Pulse-Splitting for Some Reaction-Diffusion Systems in One-Space
Dimension

Theodore Kolokolnikov! Michael J. Ward! Juncheng Weit

Abstract

Pulse-splitting, or self-replication, behavior is studied for some two-component singularly-
perturbed reaction-diffusion systems on a one-dimensional spatial domain. For the Gierer-
Meinhardt model in the weak interaction regime, characterized by asymptotically small activator
and inhibitor diffusivities, a numerical approach is used to verify the key bifurcation and spectral
conditions of Ei, Nishiura, Ueda [Japan. J. Indust. Appl. Math., 18, (2001)] that are believed
to be essential for the occurrence of pulse-splitting in a reaction-diffusion system. The pulse-
splitting that is observed here is edge-splitting, where only the spikes that are closest to the
boundary are able to replicate. For the Gray-Scott model, it is shown numerically that there
are two types of pulse-splitting behavior depending on the parameter regime: edge-splitting in
the weak interaction regime, and a simultaneous splitting in the semi-strong interaction regime.
For the semi-strong spike interaction regime, where only one of the solution components is
localized, we construct several model reaction-diffusion systems where all of the pulse-splitting
conditions of Ei, Nishiura, Ueda, can be verified analytically, yet no pulse-splitting is observed.
These examples suggest that an extra condition, referred to here as the multi-bump transition
condition, is also required for pulse-splitting behavior. This condition is in fact satisfied by the
Gierer-Meinhardt and Gray-Scott systems in their pulse-splitting parameter regimes.

1 Introduction

In the singularly perturbed limit of small diffusivity, certain two-component reaction-diffusion sys-
tems in a one-dimensional spatial domain can support the existence of localized solutions, whereby
one, or both, of the components of the system become localized around certain points in the do-
main. The resulting patterns are referred to either as spike-type, or pulse-type, patterns. Two such
systems supporting these patterns are the Gray-Scott model (cf. [15]) and the Gierer-Meinhardt
model (cf. [13]).
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The Gierer-Meinhardt (GM) model (cf. [13]), and its extensions, have been widely used to model
localization processes in nature including, patterns on sea-shells (cf. [25]), and cell differentiation
and morphogenesis (cf. [24]). In dimensionless form, the GM model is a two-component system for

an activator concentration ¢ and an inhibitor concentration h, and can be written as (cf. [16])

P

at:e2am—a+%, —-l<z<l1l, t>0, (1.1a)
Tht:Dhm—h—ke_lC;—s, d<z<l1, t>0, (1.1b)
a'z(:tlat) = hx(ilat) =0; G,(.’E,O) = a()(-’L'), h(.’L‘,O) = h()(ll?) . (11C)

Here 0 < e < 1, D > 0, and 7 > 0, are assumed to be constants. The usual condition (cf. [13]) on
the exponents (p, g, m, s) are that they satisfy

p>1, qg>0, m > 1, s> 0, with (=

—(s+1)>0. (1.2)
(p—1)

The Gray-Scott (GS) system, introduced in [15], models an irreversible reaction involving two
reactants in a gel reactor, where the reactor is kept in contact with a reservoir of one of the two

chemicals in the reaction. In the dimensionless variables of [28], this system is

v = 2gp — v + Aur?, -l<z<1, t>0, (1.3a)
Tus = Dugg + (1 — u) — uv?, -l<z<l1l, t>0, (1.3b)
'U:c(:tlat) = uw(ilat) =0; ’U(.T,O) = ’Uo(iL‘) ) U(.’L‘,O) = IU'O(x) : (13C)

Here A>0,D >0,7>1,and e K 1.

For the GM and GS models, we refer to the parameter regime D = O(1) and ¢ < 1 as the
semi-strong spike interaction regime. In this regime, the two concentrations can be asymptotically
decoupled in at least some asymptotic subinterval of [—1,1]. For the GS model there are now
many results available for the existence, stability, and dynamics, of spike patterns in the semi-
strong interaction regime (cf. [4], [5], [6], [7], [9], [19], [20], [26], [27], [28]). Correspondingly, for the
semi-strong regime of the GM model there has been a largely parallel theoretical analysis for the
existence, stability, and dynamics, of spike patterns (cf. [8], [16], [17], [41], [42]).

Alternatively, the weak interaction regime for the GM and the GS models is defined by the
parameter range D = O(e?) and € < 1. In this regime, both components are localized and highly
coupled near certain points in the domain, and neighboring spikes interact by exponentially weak

forces. A rigorous analysis for the existence and stability of spike patterns in this regime is difficult.



In the weak interaction regime, one of the most qualitatively interesting phenomena related to
the GS and GM models is the possibility of self-replication, or pulse-splitting, behavior whereby
new spikes are created dynamically from the splitting of certain spikes in a spike sequence. For the
GS model, this behavior was first observed numerically in [34] in a two-dimensional square domain.
The interest in studying pulse-splitting behavior was also motivated by its occurrence in actual
physical experiments (cf. [21]). Initial studies for this behavior in a one-dimensional domain were
given in [35], [36], and [37].

For the GS model, the pioneering studies of [31], [32], and [40], gave a theoretical explanation,
based on a global bifurcation scenario, of the underlying mechanism responsible for pulse-splitting
phenomena, and even chaotic behavior, in the weak interaction regime. For more general reaction-
diffusion systems, specific bifurcation conditions that are believed to be essential for the occurrence
of pulse-splitting behavior in a general setting are formulated in [11]. These key conditions, which
play a central role in our study, are summarized below.

Alternatively, for the GM model in the weak interaction regime, pulse-splitting behavior can be
observed from some of the numerical computations of [25]. However, no theoretical explanations
are given there. Pulse-splitting behavior associated with a homoclinic stripe pattern for the GM
model posed in a thin two-dimensional rectangular domain was computed in [10], but no bifurcation
structure was analyzed. A preliminary numerical study of pulse-splitting for the GM model (1.1)
using a moving-mesh method was done in [39]. An interesting example of pulse-splitting behavior
for (1.1) was also given in [30] (see remark 6.2 page 257 of [30]).

The key conditions of [11] believed to be essential for pulse-splitting for a general reaction-

diffusion system posed in R!, with bifurcation parameter o, are summarized (roughly) as follows:

e Lining-up Property: Each k-spike equilibrium branch in terms of ¢, must have a saddle-
node, or fold-point, bifurcation. Moreover, the fold points for each of these branches of
equilibria occur at the same bifurcation value ¢ = .. This is the lining-up property of

equilibria.

e Spike Stability Condition: For each fixed k, and for each of the two branches of equilibria
that meet at the common saddle-node value, one branch is stable in the linearized sense, while

the other branch is unstable.

e Dimple Property: In addition to the translation eigenfunction, the spectrum of the lin-
earization of the equilibrium problem at each fold point location has a dimple-shaped eigen-

function ®4, associated with a zero eigenvalue, for one of the components of the system. By



definition, ®4 is dimple-shaped if it exponentially localized and, for some yg > 0, has the
property

D4(y) = a(-y); ®aly) >0, for y>yo; Da(y) <0, for 0<y<yo. (14)
Thus, ®4 has two positive lobes and one negative lobe (see Fig. 6 below).

¢ Stability of the Background State: The spatially homogeneous background state, away

from the spike locations, is stable in the linearized sense.

Other more minor technical conditions given in [11] are that the eigenfunctions and spike solutions
decay exponentially rapidly at infinity.

When the pulse-splitting conditions of [11] are satisfied, and when the bifurcation parameter is
chosen to have a value slightly past the fold point value, pulse-splitting should occur from a single
localized initial pulse. The ghost of the dimple eigenfunction at the fold point value still influences
the system for values of the bifurcation parameter slightly past this critical value. Similar ghost
effects in other bifurcation settings have been well-studied, including dynamical hysteresis loops
(cf. [14]), and delayed bifurcation effects caused by slowly varying control parameters (cf. [12]).

The first goal of this paper is to give a detailed numerical study of pulse-splitting behavior in
the GM model (1.1) in the weak interaction regime with D = £2Dy, where Dy is the bifurcation
parameter. This problem is studied in §2. Our numerical computations identify a saddle-node
bifurcation structure for a one-spike solution, and saddle-node bifurcation values D.y for Dy are
computed for various exponent sets (p, g, m, s). In this weak interaction regime, where a and h are
both localized, the existence of a saddle-node bifurcation value for Dy for a one-spike equilibrium
directly implies that the lining-up property of [11] will hold in a strict sense for k-spike equilibria.
By studying the spectrum of the linearized problem, we verify numerically that the spike stability
condition holds only for the parameter range 0 < 7 < 7. One branch is unconditionally unstable,
whereas at each point on the other branch there can be a Hopf bifurcation if 7 is large enough.
The value 7y ensures that the entire branch is stable to oscillatory instabilities for 0 < 7 < 7.
Finally, we numerically verify that the dimple property holds, and that the background state is
stable. Numerical experiments show that pulse-splitting does indeed occur.

In Fig. 1(a) we plot our bifurcation diagram for k-spike equilibria, which shows that a strict
lining-up property holds for (1.1) when (p,q,m,s) = (2,1,2,0), and D = £?Dy. For the GM
model (1.1) with (p,q,m,s) = (2,1,2,0), the fold points are shown in §2 to coincide at the value
D = 7.171€? (see Fig. 1(a)). For this exponent set, the saddle-node value Doy = 7.171 is consistent

with a numerical result in [10]. In Fig. 1(b) we plot numerical trajectories of the maxima of a for
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Figure 1: Left figure: |a|s, defined in (2.10), versus Dy = De~? for a k-spike solution to the GM
model with £ = 1,2,3 and (p,q,m,s) = (2,1,2,0). The fold point values increase with k. For the
dotted portions of these curves there is a multi-bump structure in each spike core. Right figure:
the trajectories z(t) of the local maxima of a for D = 6¢?, 7 = 0.01, and € = 0.02.

(1.1), computed using the NAG software [29] for the value D = 6¢? with ¢ = 0.02. Indeed, pulse-
splitting behavior is observed. The details of this, and similar, pulse-splitting computations are
given in §2. For symmetric initial data, we observe from Fig. 1(b) that the type of pulse-splitting
that occurs is edge-splitting, in which the spikes that are closest to the boundaries are the only ones
that replicate. Edge-splitting behavior was first identified for the GS model in the weak interaction
regime in [31], and a theoretical mechanism for this behavior is given in [11].

Our numerical computations, and investigations for other reaction-diffusion systems described
below, suggests that in addition to the conditions of [11], a certain multi-bump transition condition
must also hold for pulse-splitting to occur. For the solution component that is associated with
the dimple eigenfunction, this multi-bump condition states that this component makes a transition
between a one-bump profile on the stable branch to a two-bump profile at some point near the
fold point on the unstable branch. Therefore, this condition implies that the spike profile develops
an inflection point, at the location of its maximum, at some point along the the unstable branch.
Numerically, we find that this multi-bump transition condition holds for the GM model (see Fig. 4
below). In the bifurcation diagram of Fig. 1(a), we have indicated by the dotted lines those portions

of the bifurcation branches where the spike profile has a two-bump structure in each spike core.
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Figure 2: Left figure: bifurcation diagram for the GS model for k-spike solutions with € = 0.01,
D =0.1,and k =1,...,4. The saddle-node values Ay increase with k. Right figure: trajectories
of the maxima of v showing pulse-splitting behavior when ¢ = 0.01, D = 0.1, A = 2.4, and 7 = 2.0.

