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Some analytical and numerical results are presented
for pattern formation properties associated with
novel types of reaction-diffusion (RD) systems that
involve the coupling of bulk diffusion in the
interior of a multi-dimensional spatial domain to
nonlinear processes that occur either on the domain
boundary or within localized compartments that
are confined within the domain. The class of bulk-
membrane system considered herein is derived from
an asymptotic analysis in the limit of small thickness
of a thin domain that surrounds the bulk medium.
When the bulk domain is a 2-D disk, a weakly
nonlinear analysis is used to characterize Turing and
Hopf bifurcations that can arise from the linearization
around a radially symmetric, but spatially non-
uniform, steady-state of the bulk-membrane system.
In a different parameter regime, the existence and
linear stability of localized membrane-bound spike
patterns is analyzed for a Gierer-Meinhardt activator-
inhibitor model that includes bulk coupling. Finally,
the emergence of collective intracellular oscillations is
studied for a class of PDE-ODE bulk-cell model in a
bounded 2-D domain that contains spatially localized,
but dynamically active, circular cells that are coupled
through a linear bulk diffusion field. Applications of
such coupled bulk-membrane or bulk-cell systems to
some biological systems are outlined, and some open
problems in this area are discussed.

1. Introduction
Membrane-bound pattern formation problems, as initiated
in [1], involve the coupling of a bulk diffusion field in a
bounded domain to a nonlinear reaction-diffusion (RD)
system that is restricted to the domain boundary. Many
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such bulk-membrane coupled RD systems are inspired by applications in cell biology owing
to the natural compartmentalization of membrane-bound (surface) and cytosolic bulk species,
as is typical in intracellular processes. Such models have been employed in the context of cell
polarization (cf. [2–5]), which is the symmetry-breaking process leading to the spatial distribution
of intracellular proteins into one or multiple clusters of molecules, and for which the persistence
of such an asymmetric organization is known to be essential in the migration and development of
cells (cf. [6]). Other applications include the dispersal and reformation of protein clusters resulting
from pole-to-pole oscillatory dynamics of Min proteins in E. Coli (cf. [7,8]), which are needed for
cell growth and division, as well as oscillatory dynamics of Cdc42 proteins in fission yeast (cf. [9]).
While early mathematical models of the Min system incorporated the compartmentalization of
Min proteins to the cell cytosol and membrane [7,10], more recent studies have been based
on bulk-membrane coupled systems that directly model the interchange between bulk- and
membrane-bound states of the Min proteins [11,12]. More recently, bulk-membrane RD systems
have been used to model the clustering of proteins on the plasma membrane (cf. [13]) that arise
from the coupling of the membrane to the cytoplasm. Such protein aggregates are believed to play
a key role in various neurodegenerative diseases.

Previous studies of bulk-membrane coupled models have primarily focused on a combination
of Turing-type linearized stability analysis and in silico experiments [1,2,14]. For both analysis and
computation, bulk-membrane coupled systems introduce some unique challenges. In contrast
to typical RD systems, bulk-membrane coupled models do not, in general, admit spatially
homogeneous steady state solutions. Moreover, the coupling between bulk- and membrane-
bound problems, as well as the curved geometry of the cell membrane lead to difficulties in
numerical simulations. Both of these challenges have been addressed with the development of
Turing-type stability analysis in which the linearization occurs about a solution that is spatially
homogeneous on the membrane but inhomogeneous in the bulk [2], as well as the development
of finite element [4,14–16], phase field [1], and spectral [3] numerical methods specifically
adapted for bulk-membrane models. However, the behaviour of solutions to bulk-membrane
coupled models beyond the onset of Turing-type instabilities has not yet been well-explored
with exceptions being the study of wave-pinning phenomena using perturbation theory [4],
and in silico exploration of the effects of domain geometry and spatial inhomogeneities for a
particular model [17]. Finally, a rigorous PDE framework has recently been employed to prove
well-posedness and the existence of stationary states to bulk-membrane RD models [16,18–20].

In §2–4 we outline some recent results for “far-from-equilibrium” pattern-formation
phenomena in bulk-membrane coupled models. In §2 we first provide a systematic derivation
of a bulk-membrane coupled model that results from the asymptotic limit of a system of coupled
RD systems where one system is posed in the domain interior while the other is formulated in
a thin domain that protrudes from the boundary. In §3 we highlight some results in [21] on the
weakly nonlinear analysis of spatio-temporal patterns in bulk-membrane models with circular
bulk geometry. In §4 we outline results from [22] for multi-spike solutions for a 1-D singularly
perturbed bulk-membrane coupled Gierer-Meinhardt (GM) RD model.

A different class of RD system that involves the coupling of bulk diffusion in a multi-
dimensional spatial domain to localized nonlinear processes are the bulk-cell PDE-ODE models,
originating from [23] (see also [24] and [25]), and studied in a 2-D setting in [26], [27], and
[28]. In these systems, a PDE bulk diffusion field, referred to as the autoinducer, mediates
communication between a collection of small signalling compartments or “cells” within the
domain. Intracellular nonlinear reactions, as modeled by an ODE system, can be prescribed
within each cell (see Fig. 9 below). The secretion and feedback of a signaling molecule from and
into the spatially localized cells allows each cell to modulate its intracellular dynamics based on
the global bulk diffusion field that is produced by the entire collection of cells. This new theoretical
framework is particularly relevant for modeling “cell-to-cell” bulk-mediated communication in
certain microbial systems, as specific autoinducers have been experimentally identified in several
such biological systems including, cAMP that triggers intracellular oscillations for a collection of



3

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

social amoebae Dictyostelium discoideum and acts as a precursor to guide the cells to aggregation
in low nutrient environments (cf. [29], [30], [31]), and acetaldehyde (Ace) that triggers glycolytic
oscillations in colonies of yeast cells (cf. [32], [33], [34]), among others.

In §5, the bulk-cell PDE-ODE model of [26] and [28] is introduced, and Sel’kov intracellular
kinetics are used as a conceptual model to illustrate the sudden emergence of sustained
intracellular oscillations of a collection of cells via a Hopf bifurcation, as mediated by the
autoinducer field. In our model it is assumed the cells are in a quiescent state when they
are uncoupled from the bulk medium. This switch-like onset of intracellular oscillations is
to be contrasted with the more typical Kuramoto paradigm in which incoherently oscillating
dynamically active units become increasingly synchronized as the coupling strength between the
units increases (cf. [35]). For our bulk-cell PDE-ODE model, some new results for the emergence
of intracellular oscillations resulting from either a single defective cell, or from a relatively large
collection of non-identical cells, are given. In §6 we briefly discuss a few open problems and
modeling opportunities afforded by the theoretical frameworks surveyed in §2–5.

2. Derivation of a Bulk-Membrane Coupled System
The key feature of a bulk-membrane coupled RD system is that it involves the coupling of a
PDE/ODE system in an N -dimensional (N = 2, 3) bulk region, with a corresponding PDE/ODE
system posed on its (N − 1)-dimensional boundary. In the context of cell biology, such a bulk-
membrane coupled model serves only as a leading order approximation under the assumption
that the cell membrane is much thinner than the characteristic length scale of the cell bulk region.
Here, we briefly provide a systematic derivation of such a leading order approximation.

We begin by assuming that the cell bulk region is given by a bounded domain Ω ⊂RN (N =

2, 3) with smooth boundary ∂Ω, while the cell membrane is specified by the thin domain

Ωδ ≡ {x+ δη ν(x) | x∈ ∂Ω, 0< η < 1} , (2.1)

where ν(x) is the outward unit normal at x∈ ∂Ω and 0< δ� 1 is the membrane thickness. The
boundary of the membrane is made up of two disjoint components corresponding to η= 0 and
η= 1 in (2.1), and which we denote by ∂Ωiδ = ∂Ω and ∂Ωeδ , respectively.

