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Oscillatory dynamics associated with the coupled membrane-bulk PDE-ODE model of Gomez et al. [Phys. Rev. Lett., 98(16),

(2007), 168303] in one spatial dimension is analyzed using a combination of asymptotic analysis, linear stability theory, and

numerical bifurcation software. The mathematical model consists of two dynamically active membranes with Fitzhugh-Nagumo

kinetics, separated spatially by a distance L, that are coupled together through a diffusion field that occupies the bulk region

0 < x < L. The flux of the diffusion field on the membranes at x = 0 and x = L provides feedback to the local dynamics

on the membranes. In the absence of membrane-bulk coupling the membrane kinetics have a stable fixed point. The effect of

bulk diffusion is to trigger either synchronous and asynchronous oscillations in the two membranes. In the singular limit of

slow-fast membrane dynamics, and with only one diffusing species in the bulk, phase diagrams in parameter space showing

where either synchronous or asynchronous oscillations occur, together with the corresponding Hopf frequencies at onset, are

provided analytically. When the membrane kinetics is not of slow-fast type, a numerical study of the stability problem together

with the numerical bifurcation software XPPAUT [7] is used to to construct global bifurcation diagrams of steady-states and

the bifurcating periodic solution branches for the case of either one or two diffusing species in the bulk. Overall, our results

show the existence of a wide parameter range where stable synchronous oscillatory dynamics in the two membranes can occur.

Predictions from the analytical and bifurcation theory are confirmed with full numerical simulations of the PDE-ODE system.
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1 Introduction

We analyze a coupled PDE-ODE model that leads to the collective synchronization of oscillatory dynamics for spatially

segregated, but dynamically active, regions that are coupled spatially through a linear bulk diffusion field. The coupling

of dynamically active membranes or spatially localized compartments, modeled by ODE dynamics, through a linear

bulk diffusion field, arises in many different applications. A well-known example involves the signalling of the amoebae

Dictyostelium discoideum through the release of cAMP into the medium where it diffuses and acts on other amoeba in

the colony (cf. [8]). Some models of related quorum sensing behavior are given in [6], [20], and [21]. In the modeling of

catalytic reactions occurring on solid surfaces, it was shown in [16] that oscillations in the surface kinetics are triggered by

the effect of spatial bulk diffusion in the gas phase near the catalytic surface. Related models of the effect of the coupling

of diffusion to localized chemical reactions are given in [24], [26], [28], and [22]. Other applications include the analysis of

Turing patterns arising from coupled bulk and surface diffusion (cf. [17]). In the study of cellular signal transduction, [15]

emphasizes the need for developing detailed models of cell signaling that are not strictly ODE based, but that, instead,

involve spatial diffusion processes coupled with bio-chemical reactions occurring within localized signaling compartments.

A more traditional modeling framework that is well-known to lead to the synchronization of dynamically active units

are the ODE-based models, originating in [1] and [29], that couple nonlinear oscillators, each having a stable rest point in

isolation from its neighbours, through various coupling mechanisms. In the asymptotic limit of weak coupling, the study

of oscillator synchronization on an ODE network is typically done using a phase-reduction approach (see [23] and the
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references therein). A recent survey of weakly coupled oscillator theory for deterministic and stochastic ODE systems, with

applications to neuroscience, is given in [2]. In contrast, there are rather few analytical studies of oscillator synchronization

for PDE-ODE models. In the context of neuroscience, PDE-ODE models for dendritic oscillations arising from coupling

through a passive cable have been developed in [25] and [27]. For these models, oscillator synchronization was analyzed

in the limit of weak dendrite-cable coupling by extending the phase-reduction method (cf. [23]) to a PDE context.

In this broad context, the goal of this paper is to give a detailed analysis of the triggering of synchronous oscillations

for the 1-D coupled membrane-bulk model of [9]. This PDE-ODE model of [9] consists of two active membranes with

activator-inhibitor dynamics at x = 0, L that are coupled through passive diffusion in the bulk region 0 < x < L. In the

bulk, there are two diffusing species with concentrations U(x, t) and V (x, t) satisfying

(1.1 a) Ut = DuUxx − σuU , Vt = DvVxx − σvV , 0 < x < L , t > 0 .

Here Du and Dv are the two diffusion coefficients, while σu and σv are the constant bulk decay rates. The kinetics on the

two active membranes at x = 0 and x = L are assumed to be identical, and given by

(1.1 b)
u′1 = f(u1, v1) + kuUx(0, t) , v′1 = ǫg(u1, v1) + kvVx(0, t) ,

u′2 = f(u2, v2)− kuUx(L, t) , v′2 = ǫg(u2, v2)− kvVx(L, t) ,

where ui and vi, i = 1, 2 denote the two concentrations on the membrane, so that u1(t) = U(0, t), u2(t) = U(L, t),

v1(t) = V (0, t) and v2 = V (L, t). The parameter ǫ that accompanies g(ui, vi) determines the relative difference in the

time-scale for the boundary kinetics, so that the time evolution of u is much faster than v if 0 < ǫ ≪ 1. The terms

kuUx(0, t) and kvVx(0, t) account for the exchange of species between the membrane and the bulk, where the constants ku

and kv are called the leakage parameters. The kinetics f(u, v) and g(u, v), modeling a local activator-inhibitor dynamics,

are taken to be the Fitzhugh-Nagumo type kinetics considered in [9], given for q > 0 and z > 0 by

(1.1 c) f(u, v) = u− q(u− 2)3 + 4− v , g(u, v) = uz − v .

In our analysis we will either consider the strong coupling limit where ǫ = O(1) and ku = kv = O(1), or the singularly

perturbed limit ǫ ≪ 1 with kv = O(ǫ) and ku = O(1) of slow-fast membrane dynamics. As such, since we do not assume

a weak coupling between the membrane and the bulk, the phase-reduction methodology of [25] and [27] does not appear

to be an appropriate tool for the analysis of (1.1).

To illustrate the phenomena to be analyzed, in Fig. 1 we show a contour plot of V (x, t) together with the time-history of

the two membrane components, as computed numerically from (1.1) on a domain of length L = 4, for the bulk parameters

Dv = 0.5, Du = 1.5, σv = 0.008, and σu = 0.01, the Fitzhugh-Nagumo parameters z = 3.5 and q = 5, the leakage

parameters ku = kv = 0.7, and with ǫ = 0.15. For z = 3.5 and q = 5, the membrane dynamics have a unique stable

steady-state when uncoupled from the bulk. For the initial condition as given in the figure caption, Fig. 1 shows that

the coupling of the two membranes by bulk diffusion triggers oscillations that otherwise would not be present, and that

the membrane oscillations become synchronized as time increases. One goal of this paper is to develop analytical and

numerical tools to identify parameter regimes for the existence of such synchronized membrane-bulk oscillations for (1.1).

In contrast to the regime where ǫ = O(1), for the singular slow-fast limit where ǫ → 0, the qualitative mechanism for

the triggering of time-periodic solutions for the coupled system (1.1), as discussed in [9], is based on a simple nullcline

analysis, and is described in the caption of Fig. 2. We assume that q and z are chosen such that the membrane kinetics

in the absence of any coupling to the bulk has a single stable equilibrium point. For q = 5 and z = 3.5, this stable fixed

point (ue, ve) occurs at the intersection of the two nullclines v = V(u) = u−q(u−2)3+4 and v = zu where f(u,V(u)) = 0
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Figure 1. Left: contour plot of numerical solution for V (x, t), computed from the PDE-ODE system (1.1), showing stable

synchronous oscillations for the bulk parameter values Dv = 0.5, Du = 1.5, σv = 0.008, and σu = 0.01, the Fitzhugh-

Nagumo parameters z = 3.5 and q = 5, the leakage parameters ku = kv = 0.7, and with ǫ = 0.15 and L = 4. The initial

condition for (1.1) was V (x, 0) = 6.5− x/2, U(x, 0) = 2 sin(x) + 2, u1 = 2, u2 = 0.48, v1 = 6.5, v2 = 4.5, at t = 0. Right

panel: plot of the two membrane components in the two separate compartments versus t.

and g(u, zu) = 0. In the limit ǫ→ 0, it is readily shown from the Jacobian of the membrane kinetics that the equilibrium

(ue, ve) is linearly stable only when V ′(ue) < 0, and undergoes a Hopf bifurcation when V ′(ue) crosses through zero. When

the leakages in (1.1 b) satisfy ku = O(ǫ) and kv = O(ǫ), we have, to leading order in ǫ, that the steady-state of (1.1 b)

remains on the nullcline f(u, v) = 0. However, the effect of the coupling to the bulk for V is to shift the nullcline for the

v-component in (1.1 b) to v = βu, for some β that is a monotonically decreasing function of kv. This shows that there is

an intermediate range of β where the equilibrium point is unstable, as given by the dotted line in Fig. 2. Although this

mechanism of [9] does explain qualitatively why triggered oscillations can be induced by membrane-bulk coupling in the

limit ǫ→ 0, it does not provide a detailed quantitative characterization of these oscillations.
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Figure 2. Plot of the nullcline V(u) = u− q(u− 2)3+4 with q = 5 for which f(u,V(u)) = 0. The straight lines are v = βu

with β = 3.5, β = 3, and β = 2. The straight line v = 3.5u is the nullcline of g(u, v) = 0 when z = 3.5 for the uncoupled

membrane-bulk problem. As the leakage kv = O(ǫ) increases, the effective parameter β decreases. The dotted line with

β = 3 intersects V(u) in the unstable region where V ′(u) > 0. For β = 2.0, the intersection again occurs in the stable

region for the membrane kinetics. For a leakage where ku = O(ǫ) in (1.1 b) the nullcline for f(u, v) = 0 is, to leading order

in ǫ, unchanged by the coupling of the membrane to the bulk.

