent PDE simulations of (1.1) with L = 5, & = 0.05, and 7 = 0.25
for a precursor u(z) = 1+ bx? with b = 0.18. Initial condition is a quasi-equilibrium
two-spike solution with spike locations z1(0) = —1 and z2(0) = 3. Plots of A and H
versus x at four different times showing that one spike is annihilated as time increases.
For b = 0.18, the right panel in Fig. 1 shows that there is no stable asymmetric two-
spike pattern. Left: ¢ = 180. Left Middle: ¢ = 335. Right Middle: ¢ = 650. Right:
t = 800.

05 05 05
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Fig. 12: Time-dependent PDE simulations of (1.1) with L = 3, = 0.05, and 7 = 0.15
for a precursor p(x) = 1+ bz? with b = 0.09. Initial condition is a quasi-equilibrium
two-spike solution with spike locations x1(0) = —0.5 and z2(0) = 1.5. Plots of
A and H versus z at three different times showing the convergence towards a stable
asymmetric two-spike pattern as predicted from the right panel of Fig. 4. Left: ¢ = 31.
Middle: ¢t = 301. Right: t = 900. As t increases there is only a slight adjustment of
the pattern.

For b = 0.20, where no such stable asymmetric pattern exists from Fig. 5, the PDE
simulations shown in the other three panels in Fig. 13 confirm the instability and
show the annihilation of the small spike as time increases.

6. Discussion. For the GM model (1.1) with a precursor field u(z) = 1 + ba?,
we have shown that a linearly stable asymmetric two-spike steady-state pattern can
emerge from a supercritical pitchfork bifurcation at some critical value of b along a
symmetric branch of two-spike equilibria. For this symmetry-breaking bifurcation, the
critical value of b depends on the domain half-length L. From a linearization around
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L L t L
Fig. 13: Left panel: steady-state of time-dependent PDE simulations of (1.1) with
L =10, e=0.10, and 7 = 0.15 for u(z) = 1 + bxz? with b = 0.15. Other panels: PDE
simulations of (1.1) when b is increased to b = 0.20 (other parameters the same). For
b = 0.20, the NLEP stability theory in Fig. 10 predicts no stable asymmetric two-
spike steady-state. The PDE numerical results show a collapse of the small spike. Left
middle: ¢ = 0. Right middle: ¢ = 0.61. Right: ¢ = 1.2. For the PDE simulations with
b= 0.15 and b = 0.20, the initial condition was a 2% perturbation of the asymmetric
steady state shown in the global bifurcation diagram Fig. 5.

the steady-state of a DAE system of ODEs for the spike locations and spike heights, we
have shown numerically that some portions of the asymmetric branches of equilibria
are linearly stable to the small eigenvalues. Moreover, from a combined analytical
and numerical investigation of the spectrum of a novel class of vector-valued NLEP,
we have shown that portions of the branches of asymmetric two-spike equilibria are
linearly stable to O(1) time-scale spike amplitude instabilities. Overall, our combined
analytical and numerical study establishes the qualitatively novel result that linearly
stable asymmetric two-spike equilibria can occur for the GM model with a precursor
field. Asymmetric two-spike equilibria in 1-D for the GM model are all unstable in
the absence of a precursor field [29].

Although we have only exhibited stable asymmetric patterns for the GM model
with a specific precursor field with two spikes, the analytical framework we have
employed applies to multiple spikes, to other precursor fields, and to other singularly
perturbed RD systems. In particular, the equilibria of the DAE system (2.18) could be
used to compute the bifurcation diagram of symmetric and asymmetric spike equilibria
for more than two spikes.

There are two open directions that warrant further investigation. One specific
focus would be to extend NLEP stability theory for scalar NLEPs to establish an-
alytically necessary and sufficient conditions for the vector-valued NLEP (4.12) to
admit no eigenvalues in Re(A\) > 0. In this NLEP we would allow C in (4.12) to be
an arbitrary matrix with positive eigenvalues. A second open direction would be to
extend the 1-D theory for the GM model with a precursor field to a 2-D setting in
order to construct stable asymmetric spot patterns in a 2-D domain.

7. Acknowledgements. Theodore Kolokolnikov and Michael Ward were sup-
ported by NSERC Discovery grants. Frédéric Paquin-Lefebrve was supported by a
UBC Four-Year Graduate Fellowship.

Appendix A. Alternative Formulation of Two-Spike Equilibria.
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In this appendix we briefly outline the derivation of the coupled system (3.10)
characterizing two-spike equilibria for the special case where u(x) is even in z. We
center the spikes at o = ry and z; = —r_, and we let £ be the unknown location, with
21 < £ < x9, where h,(¢) = a,(£) = 0. We label the spike heights as Hy = h(%ry).