Next, we suppose that there are n≥ 1 and m≥ 1 chemical species in the bulk and in the
membrane with concentrations U = (U1, . . . , Un)

T and u= (µ1, . . . , µm)T , respectively. In both
the bulk and the membrane we assume that these chemical species undergo isotropic diffusion
and reaction kinetics so that their concentrations satisfy

∂tU =D∆U + F (U) , x∈Ω ; D∂nU = qδ(u, U) , x∈ ∂Ω , (2.2a)

∂tu= d∆u+ fδ(u), x∈Ωδ ; d∂nu=−qδ(u, U) , x∈ ∂Ωiδ ; d∂nu= 0 , x∈ ∂Ωeδ , (2.2b)

where ∂n in (2.2a) and (2.2b) denotes the outward normal derivative to the boundaries of the
bulk domain Ω and the thin strip Ωδ , respectively. In (2.2), D and d are n× n and m×m
diagonal matrices of bulk- and membrane-bound diffusion coefficients respectively,F (·) and fδ(·)
denote the bulk- and membrane-bound kinetics respectively, and qδ(·, ·) denotes an interchange
process across the bulk-membrane interface ∂Ω. While we may anticipate that the bulk-bound
reaction kinetics F (·) are independent of the membrane-thickness, the same cannot be said of
the membrane-bound kinetics fδ(·) and the boundary interchange qδ(·, ·). Indeed, by integrating
(2.2b) over Ωδ we calculate from the divergence theorem that

d

dt

∫
Ωδ

u dx=−
∫
∂Ω

qδ(u, U) ds+

∫
Ωδ

fδ(u) dx . (2.3)

Since vol(Ωδ) =O(δ) and area(∂Ω) =O(1), the three terms are balanced for δ� 1 provided that
they satisfy O(δ)O(u) =O(qδ) =O(δ)O(fδ). Enforcing that U =O(1), and that there is an O(1)
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exchange in (2.2a) between the bulk medium and the thin domain, (2.3) and (2.2b) imply that

qδ =O(1) , u=O(δ−1) , fδ =O(δ−1) . (2.4)

To derive a leading order approximation to the bulk-membrane coupled RD system (2.2) we
let X(s)∈ ∂Ω parametrize ∂Ω, where s= (s1, s2)∈ S ⊂R2 ifN = 3 and s∈ S ⊂R denotes the arc
length along ∂Ω if N = 2. Next, we choose the sign of the curvature κ(s) of X(s) when N = 2 and
the orientation of the local basis (X1, X2) when N = 3 such that the unit normal

ν(s) = κ(s)−1
d2X

ds2
(N = 2) , ν(s1, s2) =

∂1X× ∂2X
|∂1X× ∂2X|

(N = 3) , (2.5)

is outward pointing at x∈Ω. Each point in x∈Ωδ is obtained in terms of the boundary fitted
coordinates (s, η)∈ S × (0, 1) by x=X(s) + δην(s). The asymptotic analysis below hinges on
the following expansion of the Laplacian:

∆=

{
δ−2∂2η + δ−1κ∂η − κ2η∂η +∆∂Ω +O(δ) , N = 2,

δ−2∂2η + 2δ−1H∂η − (κ21 + κ22)η∂η +∆∂Ω +O(δ) , N = 3,
(δ� 1) . (2.6)

Here κi (i= 1, 2) are the principal curvatures of ∂Ω,H = (κ1 + κ2)/2 is the mean curvature of ∂Ω
when N = 3, and ∆∂Ω is the Laplace-Beltrami operator on ∂Ω. The expression (2.6) is obtained
by expanding the Laplacian in terms of the curvilinear boundary-fitted coordinates (s, η). For the
remainder of this section we will denote ∆∂Ω = ∂2s when N = 2.

Based on the scaling (2.4) we suppose that fδ(u) = δ−1f(δu) and qδ(u, U) = q(δu, U), and let

u= δ−1u0 + u1 + δu2 +O(δ2) , U =U0 +O(δ) , U0 =O(1) , ui =O(1) , i= 0, 1, 2 . . . .

(2.7)
We substitute this expansion into (2.2) and collect powers of δ. From the leading-order O(δ−3)
terms we get

d∂ηηu0 = 0 , (s, η)∈ S × (0, 1) , d∂ηu0 = 0 , η= 0, 1 ,

which implies that u0 = u0(s). Similarly, from the O(δ−2) problem we obtain that the first order
correction is also independent of η. At next order, the O(δ−1) problem is given by

∂tu0 = d∂ηηu2 + d∆∂Ωu0 + f(u0) , (s, η)∈ S × (0, 1) ,

d∂ηu2 = q(u0, U0) , η= 0 , d∂ηu2 = 0 , η= 1 .

Upon integrating the PDE for u0 over 0< η < 1, and using the two boundary conditions for u2
and the η-independence of u0, we obtain that (2.2) is, to leading order in δ� 1, approximated by

∂tU0 =D∆U0 + F (U0) , x∈Ω , D∂nU0 = q(u0, U0) , x∈ ∂Ω , (2.8a)

∂tu0 = d∆∂Ωu0 + f(u0)− q(u0, U0) , x∈ ∂Ω . (2.8b)

3. Weakly Nonlinear Patterns in Bulk-Membrane Systems
Here we highlight the multiple-scale expansion approach of [21] for the derivation of amplitude,
or normal form, equations for a variety of spatio-temporal patterns in a class of coupled bulk-
membrane RD models with circular bulk geometry. Moreover, we discuss some results obtained
from these normal forms, and we illustrate some new “far-from-equilibrium” patterns that are
observed. In the formulation, we assume that two bulk species U, V undergo passive diffusion
but with a linear decay of their bulk kinetics in a 2-D disk domain of radius R. In terms of polar
coordinates r and θ, the bulk species are assumed to satisfy

Ut =Du
(
Urr + r−1Ur + r−2Uθθ

)
− σuU , Vt =Dv

(
Vrr + r−1Vr + r−2Vθθ

)
− σvV , (3.1)

in 0< r <R and 0≤ θ < 2π. Here Du, Dv and σu, σv are positive constants indicating the
diffusion and degradation coefficients for each species. Next, we use Robin-type boundary
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conditions to model the exchange near the boundary between the bulk species and the membrane-
bound species, denoted as u, v, as

DuUr = α(u, U) , DvVr = β(v, V ) , r=R , (3.2)

with arbitrary flux terms α(u, U) and β(v, V ). Finally, the dynamics of the membrane-bound
species is assumed to be governed by the following nonlinear RD system:

ut =
d

R2
uθθ − α(u, U) + f(u, v) , vt =

d

R2
vθθ − β(v, V ) + g(u, v) , r=R , (3.3)

where d > 0 is the surface diffusion coefficient, assumed to be a common constant to both u and
v, while f(u, v) and g(u, v) are arbitrary nonlinear kinetics. Our aim here by assuming the same
rate of lateral diffusion is to avoid the short-range activation and long-range inhibition paradigm,
as has been typical for the conventional study of diffusion-driven instabilities. As a result, the
spatio-temporal patterns illustrated below directly results from the bulk-membrane coupling.

In §3.1, we outline how to derive amplitude equations characterizing the branching behaviour
and local stability of spatio-temporal patterns near Hopf and pitchfork bifurcation points. Three
numerical examples illustrating the weakly nonlinear theory are given. In §3.2 we explore the
formation of large amplitude rotating waves that occur in the nonlinear regime away from O(2)

symmetric Hopf bifurcation points. The full numerical results shown below are obtained via
numerical continuation of a finite element discretization of the coupled bulk-membrane model
(3.1)–(3.3) as implemented by the Matlab bifurcation package pde2path (cf. [36,37]).