As an extension of this qualitative and numerical analysis of [9], we use asymptotic analysis together with bifurcation

and stability theory to give a detailed theoretical analysis of the onset of oscillatory dynamics for (1.1). In the singular

limit ǫ→ 0 of slow-fast membrane dynamics, and assuming only one diffusing species in the bulk, our stability analysis of
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the unique symmetric steady-state solution will provide a detailed phase diagram in parameter space where various types

of oscillatory dynamics can occur. In the limit ǫ → 0, our asymptotic analysis of the spectral problem, and in particular

the winding number, will yield asymptotic approximations for the Hopf bifurcation thresholds in parameter space for both

the synchronous and asynchronous periodic solution branches, as well as the Hopf bifurcation frequencies near onset. In

addition, zero-eigenvalue crossings corresponding to the emergence of asymmetric steady-state solutions will be studied.

In the non-singular case, where ǫ = O(1), a numerical study of the winding number is used to determine a phase diagram

in parameter space where the steady-state solution is linearly unstable and to determine the boundaries in this parameter

space where Hopf bifurcations can occur. To examine, in a more global sense, the behavior of the large amplitude solutions

that emerge from these bifurcation points of the linearization of the steady-state we use the numerical bifurcation software

XPPAUT [7]. In this way, we obtain a global bifurcation diagram of steady-state and large amplitude periodic solution

branches for the case of either one or two diffusing species in the bulk. Overall, this hybrid analytical-numerical approach

shows that stable synchronous large-amplitude oscillations between the two membranes is a robust feature of the dynamics

that occurs in a wide parameter regime. The numerical results shown in Fig. 1 correspond to a particular parameter set

where synchronized oscillations between the two membranes is predicted from our theory in §4. Moreover, a glimpse at

some more exotic dynamics such as a torus bifurcation, arising from secondary bifurcations, is also given.

Although our analysis is based on a specific reaction kinetics on the two membranes, the mechanism through which

oscillatory dynamics occur is similar for other membrane kinetics. In [11] a bifurcation analysis of coupled membrane-

bulk oscillatory dynamics with Sel’kov membrane kinetics was given. However, for the model of [11], where the membrane

dynamics was not of slow-fast type, comparatively little analysis of the oscillatory dynamics was possible. In the related

article [12], a detailed linear stability theory was given for a general class of coupled membrane-bulk models with only

one active component on the membrane. For this class, a weakly nonlinear analysis, leading to an amplitude equation,

was developed to characterize whether Hopf bifurcations from the steady-state are subcritical or supercritical.

The outline of this paper is as follows. In § 2 we construct a symmetric steady-state solution, and we formulate the

linear stability problem for this solution. In § 3 we consider a one-bulk species model where only the inhibitor V can

diffuse in the bulk. For this case, in § 3.1 an asymptotic analysis for ǫ→ 0 of the stability problem is provided to analyze

Hopf bifurcations of the symmetric steady-state and the emergence of asymmetric steady-states. The ǫ = O(1) problem

for one diffusing bulk species is studied numerically in §3.2. In § 4 we extend our analysis to the full model (1.1) consisting

of two diffusing bulk species. A brief qualitative summary of our results and suggestions for further work is given in § 5.

2 The Steady-State Solution and the Formulation of the Linear Stability Problem

In this section we determine a symmetric steady-state solution for (1.1) and analyze the linear stability properties of this

solution. Since the two membranes are identical, it is natural to seek a steady-state solution that is symmetric about the

midline x = L/2, so that for the steady-state problem of (1.1) we consider 0 < x < L/2 and impose zero flux conditions

at x = L/2. In the steady-state analysis, for convenience we drop the subscripts for u and v at the left membrane. As

such, the symmetric steady-state solution Ue and Ve for (1.1) satisfies

(2.1) DuUexx − σuUe = 0 , DvVexx − σvVe = 0 , 0 < x < L/2 ,

with boundary conditions Ue(0) = ue, Ve(0) = ve, Uex (L/2) = 0, and Vex (L/2) = 0. The solution to this problem is

(2.2) Ue(x) = ue
cosh

[

ωu(
L
2
− x)

]

cosh (ωuL/2)
, Ve(x) = ve

cosh
[

ωv(
L
2
− x)

]

cosh (ωvL/2)
, ωu ≡

√

σu
Du

, ωv ≡
√

σv
Dv

.
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Then, by using (1.1 b) with kinetics (1.1 c), we readily derive that u = ue is a root of the cubic H(u) = 0, given by

(2.3 a) H(u) ≡ qu3 − 6qu2 + (12q − 1 + au + β) u− (8q + 4) ,

where we have defined au and β, by

(2.3 b) au ≡ kuωu tanh (ωuL/2) , β ≡ ǫz/(ǫ+ av) , where av ≡ kvωv tanh (ωvL/2) .

In terms of any solution u = ue to the cubic, ve is given by ve = βue.

We now claim that (1.1) has a unique positive symmetric steady-state solution. To show this, we must verify that there

is a unique root ue > 0 to H(u) = 0 when u > 0. In our proof below we will consider two cases: Case I: au + β > 1. Case

II: 0 < au + β ≤ 1. We first consider Case I. We calculate that H(0) = −(8q + 4) < 0 and H(u) → +∞ as u → +∞.

Moreover, we derive that H′(u) = 3q(u − 2)2 + (au + β − 1), so that H′(u) > 0 for u > 0 in Case I. Since H(0) < 0,

H(u) → +∞ as u→ ∞, and H(u) is monotone increasing on u > 0, there is a unique root to H(u) = 0 in u > 0 in Case I.

Next, we consider Case II. We conclude that H′(u) = 0 at exactly two points u = u±, given by

(2.4) u± ≡ 2± 1√
3q

√

1− au − β .

Here u− < 2 < u+, with u− and u+ a local maximum and local minimum of H(u), respectively. Therefore, since 2 < u+,

H(2) = −6+ 2(au + β) < 0, H(u) → +∞ as u→ ∞, and u+ is a local minimum point of H(u), we conclude that there is

a unique root to H(u) = 0 in u > 2. To conclude the proof for Case II, we need only show that H(u−) < 0 whenever u−

is on the range 0 < u− < 2. To show this we use 3q(u− − 2)2 = 1− (au + β) to calculate

H(u−) = q(u− − 2)3 − u− − 4 + (au + β)u− =
[1− (β + au)]

3
(u− − 2)− u− − 4 + (au + β)u− ,

=
1

3
(−2u− [1− (au + β)]− 14 + 2(au + β)) .

Since the last expression shows that H(u−) < 0 for 0 < u− < 2 when 0 < au + β ≤ 1, we conclude that there are no

additional roots to H(u) = 0 located on 0 < u < 2 whenever 0 < au + β ≤ 1. Combining the results of Case I and Case

II, we conclude that, for any au + β > 0, there is a unique positive symmetric steady-state solution to (1.1).

We will assume that z and q are such that the steady-state of the membrane kinetics, when uncoupled to the bulk, is a

linearly stable fixed point. As a result, any instability that arises in our analysis is due specifically to the coupling of the

two membranes by the bulk. For the uncoupled problem, where au = 0 and av = 0 in (2.3), we obtain that ue is a root

of (2.3 a) in which we set au = 0 and β = z in (2.3 a). In terms of ue, the Jacobian of the membrane kinetics is

(2.5) J0
e ≡

(

feu , fev
ǫgeu ǫgev

)

=

(

1− 3q(ue − 2)2 , −1

ǫz −ǫ

)

,

when uncoupled from the bulk. We calculate the determinant and trace of this matrix as

(2.6) detJ0
e = ǫ

[

z − 1 + 3q(ue − 2)2
]

, trJ0
e = 1− ǫ− 3q(ue − 2)2 .

To ensure that the uncoupled membrane kinetics has a stable fixed point, we will assume that z > 1, so that detJ0
e > 0 for

any parameter set. Therefore, the stability of the fixed point is determined by the sign of trJ0
e . To determine the region

of the (q, z) plane, with z > 1, for which trJ0
e < 0, we simply locate the stability boundary where trJ0

e = 0. We solve (2.6)

for q and then (2.3 a), with au = 0 and β = z, for z, to readily obtain a parametric description of this stability boundary

in the form q = Q(u) and z = Z(u), for u ≥ 0, where

(2.7) q = Q(u) ≡ (1− ǫ)

3(u− 2)2
, z = Z(u) ≡ 1 +

4

u
− (1− ǫ)

3u
(u− 2) .
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Figure 3. The stability boundary when ǫ = 0.015 (left panel) and when ǫ = 0.3 (right panel) for the membrane dynamics

when uncoupled to the bulk diffusion. The heavy solid curve is the stability boundary (2.7) where trJ0
e = 0. Above this

curve in the shaded region, trJ0
e < 0 so that the uncoupled membrane kinetics has a stable fixed point in this region. For

ǫ = 0.015, the parameter values z = 3.5 and q = 5, used in [9], correspond to the marked point.

For ǫ = 0.015 and ǫ = 0.3 in the left and right panels of Fig. 3, respectively, we plot the stability boundary (2.7) for

the uncoupled problem in the (q, z) plane for z > 1. In the shaded regions of this figure we have trJ0
e < 0. In our analysis

below, we will assume that the pair (q, z) belongs to this region, which ensures that the fixed point associated with the

uncoupled membrane kinetics is linearly stable. As a remark, for the parameter values z = 3.5, q = 5.0, and ǫ = 0.015,

as used in [9], we calculate from (2.3 a) and (2.6) that ue ≈ 1.67 and trJ0
e ≈ −0.649 < 0, so that the fixed point for the

uncoupled dynamics is stable. This point is marked in the left panel of Fig. 3.

2.1 Formulation of the Linear Stability Problem

Next, we derive the linear stability problem associated with the symmetric steady-state solution. We introduce

U(x, t) = Ue(x) + ϕ(x)eλt , u(t) = ue + ξeλt , V (x, t) = Ve(x) + ψ(x)eλt , v(t) = ve + ηeλt ,

into (1.1). Upon linearizing the resulting system we obtain that

(2.8 a) Duϕxx − (σu + λ)ϕ = 0 , Dvψxx − (σv + λ)ψ = 0 , 0 < x < L/2 ,

with ϕ(0) = ξ and ψ(0) = η, together with the linearized membrane kinetics on x = 0 given by

(2.8 b) ξλ = ξfeu + ηfev + kuϕ
′(0) , ηλ = ǫξgeu + ǫηgev + kvψ

′(0) .