Although pulse-splitting behavior does not occur for the GM model in the semi-strong interac-
tion regime, this behavior has been found numerically for the semi-strong limit of the GS model
of (1.3) when A = O(1) (cf. [28], [9], [6], [5], [20]). In this particular semi-strong limit, which
appears to be unique to the GS model, the u and v components can only be decoupled in the outer
regions away from the core of each spike. However, these components are highly coupled near the
spike core. In terms of a certain core problem identified in [28] for the infinite-line problem, k-spike
equilibria for the finite-domain problem were constructed in [20]. Using a combination of analytical
and numerical techniques, the pulse-splitting conditions of [11] described above were verified in
a certain parameter regime. In §3, we briefly summarize these results. In Fig. 2(a) we plot an
equilibrium bifurcation diagram for the GS model illustrating an approximate lining-up property
of saddle-node equilibria in terms of the parameter A. The dotted lines in Fig. 2(a) indicate those
portions of the branches of equilibria where v has a two-bump profile. In Fig. 2(b) we plot numerical
trajectories of the maxima of v for a certain parameter set. Pulse-splitting behavior is indeed found
to occur. From this figure, we notice that the pulse-splitting behavior is qualitatively very different
from the edge-splitting behavior observed for the GM model, and also the GS model, in the weak
interaction regime. For this semi-strong regime, spikes replicate roughly simultaneously and the
final equilibrium state is qualitatively very different from that in the weak interaction regime. In

§3 we numerically study the transition between these two distinct pulse-splitting regimes of the GS



model as a function of the diffusivity D.

Although the pulse-splitting conditions of [11] are clearly stated, it is generally intractable
to verify analytically whether they are satisfied for a given reaction-diffusion system in the weak
interaction regime. Moreover, for the special case of the GS model in the semi-strong pulse-splitting
regime described above, where u and v are still coupled in the spike core, only a partial analytical
verification of the pulse-splitting conditions was possible in [20].

Therefore, the second main goal of this paper is to try and formulate reaction-diffusion models in
the semi-strong interaction limit where one can analytically verify all of the pulse-splitting conditions
of [11]. This, hopefully, would lead to the existence of pulse-splitting behavior in a wide class of

semi-strong reaction-diffusion systems of the form

uy = 2Ugg + flu,v), —1l<z<l; uy=0, z==I1, (1.5a)
T0; = Dvgg — v+ ¢ ‘g(u,v), —-1l<z<l; v,=0, z==1, (1.5b)

where D = O(1) as ¢ — 0. For systems of the form (1.5), the components u and v can be
asymptotically decoupled in the core of each spike, which makes it analytically tractable to construct
equilibria and analyze their stability properties. For certain choices of f and g in (1.5), in §4 and
§5 we introduce certain analytical techniques, similar to those in [19] and [41], in order to verify
all of the pulse-splitting conditions of [11]. Since v in (1.5b) has a spatial variation over the entire
interval —1 < z < 1, our analysis shows that the lining-up property of [11] now holds only in
an approximate sense, similar to that shown in Fig. 2(a) for the GS model. The main difference
between these models and the GS and GM models, where pulse-splitting is known to occur, is that
the multi-bump transition condition described above is found not to hold. Numerical experiments
for our model systems do not reveal pulse-splitting behavior. In addition to providing analytical
techniques for verifying the conditions of [11], these examples strongly suggest that the multi-bump
transition condition is also required for pulse-splitting to occur.

Finally, in §6 we close with a few open problems suggested by this study.

2 Pulse-Splitting: the GM Model with Weak Spike Interactions

In this section we study pulse-splitting phenomena for the GM model (1.1). This behavior is a
consequence of the disappearance of certain homoclinic orbits when D in (1.1b) satisfies D = O(?)
(cf. [10], [30], [39]). We show numerically that, when D = O(e?), the criteria of [11] for pulse-

splitting are satisfied and the multi-bump transition condition of §1 holds. In order to determine



the appropriate scaling of (1.1) for pulse-splitting behavior, we first recall an equilibrium result of
[16] for the case where D = O(1).
Proposition 2.1: (From [16]): For ¢ — 0 and D = O(1), there is a unique one-spike equilibrium

solution to (1.1), labeled by a.(z) and he(z), which is given asymptotically by

ae(z) ~ H'w [e7'2] | he(z) ~ ( ) cosh [6p(1 — |z])] , (2.1)

cosh 6

where g = D™Y2, and v = q/(p — 1). Here w(y) is the unique positive solution to

7

w —wHwP =0, —co<y<oo; w—0 as |y —=oo; w(0)=0, w(0) >0, (2.2a)
given by
1\ /=1 _ —2/(p-1)
w(y) = (%) (cosh [Q]) . (2.2b)

In (2.1), the constant H satisfies HS = 2v/D tanh 6, (ffooo wmdy>_1, where C is defined in (1.2).

Although (2.1) is not valid when D = O(g?), the formulae for a. and h, do suggest the appro-
priate re-scaling of (1.1) when D = O(e?). Setting D = O(e?) in (2.1), we get h, = O (51/4) and
ae =0 (87/ C). Hence, we introduce the new variables a, iz, and Dy, defined by

h=eh, a=¢"%G, D=¢Dy. (2.3)

Substituting (2.3) into (1.1), we obtain the following re-scaled system on —1 < z < 1:
aP sm

at:&am—aJrﬁ, 'riLtZEQDOiLm—ﬁ-i-C;L—S, with G, =h, =0, z=+1. (2.4)

When D = O(1), the asymptotic analysis of [16], leading to Proposition 2.1, shows that h, ~ H
and a, ~ HYw(y) within an O(e) inner region representing the core of the spike centered at z = 0.
In contrast, when D = O(g?), the inner problem for a one-spike equilibrium solution to (2.4) is

such that both a and h are localized. In the inner region, we introduce the new variables
y=e'z, uly) =aley), oly)=hley). (2.5)
Substituting (2.5) into the equilibrium problem for (2.4), we obtain that u and v satisfy

u,l—u+up/1)qzo’ _D()’U”—U—I-Um/US:O, O<’y<00, (26)



subject to the symmetry condition v (0) = u (0) = 0. For each fixed Dy, we look for solutions to
(2.6) for which v — 0 as y — oo, with v bounded as y — oo. We refer to such a solution of (2.6)
as the homoclinic orbit.

Numerically, we find below that there are no such solutions to (2.6) when 0 < Dy < D, where
D¢y is some critical value. Qualitatively, the reason why these solutions fail to exist when Dy is
sufficiently small is because v then decreases too fast as y — oo. This rapid decrease in v as y — o0
when Dy < 1 can allow the term w?/v? in (2.6) to grow as y — oo. This, then, precludes the
existence of a homoclinic orbit. In [39], a very rough estimate of Dy is obtained from an analysis
of (2.6) in the tail region where y > 1. By assuming that u and v are small when y — 0o, and by
calculating the appropriate exponential tail behavior, it was shown in [39] that there is no solution
to (2.6) when Dy < [¢/(p — 1)]*>. However, this bound is not very close to the numerically computed
value for D,y given below.

To determination of D, and the homoclinic orbit can only be done numerically. We now
describe our numerical procedure. It is convenient to introduce a parameter « defined by a = u(0),
and to determine the bifurcation diagram in the form Dy = Dy(a) from the numerical solution to
(2.6). Since the solution branch « versus Dy is found to be multi-valued, we must formulate an
extended system of boundary value problems to compute these branches numerically (cf. [18]). To

do so, we differentiate (2.6) with respect to « to obtain

" Up_l Up

ua—ua+puq ua—fqﬂvazo, 0<y<oo, (2.7a)
" 1 mu™ 1 su™ D; u™
UQ_B(UQ_TUQ+WUQ>:_D_§<U_U_S)’ O<y<OO (27b)

Here Dy = dDy/da. The extended system (2.6) and (2.7) can be written as a first order system
with eight unknowns, with two additional auxiliary unknowns Dy and Dg. For numerical purposes
one must compute on a large, but finite, domain 0 < y < L. The extended system (2.6) and (2.7)

is solved on this domain, subject to the ten boundary conditions

! !

w(0) =a, ©(0)=0, ug(0)=1, u,(0)=0, u(L)=0, wua(L)=0, (2.8a)
v (0)=0, wv,(0)=0, v(L)=0, wv,(L)=0. (2.8b)

The initial point on the bifurcation curve for Dy large is chosen to be the shadow system solution,
corresponding to Dy = oo, for which v is spatially homogeneous.
We remark that a direct computation of equilibrium bifurcation diagrams for (1.1) by automatic

bifurcation software routines is nontrivial when ¢ is very small owing to severe, but localized,



gradients in the equilibrium solutions. This preliminary singular perturbation reduction, leading
to (2.6)—(2.8), yields a bifurcation problem that is not numerically stiff.

The extended system (2.6)—(2.8) is solved for each value of « using the boundary value solver
COLSYS [2]. In this way, we obtain the bifurcation curve Dy = Dy(c). This curve is found to
have a fold point, where Dé(a) = 0, at some value o = .. We label the critical value D,y by
D, = Dy(a.). In Table 1 we give numerical results for D,y and «, for five different exponent
sets. In our numerical computations we chose a domain length L = 15. The results in Table 1 are
independent of L for L > 15. Our result for Dy for the exponent set (p,q,m,s) = (2,1,2,0) was
found previously in [10] using a different approach. However, no actual bifurcation diagram was
generated in [10]. The fourth column in Table 1 are the critical values Dyo where spatially periodic
solutions bifurcate off of the spatially homogeneous equilibrium solution a = ¢7/¢ and h = /<.

This issue is discussed below in §2.2.

1q, My 8) | Deo Qe Dpo | T
) | 7.171 1.580 | 5.828 | 1.36
) | 10.354 | 1.417 | 9.899 | 1.75
) | 3.905 1.615 | 2.914 | 0.65
3,2,3,1) | 4.410 | 1.525 | 3.732 | 1.34
)
)

33.7 2.276 | 14.93 | 7.80
0.886 | 1.358 | 1.000 | 0.34

Table 1: Numerical values for the fold point location D,y = Dgy(c,), where D;)(ac) = 0. The
fourth column are values of Dy where spatially periodic solutions bifurcate off of the spatially
homogeneous solution a = /¢ and h = £/¢. The last column are the smallest values of 7 where a
Hopf bifurcation occurs at the fold point.

For each of the exponent sets in Table 1, we find numerically that there are two homoclinic orbit
solutions of (2.6) when D > Dy, and none when 0 < D < Dgy. Since, for D > Dy, both u and
v decay as y — 0o, we can superimpose these functions to obtain two different k-spike equilibrium
solutions to (1.1). The result is summarized as follows:

Proposition 2.2: Let ¢ — 0 and D = 2Dy, and assume that Dy > D.y. Then, there are two

k-spike equilibrium solutions to (1.1) given asymptotically by

k k
et (T) ~ Z e/ u [e7Hz — )] , hex(z) ~ Z e/u [e7Hz — 2y)] , (2.9)

i=1
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where ; = -1 + (ij—_l), forj=1,...,k. Here y=¢q/(p—1), and ¢ is defined in (1.2).

3.0 T 3.0 T T
20 F 1
u(0) . u(0) 2.0+ n
1 T |
0.0 L 1 L 1 1 1.0 1 1 1 Il L 1
5.0 7.5 10.0 125 15.0 17.5 20.0 3.0 40 5.0 6.0 7.0 8.0 9.0
Dy Dy
(a) (p,g,m,s) = (2,1,2,0) (b) (p,q,m,s) = (3,2,2,0)

Figure 3: a = u(0) versus Dy computed from (2.6) for two exponent sets. The left figure is for
(p,q,m,s) = (2,1,2,0), while the right figure is for (p,q,m,s) = (3,2,2,0). The dotted portions of
these curves are where the u profile has a two-bump structure.

Since a+ is exponentially small as ¢ — 0 for z # z;, we can calculate a norm of a.+ as
1/2

k
laly =& 7 [ D [aex(x;)])? ~u(0)Vk = aVk. (2.10)

=1

With the curve Dy = Dy(a) as computed from (2.6)—(2.8), we can then plot |a|z versus Dy for a
k-spike solution branch. Equation (2.10) clearly shows that a strict lining-up property of k-spike
equilibria, as described in §1, holds for the GM model (1.1) when D = O(g?). In Fig. 3 we plot
a = u(0) versus Dq for two different exponent sets. The corresponding bifurcation diagram of
la|2 versus Dy for the exponent set (p,q,m,s) = (2,1,2,0) was shown in Fig. 1(a). For each of
the exponent sets of Table 1, we have verified numerically that there is a topologically similar
bifurcation diagram of « versus Dy, and that the multi-bump transition condition of §1 holds not
far from the fold point.