3.1 Weakly Nonlinear Analysis: Amplitude Equations
Multi-scale expansion methods have been widely used to derive amplitude equations
characterizing the onset of spatio-temporal patterns in various PDE systems (cf. [38,39]). We now
show how it can be extended to the coupled bulk-membrane model defined by (3.1)–(3.3). To
illustrate the weakly nonlinear theory, we assume that α(u, U) and β(v, V ) in (3.2) are linear of
the form

α(u, U) =Ku(u− U) , β(v, V ) =Kv(v − V ) , (3.4)

where Ku, Kv are two constant coupling parameters. In addition, we will use prototypical
Brusselator reaction kinetics for the two nonlinearities f(u, v) and g(u, v) in (3.3), given by

f(u, v) = a− (b+ 1)u+ u2v , g(u, v) = bu− u2v . (3.5)

Here we assume that b < a2 + 1, so that for the uncoupled case (Ku =Kv = 0) there exists a
unique spatially uniform steady state to (3.3) that is linearly stable. First, it is convenient to rewrite
the coupled bulk-membrane model as a nonlinear evolution equation in the form

Ẇ =F(W ;µ) =


Du∆U − σuU
Dv∆V − σvV

d
R2 uθθ −Ku (u− U |r=R) + f(u, v)
d
R2 vθθ −Kv (v − V |r=R) + g(u, v)

 , (3.6)

where µ∈Rp is some vector of bifurcation parameters, and where W ≡ (U, V, u, v)T satisfies

Du
∂U

∂r
=Ku (u− U) , Dv

∂V

∂r
=Kv (v − V ) , r=R . (3.7)

We readily calculate that a radially symmetric steady state solution to (3.6) is given by

We(r) =


KuueI0(ωur)

DuωuI1(ωuR)+KuI0(ωuR)
KvveI0(ωvr)

DvωvI1(ωvR)+KvI0(ωvR)

ue
ve

 , ωu ≡
√
σu
Du

, ωv ≡
√
σv
Dv

, (3.8)
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where In(z) is the usual modified Bessel function. Here the membrane-bound, spatially uniform,
steady state vector (ue, ve)T is a solution of the nonlinear algebraic problem

Ku

1 + Ku√
Duσu

I0(ωuR)
I1(ωuR)

ue − f(ue, ve) = 0 ,
Kv

1 + Kv√
Dvσv

I0(ωvR)
I1(ωvR)

ve − g(ue, ve) = 0 . (3.9)

To analyze the linear stability of this base state, we introduce the perturbation

W (r, θ, t) =We(r) +Wn(r)e
inθ+λt , (3.10)

where λ∈C is the growth rate of the perturbation and n∈Z is its spatial wave number. By solving
the linearized problem, we readily obtain in terms of modified Bessel functions that

Wn(r) =


KuunIn(Ωur)

DuΩuI′n(ΩuR)+KuIn(ΩuR)
KvvnIn(Ωvr)

DvΩvI′n(ΩvR)+KvIn(ΩvR)

un
vn

 , Ωu ≡
√
λ+ σu
Du

, Ωv ≡
√
λ+ σv
Dv

. (3.11)

Here the eigenvector (un, vn)T is a nontrivial solution of the 2× 2 homogeneous matrix problemλ+ n2d
R2 + Ku

1+ Ku
DuΩu

In(ΩuR)

I′n(ΩuR)

− ∂f
∂u −∂f∂v

− ∂g∂u λ+ n2d
R2 + Kv

1+ Kv
DvΩv

In(ΩvR)

I′n(ΩvR)

− ∂g
∂v

(un
vn

)
=

(
0

0

)
,

(3.12)
which occurs for those values of λ (eigenvalues) for which the determinant of the matrix in (3.12)
vanishes. In (3.12) all partial derivatives are evaluated at the radially symmetric steady state.

To illustrate the weakly nonlinear theory we will only consider pitchfork bifurcations for n 6= 0

and Hopf bifurcations that are associated with the trivial wave number n= 0 as the coupling rate
Kv and the bulk diffusivity Dv are simultaneously varied. The intricate case of codimension-two
pitchfork-Hopf bifurcations, near which oscillating spatial patterns occur, is also treated in [21].
The effect of Hopf instabilities associated with modes n 6= 0 are discussed in §3.2.

The key idea of a multi-scale analysis is to use the distance from some bifurcation point as
a small parameter σ� 1 to define a slow time-scale τ = σ2t. Hence, we let µ= (Kv, Dv)

T be a
bifurcation parameter vector and we expand it near a bifurcation point µ0 as

µ≡ (Kv, Dv)
T = µ0 + σ2µ1 , ‖µ1‖ ≡ 1 , (3.13)

where µ1 ∈R2 is a detuning parameter indicating the direction of the bifurcation in parameter
space. By choosing the bifurcation parameter µ as a two-vector, the bifurcation behavior of
solutions along various slices through the (Kv, Dv) phase diagram is more readily analyzed
(cf. [21]).

Next, we denote W ≡W (r, θ, t, τ) and introduce the following regular asymptotic expansion:

W =We + σW1 + σ2W2 + σ3W3 +O(σ4) . (3.14)

Upon substituting (3.14) in (3.6) and (3.7), we obtain a series of linear systems to be solved at each
order O(σj). At O(1), we have the steady state problem F(We;µ0) = 0, which is automatically
satisfied. Next, there are two possible solutions to the O(σ) problem, which corresponds to the
linearized system, depending on the specific bifurcation considered. If the system undergoes a
Hopf bifurcation at µ0 with critical eigenvalues λ=±iλI , we write

W1 =A0(τ)W0e
iλIt +A0(τ)W0e

−iλIt , (3.15)

while for the steady case of a pitchfork bifurcation we introduce the following ansatz:

W1 =Wn

[
An(τ)e

inθ +An(τ)e
−inθ

]
, n 6= 0 . (3.16)

The amplitude coefficients An(τ) in (3.15) and (3.16) are at this stage unknown, but evolution
equations governing their dynamics on the slow time-scale are readily derived upon applying a
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solvability condition on the inhomogeneous linear system defined by the O(σ3) problem (see §2
of [21]). In this way, the amplitude or normal form ODE for the case of a Hopf bifurcation is given
by

dA0

dτ
= gT1000µ1A0 + g2100|A0|2A0 , (3.17)

with complex coefficients g1000 ∈C2 and g2100 ∈C, where µ1 ∈R2 measures the deviation of the
bifurcation point from criticality (see (3.13)). Similarly, for a pitchfork bifurcation we obtain

dAn
dτ

= gT0010µ1An + g0021|An|2An , n 6= 0 , (3.18)

where both coefficients g0010 ∈R2 and g0021 ∈R are real. The normal form ODEs (3.17) and (3.18),
also known as Stuart-Landau equations, are special cases of the Ginzburg-Landau equations
with no diffusion terms, and have the same form as amplitude equations derived for a weakly
nonlinear analysis of patterns in RD systems on bounded domains. Explicit formulae for g1000,
g2100, g0010 and g0021, for the coupled bulk-membrane problem, are derived in [21].

The steady states of (3.17) and (3.18) have a clear interpretation in terms of spatio-temporal
patterns of the coupled bulk-membrane model. For instance, (3.18) admits a trivial steady state
An = 0, corresponding to the radially symmetric steady state. When it exists, the nontrivial
steady-state Ane of (3.18) satisfies

|Ane|=

√
−
gT0010µ1
g0021

, (3.19)

and is stable if and only if the cubic term coefficient g0021 is negative. In this case, the pitchfork
bifurcation is supercritical and a stable steady state pattern is expected near the bifurcation point
µ0. Alternatively, if g0021 > 0, the pitchfork bifurcation is said to be subcritical and the pattern is
unstable. Finally, we readily obtain the following asymptotic approximation for a family of steady
state patterns in the weakly nonlinear regime:

W =We + σAneWn

[
ei(nθ+φ) + e−i(nθ+φ)

]
+O(σ2) , (3.20)

where φ∈R is an arbitrary phase shift added owing to the O(2) equivariance. A similar analysis
applies to (3.17), with the difference being that the coefficients are complex-valued (see §3 of [21]).