Since the two membranes, located at x = 0 and at x = L, are identical, then due to reflection symmetry there are two

types of eigenfunctions for (2.8). These are the synchronous (in-phase) or asynchronous (anti-phase) modes, which satisfy

(2.9) ϕ′ (L/2) = 0 , ψ′ (L/2) = 0 , (sync) ; ϕ (L/2) = 0 , ψ (L/2) = 0 , (async) .

Upon solving (2.8) for the in-phase, or synchronous (’+’) mode, we get

(2.10) ϕ+(x) = ξ
cosh

[

Ωu(
L
2
− x)

]

cosh (ΩuL/2)
, ψ+(x) = η

cosh
[

Ωv(
L
2
− x)

]

cosh (ΩvL/2)
,

where we have defined Ωu = Ωu(λ) and Ωv = Ωv(λ) by

(2.11) Ωu ≡
√

σu + λ

Du
, Ωv ≡

√

σv + λ

Dv
.
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In (2.11) we have chosen the principal value of the square root, which ensures that ϕ+ and ψ+ are analytic in Re(λ) > 0

and decay at x = L/2 when L ≫ 1. By substituting (2.10) into the boundary condition (2.8 b) at x = 0, we get that ξ

and η satisfy the homogeneous linear system

(2.12) (feu − λ− kup+Ωu)ξ + fevη = 0 , ǫgeuξ + (ǫgev − λ− kvq+Ωv)η = 0 ,

where we have defined p+ = p+(λ) and q+ = q+(λ) by

(2.13) p+ ≡ tanh (ΩuL/2) , q+ ≡ tanh (ΩvL/2) .

By setting the determinant of the coefficient matrix of this linear system to zero, this linear system has a nontrivial

solution if and only if λ is a root of the transcendental equation

(2.14) (feu − λ− kup+Ωu) (ǫg
e
v − λ− kvq+Ωv)− ǫfevg

e
u = 0 .

Similarly, for the anti-phase, or asynchronous (’-’), mode we obtain from (2.8 a) and (2.9) that

ϕ−(x) = ξ
sinh

[

Ωu(
L
2
− x)

]

sinh (ΩuL/2)
, ψ−(x) = η

sinh
[

Ωv(
L
2
− x)

]

sinh (ΩvL/2)
,

where λ satisfies

(2.15) (feu − λ− kup−Ωu)(ǫg
e
v − λ− kvq−Ωv)− ǫfevg

e
u = 0 .

Here we have defined p− = p−(λ) and q− = q−(λ) by

(2.16) p− ≡ coth (ΩuL/2) , q− ≡ coth (ΩvL/2) .

The eigenvalue problems (2.14) and (2.15) for the synchronous and asynchronous modes can be written in terms of

locating the roots λ of F±(λ) = 0, where

(2.17) F±(λ) ≡
1

kukvp±q±
+

ΩuΩv

det(Je − λI)
− Ωu(ǫg

e
v − λ)

kvq± det(Je − λI)
− Ωv(f

e
u − λ)

kup± det(Je − λI)
.

Here Je is the Jacobian matrix of the membrane dynamics (1.1 b), evaluated at the steady-state solution associated with

the coupled membrane-bulk model. Therefore, from (2.6), we have

(2.18) det(Je − λI) = λ2 − (trJe)λ+ detJe , trJe = 1− ǫ− 3q(ue − 2)2 , detJe = ǫ
[

z − 1 + 3q(ue − 2)2
]

,

where ue is the unique root of H(u) = 0, with H(u) as defined in (2.3 a). In (2.17) we have ǫgev = −ǫ and feu = trJe + ǫ.

ΓR

Γ+

Γ-

Figure 4. Counterclockwise contour consisting of the imaginary axis −iR ≤ Imλ ≤ iR, denoted by Γ− ∪ Γ+, and the

semicircle ΓR, given by |λ| = R > 0, for |argλ| ≤ π/2.

To analyze the stability of the steady-state solution, we use the argument principle of complex analysis to count the
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number N of roots of F±(λ) = 0 in the right half-plane Re(λ) > 0. We take the counterclockwise contour consisting of the

imaginary axis −iR ≤ Imλ ≤ iR, denoted by Γ− ∪ Γ+, and the semicircle ΓR, given by |λ| = R > 0, for |argλ| ≤ π/2, as

shown in Fig. 4. Since 1/p±, 1/q±, Ωu, and Ωv are analytic functions of λ in the right half-plane Reλ > 0, and detJe > 0

since z > 1, it follows that the number P of poles of F±(λ) in the right half-plane depends only on the sign of trJe.

Since p± → 1 and q± → 1 as R→ ∞ on ΓR, with λ = Reiω and |ω| ≤ π/2, we have that the decay of F±(λ) as R→ ∞
is dominated by the first term in (2.17), so that

F±(λ) =
1

kukv
+O

(

R−1/2
)

, as R→ ∞ ,

on ΓR. Therefore, there is no change in the argument of F±(λ) over ΓR as R → ∞. By using the argument principle,

together with F±(λ̄) = F±(λ), we conclude that

(2.19) N = P +
1

π
[argF±]Γ+

, where P =

{

2 if trJe > 0

0 if trJe < 0
.

Here [argF±]Γ+
denotes the change in the argument of F± along the semi-infinite imaginary axis Γ+ = iλI , with 0 ≤

λI < ∞, traversed downwards. When the membrane dynamics are uncoupled with the bulk we have assumed trJe < 0,

so that P = 0. For the coupled problem, we show below that P depends on the strength of the coupling between the

membrane and the bulk. We remark that, although, it is analytically intractable to calculate [argF±]ΓI
, this quantity is

easily evaluated numerically after separating F±(iλI) into real and imaginary parts. In terms of this readily-computed

quantity, the global criterion (2.19) yields the number of unstable eigenvalues of the linearization (2.8) in Re(λ) > 0.

In §3 we determine P and [argF±]ΓI
for the synchronous and asynchronous modes in the limiting case where there is

only one bulk diffusing species. The general case of two diffusing bulk species is considered in §4.

3 One Diffusive Species in the Bulk

In this section we analyze the special case, considered in [9], where there is only one diffusing species in the bulk. As in

[9], we assume that only the inhibitor V can detach from the membrane and diffuse and be degraded in the bulk. As

such, in this section we consider the limiting problem where ku = 0 in (1.1) so that U(x, t) has no effect on the membrane

kinetics, and can be neglected. The one-bulk species model is formulated as

(3.1 a) Vt = DvVxx − σvV , 0 < x < L , t > 0 ,

coupled to the membrane dynamics v1(t) = V (0, t) and v2(t) = V (L, t), where

(3.1 b) u′1 = f(u1, v1) , v′1 = ǫg(u1, v1) + kvVx(0, t) ; u′2 = f(u2, v2) , v′2 = ǫg(u2, v2)− kvVx(L, t) .

Here f(u, v) and g(u, v) are given in (1.1 c). For this limiting problem, the symmetric steady-state solution satisfies

DvVexx − σvVe = 0 , 0 < x < L/2 ; Ve(0) = ve , Vex(L/2) = 0 ,(3.2 a)

f(ue, ve) = 0 , ǫg(ue, ve) + kvVex(0) = 0 .(3.2 b)

Defining ωv ≡
√

σv/Dv, we obtain that ue is the unique root of H(u) = 0, where

(3.3) H(u) ≡ qu3 − 6qu2 + (12q − 1 + β) u− (8q + 4) ; β ≡ z/(1 + ǫ−1av) , av ≡ kvωv tanh (ωvL/2) .

By setting ku = 0 in the stability analysis of §2.1, we obtain that the linear stability properties of this symmetric
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steady-state is determined by the roots of G±(λ) = 0, defined by

(3.4) G±(λ) =
1

kvq±
− Ωv(f

e
u − λ)

det(Je − λI)
,

where Ωv, q+, and q−, are defined in (2.11), (2.13), and (2.16), respectively.

To analyze the roots of (3.4), it is convenient to write (3.3) and (3.4) in terms of dimensionless bifurcation parameters.

To this end, we introduce two parameter l1 and l0, and define β in (3.3) in terms of them as

(3.5) l1 = kv/ǫ , l0 =
√

Dv/σv = 1/ωv , β = z

[

1 +
l1
l0

tanh

(

L

2l0

)]−1

.

The ratio L/l0 is a nondimensional measure of the distance between the compartments to the diffusion length l0, while

l1/l0 is a nondimensional measure of the strength of the membrane-bulk coupling relative to the diffusion length.

Next, we define b ≡ trJe, and use (2.18) to write

(3.6) feu = b+ ǫ , detJe = ǫa , a ≡ z − ǫ− b > 0 , where b = 1− ǫ− 3q(ue − 2)2 .

We recall that a > 0 since we assume from §2 that z > 1. In this way, and upon writing q± and Ωv in terms of l0 and l1,

we obtain that (3.4) can be written as G±(λ) = [1/(ǫl0)]G0
±(λ), where G0

±(λ) is defined by

(3.7) G0
±(λ) ≡

l0
l1q±(τvλ)

− ǫ
√

1 + τvλ

(

b+ ǫ− λ

λ2 − bλ+ ǫa

)

,

where q±(τvλ), with τv ≡ 1/σv, is defined by

(3.8) q±(τvλ) =







tanh
[

L
2l0

√
1 + τvλ

]

, synchronous (+) mode

coth
[

L
2l0

√
1 + τvλ

]

, asynchronous (−) mode
.

By using a winding number argument, similar to that in §2.1, the number N of unstable roots of (3.7) in Re(λ) > 0 is

(3.9) N = P +
1

π
[argG0

±]Γ+
, where P =

{

2 if b = trJe > 0

0 if b = trJe < 0
.

In terms of our dimensionless parameters, we remark that the symmetric steady-state solution, and consequently

b = trJe, depends on l1/l0 and L/l0. In contrast, the stability properties of this solution, as to be analyzed from (3.7)

below in §3.1, depends on l1/l0, L/l0, and τv ≡ 1/σv.