Although it is not analytically possible to determine D, for arbitrary exponent sets (p, ¢, m, s),
it is simple to show that D, < 1 for any exponent set satisfying p — ¢ = m — s > 1. For such a
set, we readily see that there is a solution to (2.6) with Dy = 1 given by v = u = f, where f(y) is

11
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Figure 4: Plots of a4 for ¢ = 0.02. Left figure: a.; (solid curve) for Dy = 9.83 and a.— (heavy solid
curve) for Dy = 10.22, when (p, q,m,s) = (2,1,2,0). Right figure: a4 (solid curve) for Dy = 5.46
and a._ (heavy solid curve) for Dy = 5.68, when (p, ¢, m, s) = (3,2,2,0).

the homoclinic solution satisfying
fr=f+ra=o. (2.11)

Therefore, since a solution to (2.6) exists when Dy = 1, we must have D,y < 1. The exponent set
(4,2,2,0) in Table 1 is an example of such a set, where we found that D,y = 0.886 < 1.

To illustrate the two-bump structure on much of the lower portion of the bifurcation curve, in
Fig. 4 we plot a.y, given in (2.9), for a one-spike solution with e = 0.02. The plots are done for
two exponent sets and for values of Dy relatively close to the fold point. For each set, we plot ae
and a._ at roughly the same value of Dy. The two-bump behavior of a._ is clear from this figure.

For the special exponent set (2,1,2,0), the existence of multi-bump solutions for (2.6) in the
limit Dy > 1 was established in [3]. The approach of [3] is also applicable to other exponent sets.
However, for the special class of exponent sets (p,q,m,s) = (p,q,p + 1,q + 1), we now show that
the multi-bump behavior is readily seen through a certain conserved quantity. For this class of
exponent sets, we assume that ¢ > p — 1 so that ¢ > 0 in (1.2). We multiply the u and v equations
in (2.6) by u and quv'/(p+ 1), respectively. Subtracting the resulting equations, and integrating,
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we then use v — 0 and u — 0 as y — oo to obtain the first integral

, 2 Wt 2¢ [ Dgw” 02
w? = o2 L4 A ( L ) (2.12)

v
Cp+1 vt p+1\ 2 2

Setting y = 0 where v’ = v = 0, and labeling ug = u(0) and vy = v(0), we obtain

p+1 2
9 2uy qvy
uy =
(

) 2.13
p+1lvd  p+1 (2.13)

A multi-bump solution for u is formed when u" (0) = 0, or equivalently when ug = u}/vd. This

equation, combined with (2.13), can be solved to yield the critical values

o q/[2(p—q—1)] _ (p—1)/12(p—q—1)]
Uom = (p—1> s Vom = (p—l) . (214)
q q

It is also easy to see that u" (0) = 0 corresponds to the point where dvg/dug = 0. Moreover, a
simple calculation shows that the condition v” (0) = 0 corresponds to the point where dugy/dvy = 0.

The values of uy and vy at this point are

(p + 1)(q+2)/[2(p—q—1)1 <p+ 1)(p+1)/[2(p—q—1)]
Upx — , Vox = -

— - 2.1
qg+2 qg+2 (2.15)

To illustrate this result, in Fig. 5(a) we plot ug versus vy for the exponent (2,2,3,3). For this
set, (2.13) is a quadratic equation for v, which is readily solved. However, (2.13) does not directly
yield a bifurcation diagram of ug versus Dj. By using COLSYS (cf. [2]), this diagram is shown
in Fig. 5(b), where we have computed the critical value D, = 33.83. The dotted portions of the
curves in Fig. 5 correspond to the region where u' (0) > 0, so that » has a multi-bump structure.
We remark that the lower branch in Fig. 5 is locally flat at u(0) = ug. = 16/9, which occurs at a
value of Dy that is beyond the range shown in Fig. 5(b).

2.1 The Stability of Solutions in the Pulse-Splitting Regime

Since u and v are exponentially localized, the stability of a k-spike solution can be inferred from
the stability properties of a one-spike solution. To determine the stability of a one-spike solution,
we write

a=¢e"¢ [u(aflx) + eAtq)(eflm)] , h=¢el/¢ [v(eilx) + e)‘tn(efla:)] . (2.16)
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(a) u(0) versus v(0) (b) u(0) versus Dq

Figure 5: Left figure: u(0) versus v(0) for the exponent set (2,2,3,3). Right figure: u(0) versus
Dy for the same exponent set. The portions of these curves where u has a multi-bump structure is
indicated by the dotted lines.

Substituting (2.16) into (1.1), we obtain upon linearizing that ®(y) and n(y) satisfy

" p’l,Lp_1 q'U/p
-0+ - =)0,  —co<y<oo, (2.17a)
" mu™ 1 su™
Don —n+ s q)—van:T/\n, —00 <y <00, (2.17b)

with ® — 0 and n — 0 as |y| — oco. We assume that Dy > D so that u and v exist. The
translation mode ® = u'(y) and 1 = v (y), which are odd functions, is always an eigenfunction
of (2.17) corresponding to A = 0. Next, we observe that at the fold point where @ = «, and
Dy = 0, the functions u, and v, satisfying (2.7), are solutions of (2.17) with A = 0. Therefore,
when o = a., the pair ® = u,, 1 = v,, which are both even functions, is also an eigenfunction of

(2.17) corresponding to A = 0. When a = «,, we define a normalized eigenfunction ®4(y) by

2uls) = —cal), o= ([ W) dy)_m . (2.18)

—00

In Fig. 6 we plot the numerically computed &4 for the exponent sets (p,q,m,s) = (2,1,2,0) and
(p,q,m,s) = (3,2,2,0). This eigenfunction indeed has a dimple shape as referred to in §1. For
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each of the exponent sets of Table 1, we have verified numerically that there is a dimple-shaped

eigenfunction ®4 at the fold point, corresponding to a zero eigenvalue.

0.2 T 0.2 T
01 7 0.1+ |
i H
i H H
q)d q)d 3' !
0.0 t
0.0 |
i 0§
[
l\/t
-0.1F =
—0.1F —
| | | 1 1 | | | 1 1
—-15.0 -10.0 -5.0 0.0 5.0 10.0 15.0 —-15.0 -10.0 -5.0 0.0 5.0 10.0 15.0
Y Y
(a) (p,q,m, s) = (2,1,2,0) (b) (p,q,m, 5) = (3,2,2,0)

Figure 6: The dimple eigenfunction ®,4(y), with y = £ 'z, at the fold point for two different
exponent sets.

Next, we compute the spectrum of (2.17) on both the upper and lower branches of the w(0)
versus Dy curve. We discretize (2.17) on the interval [0, L] using centered differences, ensuring
that ® and 7 are even functions. We label y; = 0, yy = L, with N > 1, and we choose a
meshsize h = L/(N —1). In this way, the eigenvalues of (2.17) are approximated by the the

discrete eigenvalues of the block matrix problem

(M_AI3+A2 DOM_—A}—M)(:):A(é 2)(:)- (2.19a)

q+1

Here A;, for j = 1,...,4, are N x N diagonal matrices with diagonal entries (A1) = qul /vl ™,

(Ao)si = puf_l/'ug, (A3)i = mugn_l/vf, and (Ag)y; = sugn/vfﬂ, where u; = u(y;) and v; = v(y;)-
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The N x N matrix M is defined by

(—2 2 0 --- 0 0 0

1 -2 1 . . 0 0

1 0 e e e e
Mzﬁ (2.19b)

0 0

0o 0 - 1 -2 1

0 0 0 0 2 -2

6.0 T T
5.0 -
4.0
u(0) 3.0+
2.0
1.0F
0.0 ‘ ! ‘ ! 0.0 : ! . ! !
—1.25 -1.00  -0.75 -0.50  —0.25 0.00 0.25 0 25 50 75 100 125 150
At Dy
(a) u(0) versus A; (b) 7, versus Dg

Figure 7: Left figure: u(0) versus the maximum eigenvalue A\;. Right figure: the Hopf bifurcation
value 75, versus Dy on the upper branch. The heavy solid curves, solid curves, and dotted curves,
correspond to the exponent sets (2,1,2,0), (3,2,2,0), and (3,2, 3,1), respectively.

The eigenvalues of the discrete problem (2.19) were computed using LAPACK [1] on a domain
with L = 15 and N = 200. Increasing the number of meshpoints and the domain length did not
change the results noticeably. For 7 = 0.01, and for three exponent sets (p,q, m,s), in Fig. 7(a)
we plot u(0) versus A, where A\; = max(Re(\)). For each of the exponent sets of Table 1, we find
that A\; < 0 on the upper branch of the u(0) versus Dy curve, while A\; > 0 on the lower branch.

Therefore, for 7 sufficiently small, the upper branch is stable while the lower branch is unstable.
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However, the upper branch of each u(0) versus Dy curve can be de-stabilized by increasing 7 past
some threshold 75, which depends on Dy. When 7 is increased past this threshold, a pair of complex
conjugate eigenvalues enters the unstable right half-plane, which leads to a Hopf bifurcation. The
critical value 7}, is found by solving (2.19) numerically using LAPACK [1] together with Newton’s
method. For three exponent sets, plots of 7, versus Dy on the upper branch of the u(0) versus Dy
curve are shown in Fig. 7(b). In the last column of Table 1 we give numerical values for 7, at the
fold point location.

In summary, we have exhibited numerically that the key properties for pulse-splitting of [11]
hold for the GM model (1.1) when D = O(e?) and ¢ < 1. Specifically, there is a strict lining-up
property of k-spike equilibria, there is a dimple eigenfunction associated with a zero eigenvalue at
the fold point, and there is a parameter range (i.e 7 < 73) where each upper branch of equilibria
is stable. Each lower branch is unstable for any 7 > 0. In addition, the multi-bump transition

condition described in §1 is found to hold.

2.2 Numerical Experiments

We now display some time-dependent results computed from (1.1) using the NAG routine DO3PCF
(cf. [29]) using 1500 meshpoints and strict controls on the time-stepping. In each case, the initial
condition was taken to be the one-spike profile given explicitly in Proposition 2.1.

Experiment 2.1: We first consider the exponent set (p,q,m,s) = (2,1,2,0) with D = 62, ¢ =
0.02, and 7 = 0.01. Notice from Table 1 that Dy < D, = 7.171. In Fig. 1(b) of §1, we plot

the trajectories z;(t) of the local maxima of a. In Fig. 8 we plot the solution at different times

showing the pulse-splitting process, and the final equilibrium state that is obtained. Notice that,
as predicted by the theory of [11], only the spikes that are furthest from the origin, referred to as
edge spikes, are able to split. The final equilibrium state more closely resembles a periodic pattern
rather than a pattern of isolated spikes.

Next, we consider the same exponent set (p, g, m,s) = (2,1,2,0) with e = 0.02, but now we take
Dy = 7.0. In Fig. 9 we plot both the trajectories z; of the local maxima of a and the final equilibrium
state. Notice that for this value of Dy, which is closer to the saddle-node value D,y = 7.171, the
time-scale over which splitting occurs is significantly longer than in Fig. 1(b) (where Dy = 6), and
there are fewer pulse-splitting events. The increase in the time-scale is a result of being closer to
the zero eigenvalue associated with the fold point.
Experiment 2.2: Next, we consider the exponent set (p,q,m,s) = (3,2,2,0) with e = 0.02 and
7 = 0.01. From Table 1, the fold point value is D,y = 3.905. In Fig. 10 we plot the spike trajectories
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Figure 8: Experiment 2.1: (p,q,m,s) = (2,1,2,0), Dy = 6, ¢ = 0.02, and 7 = 0.01. The heavy
solid and dotted curves are a and h, respectively. The final plot when ¢ = 800 is essentially the
equilibrium solution.