To proceed, we first construct a steady-state spike at * = r, on the interval
(¢, L) with h, = 0 and a, = 0 at * = ¢, L. A similar construction is made for the
interval (—L,¢) with a spike at x = —r_. Then, since u(x) is even, we can write the
two steady-state conditions in a compact unified form, with the remaining equation
resulting from adjusting h(¢) so that h(z) is continuous across x = /.

For the right interval ¢ < x < L with a spike at x = r, we proceed as in the
derivation of (2.16) to obtain that r, satisfies

(Al) B ’u/(r+) . %<glz>|x:r+ _ 07

wry) 5 gife=r,

where (g1,) is the average of g1, across © = r,. Here gi(x,r4) is the 1-D Green’s
function satisfying

(A.2) Jiez — 1 = —0(x—ry), €<z<L; giz=0 at z=¢,L.

The inhibitor field h(x) and the spike height H, = h(r,) are given by

—3/2

(A.3) h(z) = 6H2 12 i (w,ry),  Hp=
6gllw:r+

where py = p(ry). Similarly, for the left interval —L < = < ¢ with a spike at
xr = —r_, we obtain that r_ satisfies

(A.4) (=) 4Gl _ 0.

w(=r-) 5 golum—r_

where go(x,r_) satisfies
(A.5) Joze — g2 = —0(x+r_), —-L<z<{; gor =0 at x=1¢,—L.

The inhibitor field h(z) and the spike height H_ = h(—r_) are given by
H:3/2

(A.6) h(z) = 6H* i go(w,r ), Ho= —— |
692|w:77‘,

where p_ = p(—r_).
Since p(x) is even, we have u(—r_) = p(r_) and p'(—r_) = —p/(r_). Next, we
set & = —z in (A.5) and label go(Z,r_) = g2(—Z,7_), so that (A.4) becomes

-2 =0,

B wr)  4(goz)|e=r_
(A7) w(ir—) 5 go|s=r_

where go(Z,r_) satisfies

(AS) ggij;—ggz—é(.’f?—T,), —€<.’i‘<L; g2z =0 at LE:—K,L.

To combine (A.1) and (A.7) into a unified expression it is convenient to define
g(z,r;0) as in (3.11), so that ¢1(z,ry) = g(x,r1;¢) and go(z,r—) = g(z,r—;—¢). In
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this way, (A.1) and (A.7) reduce to f(ry,¢) =0 and f(r_,—¢) =0, where f(r,{) is
defined in (3.10b). The condition that the inhibitor field is continuous across = = ¢,
as obtained by equating the two expressions for h(¢) in (A.3) and (A.6), yields the
continuity condition £(ry, ) = &(r_, —£) as written in (3.10b).

The computation of two-spike equilibria reduces to finding roots of F(u,() = 0,
as defined in (3.18) as the parameter vector ¢ = (b, L)T is varied. To compute paths
of solutions we employ the software packages AUTO (cf. [7]) and coco (cf. [3]) and
provide the Jacobian matrices

%ﬁ(?@, 2 0 aé (7'+a ?)
(A.9) D,F = 0 o (p_ ¢ Ty |
9% ot
B0~ ) %<r+,z>+%§<r_,—e>
%(7‘+,£) ?(L 7“_,'_7
(A1) DF=| Gl ) o
i)~ B =0 5(re0)— B0,

By using (3.16) for f and &, we can calculate the entries in the Jacobians analytically
as

Of _ [4cosh(2r — £ — L) — 2(tanh(r — £) 4 tanh(r — L)) sinh(2r — £ — L)}

or 5 cosh(r — L) cosh(r — ¢)
2b(1 — br?)
+ PR S
(1+06r2)2
Of _ 2 [sinh(2r — £ — L) tanh(r — ¢) — cosh(2r — ¢ — L)
o 5| cosh(r — L) cosh(r — ¢) ’

of 2r
b (1+br2)2”
Of _ 2 [sinh(2r — £ — L) tanh(r — L) — cosh(2r — £ — L)}

5 cosh(r — L) cosh(r — ) ’
o0& smh(ﬁ — L) [3br+ (1 +0br?)(2tanh(r — £) + tanh(r — L))
ar  6(1+ br2)5/2 [ cosh?(r — ) cosh(r — L) } ’
o6 (1+br?)=3/2 {Qtanh(r — 0)sinh(L — ¢) — cosh(L — 1)}

o 6 cosh?(r — £) cosh(r — L)
o _r2(1+b7’2)_5/2 { sinh(L — £) }
o 4 cosh?(r — £) cosh(r — L) ]’

o6 (1+ br?)=3/2 {cosh(L —{) + sinh(L — £) tanh(r — L)]
oL 6 cosh?(r — ) cosh(r — L)
Finally, in Fig. 14 we include the Maple code used to compute the symmetry-

breaking bifurcation point as well as parameter set where this bifurcation switches
from subcritical to supercritical. This was described in (3.20) and (3.21) of §3.3.
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