In our stability analysis we will consider two distinct cases. In §3.1 we analyze (3.7) in the limit ǫ → 0 where the

membrane-bulk leakage parameter satisfies kv = O(ǫ), so that β = O(1) in (3.5). For the parameter values given in [9]

(3.10 a) Dv = 0.5 , ǫ = 0.015 , σv = Dv/100 , z = 3.5 , q = 5 , L = 10 , kv = 0.0225 ,

we calculate that

(3.10 b) l1 = 1.5 , l0 = 10 , τv = 200 ,
l1
l0

= 0.15 ,
L

l0
= 1 .

For this parameter set, our small ǫ stability analysis below will provide a theoretical understanding of the numerical

results in [9]. In §3.2, we use a numerical winding number approach together with numerically computed global bifurcation

diagrams, obtained using the bifurcation software XPPAUT [7], to study the ǫ = O(1) problem.

3.1 Stability Analysis for the ǫ→ 0 Limiting Problem

In this subsection we study the roots of (3.7) for various ranges of b. To determine the winding number [argG0
±]Γ+

in (3.9)

we must consider several distinct ranges of λI . For ǫ≪ 1, we will calculate this winding number analytically.
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We first observe that Re(G0
±(iλI)) → l0/l1 > 0 as λI → +∞, so that in the (G0

R±
,G0

I±) plane, where G0
R±

(λI) ≡
Re
(

G0
±(iλI)

)

and G0
I±(λI) ≡ Im

(

G0
±(iλI)

)

, we begin at a point on the positive real axis. Then, since Re(
√
1 + τvλ) > 0,

and both Re(tanh z) > 0 and Re(coth z) > 0 when Re(z) > 0, we conclude for ǫ → 0 from (3.7) that G0
R±

(λI) > 0 for

λI > 0 with λI = O(1). We then use (3.7) to calculate G0
±(0), for any ǫ > 0, as

(3.11) G0
±(0) =

l0
l1q±(0)

− (b+ ǫ)

a
, where a = z − ǫ− b > 0 .

We conclude that G0
±(0) > 0 when b+ ǫ < al0/[l1q±(0)]. Since a = z − ǫ− b > 0, we solve this inequality for b to obtain

that G0
±(0) > 0 when b < b± and G0

±(0) < 0 when b > b±, where b± is defined by

(3.12) b < b± ≡ z

[

1 +
l1q±(0)

l0

]−1

− ǫ .

For the synchronous (+) mode, we now show that b < b+ always holds for any root to the cubic H(u) = 0, defined in

(3.3). In particular, we will prove that b > b+ is incompatible with a root of (3.3). To show this, we first observe that since

q+(0) = tanh (L/2l0), the condition b > b+ is equivalent to b > β− ǫ, where β is defined in (3.5). We have from (3.6) that

b > β− ǫ and β > 0, when 0 < β < 1− 3q(u− 2)2, where u > 0 is the unique root of H(u) ≡ q(u− 2)3 + βu− (4+u) = 0.

From this inequality on β, we calculate

H(u) < q(u− 2)3 + u
[

1− 3q(u− 2)2
]

− (4 + u) = q(u− 2)3 − 4− 3qu(u− 2)2 = −2q(u− 2)2(u+ 1)− 4 < 0 ,

for all u > 0. Therefore, there is no root to H(u) = 0 when b > b+. As a consequence, we must have b < b+, so that for

the synchronous mode we have G0
+(0) > 0 unconditionally.

To determine the curve in the l1/l0 versus L/l0 plane where the asynchronous (-) mode has a zero-eigenvalue crossing,

we set b = b−, and use (3.12) together with (3.3) to obtain that a zero eigenvalue crossing occurs when

z

[

1 +
l1
l0

tanh

(

L

2l0

)]−1

= −q(u− 2)3

u
+

4

u
+ 1 , z

[

1 +
l1
l0

coth

(

L

2l0

)]−1

= 1− 3q(u− 2)2 .

We rearrange these expressions to get

(3.13)

l1
l0

tanh

(

L

2l0

)

= χ1(u) , χ1(u) ≡
zu

−q(u− 2)3 + 4 + u
− 1 ,

l1
l0

coth

(

L

2l0

)

= χ2(u) , χ2(u) ≡
zu

1− 3q(u− 2)2
− 1 .

For the range of u > 0 for which χ1 > 0, χ2 > 0, and χ1/χ2 < 1, we readily derive from (3.13) that the curve in the l1/l0

versus L/l0 plane where the asynchronous (-) mode has a zero-eigenvalue crossing is given parametrically in terms of u by

(3.14)
l1
l0

=
√

χ1(u)χ2(u) ,
L

l0
= ln

(

√

χ2(u) +
√

χ1(u)
√

χ2(u)−
√

χ1(u)

)

.

For q = 5, z = 3.5, (3.14) yields the upward facing horseshoe-shaped curve shown in the left panel of Fig. 6. Below in

(3.30), we show that this zero-eigenvalue crossing for the asynchronous mode is a bifurcation point where asymmetric

equilibria of (3.1) bifurcate from the symmetric steady-state solution branch.

Now that the possibility of zero-eigenvalue crossings has been analyzed, we proceed to determine [argG0
±]Γ+

. Since

G0
R±

(λI) > 0 for λI > 0 with λI = O(1), we need only analyze (3.7) with λ = iλI and λI near the origin. For |b| ≫ O(ǫ),

we set λI = ǫλ0I with λ0I = O(1) in (3.7) to obtain

(3.15) G0
R± = Re

(

G0
±(iǫλ

0
I)
)

∼ l0
l1q±(0)

− ba

a2 + b2(λ0I)
2
.
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For the synchronous mode, we conclude from (3.15) that G0
R±

> 0 when λI = O(ǫ), and consequently [argG0
+]Γ+

= 0, for

any b with |b| ≫ O(ǫ). As a result, for the synchronous mode, we obtain from (3.9) that

(3.16) N = P , where P =

{

2 if b = trJe > 0

0 if b = trJe < 0
, (synchronous mode) .

In contrast, for the asynchronous mode, we conclude from (3.15) that for λI = O(ǫ) and |b| ≫ O(ǫ), we have G0
R−

(λI) > 0

when b < b−, and G0
R−

(λI) < 0 when b > b−, where b− is defined in (3.12). Therefore, for the asynchronous mode, we

have [argG0
−]Γ+

= 0 when b < b−, so that (3.16) still holds when b < b− and |b| ≫ O(ǫ). However, it remains to calculate

[argG0
−]Γ+

= 0 when b > b−, for which G0
R−

(λI) < 0. This computation is done numerically below.

2 6 10 14

−4

−2

0

2

G0

R±

G
0 I
±

 

 

Syn Asy

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

λ
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Figure 5. Left panel: The path G0
±(iλI) = G0

R±
(λI) + iG0

I±(λI), for the parameter set (3.10 a) of [9]. For both ± modes,

we start at λI = 100 (solid dot), which corresponds to the common value G0
R±

∼ l0/l1 > 0 and G0
I± = 0. As λI increases,

G0
R±

remains positive, and the path for each mode terminates when λI = 0 at different points on the positive real axis,

without wrapping around the origin. This establishes that [argG0
±]Γ+

= 0. Right panel: The functions G±(λ) and H(λ),

as defined in (3.17), when λ > 0 is real, for the parameter set (3.10 a). The curves for G+ and G− essentially coincide.

Since there are no intersections between G± and H(λ), then there are no real positive roots to G0
±(λ) = 0 in (3.7) for

either the synchronous or asynchronous modes.

For any b independent of ǫ, this analysis shows for the synchronous mode that N = 0 for b < 0 and N = 2 for any

b > 0. For the asynchronous mode we have N = 0 for b < 0 and N = 2 for any 0 < b < b−. As a result, to leading order

in ǫ, we conclude that both the synchronous and asynchronous modes undergo a Hopf bifurcation as b crosses through

zero. For the parameter set (3.10 a), as used in [9], in the left panel of Fig. 5 we plot the numerically computed path of

G0
±(iλI) in the plane (G0

R±
,G0

I±). For this parameter set we calculate numerically that b− ≈ 2.627 and b+ ≈ 3.258 from

(3.12), and b = trJe = 1− ǫ− 3q(ue − 2)2 ≈ 0.2746, from (2.18), where ue is the unique root of H(u) = 0 defined in (3.3).

Since b < b−, our theoretical prediction that [argG0
±]Γ+

= 0 is confirmed from the plot in the left panel of Fig. 5.

To determine the location of the two unstable eigenvalues of the linearization for the parameter set of (3.10 a), we look

for zeroes of (3.7) on the positive real axis λ > 0. To this end, we rewrite (3.7) as

(3.17) G0
±(λ) =

H(λ)−G±(λ)
[

l1
l0
H(λ)q±(τvλ)

] , H(λ) ≡ λ2 − bλ+ ǫa , G±(λ) ≡
ǫl1
l0

(b+ ǫ− λ)q±(τvλ)
√

1 + τvλ .

For the parameter set of (3.10 a), in the right panel of Fig. 5 we plot G±(λ) and H(λ) for λ > 0 real, which shows that

there are no real positive roots to G0
±(λ) = 0. As a result, the two unstable eigenvalues for the parameter set (3.10 a) are

not real-valued, and do indeed generate an oscillatory instability of the symmetric steady-state solution.

Next, we examine the region near b = 0 where a Hopf bifurcation for either of the two modes must occur. To determine



12 J. Gou, M. J. Ward

the precise location of the Hopf bifurcation point we look for a root λI of (3.7), with λI ≪ 1, when b = O(ǫ). We

Taylor-expand the right-hand side of (3.7) as λI → 0, and set G0
±(iλI) = 0 to obtain that

(3.18) −λ2I − ibλI + ǫ(z − ǫ− b) ∼ ǫ
(

c± + iλIs± +O(λ2I)
)

(

1 +
i

2
τvλI +O(λ2I)

)

(b+ ǫ− iλI) ,

where c± and s± are determined from the Taylor series of l1q±(iτvλI)/l0 as

(3.19)
l1
l0
q±(iτvλI) = c± + iλIs± +O(λ2I) ; c± ≡ l1

l0
q±(0) , s± ≡ l1

l0
τvq

′

±(0) .