18



1750 \ ’ 0.04

1500 - ~
1250 - \ J - 003 | A AN

1000 - . ' ' ' ' ' '

t a,h 002 8
750 - .
S00 1 k i ootk b L] L 11 S B

0 | | | 0.00 | |

-1.0 -0.5 0.0 0.5 1.0 =10 -0.5 0.0 0.5 1.0
$]’ x
(a) t versus x; (b) a and h versus z.

Figure 9: Experiment 2.1: (p,q,m,s) = (2,1,2,0), Dy = 7, ¢ = 0.02, and 7 = 0.01. Left figure:
the spike trajectories ¢ versus z;. Right figure: the final equilibrium state for a (heavy solid curve)
and h (dotted curve).

and the final equilibrium state for Dy = 3.5 and for Dy = 3.8, which is closer to the fold point
value. Notice again that there are fewer pulse-splitting events when Dy is closer to the fold point
and that the time-scale is significantly longer.

In the limit ¢ < 1, and for values of Dy slightly below the critical value D.y, an asymptotic
analysis similar to that given in the general framework of [11] can be applied to (1.1) to derive a set
of differential equations for the motion of the centers of a collection of spikes. For repulsive spike
interactions, it was shown in [11] that there exists a critical distance such that each spike does not
start to split until the distance to the neighboring spikes exceeds this critical value. Since edge
spikes reach this critical distance first (see §4.1 and Proposition 4.3 of [11]), the splitting process is
referred to as edge-splitting. This type of splitting behavior is clearly shown in Fig. 9 and Fig. 10.
However, the analysis in [11] is not applicable to the strong interaction regime when spikes are
closely spaced, or when new spikes are born from a pulse-splitting event. In particular, from Fig. 8,
Fig. 9, and Fig. 10, the final pattern that emerges after the splitting process has terminated more
closely resembles a sinusoidal pattern than a sequence of isolated spikes. Therefore, the analysis in
[11], which is based on an exponential decay of a and h between any two adjacent spikes, cannot

be used to predict the number of maxima of a for the final equilibrium pattern.
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Figure 10: Experiment 2.2: (p,q,m,s) = (3,2,2,0), ¢ = 0.02, and 7 = 0.01. Top row: plots of
t versus z;, and the final equilibrium state for a (heavy solid curve) and h (dotted curve), for
Dy = 3.5. Bottom row: same plot but for Dy = 3.8.
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We now perform a simple linearized analysis to try to predict the number of maxima of a in the
final equilibrium pattern. We begin by looking for spatially periodic solutions on the whole real
line, which bifurcate off of the spatially homogeneous equilibrium solution a = e7/¢ and h = /<.
For § < 1, we write

am et (14 deela) = e (14 g 220

for some constants 4 and ¢. Without loss of generality we can assume that w > 0. We substitute
(2.20) into the time-independent version of (1.1), and let D = £2D,y. We write the resulting system
in the matrix form A#@ = 0. Setting the determinant of A to zero, a simple calculation shows that

w? must be a root of the polynomial f(w) = 0, where

fw) =w*—cw?® +b. (2.21a)

Here ¢ and b are defined by

(1+5) (p—1)¢

=p-1) - b= —+
c=l-1)-"p~ Dy
and ¢ > 0 is defined in (1.2). Since b > 0, there are no roots to f(w) = 0 when ¢ < 0, or
equivalently when Dy < (1+s)/(p—1). Therefore, we assume that Dy > (1+s)/(p—1). A

simple calculation then shows that there are exactly two positive roots wy to f(w) = 0 if and only

(2.21b)

if Dy > Dpg- Therefore, for Dy > Dy, spatially periodic patterns on the infinite line have two

possible frequencies. A simple calculation yields

2
mwz<¢%ﬁ+ S ). (2.22)

p—1 p—1

Numerical values for Dy for different exponent sets were given in the fourth column of Table 1.
From this table we observe that Dy < Do, except for the exponent set (4,2,2,0). For Dy > Dy,

we then calculate w4 as

O<w- <wm<wy, Wy =

ctc?2—4b 2 c
S L wm= s (2.23)

We take the smaller of the two frequencies w_, and recall that the length of the domain is two.
Then, assuming that Dy is chosen in the range Dpg < Do < D,g, our prediction is that the number

of maxima of @ in the final pattern is an integer close to

2w_
N=—. 2.24
2me ( )
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(p,g,m,s) | Dy |¢ N (2.24) | N (observed)
(2,1,2,0) | 6.0 |0.02 9.2 8
(2,1,2,0) | 6.0 |0.03 6.1 6
(2,1,2,0) | 7.0 |0.02 | 7.6 6
(2,1,2,0) | 7.0 |0.03 5.1 4
(3,2,2,0) | 3.5 |0.0210.7 10
(3,2,2,0) | 3.5 |0.03]|7.0 8
(3,2,2,0) | 3.8 |0.02]9.9 8
(3,2,2,0) | 3.8 |0.03 6.6 6
(2,2,3,3) | 30.0 | 0.02 | 4.65 4
(3,2,3,1) | 4.0 |0.02]11.25 10

Table 2: Comparison of the number of maxima of ¢ in the final equilibrium pattern, from (2.24),
versus the observed number, computed numerically from (1.1).

In Table 2 we compare the value of N from (2.24) with the observed number of maxima of a for
various pulse-splitting simulations of (1.1). For each case we took 7 = 0.01. The initial condition
for (1.1) was a one-spike profile. Although the analysis leading to (2.24) was based on a simple
linearization around the constant solution the prediction from (2.24) is seen to be relatively close to
the actual number of maxima observed. This suggests that the spatially periodic pattern is stable.
As a remark, for the exponent set (4,2,2,0) where Dpy > D¢y, our numerical simulation of (1.1)
found that the final equilibrium state was a spatially homogeneous solution rather than a periodic
pattern.

Our final experiment shows the effect of 7.

Experiment 2.3: Finally, we consider the exponent set (p,q, m,s) = (2,1,2,0) with Dy = 7.0 and
€ = 0.02. Recall from Table 1 that there is a Hopf bifurcation at the fold point when 7 = 1.36.
Hence, for Dy = 7.0 and 7 = 1.35, pulse-splitting should be influenced by both the ghost effect of the
dimple eigenfunction and the Hopf bifurcation. Starting from a one-spike initial data, in Fig. 11(a)

we plot the trajectories of the maxima of a versus t. Upon comparing this figure with Fig. 9(a),
where 7 = 0.01, we see that pulse-splitting events occur sooner for 7 = 1.35. In Fig. 11(b) we show
that the amplitude of the spike that is closest to the left endpoint has a significant oscillation near
where pulse-splitting occurs. Finally, we perform an identical simulation, but now with 7 = 1.4.
In Fig. 12 we show that for this value of 7 there is no longer any pulse-splitting behavior. Instead

the amplitude of the spike at the origin has a time-periodic oscillation.
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Figure 11: Experiment 2.3: (p,q,m,s) = (2,1,2,0), Dy =7, ¢ = 0.02, and 7 = 1.35. Left figure:
spike trajectories ¢ versus ;. Right figure: the amplitude a,,(t) = a(z1,t) for the leftmost spike.
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Figure 12: Experiment 2.3: (p,q,m,s) = (2,1,2,0), Dy = 7, ¢ = 0.02, and 7 = 1.4. The amplitude
of the spike at the origin versus ¢. There is no longer any splitting for this larger value of 7.
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3 Pulse-Splitting for the Gray-Scott Model: Semi-Strong Limit

In this section we summarize some results of [20] for the analysis of pulse-splitting for the GS
model (1.3) in the semi-strong interaction regime. In this regime, and for A = O(1), it was shown
in [20] that equilibrium k-spike solutions can be constructed in terms of the solutions V' (y) > 0 and

U(y) > 0 to a certain core problem, defined in terms of a parameter B > 0, by

Vi —v+ViU=0, U =UV? 0<y<oo, (3.1a)
V(0)=U(0)=0; V-0, U~By, as y— 0. (3.1b)
Therefore, in this particular semi-strong regime, the inner solutions for u and v satisfying (1.3) can-
not be decoupled. By matching the inner solution to an appropriate outer solution, A is determined
in terms of B by (cf. [20])

A= Bcoth(y/k), 6,=D"Y2. (3.1c)

The core problem (3.1a), (3.1b) was first identified in [28] for a one-spike solution to (1.3) on the
infinite line. The key relationship (3.1c), relating the infinite-line problem to the finite-line problem,
was derived in [20]. In terms of the solution to (3.1), the following equilibrium result was obtained
in Proposition 3.1 of [20].

Proposition 3.1: Let ¢ — 0, A = O(1), eA/vV/D < 1, and suppose that (3.1) has a solution.

Then, the v-component for a k-spike equilibrium solution to (1.8) is given by

v~ ?é (V e (2 —2;)] + 0 (f/—%)) . (3.2)

The core problem (3.1) was studied qualitatively and numerically in [20] in terms of B. In [20]

it was shown that 0 < v < 2, where y = U(0)V/(0). Numerical solutions to (3.1) were computed for
which V has a single maximum at y = 0 as v — 3/2 from below, and a resulting curve B = B(7)
was computed. It was shown in [20] (see also [28]), that the curve B = B(v) is double-valued with
B - 0 as+y — 0 and as v — 3/2, and it has a saddle-node bifurcation point at the maximum
value B, of B given by B, = 1.347, where v = 7, = 1.02. We refer to the range v, < v < 3/2 and
0 < v < 7. as the primary and secondary branches of the B = B(vy) bifurcation diagram. From
(3.1a) it is clear that V has a double-bump structure on the range 0 < v < 1 of the secondary
branch. Since B = Atanh (6p/k) from (3.1b), these results of [20] show that equilibrium k-spike
solutions exist only when A is small enough. In particular, we have (cf. Proposition 3.2 of [20]):
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Proposition 3.2: Let ¢ < 1, A = O(1), and €A/v/D < 1. Then, there will be no k-spike

equilibrium solution to (1.3) that merges onto the solution in the regime A < 1 when

A > Ay =1.347 coth < (3.3)

wp)

In terms of the solution to the core problem, we define a norm by

lv|g = (/_11 v? dm)l/2 ~ \/? (/_Z v? dy) v : (3.4)

In Fig. 2(a) of §1 we plotted this norm for D = 0.1, A = 2.4, ¢ = 0.01, and k£ = 1,2,3,4. On this
figure, the portions of the branches where v has a two-bump profile in the core is shown by the
dotted lines. From this figure, and from (3.3), it is clear that the lining-up property of [11] holds
now only in an approximate sense, and that the multi-bump transition condition is satisfied. It was
verified numerically in [20] that the dimple property of [11] holds at the fold point. In addition, a
lengthy analytical calculation in [20] shows that the secondary branch is unconditionally unstable,
while the primary branch is stable only for 7 < O(e~!). Thus, the pulse-splitting criteria of [11]
are satisfied when 7 <« O(e™!). The following conjecture was then made in [20]:

Conjecture 3.3: Let e < 1, A= 0(1), 7 < O(e "), and €¢A/vV/D < 1. Suppose that we have

even one-spike initial data centered at the origin. Then, the final equilibrium state is stable, and it

has 2™ spikes where, for some integer m > 0, A is related to Ay by
Apom—1 < A < Apom . (3.5)

We now perform a few numerical experiments using the NAG routine DO3PCF (cf. [29]) to
illustrate both (3.5) and the pulse-splitting behavior. In the examples below, we fix €, 7, and A,
and consider the effect of taking smaller values of D. The initial condition for v is taken to be an
even function localized near z = 0.