To illustrate our weakly nonlinear results, we first show in Fig. 1 how the transition between
supercritical and subcritical Hopf bifurcations can be captured simply by numerically evaluating
<(g2100) along a stability boundary in the Dv versus Kv parameter plane. Weakly nonlinear
analyses can sometimes detect very delicate phenomena, which would not easily be captured just
from a time-dependent numerical simulation. This is the case for the global bifurcation diagram
shown in the middle panel, where the family of periodic solutions is stable only in a very small
window near the supercritical Hopf bifurcation. However, away from the Hopf bifurcation point
both branches possess a fold point connecting unstable limit cycles to stable radially symmetric
relaxation-type oscillations. Finally, as σ=

√
‖µ− µ0‖→ 0, the asymptotic approximations of

spatio-temporal patterns become increasingly accurate. This is illustrated in the middle panels
of Fig. 2 and 3, where one can observe a very good agreement between the full PDE numerics and
the weakly nonlinear prediction (3.20) near a subcritical and a supercritical pitchfork bifurcation,
respectively. Upon comparing the corresponding global bifurcation diagrams shown in the left
panels of Fig. 2 and 3, we observe that the weakly nonlinear theory for the subcritical case does not
agree as well with the full numerics away from the bifurcation point as it does for the supercritical
case. This is likely due to the existence of a nearby saddle-node (secondary) bifurcation point on
the global bifurcation diagram for the case of a subcritical pitchfork bifurcation.

3.2 Far from Equilibrium Dynamics: Formation of Rotating Waves
A Hopf bifurcation in the presence of O(2) symmetry (for instance resulting from periodic
boundary conditions) generically leads to the formation of standing and rotating waves (cf. [40]).
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Figure 1: Left: Hopf stability boundaries in the Dv vs. Kv parameter plane. The vertical axis is the real part
of the cubic term coefficient in (3.17). The red dot is the transition point between the sub- and supercritical
regimes. Middle: Supercritical Hopf bifurcation on the slice Kv = 10. Right: Subcritical Hopf bifurcation on
the slice Dv = 10. Stable branches in these panels are indicated by heavy curves. Parameters: R= 1, Du = 1,
σu = σv = 0.01, Ku = 0.1, d= 0.5, a= 3, and b= 8.7. The Hopf bifurcation points are labelled by HP1 .
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Figure 2: Left: Subcritical pitchfork bifurcation as a function of Kv , with stable branches indicated by heavy
curves. The red curve is the asymptotic prediction (3.20). Middle: The numerical and weakly nonlinear
solutions agree well after subtracting with the trivial branch and shifting the bifurcation point to the origin.
Right: A numerically computed unstable pattern for the bulk density U(r, θ) and the membrane-bound
species u(θ) near the subcritical pitchfork bifurcation. Parameters: R= 1, Du = 1, Dv = 10, σu = σv = 0.01,
Ku = 0.1, d= 0.5, a= 3, and b= 7.5. In the left panel, BP1 and FP1 indicate the pitchfork and saddle-node
(secondary) bifurcation points, respectively. The black dot in the right panel is the point x= (1, 0)T , where
θ= 0, on the boundary of the unit disk.

In §5 of [21], the formation of left and right rotating waves around a circular bulk domain was
briefly numerically explored for a special case of the model (3.1)–(3.3) with coupling functions

α(u, U) = rdu− raU , β(v, V ) = pdv − paV , (3.21)

and Brusselator reaction kinetics (3.5) on the boundary. In Fig. 4 we provide a new result for
the global bifurcation diagram, as obtained with pde2path, where branches of rotating waves are
computed as relative equilibria in a moving frame with speed s= 2πR/(nT ), where n is the wave
number and T is the period (see [41] for details of the algorithm). In this figure, the stable n=

0 branch (green curve) corresponds to a family of radially symmetric periodic solutions and is
easily computed as periodic orbits in a static frame. As the reaction rate b increases in (3.5), we
remark that the n= 1 rotating wave branch (black curve) gains stability in a Hopf bifurcation near
b≈ 7.04, where an unstable branch of modulated waves emerge (cyan curve). This critical value is
labelled by the black HP1 point in Fig. 4. The n= 2 rotating wave branch (red curve), originating
at HP3 in Fig. 4, is unstable for the parameter regime considered. A few snapshots of the stable
n= 1 rotating wave are presented in Fig. 5. We also suspect the presence of unstable branches
of standing waves near the n= 1 and n= 2 rotating wave branches, but these branches were not
computed.
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Figure 3: Left: Supercritical pitchfork bifurcation as a function of Kv , with stable branches indicated by
heavy curves. The red curve is the asymptotic prediction (3.20). Middle: The numerical and weakly nonlinear
solutions agree well after subtracting with the trivial branch and shifting the bifurcation point to the origin.
Right: A numerically computed stable pattern for the bulk density U(r, θ) and the membrane-bound species
u(θ) near the supercritical pitchfork bifurcation. Parameters: d= 1 and b= 5, and with others as in Fig. 2. BP1
is the pitchfork bifurcation point and the black dot in the right panel is the point x= (1, 0)T , where θ= 0.
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Figure 4: Branch of periodic orbits emerging from Hopf bifurcations associated with wave numbers n= 0

(green), n= 1 (black) and n= 2 (red), as a function of the reaction rate b in the Brusselator kinetics (3.5) and
with the Robin coupling (3.21). The cyan curve (near the n= 1 branch of rotating waves) corresponds to the
unstable branch of modulated waves. Stable branches are indicated by heavy lines. Parameters: R= 1, Du =

Dv = 1, σu = σv = 0.5, d= 0.5, ra = 0.1, rd = 1, pa = 1, pd = 0.1, and a= 3. The first, second, and third Hopf
bifurcation points on the steady-state branch (blue curve) are labelled by HP1, HP2, and HP3 respectively. The
Hopf bifurcation point on the n= 1 branch where stability is re-gained is indicated by the black HP1 point,
which occurs for b≈ 7.4.

4. Spike Solutions in a Bulk-Membrane Coupled GM Model
The GM model [42] is a prototypical activator-inhibitor RD system that, in the limit of
an asymptotically small activator diffusivity, has been well-studied using both rigorous and
asymptotic techniques [43–46]. By assuming that the inhibitor shuttles between a membrane- and
bulk-bound state, while the activator is solely membrane-bound, the authors of [22] extended
the previous asymptotic theory by incorporating bulk-membrane coupling. In this section we
highlight some results of [22] for a bulk-membrane coupled GM model, especially as they pertain
to the effects of bulk-membrane coupling on the existence and linear stability of symmetric
multi-spike solutions. Specifically, for a bounded 2-D domain Ω with a smooth boundary ∂Ω

of perimeter L> 0, we consider the membrane-bound GM model

∂tu= ε2∂2σu− u+ u3/v , 0<σ <L , t > 0 , (4.1a)

τs∂tv=Dv∂
2
σv − (1 +K)v +KV + ε−1u3 , 0<σ <L , t > 0 , (4.1b)
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Figure 5: Snapshots of a numerically computed stable rotating wave with b= 8 and wave number n= 1,
corresponding to a point on the heavy solid black curve in Fig. 4. Each frame corresponds to 1/3 of the period
T ≈ 2.82, and the speed is s= 2π/T ≈ 2.23. Other parameters as in Fig. 4. The black dot corresponds to the
point x= (1, 0)T where θ= 0.

Figure 6: A symmetric two-spike steady state pattern undergoes a competition instability leading to a
spike collapse event. Result shows the membrane-bound activator (blue) and inhibitor (orange) values as
well as the bulk-bound inhibitor (colourmap) values, as obtained from a PDE numerical simulation of the
bulk-membrane coupled GM model (4.1) with ε= 0.05, Db = 10, Dv = 10, τs = 0.6, τb = 0.1, and K = 2.

where σ denotes the arc-length along the boundary, and u and v are the concentrations of the
membrane-bound activator and inhibitor, respectively. The activator diffusivity ε2 is assumed to
be asymptotically small, while the remaining parameters are taken as O(1) with respect to ε� 1.
The inhibitor field v for this membrane-bound problem is coupled to the bulk solution V , the
latter of which satisfies the linear diffusion equation

τb∂tV =Db∆V − V , x∈Ω , Db∂nV +KV =Kv , x∈ ∂Ω . (4.1c)

Here τb andDb, as well as the coupling parameterK ≥ 0, areO(1) with respect to ε� 1. In §4.1 we
outline the asymptotic analysis for the construction of multi-spike equilibria for this bulk-coupled
model (4.1). In §4.2 we outline the linear stability analysis of symmetric multi-spike equilibria.