Upon expanding the right-hand side of (3.18), we obtain that

(3.20) −λ2I − ibλI + ǫ(z − ǫ− b) ∼ ǫ
[

c± + i
(

s± +
c±
2
τv

)

λI +O(λ2I)
]

(b+ ǫ− iλI) .

To determine λI and the critical value of b for a Hopf bifurcation we take the real and imaginary parts of both sides of

(3.20). From the imaginary parts, we get b ∼ ǫc± − ǫ(b+ ǫ) (s± + c±τv/2). Upon solving for b, we obtain that

(3.21) b ∼ ǫc± − ǫ2(c± + 1)
(

s± +
c±
2
τv

)

.

Next, by taking the real parts of both sides of (3.18), we get

−λ2I + ǫ(z − ǫ− b) ∼ ǫ(b+ ǫ)c± + ǫλ2I

(

s± +
c±
2
τv

)

.

We substitute b ∼ ǫc± into this equation, and simplify the resulting expression to get

λ2I ∼ ǫz − ǫ2(c± + 1)2 − ǫλ2I

(

s± +
c±
2
τv

)

.

For ǫ≪ 1, we readily derive from this last expression that

(3.22 a) λI ∼ ǫ1/2z1/2
(

1− ǫ

2z

[

(c± + 1)2 + z
(

s± +
c±
2
τv

)])

+O(ǫ2) .

Upon recalling (3.19) and (3.8), we determine c± and s± as

(3.22 b) c± =







l1
l0
tanh

(

L
2l0

)

, synchronous (+)

l1
l0
coth

(

L
2l0

)

, asynchronous (−)
, s± =







τv
4

(

l1
l0

)(

L
l0

)

sech2
(

L
2l0

)

, synchronous (+)

− τv
4

(

l1
l0

)(

L
l0

)

csch2
(

L
2l0

)

, asynchronous (−)
.

In summary, we conclude to leading-order in the limit ǫ → 0 that there is a Hopf bifurcation when b ≡ trJe ∼ ǫc±

with leading-order frequency λI ∼ ǫ1/2z1/2. Therefore, the period T of small-amplitude oscillations at the onset of the

Hopf bifurcation is long as ǫ → 0, with scaling T ∼ 2π/
√
ǫz. A higher-order asymptotic formulae for the Hopf point is

given in (3.21) and (3.22). The critical threshold for b, given by b ∼ ǫc±, shows that the Hopf bifurcation threshold for

the synchronous and asynchronous modes are only slightly different when ǫ≪ 1.

To determine the curves in the l1/l0 versus L/l0 parameter plane where Hopf Bifurcations occur, we set b = trJe =

1− ǫ− 3q(ue − 2)2 = ǫc±, and solve for ue. This yields the two roots u1± and u2±, defined by

(3.23) u1± = 2− 1√
3q

√

1− ǫ(1 + c±) , u2± = 2 +
1√
3q

√

1− ǫ(1 + c±) .

By using (3.3), we then solve H(u1±) = 0 and H(u2±) = 0 for β to obtain that β = Z(u1±) and β = Z(u2±), where

(3.24) Z(u) ≡ 1 +
4

u
− (1− ǫ)

3u
(u− 2) .

Finally, we use (3.5) to relate β to l1/l0 and L/l0. Upon solving the resulting expression for l1/l0 we obtain that the Hopf
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bifurcation curves for the synchronous and asynchronous modes are given by

l1
l0

=

[

z

Z(uj+)
− 1

]

coth

(

L

2l0

)

, for j = 1, 2 ; synchronous (+) mode ,(3.25 a)

l1
l0

=

[

z

Z(uj−)
− 1

]

coth

(

L

2l0

)

, for j = 1, 2 ; asynchronous (−) mode ,(3.25 b)

where Z(u) is defined in (3.24) and c± is defined in (3.22 b). We remark that since c± depends on l1/l0, (3.25) is a weakly

implicit equation for l1/l0 when ǫ≪ 1. We solve (3.25) when ǫ≪ 1 for l1/l0 using one step of a fixed point iteration.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

L/l
0

l 1/l 0

0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

L/l
0

kv

Figure 6. Left panel: The Hopf bifurcation boundaries for the synchronous mode (solid curves) and asynchronous mode

(dotted curves), as computed from (3.25), for the one-bulk species model (3.1) when q = 5, z = 3.5, τv = 200, and

ǫ = 0.015. These Hopf bifurcation thresholds essentially coincide except when L/l0 is small. The upward horseshoe-

shaped curve corresponds to a zero-eigenvalue crossing for the asynchronous mode, as given parametrically by (3.14). The

marked point corresponds to the parameter set l1/l0 = 0.15 and L/l0 = 1 used in [9]. Right panel: Phase diagram in the

kv versus L/l0 plane when l0 = 10 showing a clear difference between the Hopf bifurcation boundaries for the synchronous

(outer solid) and asynchronous (inner solid) curves. Between the two outer solid curves, the synchronous mode is unstable

while between the inner solid curves the asynchronous mode is unstable. The dashed horseshoe shaped-curve corresponds

to the zero eigenvalue crossing (3.14). Inside the region bounded by horseshoe-shaped curve there are asymmetric steady-

state solutions. The Hopf curves coincide almost exactly with full numerical results computed by solving (3.4) for a pure

imaginary eigenvalue λ = iω using Maple [19] (dotted curve).

In the left panel of Fig. 6 we plot the Hopf bifurcation curves from (3.25) in the l1/l0 versus L/l0 plane when ǫ = 0.015,

q = 5, and z = 3.5. For this parameter set, we observe from this figure that the Hopf bifurcation thresholds for the

synchronous and asynchronous modes almost coincide. Inside the region bounded by the curves, the symmetric steady-

state solution is unstable and there may either be stable or unstable periodic solutions. The parameter set (3.10 a), as

used in [9], corresponds to the marked point l1/l0 = 0.15 and L/l0 = 1 in this figure that is near the stability boundary.

This phase diagram is comparable to the one obtained in [9]. However, as discussed in §1, in [9] the Hopf bifurcation

boundary for the leading order theory, where the synchronous and asynchronous modes have a common threshold, was

obtained qualitatively through an analysis based on the crossing of nullclines. No zero-eigenvalue crossing was noted in

[9]. Our stability analysis for the limiting problem ǫ→ 0 has been able to determine two-term approximations to the Hopf

boundaries for both the synchronous and asynchronous modes, to determine the Hopf bifurcation frequencies near onset,

and to detect zero-eigenvalue crossings corresponding to the emergence of asymmetric steady-state solutions of (3.1).

In the right panel of Fig. 6 we plot the corresponding Hopf bifurcation curves in the kv versus L/l0 when l0 = 10,

which shows a clearer distinction between the synchronous and asynchronous modes of instability. Between the two outer
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solid curves, representing the Hopf threshold for the synchronous mode, the synchronous mode is unstable. Similarly,

between the two inner solid curves, representing the Hopf threshold for the asynchronous mode, the asynchronous mode

is unstable. The dashed horseshoe-shaped curve corresponds to a zero eigenvalue crossing. Inside this horseshoe-shaped

region, there are asymmetric steady-state solutions to (3.1). This plot shows that for a given value of L/l0 the symmetric

steady-state solution is unstable to an oscillatory instability only for some intermediate range kv− < kv < kv+ of the

leakage parameter, which couples the membrane and the bulk. We remark that the analytical stability boundaries in Fig. 6

were all verified numerically by determining the complex roots of G± = 0, as defined in (3.4), using Maple [19].
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Figure 7. Plot of G0
−(iλI) = G0

R−
(λI) + iG0

I−(λI) for the parameter set l1/l0 = 1.0, L/l0 = 0.4, q = 5.0, z = 3.5, that lies

within the horseshoe-shaped region of the left panel of Fig. 6 where b > b−. Left panel: τv = 200. Right panel: τv = 1. For

λI → ∞, both paths begin on the positive real axis, and end on the negative real axis when λI = 0. For both values of

τv we have [argG0
−]Γ+

= −π, so that N = 1 from (3.9).

Next, we numerically compute the winding number [argG0
−]Γ+

to count the number of unstable eigenvalues for the

asynchronous mode for parameter values inside the horseshoe-shaped zero-eigenvalue crossing curve in the left panel of

Fig. 6. Recall that within this region, we have b > b− and so G0
−(0) < 0. For the particular point l1/l0 = 1.0 and L/l0 = 0.4

in this region, and for q = 5 and z = 3.5, in Fig. 7 we show that [argG0
−]Γ+

= −π for two different values of τv. From

(3.9) this implies that N = 1, and so for the asynchronous mode the linearization around the symmetric steady-state has

an unique unstable real eigenvalue. By further similar numerical computations of the winding number (not shown), we

conjecture that [argG0
−]Γ+

= −π, and consequently N = 1 for the asynchronous mode, whenever b > b−.

In the left panel of Fig. 8 we show the numerically computed spectrum of the linearization, obtained using Maple [19]

on (3.7), for a vertical slice at fixed L/l0 = 0.3 in the right panel of Fig. 6 that begins within the horseshoe-shaped

region, first traversing above the zero-eigenvalue curve, then past the asynchronous Hopf threshold, and finally beyond

the synchronous Hopf threshold. A zoom of the region in Fig. 6 where these crossings are undertaken is shown in the right

panel of Fig. 8. The transition in the spectrum as predicted by our theory is confirmed (see the caption of Fig. 8).