Experiment 3.1: Let ¢ = 0.01, 7 = 2.0, and A = 2.4. For the following two values of D we
calculate Ay and eA/v/D:

eA
D=075; Ay =164, Ayp=259, Ay =479, 75" 0.028, (3.6a)

eA
D =0.25; Apt =139, Ap =177, Ay, =291, ﬁ =0.048. (3.6b)

Therefore, from (3.5), we predict a two-spike final equilibrium state when D = 0.75, and a four-
spike equilibrium state when D = 0.25. This is shown in Fig. 13(a). In Fig. 13(b) we plot the final
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Figure 13: Experiment 3.1: Simultaneous splitting for the v component in the GS model for
€ =0.01, 7 = 2.0, and A = 2.4. Left figure: ¢ versus z;. Right figure: the final equilibrium state.
The dotted curves are for D = 0.75, while the heavy solid curve is for D = 0.25.

equilibrium state for v for each of these two values of D. For this semi-strong spike interaction
regime, the pulse-splitting behavior is a simultaneous splitting process and the final equilibrium
state is a spike-type pattern.

Experiment 3.2: Next, we let ¢ = 0.01, 7 = 2.0, and A = 2.4, and we choose the smaller value

D = 0.1. This is the example shown in Fig. 2(b) of §1. The values for Ay and £4/v/D are
A
D=01;  Ap=135, Ap=147, Ap=204, Aus=358, —==0076. (3.7)

Since Apy < A < Apg, the criterion (3.5) correctly predicts an eight-spike final equilibrium state. In

Fig. 14 we plot the v component of the solution at different times showing a roughly simultaneous
splitting process.

Experiment 3.3: Next, we consider the effect of decreasing D further. We take the same parameter
set € =0.01, 7 = 2.0, A = 2.4, but now we choose D = 0.01. We calculate

cA
D =0.01; App =1.347, A,4 =1.365, Ay =1.588, Ape=243, ﬁ =0.24. (3.8)

In this case, the criterion (3.5) erroneously predicts a 16-spike final equilibrium state. However,
for this example we have e4/v/D = O(1), and so the analysis leading to the criterion (3.1), which
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Figure 14: Experiment 3.2: Simultaneous pulse-splitting for the v component in the GS model for

the parameter set € = 0.01, 7 = 2.0, A = 2.4, and D = 0.1. The final plot when ¢ = 225 is very
close to the equilibrium state.
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Figure 15: Experiment 3.3: Edge-splitting for the GS model for the parameter set ¢ = 0.01, 7 = 2.0,
A =24, and D = 0.01. Left figure: ¢ versus z;. Right figure: plot of v close to the equilibrium
state.

assumes semi-strong spike interactions, is not valid. In Fig. 15 we plot ¢ versus z; and the final
equilibrium state. The final equilibrium state more closely resembles a periodic solution than a
spike pattern. In Fig. 16 we plot the v component of the solution at different times showing an
edge-splitting pulse-replication process. The figures are very similar to those computed in §2 for
the GM model in the weak interaction regime. For the GS model, edge-splitting was observed in
all of the numerical computations of [31] in the weak interaction regime.

For the GS model, this series of experiments clearly shows that edge-splitting occurs in the
weak interaction regime, while a simmultaneous splitting process occurs in the semi-strong interaction
regime. Therefore, there must be a range of values of D, with D = O(g27¥) for 0 < v < 2, where
both types of splitting behaviors is observed. This is shown in our final example.

Experiment 3.4: We take the parameter set ¢ = 0.01, 7 = 2.0, A = 2.4, but now with D = 0.035.
In Fig. 17 we plot ¢ versus z; and the final equilibrium state. Notice here that the splitting process

is neither pure edge-splitting or simultaneous splitting, but rather has elements of both processes.
The final equilibrium state has ten spikes. For this parameter set, we calculate A,z = 2.31 and
Apig = 4.19. Since Apg < A < Apis, (3.5) erroneously predicts a 16-spike final equilibrium state.
However, since f/—% = (.13 is not particularly small, the validity of (3.5) is indeed questionable.
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Figure 16: Experiment 3.3: Edge-splitting for the v component in the GS model for the parameter
equilibrium state.
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Figure 17: Experiment 3.4: Both types of splitting for the GS model for the parameter set € = 0.01,
T =20, A =24, and D = 0.035. Left figure: ¢ versus z;. Right figure: plot of v close to the
equilibrium state.

We now show numerically that the bifurcation diagram for a one-spike solution to (1.3) has a
topological change as D decreases, thereby invalidating (3.5). We compute a one-spike equilibrium

solution to
g —v+AV?u =0, Dugg—u+1—-2u=0, —-1<z<I1; ug(£1) = vy (£1) = 0. (3.9)

For eA/v/D < 1 there is a fold point at A, given in (3.3) (cf. [20]). Moreover, for D = O(1), there
is also another fold point at A, = O(e!/?) (cf. [19]), where

12 1
Agt = 1| —= coth (—) . (3.10)

When D = O(1), the fold point at A is not related to pulse-splitting behavior (cf. [19]). However,
the asymptotic behavior of A, for D < 1, as obtained from (3.10), suggests that A.; and Ay

may coalesce as D — 0, leading to a topological change in the bifurcation diagram for a one-spike

solution of (3.9). For ¢ = 0.01, in Fig. 18 we plot the numerically computed fold points as a function
of p when D = ¢P. In this figure it is clear that the asymptotic approximations (3.3) and (3.10)
for A, and A,i, respectively, fail as p — 2. This behavior provides the transition between the

semi-strong spike interaction regime and the weak interaction regime of [31], [32], and [40].
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Figure 18: Plots of the fold points Ap; and A, versus p, where D = €P and € = 0.01. The two fold
points merge as p — 2. The asymptotic results, valid for D = O(1), are the dotted curves, and the
full numerical results are the solid curves.

It is beyond our scope here to describe the dynamical mechanisms of pulse-splitting in the semi-
strong regime. Much work on this topic still needs to be done. The earliest study of the dynamics
of pulse-splitting, based on formal asymptotics, was given in [36] and [37]. A mostly qualitative

discussion is given in [5].

4 Pulse-Splitting Criteria: A Semi-Strong RD Model I

In this section we consider the following model reaction-diffusion system;

at = 2040 —a +aP — ah, -l<z<l1l, t>0, (4.1a)

2

_ -1 a
Thy = Dhgy — h + € u\/ﬁm, —l<z<1, t>0, (4.1b)
az(£1,t) = hy(£1,t) =0; a(z,0) = ap(z), h(z,0) = ho(x). (4.1c)

In (41),0 < e <1, D >0, u >0, and 7 > 0, are constants, and D = O(1) as ¢ — 0. The
exponents (p, s) are assumed to satisfy s > —3/2 and 1 < p —1 < 4/(3 4+ 2s). The reason for this
range of exponents is explained below in (4.16). Since ¢ < 1 and D = O(1), this system is of the
form (1.5), which admits semi-strong spike interactions.

For this system, we construct k-spike equilibria and we analyze their stability properties. The

analysis shows that all of the pulse-splitting criteria of [11] hold in the same approximate sense
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as for the GS model in §3. However, the multi-bump transition condition of §1 is not satisfied.

Numerical experiments do not reveal pulse-splitting behavior for this model.

4.1 The Equilibrium Problem

For € — 0, we use the method of matched asymptotic expansions to construct a symmetric k-spike
equilibrium solution to (4.1) where the spikes have equal height. From symmetry considerations,

the spike locations z;, for j = 1,...,k, satisfy

2j — 1
—1+%, j=1,... k. (4.2)

In addition, a/(z;) = 0 and h(z;) = H, for j =1,...,k, where H is independent of j.

In the inner region near the jth spike we introduce new variables by

yi=e (z—u;),  hly)=h(zj+ey),  aly;) = alz; +ey), (4.3a)
and we expand
h(yj) = ho(yj) + €h1(yj) +..., &(yj) = 60(@/]') + O(e). (4.3b)
Substituting (4.3) into the equilibrium problem for (4.1), we collect powers of ¢ to get hy = 0.
Therefore, hg = H, where H is to be found. In addition, we get on —oo < y; < oo that

ag—a0+a0—a0H—O Dh, = M\/_(1+H) (4.4)
The solution for &g, with d,(0) = 0, is simply
Go=(1+H) w[VitHy|, 1=1/(p-1). (4.5)
Here w(&) is the unique positive solution to
w —wHwP =0, —o0<E<00; w—0 as [§] = o0; w(0)=0, w(0)>0. (4.6)
The explicit solution to (4.6) is given in (2 2b). We then use (4.5) and (2.2b) to calculate
uf/ a +h0 dyj ~uvD (1 + H» 12 . (4.72)
Here, I, is defined in terms of the Gamma function I'(z) by
L= [ were- (1) (5 AT ()T R) (4.7b)
—oo p—1 2 T (1% n %)
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By integrating the equation for k; in (4.4), and by using (4.7a), we obtain

i By — Jim By = —% 1+ H)»—"12 (4.8)
This equation yields a jump condition for the outer solution for h.
In the outer region, defined away from O(e) regions near each z;, a is exponentially small, and
h is expanded as h(z) = ho(x) + o(e), where hq satisfies Dhy — hg = 0 on —1 < z < 1. Upon
matching to the inner solution constructed above, we obtain that hg is continuous across each z;,
but that the jump in hz) at © = z; is given by the right-hand side of (4.8). Therefore, in terms of
the delta function é(x), hg satisfies

k
Dhy—ho=—pVD (1 +H)" P LY 6z —=;), -1<z<1;  hy(£l)=0. (49)

j=1
The solution to (4.9) can be written as
k
ho(2) = pV/D (L + HY 72 1, 37 Go(as ) (4.10)
j=1
where Gy(x;z;) is the Green’s function satisfying
DGoyz — Go = —6(z —zj), —-1<z<1; Gop(l;z;)=0. (4.11)

The matching condition requires that ho(z;) = H for i = 1,...,k. Therefore, using (4.10), and the
simple identity (cf. [16]),

k 1
ZGQ(ZEi;ZEj) =ay= [2\/Etanh (OO/k)]i , i=1,...,k, (4.12)

i=1
we find that H satisfies the nonlinear algebraic equation
I
H=(+Hm>» 2 (2 ), 4.13
(1+H) 2 tanh (6 /F) (4.13)
To study (4.13), it is convenient to define ¢ > 0 and 5 > 0 by

= = 'ui-[p
c=VHFL B = Gk (4.14)



where I, is defined in (4.7b). Then, from (4.13), ¢ > 0 is a root of f(c) = 0, where
fle)=pcr 271 2 1. (4.15)

There are two k-spike equilibria to (4.1) when (4.15) has two positive roots. Since f(0) = 1, this
is only possible when f(c) — +00 as ¢ — oco. Hence, we will assume that p and s are such that
4y —25s—1>2. Withy=1/(p— 1), and p > 2, this implies that

2<p<1tgoe. (4.16)
Next, we set f (em) = 0, to get
9 1/(47—25—3)
Cm = [m] . (4.17)
If f(em) <0, then there are two positive roots ¢y and ¢ to f(c¢) = 0. This occurs when
2y—5—3/2
o<ﬂ<5cz47_28_1(2:32:i’)7 " (4.18)

Alternatively, when 8 > f;, then f(cp,) > 0 and there are no positive roots to f(c) = 0. When this
condition holds there are no k-spike equilibrium solutions to (4.1). Notice also that f(1) =8 >0
and f(c,) = 1, where BcY™%7 = 1. The critical value 3, yields a critical value for y in terms of
D from (4.14). We summarize the properties of the roots of f(c) = 0 as follows:

Lemma 4.1: Let p and s satisfy (4.16). Define the critical value uy, by

dtanh (6p/k) [4y—2s — 3\ 75732 i
= o= D1/2. 4.19
Hi (4y—2s—1)I, \4y—2s—1 ’ 0 (4.19)
Suppose that 0 < p < pg. Then, there are positive roots c+ to f(c) =0, satisfying
l1<ec_ <em<cy <ecy. (4.20)

When p > pg, there are no positive roots to f(c) = 0.