We remark that our particular choice of GM exponents in (4.1) yields an explicitly solvable
nonlocal eigenvalue problem (NLEP) that considerably simplifies the stability analysis (see
equation (4.10) below), but that retains qualitatively similar phenomena as that which occurs
with the protypical GM exponent set and for other more general GM exponent sets (see [22]).
Particular choices of the exponent sets for the nonlinearities in the generalized GM model for
which the spectrum of the associated NLEP can be reduced more tractably to the study of certain
explicit transcendental equations in the eigenvalue parameter were first identified in [47]. These
nonlocal spectral problems were referred to in [47] as explicitly solvable NLEPs.
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4.1 Multi-Spike Equilibrium Solutions
The key feature of (4.1) that allows for a detailed asymptotic construction and analysis of its
equilibrium solutions is the asymptotically small diffusivity of the activator. Indeed, for ε→ 0,
steady states for the activator field consist of severalO(1) peaks, or “spikes”, that are concentrated
in a disjoint finite collection of O(ε) intervals. Such strongly localized solutions, characterized by
large amplitude perturbations confined to asymptotically small regions, are commonly found in
a wide class of singularly perturbed linear and non-linear problems (see [48] for an overview).

By using the method of matched asymptotic expansions, the problem of constructing a multi-
spike equilibrium solution to (4.1) can be reduced to a finite-dimensional problem of determining
the location and height of each spike. Specifically, in the limit ε→ 0+, an N -spike pattern with
spikes concentrating at 0≤ σ1, . . . σN <L is given asymptotically by (see Proposition 2.1 of [22])

ue(σ)∼
N∑
j=1

v
1/2
ej w

(
ε−1[σ − σj ]) , ve(σ)∼

√
2π

N∑
j=1

v
3/2
ej G0

∂Ω(σ, σj) , (4.2a)

Ve(x)∼
√
2πK

N∑
j=1

v
3/2
ej

∫L
0
G0
Ω(x, σ̃)G0

∂Ω(σ̃, σj) dσ̃ , (4.2b)

where ve1, . . . , veN are the undetermined spike heights. In (4.2), G0
Ω(x, σ̃) is the bulk Robin

Green’s function satisfying (with λ= 0)

Db∆xG
λ
Ω(x, σ̃)− µ2bλG

λ
Ω(x, σ̃) = 0 , x∈Ω, (4.3a)

Db∂nG
λ
Ω(x(σ), σ̃) +KGλΩ(x(σ), σ̃) = δ(σ − σ̃) , x(σ)∈ ∂Ω , (4.3b)

where µbλ ≡
√
1 + τbλ, while G0

∂Ω is the nonlocal membrane-bound Green’s function satisfying

Dv∂
2
σG

λ
∂Ω(σ, ζ)− µ2sλG

λ
∂Ω(σ, ζ) +K2

∫L
0
GλΩ(x(σ), σ̃)Gλ∂Ω(σ̃, ζ) dσ̃=−δ(σ − ζ) , (4.4)

where 0<σ, ζ <L and µsλ ≡
√
1 +K + τsλ. The function w(y) =

√
2 sechy is the homoclinic

solution of w′′ − w + w3 = 0 with w′(0) = 0, w(0)> 0, and w→ 0 as |y| →∞. By matching inner
and outer asymptotic expansions, and upon deriving a higher-order solvability condition, it was
shown in §2.1 of [22] that the spike heights and locations satisfy the nonlinear algebraic system

vei =
√
2π

N∑
j=1

v
3/2
ej G0

∂Ω(σi, σj) , v
3/2
ei

〈
∂σG

0
∂Ω(σ, σi)

〉
σi

+

N∑
j 6=i

v
3/2
ej ∂σG

0
∂Ω(σi, σj) = 0 , (4.5)

for i= 1, . . . , N , where we have defined 〈f〉σi ≡ 1
2 limh→0+ [f(σi + h) + f(σi − h)]. When Ω is

the unit disk or whenDb→∞we can calculateG0
Ω andG0

∂Ω explicitly. In this way, from (4.5) the
spike locations and heights of a symmetric N -spike equilibrium solution are given by

σi = (i− 1)L/N , vei = ve0 ≡
[√

2π

∞∑
k=0

G0
∂Ω

(
kL
N , 0

)]−2
, i= 1, . . . , N . (4.6)

The left panel of Fig. 6 shows a steady state two-spike pattern on the boundary of the unit disk.

4.2 Linear Stability of Symmetric N -Spike Equilibria
The linear stability properties of the symmetric N -spike equilibrium pattern, as given
asymptotically by (4.2) and (4.6), is obtained by introducing the perturbation u(σ) = ue(σ) +

eλtφ(σ), v(σ) = ve(σ) + eλtψ(σ), and V (x) = Ve(x) + eλtη(x) into (4.1) and linearizing the
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Figure 7: Colourmap of the (k= 0) Hopf instability thresholdD?
v in the (K, τb) parameter plane whenDb→

∞ for select values of τs ≥ 0 with L= 2π and A= π. The unshaded regions correspond to those parameter
values for which synchronous instabilities do not exist.

resulting system. This yields the singularly perturbed eigenvalue problem

ε2∂2σφ− φ+ 3u2ev
−1
e φ− u3ev−2e ψ= λφ , 0<σ <L , (4.7a)

Dv∂
2
σψ − µ2sλψ +Kη=−3ε−1u2eφ , 0<σ <L , (4.7b)

Db∆η − µ2bλη= 0 , x∈Ω ; Db∂nη +Kη=Kψ , x∈ ∂Ω . (4.7c)

It can be shown that this spectral problem admits both large and small eigenvalues for which
λ=O(1) and λ=O(ε2), respectively. The small eigenvalues are related to the stability of the
N -spike pattern with respect to slow drift dynamics and are expected to be stable due to the
symmetry properties of the symmetric N -spike steady-state. On the other hand, the stability
properties with respect to the large eigenvalues can be determined by first using the method
of matched asymptotic expansions to reduce (4.7) to a system of NLEPs, which can be analyzed.

To determine the stability with respect to the large eigenvalues of (4.7) we first let Gλ∂Ω denote
the symmetric N ×N matrix with entries (Gλ∂Ω)ij =Gλ∂Ω(σi, σj) for i, j = 1, . . . , N . Since Gλ∂Ω is
also circulant, its eigenvalues µk(λ) and corresponding eigenvectors ck are given explicitly by

µk(λ) =

N−1∑
j=0

Gλ∂Ω(jL/N, 0)ei
2πjk
N , ck = (1, ei

2πk
N , . . . , ei

2π(N−1)k
N )T , (4.8)

for k= 0, . . . , N − 1. By using the method of matched asymptotic expansions it was shown in [22]
that an eigenfunction of (4.7) has the form φ(σ)∼

∑N
j=1 ckjΦk(ε

−1[σ − σj ]) where ckj is the jth

entry of ck. Here, for each mode k, λ is an eigenvalue of an NLEP for Φk(y) given by

Φ′′k − Φk + 3w2Φk −
3µk(λ)

µk(0)
w3

∫∞
−∞ w2Φk dy∫∞
−∞ w3 dy

= λΦk , k= 0, . . . , N − 1, (4.9)

which is posed on −∞< y <∞ with Φk→ 0 as y→±∞. Due to our specific choice of GM
exponents, it was shown in [22] (see also [47]) that (4.9) is explicitly solvable in the sense that
any discrete eigenvalue λ of the NLEP must be a root of the transcendental equation

µ0(0)

µk(λ)
− 9

2(3− λ) = 0 , k= 0, . . . , N − 1 . (4.10)

The N -spike steady-state is linearly stable if the union of all the roots λ to (4.10) satisfy <(λ)< 0.
Since c0 = (1, . . . , 1)T whereas cT0 ck = 0 for all 1≤ k≤N − 1 we conclude that unstable

spectra for these modes correspond to either synchronous or asynchronous instabilities of the
spike amplitudes, respectively. For synchronous instabilities the spikes have a common amplitude
perturbation, in contrast to asynchronous instabilities where the sum of the perturbations of
the spike amplitudes is zero. This latter type of instability is also referred to as a competition
instability since the amplitude of some of the spikes increases at the expense of a decrease in
the amplitude of other spikes (cf. [22]). In [22] it is found that the synchronous instabilities occur
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Figure 8: Competition instability threshold Dv versus coupling parameter K ≥ 0 for different number of
spikes N = 2, 3, 4 and asynchronous instability modes k. The legend in the right-most plot applies to each
plot. This threshold is independent of τs and τb. The left-most plot shows that a two-spike steady-state is
unstable for the parameters in Fig. 6 where Db =Dv = 10 and K = 2.