Next, we show analytically that the zero-eigenvalue crossing for the asynchronous mode at b = b− corresponds to a

bifurcation point where asymmetric equilibria of (3.1) bifurcate from the symmetric steady-state solution branch. To show

this, we first construct a more general steady-state solution (3.1), where we remove the symmetry assumption about the

midline x = L/2. For this more general steady-state, we calculate from the steady-state system for (3.1) that

(3.26) Ve(x) = v1
sinh [ωv(L− x)]

sinh(ωvL)
+ v2

sinh(ωvx)

sinh(ωvL)
, ωv ≡

√

σv/Dv ,

where v1 = Ve(0) and v2 = Ve(L). By setting ǫg(u1, v1) + kvVex(0) = 0 and ǫg(u2, v2)− kvVex(L) = 0, we readily derive,
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Figure 8. The spectrum Im(λ) versus Re(λ) (left panel) near the origin for the asynchronous (solid dots) and synchronous

(diamonds) modes for a fixed L/l0 = 0.3, l0 = 10, q = 5, z = 3.5, τv = 200, and ǫ = 0.015, as the leakage kv crosses various

stability boundaries as shown in the right panel, representing a zoom of a portion of the kv versus L/l0 plane of the right

panel of Fig. 6. The stability boundaries in this figure are obtained using Maple [19] on (3.7). The subplots in the left

figure are as follows: Top left kv = 0.26 (in the horseshoe-shaped region I): N = 1 and N = 2 for the anti-phase and

in-phase modes, respectively. Top right: kv = 0.265 (outside the horseshoe, but before the asynchronous Hopf boundary:

region II): N = 2 for both anti-phase and in-phase modes. Bottom Left: kv = 0.275 (between the asynchronous and

synchronous Hopf boundaries: region III): N = 0 for the anti-phase and N = 2 for the in-phase modes. Bottom Right:

kv = 0.282 (above the synchronous Hopf boundary: region IV): N = 0 for both the anti-phase and in-phase modes. These

spectral results are all consistent with our stability theory.

in terms of a 2× 2 symmetric matrix A, that

(3.27 a) A
(

v1
v2

)

= z

(

u1
u2

)

, A ≡





1 + l1
l0
coth

(

L
l0

)

− l1
l0
csch

(

L
l0

)

− l1
l0
csch

(

L
l0

)

1 + l1
l0
coth

(

L
l0

)



 .

Upon setting f(uj , vj) = 0, j = 1, 2, we obtain a nonlinear algebraic system for u ≡ (u1, u2)
T given by N (u) = 0, where

(3.27 b) N (u) ≡ −q
(

(u1 − 2)3

(u2 − 2)3

)

+ 4

(

1

1

)

+ u− zA−1u .

Since the matrix A is symmetric and has a constant row sum, it follows that q1 ≡ (1, 1)T (in-phase) and q2 ≡ (1,−1)T

(anti-phase) are its two eigenvectors. After some algebra, we obtain that the two corresponding eigenvalues are

(3.28) Aqj = µjqj ; µ1 = 1 +
l1
l0

tanh

(

L

2l0

)

, µ2 = 1 +
l1
l0
coth

(

L

2l0

)

.

To recover the construction of the symmetric steady-state branch we use q1 ≡ (1, 1)T , and look for a solution to

(3.27 b) with u1 = u2 ≡ ue. Since zA−1q1 = zµ−1
1 q1, and zµ−1

1 = β, we readily identify that (3.27 b) reduces to (3.3),

where β is defined in (3.5). To determine whether there are any bifurcation points from this symmetric branch, we write

u = ue(1, 1)
T + δφ, where δ ≪ 1 and φ is a 2-vector. Upon linearizing (3.27 b), we readily obtain that

(3.29) Aφ =

(

z

1− 3q(ue − 2)2

)

φ .

Bifurcation points correspond to where (3.29) has a nontrivial solution. Such points occur whenever

(3.30) 1− 3q(ue − 2)2 = β , (in-phase); 1− 3q(ue − 2)2 = z

[

1 +
l1
l0

coth

(

L

2l0

)]−1

, (anti-phase) .

As shown previously, the in-phase equation above is inconsistent with any root of the cubic (3.3). In contrast, the anti-
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phase equation in (3.30) is precisely the condition b = b−. Therefore, zero eigenvalue crossings for the asynchronous mode

correspond to where branches of asymmetric steady-state solutions bifurcate from the symmetric steady-state branch.

In the left panel of Fig. 9 we plot a global bifurcation diagram versus the leakage parameter kv showing only the

symmetric and asymmetric steady-state solution branches and the two bifurcation points off of the symmetric branch.

This plot corresponds to taking a slice at fixed L/l0 through the phase diagram in the right panel of Fig. 6. It also

corresponds to the solution set of the nonlinear algebraic system (3.27 b). Although the bifurcation diagram can be

obtained from (3.27 b), we used the numerical bifurcation software XPPAUT [7] after first discretizing (3.1) into a large

set of ODE’s. In this way, the stability properties of the asymmetric steady-state branch was determined numerically. Our

computations show that the asymmetric solution branch is unstable except in a narrow window of kv. In the right panel

of Fig. 9 we show results from full numerical solutions to the PDE-ODE system (3.1), computed using a method of lines

approach, that verify this prediction of a stable window in kv for the stability of the asymmetric steady-state solutions.
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Figure 9. Left panel: Global bifurcation diagram of u1 and u2, computed using XPPAUT [7], for the asymmetric and

symmetric steady-state solutions to (3.1) showing the two bifurcation points off of the symmetric steady-state branch.

The parameter values are l0 = 10, L/l0 = 0.4, q = 5, z = 3.5, τv = 200, and ǫ = 0.015. Thin curves represent unstable

steady-state solutions while thick curves indicate stable ones. Right panel: Time evolution of u1, u2, as computed from

the full PDE-ODE system (3.1) using a method of lines approach. The parameter values are in left panel except that

kv = 0.13 is chosen so that the asymmetric steady-state solution is stable. Initial conditions for (3.1) are chosen close to

the stable asymmetric solution. As expected, the two ui approach their steady-state values after a transient period.

In the left panel of Fig. 10, we plot a global bifurcation diagram of u1 versus kv, computed using XPPAUT [7], showing

only the local branching behavior of the synchronous periodic solution branch near the Hopf bifurcation point where it

emerges from the symmetric steady-state branch. In the right panel of Fig. 10 we plot the corresponding period of the

synchronous oscillations. The periodic solution branch is found to be supercritical at onset, with a narrow range of kv

where the branch is unstable. Stability is regained at some larger value of kv. From the right panel of Fig. 10 the period

of oscillations at onset is 27.99, which agrees rather well with the asymptotic result T = 2π/λI ≈ 30.42, where we used

λI ≈ 0.2065 as computed from (3.22 a) for the synchronous mode.

Finally, to illustrate the oscillatory dynamics, full time-dependent numerical solutions for V (x, t) from the coupled

PDE-ODE system (3.1) were computed using a method of lines approach. We choose three parameter sets that are inside

the region of the left panel of Fig. 6 where both oscillatory modes are unstable with N = 2 unstable eigenvalues for each

mode. In the left and middle panels in Fig. 11, representing contour plots of V (x, t), we show the clear possibility of either

stable synchronous or stable asynchronous oscillatory instabilities, depending on the particular point chosen within the

instability region. For the right panel in Fig. 11, we use the parameter set (3.10 a) of [9], for which kv = 0.0225, which
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Figure 10. Left panel: The global bifurcation diagram of u1 versus kv, computed using XPPAUT [7], for in-phase perturba-

tions, showing the periodic solution branch of synchronous oscillations near the lower Hopf boundary for the synchronous

mode in the right panel of Fig. 6. The other parameter values are L/l0 = 1.0, l0 = 10, q = 5, z = 3.5, τv = 200, and

ǫ = 0.015 corresponding to the parameter set (3.10 a) of [9]. Right panel: The period of oscillations along the synchronous

branch. The solid and open circles in both plots represent stable and unstable periodic solutions, respectively. The solid

and dashed lines in the left panel are stable and unstable symmetric steady-state solutions, respectively.

Figure 11. Full numerical simulations of the PDE-ODE system (3.1) for V (x, t), with time running from bottom to top

and space represented horizontally. The fixed parameter values are q = 5, z = 3.5, τv = 200, and ǫ = 0.015. The initial

conditions used in the simulation are V (x) = 0.5 = v1 = v2, u1 = 1, u2 = 5. Left panel: L = 5 with l1/l0 = 0.5 and

L/l0 = 0.5 showing stable synchronous oscillations. Middle panel: L = 10 with l1/l0 = 0.25 and L/l0 = 1 showing stable

asynchronous oscillations. Right panel: L = 10 with l1/l0 = 0.15 and L/l0 = 1 for the parameter set (3.10 a) of [9].

is close to the stability boundary where a Hopf bifurcation occurs (see the marked point in the left panel of Fig. 6). For

this parameter set, we observe from the right panel of Fig. 10 that the synchronous periodic solution is stable and that

the period of oscillations is T ≈ 64. The corresponding full numerical results computed from the PDE-ODE system (3.1)

shown in the right plot of Fig. 11 reveal stable synchronous oscillations with a period close to this predicted value.

Qualitatively, our results for the ǫ≪ 1 regime show that when L/l0 = O(1), the in-phase and anti-phase Hopf bifurcation

thresholds in terms of the leakage parameter kv are asymptotically close, and that oscillatory instabilities only occur on

some finite interval of kv. However, when Dv/σv is large, or equivalently L is small, the parameter range of kv where

asynchronous instabilities occur is smaller than that for the corresponding synchronous range (see the right panel of

Fig. 6). Moreover, our asymptotic calculation of the asymptotically long period of small amplitude oscillations on the

boundaries in the phase diagram of Fig. 6 indicates that relaxation-type oscillations will occur near the Hopf point. Such

oscillations are confirmed in the full numerical simulations shown in Fig. 11. Finally, our detailed analysis and use of the
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winding-number criterion has revealed the existence of transcritical bifurcations to non-symmetric steady-state solutions

that occurs at two distinct values of the leakage parameter only when Dv/σv exceeds a critical threshold, or equivalently

when L is sufficiently small. These asymmetric equilibria are, however, typically unstable (see the left panel of Fig. 9),

except on a narrow subinterval of the leakage kv.

3.2 Stability Analysis for the ǫ = O(1) Problem

Next, we study oscillatory dynamics for (3.1) when ǫ = 0.3, which is a twenty-fold increase over the value used in §3.1.
We use a combination of a numerical winding number computation, based on (3.9), to determine the stability properties

of the symmetric steady-state, and Maple [19] to find the roots of (3.7) determining the eigenvalues of the linearization

of (3.1) around the symmetric steady-state solution. Since for this larger value of ǫ the PDE-ODE system (3.1) is not as

computationally stiff as when ǫ = 0.015, we are able to use XPPAUT [7] to calculate global branches of synchronous and

asynchronous periodic solutions. Asymmetric steady-state branches and their bifurcations are also computed.