When g < pig, then from (4.14) we have two values for H given by Hy = ¢% — 1. The resulting
two k-spike equilibrium solutions are obtained from (4.5) and (4.10). This leads to the following
equilibrium result for (4.1):
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Proposition 4.2: Let 0 < ¢ < 1, with p and s satisfying (4.16). Then, when u > uy there are
no symmetric k-spike equilibria to (4.1). For 0 < e € 1 and 0 < p < pg, there are exactly two

symmetric k-spike equilibria to (4.1) labeled by acy and hes. They are given asymptotically by

k
et (z) ~ (1 + Hy 'VZw[ 1+Hye (a:—a:j)], y=1/(p-1), (4.21a)
j=1

(20 —1)

he:l: ( L

Go(z;zj), |z—zi)>O0(), zi=-1+

(4.21b)

M;r

]:

Here w(), Go, and agy, satisfy (4.6), (4.11), and (4.12), respectively. Moreover, Hy = ¢% — 1,
where ¢y are the two positive roots of f(c) =0 as given in Lemma 4.1.
Therefore, when p and s satisfy (4.16), there is a saddle-node bifurcation structure for k-spike

equilibria of (4.1) in terms of the parameter y. Using (4.7b), (4.14), and (4.19), we calculate

b= 20 = (%) o = 20, (4220
Be = ?, Wk = ? tanh <€€—0) , for (p,s)=1(3,-1). (4.22b)

Here we have used the value I3 = 4, as obtained from (4.7b). Numerical values for ,ulzl are given in
Table 3.

To illustrate our results graphically, it is convenient to use (2.2b) and define a norm of a.1 by

1/2

k 1/(p—-1)
o= { Slacsten |~ HwOVE= 0T (BE) T VE )
j=1

! when D = 0.25, p =2, and s = 0, for a k-spike solution with

In Fig. 19(a) we plot |a|e versus pu~
k = 1,2,3. The top portion of each of these solution branches corresponds to the large solution
@, while the bottom portion corresponds to the small solution a,_. The values of ;! at the fold
points are given in the first row of Table 3. The segments of these branches that are unstable on
an O(1) time-scale are labeled by the dotted lines. These stability results are obtained below in
the next subsection.

When D < 1, so that 6y > 1, we observe that tanh (6y/k) = 1. Therefore, py is approximately
independent of k for a finite number of &, and so the fold points for a finite number of branches of

equilibria occur at approximately the same value of y. This is an approximate lining-up property
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Figure 19: Left figure: the norm |a|y, defined in (4.23), versus p ! for k = 1,2,3, when D = 0.25,
p =2, and s = 0. Right figure: identical plot, but for D = 0.025. In both figures, the portions of
the branches that are unstable on an O(1) time-scale are indicated by the dotted lines.

for k-spike equilibria. In Fig. 19(b) we plot |a|y versus ! for k = 1,2,3 when D = 0.025, p = 2,
and s = 0. For this value of D, the fold point values are given in the second row of Table 3. In
Fig. 19(b), the portions of these branches that are unstable when 7 = 0 are indicated by the dotted
lines.

In Fig. 20(a) and Fig. 20(b) we plot ae+ and he, obtained from (4.21), for a one-spike solution
with D =0.25,p=2,5s =0, u ! =9.1, and € = 0.05. For these parameter values, we use Newton’s
method to find the zeroes of (4.15). This yields, c; = 2.424 and ¢ = 1.374. It is clear from (4.21)

and from this figure that the multi-bump transition condition of §1 does not hold.

) | D k=1|k=2]k=3
) | 025 |809 |102 | 134
) 0025|779 |7.82 |8.03

,—1) 1025 | 539 |682 |8.92
,—1) 1 0.025 | 520 | 521 | 5.35

Table 3: Numerical values for u,;l, computed from (4.19), for two values of D and exponents (p, s).
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Figure 20: Plots of a.+ and h,. versus z for a one-spike solution with D = 0.25, u~! = 9.1, p = 2,
s = 0, and € = 0.05. The solid curves correspond to the large solution aey and hey, while the
dotted curves correspond to the small solution a.— and h._.

4.2 The Stability of k-Spike Equilibria

Next, we analyze the stability of the equilibria constructed above. We substitute a = act+ + e
and h = het + M into (4.1), where ¢ < 1 and 1 < 1. This leads to the eigenvalue problem

gy — d+pall' ¢ — e —hexd =Ap, —1<z<1, (4.24a)
2
a
Dty — (147X = —leﬂ\/l_)% + g*lsu\/ﬁﬁ, 1<z<1, (4.24b)
¢zc(j:1) = ’lh(:l:l) =0. (4.24(2)

The spectrum of (4.24) contains two classes of eigenvalues. There are the large eigenvalues that
are O(1) as € — 0, and the small eigenvalues that are O(e?) as € — 0. Since we are only interested
in determining instabilities that occur on a fast O(1) time-scale, we will only analyze the spectrum
of (4.24) associated with the large eigenvalues. We begin by deriving a nonlocal eigenvalue problem

that governs the stability of the equilibrium solution with respect to these eigenvalues.
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To do so, we look for a localized eigenfunction for ¢ in the form

k
b(z) ~ 3 b;d [\/1 Y Hie l(z— xj)] , (4.25)
7j=1
for some coefficients bj, 7 = 1,...,k. Since ¢ is localized near each z; when ¢ < 1, the two terms

on the right-hand side of (4.24b) are multiples of a Dirac mass near each z;. We use (4.21a) for
ae+ to calculate these multiples. In this way, we obtain that 7 satisfies

Dngz —(1+7N)n=0, zji1<z<zj, j=1...k+1, (4.26a)
M; =0, [Dng];=-wj+gn(z;), j=1,....k; ne(£1) =0. (4.26Db)

In (4.26), we have defined 2y = -1, zx41 = 1, [v]; = v(zj4) — v(z;_), together with

o0

wj =2uVD b 57> / w()®(E)dE, j=1,...,k; g=suVDcy P, (4.27)

— 00
Here cy are the positive roots of f(c) = 0 as given in Lemma 4.1.

To determine the eigenvalue problem for A, we must calculate n(z;) from (4.26). To do so,

we solve (4.26a) on each subinterval and use the boundary and jump conditions in (4.26b). This
calculation results in the matrix problem

77(351) w1
w

g . .
Bp=———r, By=B+—>"—I, = w |, (428
T+ oD @+ " (428

n(zk) W

where I is the identity matrix. The matrix B in (4.28) is tridiagonal and has the explicit form

dy fx 0 -« 0 0 0
Ix ex fa - 0 0 0
0 fr ex - 0 0 0

B= Do : : oo , (4.29a)
0 0 0 " e fr 0
0 0 0 -+ fx ex [
0 0 0 - 0 fr dy

with matrix entries

2 2 2
dy = coth (%) + tanh (%) ; ex = 2coth (%) ; fr = —csch <%) . (4.29b)

38



In (4.29b), ) is the principal branch of the square root function defined by

0\ = 60pvV1+ T, 6p=D"1/?. (4.29¢)

Next, we substitute (4.21) and (4.25) into (4.24a). Since hei(zj) = H +o(1) as € = 0, we
obtain the following problem for ®(¢), for j = 1,...,k, where £ = /T + Hy e *(z — z;):
Ab;

b; (@” ~ 3 +pwp—1q>) ~ (L HL) M wn(y) = %, o <E<oo, (4.30)

with ®(§) — 0 as |¢] — oo. From (4.27) and (4.28), we obtain
2v7—2s—1

N 2ucy o0 w 1
W) = ([ weac) 5., (431)

To diagonalize (4.30), we must find the spectrum of the matrix eigenvalue problem
Bsb = kb. (4.32)

The eigenpairs of B in (4.29) were calculated explicitly in Proposition 2 of [16] as

—1
ﬁj:e)\—l—Zf)\cos(%), j=1,...,k, (4.33a)
1 2 m(j — 1) ,
btlzﬁ(l,...,l); b = Ecos(7(1—1/2)>, i=2,...,k, (4.33b)
with b;- = (b1,j,--.,bk,j). From (4.28), the eigenvalues of B; are simply translations of the eigenvalues

of B. Substituting (4.31) and (4.33a) into (4.30), we obtain the following nonlocal eigenvalue
problem for the O(1) eigenvalues of (4.24):

Proposition 4.3: Assume that 0 < ¢ < 1 and 7 > 0. Then, with ® = ®(&), the O(1) eigenvalues
of (4.24) satisfy the nonlocal eigenvalue problem

o0
Loq)—ij/ w df = A P, —00< €< o0; ® -0, as ¢ - o00.  (4.34a)
— 0 1+ Hy

Here, Ly is the local operator defined by Lo® = o' — @ + pwP™'®, and the multiplier Xj, for
j=1,...,k, is defined in terms of ) = 6gv/1+ 7A and 6y = D~1/2 by

_ped (O_A) (1~ cosfr(j — )/k]) | spcl L |
Kk sinh (20, /k) 2v/1+ 7

1

_ 4.34b
Xi = (4.34b)
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Eigenvalue problems of the form (4.34) also arise with regards to the stability of symmetric
k-spike equilibria for the GM model (1.1) when D = O(1) in (1.1b) (cf. [41]). We will restrict the
analysis of (4.34) to the case where 7 = 0. The effect of the parameter 7 for the GM model (1.1), as
studied in detail in [41] for the case where D = O(1), was to introduce the possibility of temporal
oscillations in the heights of the spikes as 7 is increased past some critical Hopf bifurcation value.
The effect of nonzero 7 on the model problem (4.1) is presumably similar to that for the GM model.
When 7 = 0, (4.34b) reduces to

o 0 (1—cos[r(j — 1)/k])  /Sk\ ay—os—3. ] " .
= A7 —25-3 70 SH\  4y—25-3 _
Xj = pHCy [tanh(k)—F sinh (205 /F) +(2)ci I, , i=1...,k,
(4.35)

where 8y = D~1/2, In the analysis below, we need the following ordering principle for the multipliers

Xj, as is readily obtained from (4.35):
X1>Xx2>...> x> 0. (4.36)

To analyze the spectrum of (4.34) when 7 = 0 we use the following result:

Proposition 4.4: Let o > 0 and consider the nonlocal eigenvalue problem

o
Loé—aw/ wddé =P, —o00<E<oo; ®—0 as ¢ = . (4.37)

—0oQ

Here Ly® = 3" — & + pw?~'®. Then, 0 <0 if and only if

-1 1
a> o = [(ﬁ-i)fp] : I,,z/lw?dg. (4.38)

To prove this result we first note that the nonlocal operator in (4.37) is self-adjoint, so that o is
real. Next we observe that o = 0 with ® = w’ is an eigenpair of (4.37) for any a > 0. To determine
whether (4.37) has any positive eigenvalues, we need only look for eigenfunctions ® that are even
functions. To show this, we observe that the set of odd eigenfunctions of (4.37) and of Ly coincide.
However, it was proved in [22] that the local eigenvalue problem Ly¢; = v¢; on the infinite line,
has only one positive eigenvalue v, and the corresponding eigenfunction ¢;y is an even function.
Hence, in determining the stability of the equilibrium solutions we can assume that ffooo wd dé #£ 0.
Then, from (4.37) we readily obtain that the eigenvalues of (4.37) are the roots of p(o) = 0, where

plo)=1-— a/oo w(Ly— o) wdt. (4.39)

—0o
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By differentiating (4.39) we obtain

5 (o) = —a / ” [(Zo—0) Hu] ae. (4.40)

—0o0

Hence p (o) < 0 for a > 0. Next, we calculate p(0). Using the identity Lytw = Tt %ﬁw’, we get

p(O):l—a/_oowLalwdgzl—a/_oo <p11:21+%€w’w1> d£=1—a[]%—ﬂ /_oow2d§.
(4.41)

Let . be as given in (4.38). Thus, if a > a., we have p(0) < 0. Since p (o) < 0, this implies that

p(c) < 0 when o > «.. Hence, (4.37) has no positive eigenvalues for a > «a,. Alternatively, suppose

that 0 < a < a,, so that p(0) > 0. Then, since p'(¢) < 0 and p(c) — —o0 as o — v , where vg
is the unique positive eigenvalue of Ly, we conclude that there is a unique positive eigenvalue to
(4.37). This completes the proof of Proposition 4.4.