through a Hopf bifurcation whereas asynchronous instabilities occur through a zero-eigenvalue
crossing. For both types of instabilities we can numerically calculate a threshold for Dv beyond
which the particular instability is triggered. In Fig. 7 we plot the Hopf bifurcation threshold
for a one-spike solution in the Db→∞ limit for different values of τs ≥ 0, which illustrates the
non-trivial dependence on the coupling parameter K and bulk-bound timescale constant τb. In
particular, increasing the coupling strengthK can both stabilize and destabilize the spike solution.
By seeking parameter values for which (4.10) admits a zero-eigenvalue crossing for 1≤ k≤N − 1,
the numerically calculated asynchronous instability thresholds shown in Fig. 8 for select values of
Db illustrate that the coupling parameter also has a stabilizing or destabilizing effect with respect
to the asynchronous instabilities for small and large values of K, respectively.

5. Dynamically Active Cells Coupled by Bulk Diffusion
We first formulate the coupled PDE-ODE bulk-cell model of [26] and [28], as inspired by [23].
In the 2-D bounded domain Ω with a reflecting boundary ∂Ω we assume that there are m

dynamically active well-separated circular “cells”Ωj of a common radiusR0, centered at Xj ∈Ω
for j = 1, . . . ,m. In the bulk region Ω \ ∪mj=1Ωj , the autoinducer U(X, T ) is assumed to satisfy

UT =DB ∆U − kB U , T > 0 , X∈Ω \ ∪mj=1Ωj ; ∂nX U = 0, X∈ ∂Ω ; (5.1a)

DB ∂nX U = β1j U − β2j µ1j , X∈ ∂Ωj , j = 1, . . . ,m , (5.1b)

where ∂nX is the outer normal derivative pointing into the bulk region. The dimensional bulk
diffusivity is DB > 0, while kB > 0 is the rate of degradation of the bulk signal. The Robin
condition (5.1b) on the cell membrane, with permeabilities β1j and β2j , models the influx and
efflux of one chemical species into and out of the jth cell. The intracellular ODE kinetics Fj for

the n interacting species µj ≡ (µ1j , . . . , µ
n
j )
T within the jth cell is coupled to the bulk region from

an integration across the cell membrane. Defining e1 ≡ (1, 0, . . . , 0)T , this coupling has the form

dµj
dT

= kR µc Fj
(
µj/µc

)
+ e1

∫
∂Ωj

(
β1j U − β2j µ1j

)
dSX , j = 1, . . . ,m , (5.1c)

where kR > 0 is the dimensional intracellular reaction rate and µc > 0 is a typical value for µj .
A key feature in this PDE-ODE model (5.1) is that only one signaling chemical, labelled by µ1j ,

can permeate the jth cell membrane with efflux parameter β2j . This chemical communicates with
spatially distant cells by diffusing through the bulk medium. The influx parameter β1j controls

the global feedback into the jth cell from the bulk diffusion field generated by all the cells. A
schematic diagram for the bulk-cell coupling is shown in Fig. 9 for n= 2 intracellular species.

In (5.1) it is assumed that the common radius R0 of the cells is small in comparison to the
domain length-scale L, and so we define ε≡R0/L� 1. With the non-dimensionalization of (5.1)
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Figure 9: Dynamically active cells (in cyan) in a 2-D domain. The green and red dots represent the signaling
chemicals in the cells, where only the red is secreted into the extracellular bulk region. Right: A zoom of the
intracellular species, the secretion of signaling molecules into the bulk and the feedback into the cells.

as in [26] and [28], the dimensionless concentration U(x, t) in the bulk region satisfies

τ
∂U

∂t
=D∆U − U , t > 0 , x∈Ω \ ∪mj=1Ωεj ; ∂n U = 0 , x∈ ∂Ω ; (5.2a)

εD ∂nU = d1j U − d2j u1j , x∈ ∂Ωεj , j = 1, . . . ,m , (5.2b)

where Ωεj ≡ {x | |x− xj | ≤ ε}. The bulk solution U is coupled to the intracellular dynamics by

duj
dt

= Fj
(
uj
)
+

e1
ετ

∫
∂Ωεj

(d1j U − d2j u1j ) ds , j = 1, . . . ,m . (5.2c)

Here uj ≡ (u1j , . . . , u
n
j )
T represents the n species in the jth cell. The centers of the cells are

assumed to be well-separated in the sense that dist(xj ,xk) =O(1) for j 6= k and dist(xj , ∂Ω) =

O(1) as ε→ 0. In (5.2), the key dimensionless parameters D, τ , d1j , and d2j are defined by

D≡ DB
kBL2

, τ ≡ kR
kB

, d1j ≡ ε
β1j
kBL

=O(1) , d2j ≡ ε
β2jL

kB
=O(1) . (5.3)

For small values of the reaction-time parameter τ , the intracellular reactions proceed slowly
relative to the time-scale of degradation of the bulk signal, and so little communication between
the cells can occur. For large values of the effective bulk diffusivity D, the cells are readily able
to synchronize their activities through the bulk medium and, in the well-mixed limit D→∞,
the bulk signal becomes spatially homogeneous. In contrast, when D is small, communication
between spatially distant cells is weak. In (5.3), the influx β1j and efflux β2j parameters are chosen
as O(ε−1) so as to ensure that there is an O(1) transport across the membrane of the small cells.

5.1 Switch-like Onset of Intracellular Oscillations: A Hopf Bifurcation
By using strong localized perturbation theory [48] in the singularly perturbed limit ε→ 0, in
[26] and [28] steady-state solutions for (5.2) were constructed and the linear stability problem
was derived in the form of a nonlinear matrix eigenvalue problem. With Sel’kov intracellular
kinetics, it was shown in [26] and [28] that switch-like intracellular oscillations can emerge
via a Hopf bifurcation in parameter regimes where the cells, when uncoupled from the bulk
medium, would otherwise only have a stable steady-state. The triggering of such diffusion-
induced intracellular oscillations, for a specific permeability set and a given spatial configuration
of cells, is encapsulated in a phase diagram in the τ versus D parameter space. We now briefly
summarize this theory of [26] and [28] and we provide two new results illustrating the theory.

Sel’kov intracellular kinetics, used as a conceptual model of glycolysis oscillations (cf. [30],
[49]), involves two intracellular species uj = (u1j , u

2
j )
T , and is given by

Fj = (Fj1, Fj2)
T ; Fj1 ≡ αju2j + u2j (u

1
j )

2 − u1j , Fj2 ≡ ζj
(
µj −

[
αju

2
j + u2j (u

1
j )

2
])

. (5.4)
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We fix µj ≡ µ= 2 and ζj ≡ ζ = 0.15 for all cells, and choose αj large enough so that an isolated
cell with no influx (i.e. d1j = 0) has only a linearly stable rest state. With no influx, (5.2c) has the
dynamics duj/dt=Fj

(
uj
)
− 2πd2ju

1
je1/τ where Fj is given in (5.4). This ODE system has only

a linearly stable steady state and no limit cycle oscillations when (see Fig. 2 of [28])

αj >−
µ2j

χ2j
+

1

2ζj

−χj +
√
χ2j +

8ζjµ
2
j

χj

 , with χj ≡ 1 +
2πd2j
τ

, (5.5)

where µj = 2 and ζj = 0.15. In this way, intracellular oscillations that occur below in various
regions of the (D, τ) plane arise only by the diffusive coupling of the cells through the bulk.