In the left panel of Fig. 12 we plot the Hopf bifurcation curves, computed from the roots of (3.7), in the l1/l0 versus L/l0

plane when q = 5, z = 3.5, τv = 200, and ǫ = 0.3. In contrast to the similar plot in the left panel of Fig. 6 where ǫ = 0.015,

we observe from the left panel of Fig. 12 that the Hopf bifurcation thresholds for the synchronous and asynchronous

modes are now rather distinct when L/l0 < 0.5. The left horseshoe-shaped curve is the zero-eigenvalue crossing boundary

for the asynchronous mode, as parametrized by (3.14).
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Figure 12. Left panel: The Hopf bifurcation boundaries for the synchronous (solid curves) and asynchronous (dotted

curves) modes for the one-bulk species model (3.1), as computed from solving (3.7) with Maple [19] when q = 5, z = 3.5,

τv = 200, and ǫ = 0.3. These Hopf bifurcation thresholds are distinct when L/l0 < 0.5. The dashed curve is the

zero-eigenvalue crossing for the asynchronous mode, given parametrically by (3.14). Right panel: Bifurcation diagram

of u with respect to l1/l0 for a fixed L/l0 = 0.4. The solid and dashed curves indicate stable and unstable steady-

states, respectively. The solid and open circles correspond to stable and unstable periodic solutions, respectively. The

synchronous and asynchronous periodic solution branches first bifurcate from the symmetric steady-state at l1/l0 ≈ 0.38

and l1/l0 ≈ 0.41, respectively. Asymmetric steady-state solution branches, that bifurcate from the symmetric steady-

state solutions at the zero eigenvalue crossings, are also shown. Additional periodic solution branches, arising from Hopf

bifurcations off of these asymmetric steady-states, also occur.

For a fixed L/l0 = 0.4, and with q = 5, z = 3.5, τv = 200, and ǫ = 0.3, in the right panel of Fig. 12 we plot the

bifurcation diagram of u with respect to l1/l0, showing the primary solution branches and some secondary bifurcations.

This plot corresponds to taking a vertical slice in the phase diagram given in the left panel of Fig. 12. There are several key

features in this plot. Firstly, as l1/l0 is increased from zero, the first bifurcation is to synchronous temporal oscillations.
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Our computations show that, except in very narrow ranges of l1/l0, the global branch of synchronous oscillations between

the two membranes is stable. Secondly, we observe that the asynchronous branch of oscillations that bifurcates from the

symmetric steady-state at l1/l0 ≈ 0.41 is unstable. Thirdly, the asymmetric steady-state solution branch bifurcates from

the symmetric steady-state branch at two values of l1/l0. These asymmetric steady-states are mostly unstable, but there

is a range of l1/l0 where they are stable. Mostly unstable periodic solution branches, emerge from, and terminate on, the

asymmetric steady-state branch. Overall, the bifurcation diagram is rather intricate, and it is beyond the scope of this

paper to classify and study all of these secondary bifurcations.
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Figure 13. Left panel: Contour plot of V (x, t) computed numerically from the PDE-ODE system (3.1) for l1/l0 ≈ 0.406

(kv = 1.22) (left) and for l1/l0 ≈ 0.41 (kv = 1.23) (right). The initial condition is V (x, 0) = 0.5, u1 = 1, u2 = 5,

v1 = v2 = 0.5, at t = 0. The system exhibits synchronized oscillations with unequal amplitude for l1/l0 ≈ 0.406, and

synchronized period-doubling oscillations for l1/l0 ≈ 0.41. The other parameters are the same as in Fig. 12. Right panel:

The inhibitor concentrations v1(t) and v2(t) in the two membranes for l1/l0 ≈ 0.406 (top) and for l1/l0 ≈ 0.41 (bottom).

From the right panel in Fig. 12, we observe that although the synchronous periodic solution branch is stable in a large

range of l1/l0, there is a narrow region 0.413 < l1/l0 < 0.430 predicted by XPPAUT [7] where the symmetric steady-

state and the synchronous periodic solution branch are both unstable. As a result, in this narrow region we anticipate

that (3.1) will exhibit rather complex dynamics. Due to the small numerical error associated with using XPPAUT on

the spatially discretized version of (3.1), in our numerical simulations of the PDE-ODE system (3.1) shown in Fig. 13

we have observed qualitatively interesting dynamics in a slightly shifted interval of l1/l0. The results in Fig. 13 are for

l1/l0 = 0.406 and for l1/l0 = 0.41. From Fig. 13, we conclude that as l1/l0 is increased through the narrow zone where the

synchronous branch is unstable, the two membranes first exhibit synchronized oscillations with a significant distinction in

their oscillating amplitudes. This is followed by period-doubling behavior. As l1/l0 increases further, the periodic-doubling

behavior disappears and the two membranes return to synchronous oscillations with unequal amplitudes.

In comparison with the phase diagram of Fig. 6 for the singular limit case ǫ→ 0, Fig. 12 shows that the parameter range

where asynchronous instabilities occur lies distinctly within the corresponding synchronous range. The global bifurcation

diagram in the right panel of Fig. 12 shows that it is only the synchronous branch of oscillations that is typically linearly

stable. Secondary instabilities, only partly explored, emerging from the branch of asymmetric steady-state solutions and

the asynchronous oscillatory solution branch suggests the possibility of more exotic period-doubling and mixed-mode

behavior.



20 J. Gou, M. J. Ward

4 Two Diffusive Species in the Bulk

In §3 we assumed that only the inhibitor can detach from the membrane and diffuse in the bulk. In this section, we

consider the full model (1.1) where both the activator and inhibitor undergo bulk diffusion. To partially restrict the wide

parameter space for (1.1), we will study (1.1) for the fixed parameter values, which are taken largely from [9], given by

(4.1 a) Dv = 0.5 , Du = 1.5 , σv = 0.008 , σu = 0.01 , z = 3.5 , q = 5 ,

and we will impose equal leakages that k ≡ ku = kv. We then introduce the diffusion lengths l0 and lu, the ratio of

diffusion lengths αu, and the two time-constants τv and τu, by

(4.1 b) l0 ≡
√

Dv

σv
≈ 7.9057 , lu ≡

√

Du

σu
≈ 12.247 , αu ≡ l0

lu
≈ 0.6455 , τv ≡ 1

σv
= 125 , τu ≡ 1

σu
= 100 .

We let the domain length L and the common leakage k to be our bifurcation parameters, and define l1 = k/ǫ with ǫ = 0.15.

Below we determine phase diagrams in the parameter space l1/l0 versus L/l0 where membrane-bulk oscillations occur.

To determine the stability of the unique symmetric steady-state solution, we first nondimensionalize (2.17), in a similar

way as was done in (3.7) for the one-bulk species model. We obtain that the number N of eigenvalues λ of the linearization

of (1.1) in Re(λ) > 0 is

(4.2) N = P +
1

π
[argF0

±]Γ+
, where P =

{

2 if b = trJe > 0

0 if b = trJe < 0
, b ≡ 1− ǫ− 3q(ue − 2)2 ,

where ue is the unique root of the cubic (2.3 a), and where F0
±(λ) is defined by

(4.3 a) F0
±(λ) ≡

l0
l1q±

− ǫ
√
1 + τvλ (b+ ǫ− λ)

det(Je − λI)
+
ǫαu

√
1 + τuλ (ǫ+ λ)

det(Je − λI)

(

p±
q±

)

+

(

ǫ2αul1
l0

)

p±

√
1 + τvλ

√
1 + τuλ

det(Je − λI)
.

Here det(Je − λI) = λ2 − bλ+ ǫ(z − ǫ− b), q± are given in (3.8), and p± are defined by

(4.3 b) p+ = tanh

(

αu

√

1 + τuλ
L

2l0

)

, p− = coth

(

αu

√

1 + τuλ
L

2l0

)

.

We observe that the first two-terms in (4.3 a) are the same as in (3.7), with the last two terms arising from the additional

coupling with the activator. As in §3.1, it is possible to study (4.3) in the limit ǫ→ 0 to determine N analytically for both

the synchronous and asynchronous modes, and to asymptotically calculate the Hopf bifurcation frequencies near onset.

However, in this section, we will consider the finite ǫ problem with ǫ = 0.15 and use Maple [19] to numerically compute

both the roots of (4.3) and the winding number in (4.2), which gives N .

In this way, in the left panel of Fig. 14 we show a phase diagram in the l1/l0 versus L/l0 parameter space, where l1 = k/ǫ

and ǫ = 0.15, with k ≡ kv = ku. The Hopf bifurcation boundaries for the synchronous and asynchronous modes are the

solid and dashed curves, respectively. Inside the region bounded by the disjoint solid curves, the synchronous mode is

unstable with two unstable eigenvalues. Inside the open loop bounded by the dashed curve, the asynchronous mode is

unstable with N = 2. In contrast to the phase diagrams for the one-bulk species case, no zero-eigenvalue crossings were

detected for the parameter set (4.1). This aspect is discussed further at the end of this section.

By using XPPAUT [7], in the right panel of Fig. 14 we plot the global bifurcation diagram of u with respect to l1/l0 for a

fixed vertical slice with L = 4 through the phase diagram in the left panel of Fig. 14, so that L/l0 ≈ 0.505. This plot shows

that the synchronous mode first loses stability to a stable periodic solution at l1/l0 ≈ 0.36, and that there is a subsequent

Hopf bifurcation to the asynchronous mode at l1/l0 ≈ 0.39. The key feature in this plot is that the synchronous branch

of periodic solutions is almost entirely stable, while the asynchronous branch is unstable. No asymmetric steady-state
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Figure 14. Left panel: The Hopf bifurcation boundaries for the synchronous mode (solid curves) and asynchronous mode

(dashed curves) for the two-bulk species model (1.1), as computed from (4.3) with Maple [19] when ǫ = 0.15 and for the

parameters of (4.1). Inside the region bounded by the solid curves, the synchronous mode is unstable, while inside the

region bounded by the dashed loop the asynchronous mode is unstable. Right panel: Global bifurcation diagram of u with

respect to l1/l0 for fixed L = 4 so that L/l0 ≈ 0.505. The solid/dashed lines are stable/unstable symmetric steady-states.