We now use Proposition 4.4 to examine the stability of the two one-spike equilibrium solutions
for (4.1) when 7 = 0. When k = 1, we get from (4.14), (4.35), and Proposition 4.4, that a one-spike

solution is stable if and only if

2
4y—25—3 >
Pex Sy 251"

Here 3 is defined in (4.14). From Lemma 4.1, we have c_ < ¢, < ¢y, where ¢, satisfies (4.17).
Therefore, from (4.42) we conclude that a. is stable, while a._ is unstable. This leads to the
following stability result:

Proposition 4.5: Let p and s satisfy (4.16), and let 7 = 0. Suppose that p < p1, where py is
defined in (4.19). Then, for ¢ K 1, the one-spike equilibrium solution aey, het given in Proposition

(4.42)

4.2 is stable on an O(1) time-scale. Alternatively, the one-spike equilibrium solution ae_, he_ is
unstable. When u = p1, (4.34) has a zero eigenvalue of multiplicity two. One eigenfunction is the

translation mode ® = w', and the other eigenfunction ®4 is a dimple eigenfunction given by

w) &
0] =——=4+= ; 4.43
10 = |2+ L) (1.43)
To complete the proof of Proposition 4.5 we need only prove that ®; is an eigenfunction of
(4.34) with zero eigenvalue when &k = 1 and x; = .. To verify that ®, is an eigenfunction, we
need the identity

w 1 !
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Then, from (4.37), (4.43), and (4.44), we calculate

© I w2 1 ) 1 1
Ly®y + a.w +ww | dE=-wtoaw| ———— )1, =0. (4.45)
oo lp—1 2 p—1 4

Hence @, is an even eigenfunction of (4.34) with zero eigenvalue when py = p;.
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Figure 21: Plot of the dimple eigenfunction ®4(§) of (4.46) for p = 2 (heavy solid curve), p = 3
(solid curve), and p = 4 (dotted curve).

The function ®,; has the dimple property of (1.4) as described in §1. We normalize ®, so that
J2% ®2d¢ = 1. Using (2.2b) for w, we calculate

o= (o [P) 7 (S [0 e

where N > 0 is a normalization constant. In Fig. 21, we plot &4 for p =2, p =3, and p = 4.
Next, we analyze the stability of a multi-spike solution with £ > 1. From Proposition 4.4 and
the ordering property (4.36), we observe that the smallest value of x;, for j = 1,...,k, sets the
stability threshold. Therefore, a k-spike solution will be stable with respect to the O(1) eigenvalues
if and only if xx > ., where x; and «. are defined in (4.35) and (4.38), respectively. A little

algebra shows that this inequality can be written as

(14 cos(m/k))
4y —2s5—1 2sinh? (6y/k) |’

B 273 > (4.47)
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where S is defined in (4.14). Since c¢_ < ¢y, where ¢y, is given in (4.17), we conclude from (4.47)
that the solution branch corresponding to c_ is always unstable. This leads to the following result:
Proposition 4.6: Let p and s satisfy (4.16), and let 7 = 0. Suppose that 0 < p < pg, where py is
defined in (4.19). Then, for e < 1, the k-spike equilibrium solution a.—, h.— of Proposition 4.2 is
unstable. Alternatively, the k-spike equilibrium solution aey, het given in Proposition 4.2 is stable
on an O(1) time-scale if and only if (4.47) holds.

The stability condition (4.47) does not hold near the fold point where we have ﬁcjg*%*?’ =
2/(4y —2s —1). In the plots Fig. 19(a) and Fig. 19(b), where p = 2 and s = 0, the unstable
portions of the solution branches where (4.47) does not hold are given by the dotted lines. From

Lemma 4.1, we have ﬂci'y_zs_?’ < 1. Therefore, from (4.47) we conclude that the entire upper

branch is unstable when D is such that

sinh? (0170) < % . (4.48)

Setting 6y = D~1/2, this yields that the entire upper branch is unstable when D > Dy, where

Dkz[kln(\/a+ 5k+1)]72, 5kz%. (4.49)

To illustrate this result, consider the case where p = 2 and s = 0. Then, from (4.49) we calculate
D5y = 0.322 and D3 = 0.104. Hence, in Fig. 19(a), where D = 0.25, we obtain that the entire upper
branch for k£ = 3 is unstable.

Notice also that when D — 0 with &k fixed, we have sinh (6y/k) — oo. Therefore, in this
limit, where the lining-up property of the fold points occur, the stability condition (4.49) reduces
approximately to ;60?_25_3 > 2/(4y —2s —1). From (4.17), this implies that when D is small,
almost all of the upper branch for a k-spike equilibria will be stable, whereas the entire lower branch
is unstable. This behavior was seen in Fig. 19(b) when p =2, s =0, and D = 0.025.

4.3 Numerical Computations

For (4.1), we have shown that k-spike equilibria have a saddle-node bifurcation structure with an
approximate lining-up property. All of the other pulse-splitting conditions of [11], listed in §1, are
found to hold when D is small and 7 = 0. However, the multi-bump transition condition of §1 does
not hold. We now perform a few numerical experiments using the NAG routine DO3PCF (cf. [29])
to see whether pulse-splitting occurs.

Experiment 4.1: We consider a one-spike solution centered at the origin for the parameter values
D = 0.025, ¢ = 0.02, k = 1, 7 = 0.001, and (p,s) = (2,0). The initial condition for the full
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numerical solution of (4.1) is the one-spike profile a.4 and het of Proposition 4.2. Recall that, for
this parameter set, the bifurcation diagram of k-spike equilibria is shown in Fig. 19(b), and the
saddle-node values for u,?l are given in the second row of Table 3, with p; = 1/7.79 ~ 0.128. In
the numerical computations, we let u = p(t) have a slow time dependence of the form

p=0.1(1+ §max(t —5,0)), &=0.01. (4.50)

Therefore, as t increases, u eventually exceeds the saddle-node value p; ~ 0.128, and we lose
the existence of a steady-state spike solution. Using (4.50), this transition occurs when ¢ = 33.
By solving (4.1) with (4.50) numerically, we show in Fig. 22(a) that the spike does not exhibit
pulse-splitting behavior beyond the saddle-node bifurcation value, but instead is annihilated. In

Fig. 22(b) we plot the height of the spike versus ¢ showing the collapse behavior.

12.0 - i

9.0 - 4
am

30 1

0.0 L 1 L 1 I

(a) a(z,t) (b) am(t)

Figure 22: Experiment 4.1: numerical solution of (4.1) for D = 0.025, ¢ = 0.02, (p,s) = (2,0),
k=1, 7 = 0.001, and (4.50) for u. Left figure: a versus z at ¢ = 0 (heavy solid curve) and at
t = 20,24,28,31, 33, 38,43,46,50,53. Right figure: a,,(t) = a(0,t) versus t. The dotted portion of
this curve is where there is no longer a steady-state spike solution.

Experiment 4.2: We perform a similar experiment for the different parameter set D = 0.025,
e =0.02, k=1, 7 = 0.001, and (p,s) = (3,—1). The initial condition for (4.1) is the one-spike
profile a.; and h., of Proposition 4.2, and the saddle-node values of H/?l are given in the fourth

row of Table 3, with 1 = 1/5.2 ~ 0.192. We let u = p(t) have a slow time dependence of the form
u=10.15(1+ 6 max(¢t — 5,0)) , 0 =0.01, (4.51)
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so that there is no steady-state spike solution for ¢ > 31. With p = 3, we see from Fig. 21 that
the dimple-shaped eigenfunction is significantly more pronounced than it was for Experiment 4.1
where p = 2. However, by solving (4.1) with (4.51) numerically, we show in Fig. 23(a) that the
spike again does not exhibit pulse-splitting behavior beyond the saddle-node bifurcation value. In

Fig. 23(b) we show that the spike amplitude again decreases to zero on the range y > p.

5.0 5.0

4.0 F g 4.0 \ ﬁ
3.0F 8 3.0F 8

a Am o
2.0 = 2.0 bl
1.0 - B 1.0 - A
0.0 0.0 1 1 1 1 .
—0.10 0.10 0 10 20 30 40 50
t
(a) a(z,1) (b) am(t)

Figure 23: Experiment 4.2: numerical solution of (4.1) for D = 0.025, ¢ = 0.02, (p,s) = (3,-1),
k=1, 7 = 0.001, and (4.51) for u. Left figure: a versus z at ¢ = 0 (heavy solid curve) and at
t = 15,25, 30,40,42,45,46,47. Right figure: a,,(t) = a(0,t) versus t. The dotted portion of this
curve is where there is no longer a steady-state spike solution.

We have performed many other numerical experiments similar to Experiments 4.1 and 4.2 to
try to exhibit pulse-splitting behavior. However, we have had no success. These experiments
include explorations with other parameter sets, and the effect of decreasing the control parameter
d in (4.50) and (4.51) by several decades. Although this does not categorically prove that pulse-
splitting behavior does not occur for (4.1) for parameters slightly beyond the saddle-node value, it
does suggest that this behavior is not a robust phenomena for (4.1). Two possibilities for the likely
non-existence of pulse-splitting for (4.1) are that the multi-bump transition condition of §1 does
not hold, and that the nesting property of k-spike equilibria is such that u; > p for any £ > 1.
Therefore, if y > p1, so that a one-spike solution does not exist, then there are also no equilibrium
solutions with more than one spike. This nesting property associated with the approximate lining-
up criterion is qualitatively different than that for the GS model discussed in §3 (see Fig. 2(a)).
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Despite this obvious difference in the nesting behavior of saddle-node equilibria, one might have
predicted that a one-spike solution for (4.1) undergoes a transient splitting process, whereby a
one-spike profile splits into two spikes as p is increased past ui, but with these two spikes being
subsequently annihilated at later times.

Experiment 4.3: Finally, we perform an experiment suggested by the stability information on the
bifurcation diagram of Fig. 19(a). We take the parameter set D = 0.25, ¢ = 0.02, k = 2, 7 = 0.001,
and (p,s) = (2,0). The slowly varying function p(t) is chosen to be

= 0.06 (14 6 max(t — 5,0)) , &=0.01. (4.52)

The initial condition for (4.1) is the two-spike equilibrium of Proposition 4.2. From the first
row of Table 3 we observe that the two-spike equilibrium does not exist when p > 0.098. From
(4.47) and Proposition 4.6, the upper branch with & = 2 in Fig. 19(a) is unstable on the range
0.070 < p < 0.098. Hence, when t = 21, there will be a transition where the quasi-static two-spike
solution loses its stability. In Fig. 24(a) and Fig. 24(b) we plot the numerical solution for a(z,t)
near the first and second spikes, respectively, at later times. The amplitudes of the two spikes are
shown in Fig. 25. It is found that both spikes are annihilated once the stability threshold for y is
exceeded. Since the initial data is symmetric, the spike that gets annihilated first depends on the

amplification of small symmetry-breaking discretization errors of the numerical scheme.