With Sel’kov kinetics (5.4), it was shown in §2 of [28] that for ε→ 0 there is a unique steady-
state solution to (5.2). In the outer region, where |x− xj | �O(ε), the steady-state bulk solution
for ε→ 0 is U ∼−2π

∑m
i=1AiG0(x;xi), where A≡ (A1, . . . , Am)T solves the linear system(
I + 2πνG0 + ν DP1 +

2πνD

τ
P2

)
A=−µνP2 e . (5.6)

Here ν ≡−1/ log ε, P1 ≡ diag
(
1/d11, . . . , 1/d1m

)
, P2 ≡ diag

(
d21/d11, . . . , d2m/d1m

)
, and e≡

(1, . . . , 1)T . In the limit ε→ 0 it was shown in §2 of [28] that all of the discrete eigenvalues of
the linearization of this steady-state are contained in the set Λ(M), defined by

Λ(M)≡ {λ | detM(λ) = 0} , where M(λ)≡ I + 2πνGλ + ν DP1 +
2πνD

τ
P2K . (5.7)

We refer to (5.7) as the globally coupled eigenvalue problem (GCEP). In (5.6) and (5.7), Gλ is the
symmetric reduced-wave Green’s matrix, with entries (Gλ)ij ≡Gλ(xi;xj) for i 6= j and (Gλ)jj ≡
Rλ(xj), where Gλ(x;xj) is the Green’s function, with regular part Rλ(xj), satisfying

∆Gλ−
(1 + τλ)

D
Gλ =−δ(x− xj) , x∈Ω ; ∂nGλ = 0 , x∈ ∂Ω ;

Gλ(x;xj)∼−
1

2π
log |x− xj |+Rλ(xj) + o(1) , as x→ xj .

(5.8)

In (5.7), the diagonal matrix K has entries (K)jj = (λ+ detJj)/(λ2 − λ trJj + detJj), where Jj is
the Jacobian of the Sel’kov kinetics Fj at the steady-state.

The GCEP (5.7) depends on D, τ , the permeabilities d1j and d2j , for j = 1, . . . ,m, as encoded
in the matrices P1 and P2, and the spatial configuration {x1, . . . ,xm} of the cell centers within
Ω encoded in the Green’s matrix Gλ. We remark that the diagonal matrix K in (5.7) also depends
on all of these parameters through the steady-state solution. When Ω is the unit disk the Green’s
matrix Gλ can be calculated analytically (cf. [28]). Any element λ∈Λ(M) for which <(λ)> 0

provides an approximation, valid as ε→ 0, for an unstable discrete eigenvalue of the linearization
of the steady-state. Hopf bifurcation (HB) boundaries can be calculated by ensuring that the
eigenvalue with the largest real part satisfies detM(iλI) = 0.

Our first example, not considered in [28], is for a ring and center cell pattern in the unit disk
that consists of four equally-spaced cells on a ring of radius r0 concentric within the unit disk with
an additional cell at the center of the disk. In Fig. 10a we plot a HB boundary in the (D, τ) plane
for a few ring radii r0 when the cells are all identical. Synchronous intracellular oscillations for the
cells on the ring are predicted inside the lobes shown in Fig. 10a. However, as shown in Fig. 10b,
by decreasing the Sel’kov parameter α for the center cell to be closer to the stability boundary
in (5.5) for an isolated cell, this single “defective” center cell triggers intracellular oscillations for
the entire collection of cells in a larger region of the (D, τ) parameter space. These theoretical
predictions are confirmed in the lower row of Fig. 10 where we show full numerical results for
the intracellular component u1 for the center cell and the synchronous ring cells, as computed
numerically from the bulk-cell PDE-ODE system (5.2) using FlexPDE [50]. For the choice of
parameters in the caption of Fig. 10, we observe that the lobes of instability in the (D, τ) parameter
space are bounded. Qualitatively, with only five cells, as D becomes too large the bulk signal is
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rapidly washed away from each cell, and there is an insufficient diffusive gradient near the cells
to trigger collective oscillations.
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(a) Identical cells with α= 0.93
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(b) Defective center cell with α= 0.78
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(d) u1 defective center cell (e) U at t= 400 (identical cells)

Figure 10: Top row: HB boundaries in the (D, τ) plane for a pattern of four equally-spaced cells on a ring of
radius r0 with an additional cell at the center. Top left: identical cells withα= 0.93. Top right: nowα= 0.78 for
center cell. Bottom row: FlexPDE [50] results computed from (5.2) for the intracellular component u1 and the
bulk solutionU when r0 = 0.5,D= 2, and τ = 0.65. Bottom left: identical cells withα= 0.9 showing decaying
oscillations. Bottom middle: defective center cell has α= 0.78 and sustained oscillations occur. Bottom right:
contour plot of U at t= 400 for identical cells. Parameters: ε= 0.02, µ= 2, ζ = 0.15, d1 = 0.3, and d2 = 0.2.

In our second example, not considered in [28], we take m= 50 non-overlapping cells of
radii ε= 0.02 that are randomly distributed in the unit disk and have identical Sel’kov kinetic
parameters and a common efflux parameter d2. The cell pattern is shown in Fig. 11b. We
consider the large D regime, given by D=D0/ν with D0 =O(1) and ν =−1/ log ε� 1, where
the challenging problem of finding roots to detM(iλI) = 0 can be reduced asymptotically to the
much simpler scalar problem of determining a zero-crossing for one specific matrix eigenvalue
σ ofMc= σc (see Proposition 5 of [28]). By exploiting this simplification, in Fig. 11a we plot a
numerically computed HB boundary in the (τ,D0) plane when the cells have a common influx
parameter d1 = 0.8 and when the influx parameter is uniformly distributed on 0.4≤ d1 ≤ 0.8, but
where two cells are assigned the bounds of this interval in d1. From Fig. 11a we observe that
when cell heterogeneity is introduced through the influx permeability there is a narrower range
of τ where intracellular oscillations occur. From the unbounded regions in Fig. 11a we observe,
in contrast to the situation shown in Fig. 10 for the ring and center cell pattern, that intracellular
oscillations will occur in the well-mixed limit D0→∞. Although the spatial gradient of the bulk
signal is very weak when D0� 1, the presence of a large number of cells can sufficiently increase
the (roughly) spatially uniform level of the bulk signal so as to trigger collective oscillations of
the entire group of cells. This qualitative behavior is known as quorum-sensing (see [28] and
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the references therein), and its occurrence depends primarily on the number of cells and the cell
membrane permeabilities.

As shown in §3 of [28], an additional simplification for the large bulk diffusivity distinguished
limitD=D0/ν� 1, is that the time-dependent solution to the bulk-cell PDE-ODE model (5.2) can
be approximated by the following nm+ 1 dimensional ODE-DAE system for U ≈ |Ω|−1

∫
Ω U dx

and the intracellular species (see Proposition 2 of [28]):

d
dt
U =− 1

τ
U − 2πD0

τ |Ω| e
Tb ;

duj
dt

=Fj(uj) +
2πD0e1

τ
bj , j = 1, . . . ,m , (5.9a)

where e≡ (1, . . . , 1)T , e1 ≡ (1, 0, . . . , 0)T and b≡ (b1, . . . , bm)T solves the linear algebraic system(
I +D0P1 + 2πν GN

)
b=U e− P2 u

1 , (5.9b)

where u1 ≡ (u11, . . . , u
1
m)T . Here GN is the Neumann Green’s matrix with entries (GN )ij ≡

GN (xi;xj) for i 6= j and (GN )jj ≡RN (xj), where GN (x;xj), with regular part RN (xj), satisfies

∆GN =
1

|Ω| − δ(x− xj) , x∈Ω ; ∂nGN = 0 , x∈ ∂Ω ; (5.10a)

GN (x;xj)∼−
1

2π
log |x− xj |+RN (xj) + o(1) , as x→ xj ;

∫
Ω
GN dx= 0 . (5.10b)

By using the explicit formula for GN for the unit disk (cf. [28]), the ODE-DAE system (5.9) is
solved numerically for Sel’kov kinetics at the three labelled points in the phase diagram of Fig. 11a
for the case where the cells are heterogeneous due to the random influx parameter d1. The results
shown in Fig. 12 for three specific cells confirm the theoretical prediction based on Fig. 11a.