The outer loop, which is almost entirely stable, corresponds to the branch of synchronous oscillations. The inner loop is

the unstable branch of asynchronous oscillations.

solutions bifurcating from the symmetric steady-state branch were detected. As a partial confirmation of these theoretical

predictions, in Fig. 1 of §1 we showed a contour plot of V (x, t) computed from the PDE-ODE system (1.1) for the

parameters of (4.1) and with ǫ = 0.15, L = 4, k = 0.7, so that L/l0 ≈ 0.505 and l1/l0 ≈ 0.59. With a random initial

condition, this plot shows the eventual synchronization of the oscillations in the two membranes. This simulation of §1
confirms the prediction of the right panel of Fig. 14 that only the synchronous mode is stable for this parameter choice.

We remark that richer spatio-temporal dynamics can occur if we choose a vertical slice through the phase diagram in

the left panel of Fig. 14 for the larger value L = 5.5, so that L/l0 ≈ 0.70. In the right panel of Fig. 15 we plot the global

bifurcation diagram of u versus l1/l0 for this vertical slice. In contrast to the case where L = 4 in the right panel of Fig. 14,

we observe from Fig. 15 that, as we increase the value of l1/l0 from 0.2, the asynchronous mode loses its stability before

the synchronous mode. However, as l1/l0 is decreased from 0.8, the synchronous mode loses its stability at l1/l0 ≈ 0.76

before the asynchronous mode at l1/l0 ≈ 0.70. We again find that the synchronous mode is stable for a wide range of l1/l0.

However, in the rather narrow parameter range 0.290 < l1/l0 < 0.305 both the synchronous and asynchronous modes are

unstable. To examine the behavior of the full PDE-ODE system (1.1) in this range of l1/l0, in the left panel of Fig. 15 we

plot the numerically computed time evolution of v2(t) = V (L, t) for (1.1) when l1/l0 = 0.30. The initial conditions used

in the simulation are the same as given in the caption of Fig 1. The resulting time-series for v2(t) shows the presence of

two distinct periods, which is indicative of a torus bifurcation. The analysis of such co-dimension-2 bifurcations is beyond

the scope of this paper. For a related coupled membrane-bulk model, with Sel’kov dynamics on the membrane, a normal

form analysis of such torus bifurcations was given in [10].

Finally, we confirm theoretically that there are no zero-eigenvalue crossings, corresponding to the bifurcation of asym-

metric steady-state solutions from the symmetric steady-state branch. Proceeding similarly as in (3.26)–(3.27 b) of §3.1,
we obtain in place of (3.27 b) that, for any asymmetric steady-state solution of (1.1), u = (u1, u2)

T now satisfies

(4.4) −q
(

(u1 − 2)3

(u2 − 2)3

)

+ 4

(

1

1

)

+ u− zA−1u =
k

lu
Bu , B ≡





coth
(

L
lu

)

−csch
(

L
lu

)

−csch
(

L
lu

)

coth
(

L
lu

)



 .
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Figure 15. Left panel: Plot of v2(t) = V (L, t) versus t computed from full PDE-ODE system (1.1) for the parameter

values of (4.1) and with ǫ = 0.15, L = 5.5, k = 0.35, so that L/l0 ≈ 0.7 and l1/l0 ≈ 0.30. The resulting time series has

two distinct periods, which indicates a possible torus bifurcation where the in-phase and anti-phase periodic solutions

change from stable (unstable) to unstable (stable). Right panel: Global bifurcation diagram of u with respect to l1/l0
for fixed L = 5.5, so that L/l0 ≈ 0.7. The labeling of the branches and their stability is the same as in the right panel

of Fig. 14. The closed, primarily outer, loop is the synchronous branch, while the other closed loop is the asynchronous

branch, which is mostly unstable. The synchronous branch is again mostly stable. In the window 0.290 < l1/l0 < 0.305

both the synchronous and asynchronous branches of periodic solutions are unstable. No secondary bifurcations are shown.

where A is defined in (3.27 a). Since B is symmetric with a constant row sum, the eigenvectors q1 = (1, 1)T and q2 =

(1,−1)T are common to both A and B. The two eigenvalues of B are ξ1 = tanh (L/(2lu)) and ξ2 = coth (L/(2lu)).

The symmetric steady-state solution is recovered by seeking a solution to (4.4) of the form u = ueq1. By using the

explicit expressions for the eigenvalues ξ1 and µ1 of B and A, respectively, where µ1 is given in (3.28), we readily derive

that ue satisfies the cubic (2.3 a). To determine whether there are any bifurcation points from this branch we write

u = ue(1, 1)
T + δφ for δ ≪ 1, and linearize (4.4). We conclude that bifurcation points occur whenever

(4.5) −3q(ue − 2)2φ+ φ− zA−1φ− k

lu
Bφ = 0 ,

has a nontrivial solution φ. For the in-phase mode φ = q1, we use the explicit expressions for ξ1 and µ1 to derive from

(4.5) that any such bifurcation point must satisfy β + au − 1 = −3q(ue − 2)2, where β and au are defined in (2.3 b). By

an identical proof as in §3.1, this condition is inconsistent with any root ue to the cubic (2.3 a). Thus, no zero-eigenvalue

crossing of the in-phase mode from the symmetric steady-state branch can occur.

For the anti-phase mode φ = q2, we use the explicit expressions for the eigenvalues ξ2 and µ2 in (4.5) to obtain that

there is a bifurcation point to an asymmetric steady-state whenever

−3q(ue − 2)2 + 1− k

lu
coth

(

L

2lu

)

=
z

1 + l1
l0
coth

(

L
2l0

) ,

has a solution, where ue is a root of the cubic (2.3 a). For the parameter set (4.1), we verified numerically that no such

solution exists for any point in the phase diagram in the left panel of Fig. 14. However, we remark that for other parameter

sets, notably when ǫ is decreased from ǫ = 0.15, such bifurcation points should be possible.

5 Discussion

By using a combination of asymptotic analysis, spectral theory, and the numerical bifurcation software XPPAUT [7], we

have examined the existence and stability of oscillatory dynamics for the membrane-bulk system (1.1). We refer to such
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oscillations as triggered oscillations, since in the absence of membrane-bulk coupling we have assumed that the membrane

dynamics have a stable fixed point. Our asymptotic analysis has been based on exploiting the asymptotic limit of a slow-

fast structure of the membrane-bulk coupling, and in contrast to the previous studies of [27] and [25] on related PDE-ODE

models with applications to neuroscience, is not based on the assumption of a weak coupling between the membrane and

the bulk. Qualitatively, our phase diagrams in Figs. 6, 12, and 14 based on the linear stability properties of the steady-state,

have shown that oscillatory dynamics in the two membranes, triggered by bulk diffusion, only occurs for some intermediate

range of the membrane-bulk leakage parameter. In the non-singularly perturbed limit where ǫ = O(1), we have shown that

the parameter range where synchronous oscillations can occur between the two membranes is significantly larger than that

for asynchronous oscillations. Moreover, our numerical computations of global bifurcation diagrams have revealed that

there are large parameter regions where it is only the bifurcating branch of synchronous oscillations that is linearly stable.

Overall, our linear stability analysis, augmented by the computation of global branches of periodic solutions, indicates

that stable large-amplitude synchronized oscillations is a robust feature in the dynamics of the coupled membrane-bulk

model (1.1). Similar qualitative results, showing a wide parameter range where stable synchronized oscillations occur,

have been found in [12] and [11] for other membrane kinetics.

As possible extensions of this study, it would be interesting to use Floquet theory to investigate oscillatory dynamics for a

chain of dynamically active membranes localized on lattice sites that are coupled by bulk diffusion. Such models are related

to the study of cascades in cellular signal transduction (cf. [15]), and the study of the effect of catalysts on dynamically

active surfaces (cf. [24], [28]). A particular problem of this type is considered in [11] for the case of Sel’kov membrane

kinetics. It would also be worthwhile to study large-scale oscillations by representing the bulk diffusion field in terms

of a time-dependent Green’s function with memory. Coupling to the membrane dynamics would lead to a continuously

distributed delay equation for the dynamically active membrane components. Moreover, it would be interesting to develop

detailed models of the leakage term so as construct switches or bursters through which the oscillatory dynamics can be

turned on or off. Two such possibilities include allowing the leakage parameter to depend on time through an additional

slow variable, or to allow it to switch stochastically via a Markov jump process between an on and off state. The first

possibility is related to slow passage through Hopf bifurcations (cf. [3], [4], [18]), while the second possibility is related

to analyzing stochastic hybrid systems with stochastic switching of the boundary conditions (cf. [5], [14]).

From a numerical viewpoint, it would also be interesting to use numerical bifurcation software to give a detailed inves-

tigation of secondary instabilities arising from bifurcations of asymmetric steady-state solutions or either the synchronous

or asynchronous periodic solution branch. Our preliminary results show that such secondary bifurcations can lead to

more exotic dynamics such a quasi-periodic solutions or period-doubling behavior. In particular, it would be interesting

to explore whether there can be any period-doubling route to chaotic dynamics such as was observed computationally in

[22] for a related model consisting of two diffusing bulk species that are subject to nonlinear fluxes at fixed lattice sites.

Finally, we remark that models for the coupling of dynamically active, spatially segregated, reaction “cells” through a

three-dimensional bulk diffusion field have been introduced and studied in [20] and [21], with applications to modeling

quorum-sensing behavior in all of R3. In a 2-D bounded domain, in [13] the strong localized perturbation theory of [30],

which is valid in the limit of small cell radius, was used both for constructing steady-state solutions and for analyzing

their linear stability properties. In this way, in [13] parameter regimes where synchronous oscillations between the cells

can occur as a result of the bulk-cell coupling have been identified for various choices of the intracellular kinetics.
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