5 Pulse-Splitting Criteria: a Semi-Strong RD Model II

In this section we consider another model reaction-diffusion system of the class (1.5) in the semi-

strong interaction limit. This system is given by

a; = €2z +a — ah +a®, -1<z<1, t>0, (5.1a)
Thy = Dhgg — h + 2671 Ba?, —l<z<1l, t>0, (5.1b)
a'z(j:lat) = hw(ilat) =0; G,(.'E,O) = (J,()(.Z'), h(.’L‘,O) = h()(l') . (51C)

In (5.1),0<e<1,D>0,8>0,and 7 > 0, are constants, with D = O(1) as € — 0. This system
is very similar to (4.1), with the main difference being the different sign of the coefficient of a in the
reaction kinetics of (5.1a) and (4.1a). In the shadow limit where D > 1 and 7 < 1, (5.1) reduces

to the following nonlocal Ginzburg-Landau model:

1
at = €agg — (ﬁe_I/ anx—l)a—l-a?’, —1<z<1; ag(£l)=0. (5.2)
-1
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Figure 24: Experiment 4.3: numerical solution of (4.1) with D = 0.25, ¢ = 0.02, (p,s) = (2,0),
k=2, 7=0.001, and (4.52) for p. Left figure: a versus z near z; at ¢ = 0 (heavy solid curve) and
at ¢t = 10, 20, 30, 40, 50, 60, 70,80. This spike is annihilated first. Right figure: plots of a versus z
near 5 at t = 0 (heavy solid curve) and at ¢ = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 105.
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Figure 25: Experiment 4.3: with the parameters of Fig. 24, we plot a,,; (heavy solid curve) and
ama (solid curve) versus ¢, representing the heights of the two spikes, with a,,1(0) = a(—0.5,0) and
am2(0) = a(0.5,0). The spike a,,1 is annihilated first, followed eventually by the second spike.
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This limiting model, which arises in asymptotic theories of certain convection processes (cf. [23],
[38]), was studied in [33] and [43].

For (5.1), we construct k-spike equilibria and we analyze their stability properties. The analysis
shows that all of the pulse-splitting criteria of [11], listed in §1, again hold in an approximate sense,
with the exception of the multi-bump transition condition. Some numerical experiments are then
performed to determine whether pulse-splitting occurs. Since the study of spike solutions for (5.1)
is very similar to that for (4.1), we will only give the main results of the analysis.

By asymptotically constructing k-spike equilibria for ¢ <« 1 in a similar way as in §4.1, we
obtain the following result:

Proposition 5.1: Let 0 < € € 1, and and define By, by

B = (260) " tanh (6o /k) . (5.3)
For B > B, we further define w > 1 and c1 by
w=L8/Bk, ct =wtvVw?-1. (5.4)

Then, for 0 < B < By there are no symmetric k-spike equilibria to (5.1). For B > P, there are
exactly two symmetric k-spike equilibria to (5.1) given asymptotically by

k
et (T) ~ ct Z w ey e Nz — ;)] , w(€) = V2sech¢, (5.5a)
j=1
, (2i — 1)
hes(z) ~ 8Bcy ZGO(x;:vj), |z — ;| > O(e), z;=-1+ PR (5.5b)
7j=1

Here Gy is the Green’s function satisfying (4.11).
In the usual way, we define a norm |als by
1/2

k
lalz = | Y [aex ()] ~ czw(0)Vk = V2key . (5.6)
j=1

In Fig. 26(a) we plot |a|2 versus § when D = 0.1 for k = 1,2, 3. A similar plot is shown in Fig. 26(b)
for D = 0.25. The top and bottom portions of each of these solution branches corresponds to ae4+
and ae_, respectively. When 7 = 0, the segments of these branches that are unstable on an
O(1) time-scale correspond to the dotted lines. Stable segments correspond to the solid lines.

Notice that we have an approximate lining-up property of saddle-node equilibria when D < 1.
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However, in contrast to the behavior for (4.1), the nesting property of equilibria is now such that

the non-existence of a one-spike equilibrium solution does not imply the non-existence of multi-spike

equilibria.
8.0 8.0
lal, 40t . lal, 40t e
20f . 20t ]
1 02 03 0.4 o 02 03 0.4
g g
(a) D=0.1 (b) D=10.25

Figure 26: The norm |a|z, defined in (5.6), versus g for £k = 1,2,3 for D = 0.1 (left figure)
and D = 0.25 (right figure). The portions of the branches that are unstable on an O(1) time-
scale correspond to the dotted lines. The S value at the fold point in these figures decrease with
increasing k.

The stability of k-spike solutions can be analyzed in a similar way as in §4.2. In place of
Proposition 4.3, we obtain the following nonlocal eigenvalue problem:
Proposition 5.2: Assume that 0 < e < 1 and 7 > 0. Then, with ® = ®(£), a k-spike equilibrium
for (5.1) is stable on an O(1) time scale, if the following nonlocal eigenvalue problem has no spectra

in Re(\) > 0:

o A
Loq)—xjw/ wq)dfch@, —0 < €< o0; ®—0, as || = 0. (5.7a)
—00 +

Here, Ly is the local operator defined by Lo® = & — & + 3w?®, and the multiplier Xj, for j =
1,....k, is defined in terms of 0y = 0pv/1 + 7A and 6y = D~/2 by

= (0 cosmG -0/
XJ—CjE [(1+7)\)D]1/2 [ta h<k>+ sinh (205 /%) ) i=1...,k. (5.7b)
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Next, Proposition 4.4 is used to determine the stability of k-spike equilibria when 7 = 0. In
this way, we obtain the following explicit stability result:
Proposition 5.3: Let ¢ < 1 and 7 = 0. Suppose that > P1. Then, the one-spike equilibrium

solution ey, hey given in Proposition 5.1 is unstable, while the equilibrium ae—, he— is stable on an
O(1) time scale. When = f31, there is a double-zero eigenvalue, with eigenfunctions ® = w, and
® = ®,;. Here @4 is the dimple eigenfunction of (4.46) with p = 3 shown in Fig. 21. For k > 1,
the multi-spike solution aey, het of Proposition 5.1 is unstable. Alternatively, the multi-spike

equilibrium ae—, he— is stable on an O(1) time-scale if and only if

-1
3 1 [1+ cos(7/k)] — -1/
[1 \/1 —w2] 214 S /) 6p =D Y/2. (5.8)

Here w is defined in terms of B by (5.4). At each fold point, for k > 1, the function ®4 of (4.46)

with p = 3 is a dimple eigenfunction corresponding to a zero eigenvalue.

5.1 Numerical Computations

We now perform some numerical experiments to see if pulse-splitting behavior occurs for (5.1).
Experiment 5.1: We consider a one-spike solution centered at the origin for the parameter values
D =10, ¢ = 0.02, and 7 = 0.001. The initial condition for the full numerical solution of (5.1) is the

one-spike profile a._ and he_ of Proposition 5.1. From (5.3), we see that there is no equilibrium

one-spike solution when 0 < 8 < 1 = 0.484. To see if pulse-splitting occurs just below the fold

point, we solve (5.1) numerically for a slowly varying function 8(¢) given by

ﬁ_{ 0.60 (1 — d max(t — 5,0)) , 0<t< 4833,

0.47, t>48.33, (5.9)

with § = 0.005. From (5.9), it follows that, as ¢ increases, 3 eventually decreases below [ at
t = 43.66, and we lose the existence of an equilibrium spike solution. By solving (5.1) with (5.9)
numerically, we show in Fig. 27(a) that the spike does not exhibit pulse-splitting behavior below
the saddle-node value, but instead appears to blow-up in finite time. In Fig. 27(b) we plot the
height of the spike versus ¢ showing the dramatic increase in the spike amplitude when § is below
the fold-point value.

Experiment 5.2: Next, we consider a one-spike solution centered at the origin for the parameter

values D = 0.1, € = 0.02, and 7 = 0.001. Our initial condition is again the one-spike equilibrium

solution a._ and he_ of Proposition 5.1. From (5.3), the one-spike and two-spike equilibrium
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Figure 27: Experiment 5.1: numerical solution of (5.1) with ¢ = 0.02, D = 10, 7 = 0.001, and
for 6 = 0.005 in (5.9). Left figure: a versus z near z = 0 at ¢ = 0 (heavy solid curve) and at
t = 10,20, 30,40, 50,54.65. Right figure: the spike amplitude. There is no equilibrium one-spike
solution on the dotted portion of this curve. Finite-time blow-up appears to occur near ¢t = 54.8.

solution branches exist for § > f; = 0.158 and 8 > By = 0.145, respectively. From (5.8) and
Fig. 26(a), the lower branch for a two-spike solution is stable for 5 > 0.146. To see if pulse-splitting
occurs just below the fold point 31, we solve (5.1) numerically for a slowly varying function /(%)
given by

5= { 0.17 (1 — § max(t — 5,0)) , 0<t<tsw, (5.10)

0.14, t > tgw .

For Experiment 5.2a we take § = 0.01, so that tgw = 22.65. Notice that 8 < ;1 when ¢ > 12.35.
In Fig. 28 we plot the numerically computed a versus z at different times. Pulse-splitting is not
observed, but instead new local maxima are created on either side of the spike at later times. The
final equilibrium state for a is spatially uniform.

In Experiment 5.2b we take the parameter values as above, but we now choose the slightly
larger value o = 0.011, so that tgsw = 13.0. In Fig. 29(a) we plot a versus z at three different times,
and in Fig. 29(b) we observe what appears to be finite-time blow-up for the spike located at the
origin when f is slightly below the existence threshold f;.

Therefore, for (5.1) we do not observe pulse-splitting behavior when 3 is slightly below the

saddle-node value, but instead we observe the possibility of finite-time blow-up.
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Figure 28: Experiment 5.2a: numerical solution for a versus x from (5.1) at different times. The
parameter values are ¢ = 0.02, D = 0.1, 7 = 0.001, and S is given by (5.10) with § = 0.01. There
is no finite-time blow-up.
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Figure 29: Experiment 5.2b: numerical solution of (5.1) with ¢ = 0.02, D = 0.1, 7 = 0.001, and
for 6 = 0.011 in (5.10). Left figure: a versus z at ¢ = 0 (heavy solid curve), ¢ = 16 (solid curve),
and t = 18.5 (dotted curve). Right figure: the spike amplitude at z = 0 (larger value), and the
amplitude of the newly created bumps. The dotted portion of these curves are where there is no
longer an equilibrium one-spike solution. Finite-time blow-up appears to occur near ¢ = 19.0.

Although it is beyond our scope here to give a precise quantitative explanation of the solution
behavior seen in Experiments 5.1 and 5.2, qualitatively we suggest that this behavior is closely
related to the sign of the coefficient a in (5.1a). Notice that if A — 1 < 0 on some interval in z,
then this term is destabilizing with respect to the background state a = 0. For D large, such as in
Experiment 5.1, h decreases slowly away from z = 0, and so the condition hA > 1 is easily satisfied
on most of the interval, except possibly near the core of the spike. Hence, the background state
a = 0 is stable, and so when (8 decreases below (;, there is no possibility to prevent finite-time
blow-up by creating new bumps to suppress the growth of the spike at x = 0. However, when D
is small, such as in Experiment 5.2, h decays quickly away from z = 0, and so h < 1 for most of
the interval. This leads to an instability of the background state a = 0 away from the spike, and
is probably the mechanism by which the new bumps in a are formed in Fig. 28 and Fig. 29. If
these bumps can be created before S dips below the existence threshold 1, finite-time blow-up is
prevented. This will occur when ¢ in (5.10) is sufficiently small, so that S decreases sufficiently
slowly. This is presumably the mechanism at work in Experiment 5.2a. Alternatively, we suggest
that if 8 decreases below (3; before the new bumps are sufficiently well-formed, such as shown in
Experiment 5.2b where § is slightly larger than in Experiment 5.2a (see in particular Fig. 29(b)),
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then finite-time blow-up can occur.

6 Discussion

There are several open problems that should be explored. The first problem is to determine under
what general conditions can one guarantee analytically, in an apriori sense, that the core problem
for a one-spike solution to a reaction-diffusion system in the weak interaction region will have
a saddle-node bifurcation, a dimple eigenfunction at the fold point, and satisfy the multi-bump
transition condition. Are these conditions generic to a wide class of systems, or is some special
structure required? The second problem is to determine whether it is possible to construct a
reaction-diffusion system in the semi-strong interaction regime, for which both components can be
asymptotically decoupled in the core region, that exhibits robust pulse-splitting behavior near the
fold point. For such systems, we have not been able to find an example where the multi-bump
transition condition of §1 holds. Finally, for a one-spot initial data, it would be interesting to
identify and classify mechanisms that lead to spot-splitting behavior in two space dimensions. Our

preliminary work indicates that there are two such mechanisms.
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