0 2 4 6 8 10

0

0.05

0.1

0.15

0.2

0.25

0.3

(a) HB boundaries (b) Fifty randomly spaced cells

Figure 11: Left: HB boundaries in the (D0, τ) plane form= 50 randomly placed cells in the unit disk. Heavy
solid: identical cells with d1 = 0.8. Dashed: Each cell has an influx parameter d1 uniformly distributed on
0.4≤ d1 ≤ 0.8. Right: spatial pattern of m= 50 cells. Parameters: d2 = 0.2, ε= 0.02, α= 0.9, µ= 2, ζ = 0.15.

6. Discussion
The wide variety of specific cell signalling problems that involve the binding of surface receptors
(cf. [1–4,11,12,14,15]), has provided a recent impetus for studying pattern-forming properties
associated with novel classes of RD systems that involve the coupling of a linear RD system
in the interior of a multi-dimensional domain to nonlinear diffusive processes that occur in a
thin strip that protrudes from the domain boundary. In this context, the bulk-membrane system
derived in (2.8) of §2 arises from the asymptotic limit of a vanishing width of this thin strip,
together with a certain scaling law for the membrane-bound species. However, the analysis of
pattern forming properties for this reduced system (2.8) is still rather challenging owing, not only



18

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

0 50 100 150
0

0.5

1

1.5

2

2.5

3
Cell 1

0 50 100 150
0

1

2

3

4

5
Cell 25

0 50 100 150
0

1

2

3

4

5
Cell 50

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5
Cell 1

0 50 100 150 200 250
0

1

2

3

4
Cell 25

0 50 100 150 200 250
0

1

2

3

4

5
Cell 50

250 260 270 280 290 300
0.8

0.9

1

1.1

1.2

1.3
Cell 1

250 260 270 280 290 300
0

0.5

1

1.5

2

2.5
Cell 25

250 260 270 280 290 300
0

0.5

1

1.5

2

2.5
Cell 50

Figure 12: Iintracellular components u1 and u2 versus time for three cells, as computed from the ODE-DAE
system (5.9), at the green star (top row) (D, τ) = (5, 0.06), blue star (middle row) (D, τ) = (5, 0.11), and red
star (lower row) (D, τ) = (5, 0.17) labelled points in the HB diagram of Fig. 11a. Cells have random influx
parameters d1 on 0.4≤ d1 ≤ 0.8, but where cells 1 and 50 are assigned d1 = 0.4 and d1 = 0.8, respectively.
Left column: Cell 1 with d1 = 0.4 and x1 = (0.765,−0.141). Middle column: Cell 25 with d1 = 0.7086 and
x25 = (−0.3223, 0.0489). Right column: Cell 50 with d1 = 0.8 and x50 = (0.763,−0.362). Other parameters
as in Fig. 11. As predicted, among these three points, sustained intracellular oscillations occur only at the red
star in Fig. 11a.

to the complexity of the geometry, but also from the fact that steady-state solutions are in general
not spatially uniform, even in radially symmetric domains. As a result, this prohibits applying a
standard Turing-type linear stability analysis that has been used so successfully to analyze pattern
formation in more conventional RD systems where spatially uniform steady-states often occur.

For a coupled bulk-membrane RD system on a circular bulk domain, in §3.1 we have outlined
the analysis in [21] for the construction of radially symmetric spatially non-uniform steady-
states and the derivation of amplitude equations characterizing the weakly nonlinear dynamics
of spatio-temporal patterns near Hopf and pitchfork bifurcation points associated with the
linearization of this non-uniform base state. By assuming equal diffusion rates for the membrane-
bound species, our results have shown that the coupling via a passive bulk diffusion process
can provide an alternative destabilizing mechanism in comparison to the usual diffusion-driven
instability paradigm. Although we have only illustrated the weakly nonlinear analysis of [21]
for the Brusselator kinetics, the normal form analysis of [21] can be readily implemented for an
arbitrary reaction kinetics on the boundary of a disk. In §3.2, we have numerically explored the
formation of rotating waves in the highly nonlinear regime, away from O(2) symmetric Hopf
bifurcations. These rotating wave solutions are not amenable to study through a weakly nonlinear
analysis as they originate from a secondary instability, behind the "trivial" Hopf bifurcation
associated with radially symmetric oscillations. However, the situation is rather different for
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models where the total concentration of species is assumed to remain constant, which is a
usual hypothesis of cell polarization models in both standard [51,52] and bulk-membrane [2–4]
versions. In a recent study on a mass-conserved bulk-membrane RD for intracellular oscillations
and polarization [21], which also assumed circular bulk geometry, a rather wide parameter regime
was found that allowed the formation of rotating and standing waves as primary instabilities.
This was observed as a direct consequence of mass conservation, selecting spatial modes which
naturally redistribute the total mass of species, thereby excluding the trivial (radially symmetric)
mode. Hence, it would be worthwhile to extend the weakly nonlinear theory of [21], as outlined
in §3.1, to the case of O(2) symmetric Hopf bifurcations in mass-conserved bulk-membrane RD
models with periodic boundary conditions. In doing so, the interactions of rotating and standing
waves near onset and their stability properties can be analyzed. For this task, the normal form
classification from [40] will be particularly useful. In another direction it would be worthwhile to
extend the weakly nonlinear theory of [21] to realistic geometries in 2-D and 3-D such as ellipses,
cylinders, spheres, and ellipsoids.

For a bulk-membrane RD system with GM membrane kinetics on the boundary of a 2-D
disk, we have highlighted some results in [22] for the existence and linear stability of localized
membrane-bound spike patterns. Although the analysis in §4 was presented only for a specific
choice of the exponents of the nonlinear terms in the GM model, for which the stability analysis
can be simplified, the analysis in [22] was done more generally. We anticipate that a similar
analysis in a 2-D disk can be done for other membrane kinetics such as the Schnakenberg model.
One main challenge, however, is to analyze similar bulk-membrane problems in a 3-D setting,
whereby localized spot patterns occur on the boundary of a spherical domain. In this 3-D context,
it would be interesting to determine how a spatially inhomogeneous production of signalling
chemicals inside the domain can influence the location where stable localized structures can
be formed on the domain boundary. Finally, more elaborate bulk-membrane models involving
time-dependent domain growth due to either chemical signalling or mechanical stresses pose
considerable challenges for an analytical characterization of pattern formation properties.

For the bulk-cell PDE-ODE system (5.2), the use of Sel’kov intracellular dynamics has provided
a clear conceptual model for the sudden emergence, owing to a Hopf bifurcation, of intracellular
oscillations as mediated by an autoinducer field. In the absence of bulk coupling, the Sel’kov ODE
dynamics is an example of a conditional oscillator, in that the kinetics parameters can be tuned to
be relatively close to the critical values where limit cycle oscillations can occur. The introduction
of cell-cell coupling through the bulk diffusion field can then effectively change the marginal
stability boundary, leading to the emergence of intracellular oscllations. Intracellular oscillations
have also observed in several specific biological systems (cf. [32], [33], [34]). From the viewpoint
of applications, it would be interesting to analyze (5.1) for intracellular kinetics that are based
on detailed biologically realistic models of signaling pathways, such as those of [53] and [54]
for glycolytic oscillations. We remark that the bulk-cell model (5.2) readily allows for including
any parameter values, such as kinetic rate constants and cell membrane permeabilites, that can
be extracted from biological measurements. Extensions of the analysis of the 2-D model (5.2) to
either a 3-D setting, or to allow for two bulk diffusion fields, should be undertaken.

One challenging open numerical issue in the analysis of bulk-cell models concerns developing
well-conditioned numerical techniques to implement the linear stability analysis based on the
root-finding condition det(M(λ)) = 0 for the GCEP given in (5.7) for a large number of randomly
placed cells with arbitrary permeabilities. Solution strategies for such nonlinear matrix eigenvalue
problems are typically restricted to matrices wih special structure, such as Hermitian matrices,
matrices with low-rank dependence on λ, or matrices that are quadratic or rational in λ (cf. [55]).
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